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COMPLEXITY OF RANDOM SMOOTH FUNCTIONS ON THE
HIGH-DIMENSIONAL SPHERE

BY ANTONIO AUFFINGER1 AND GERARD BEN AROUS2

University of Chicago and New York University

We analyze the landscape of general smooth Gaussian functions on the
sphere in dimension N , when N is large. We give an explicit formula for
the asymptotic complexity of the mean number of critical points of finite and
diverging index at any level of energy and for the mean Euler characteristic of
level sets. We then find two possible scenarios for the bottom landscape, one
that has a layered structure of critical values and a strong correlation between
indexes and critical values and another where even at levels below the limiting
ground state energy the mean number of local minima is exponentially large.
We end the paper by discussing how these results can be interpreted in the
language of spin glasses models.

1. Introduction. This work deals with the number of critical points of Gaus-
sian smooth functions on the N dimensional sphere. The questions addressed in
this paper can be phrased as: What does a random Morse function look like on
a high-dimensional sphere? How many critical values of given index, or below a
given level? What can be said about the topology of its level sets? We investigate
the number of critical points of given index in level sets below a given value, as
well as the topology of the level sets through their mean Euler characteristic. Our
main result is that these functions have an exponentially large number of critical
points of given index, and that the Euler characteristic of the level sets have a
very interesting oscillatory behavior. Moreover we find an invariant to distinguish
between two very different classes of these functions that we describe below.

Let us know describe the functions that we will analyze. For N ≥ 1, let
SN−1(

√
N) ⊂ R

N be the Euclidean sphere of radius
√

N ,

SN−1(
√

N) :=
{
σ = (σ1, . . . , σN) ∈ R

N :
1

N

N∑
i=1

σ 2
i = 1

}
.

Consider the Gaussian function defined on SN−1(
√

N) by

HN,p(σ ) = 1

N(p−1)/2

N∑
i1,...,ip=1

Ji1,...,ipσi1 · · ·σip ,(1.1)
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where Ji1,...,ip are independent centered standard Gaussian random variables.

Equivalently, HN,p is the centered Gaussian process on the sphere SN−1(
√

N)

whose covariance is given by

E
[
HN,p(σ )HN,p

(
σ ′)] = N1−p

(
N∑

i=1

σiσ
′
i

)p

= NR
(
σ ,σ ′)p,(1.2)

where R is the normalized inner product R(σ ,σ ′) := 1
N

〈σ ,σ ′〉 = 1
N

∑N
i=1 σiσ

′
i .

Given a sequence β = (βp)p∈N,p≥2 of positive real numbers such that

∞∑
p=2

2pβp < ∞,(1.3)

let

HN(σ ) =
∞∑

p=2

βpHN,p(σ ),(1.4)

where for any pair of values p 
= p′, the Hamiltonians HN,p,HN,p′ are indepen-
dent. Condition (1.3) is more than enough to guarantee that the above sum is a.s.
finite, and the Hamiltonian HN is a.s. smooth and Morse; see Theorem 11.3.1
of [1].

In this case, we have that

E
[
HN(σ )HN

(
σ ′)] = N

∞∑
p=2

β2
p

(
R
(
σ ,σ ′))p = Nν

(
R
(
σ ,σ ′)),(1.5)

where

ν(t) :=
∞∑

p=2

β2
ptp.(1.6)

We will fix the variance of HN by assuming

ν(1) =
∞∑

p=2

β2
p = 1.

A word of comment is needed here. By Schoenberg’s theorem [12], if
ν(R(σ ,σ ′)) is a positive-definite function for all N and all σ ,σ ′ ∈ SN−1(

√
N),

then ν can be written as a linear sum as in (1.6). This remark implies that we are
exhausting all possible covariances given as (1.5) that satisfy (1.3). The importance
of (1.3) is to ensure smoothness of the process HN .

From now on, we call the function ν a mixture. If ν = β2
ptp , for some p ≥ 2,

we call ν a pure mixture. Note that ν is smooth with

ν′(1) := ν′ 
= 0, ν′′(1) := ν′′ > 0.(1.7)
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If we consider the random variable X that assigns probability β2
p to the inte-

ger p, then its probability measure is given by μX = ∑
β2

pδp and

EX = ν′ and α2 := VarX = ν′′ + ν′ − ν′2.(1.8)

A mixture is pure if and only if α = 0. Furthermore, note that ν′′ ≥ ν′ with equality
only in the pure case with p = 2. The parameters ν′, ν′′ and α2 will be fundamental
in our analysis.

We now introduce the main object of our study. For any open set B ⊂ R and any
integer 0 ≤ k < N , we consider the (random) number CrtN,k(B) of critical values
of the function HN in the set NB = {Nx :x ∈ B} with index equal to k,

CrtN,k(B) = ∑
σ :∇HN(σ )=0

1
{
HN(σ ) ∈ NB

}
1
{
i
(∇2HN(σ )

) = k
}
.(1.9)

Here ∇ , ∇2 are the gradient and the Hessian restricted to SN−1(
√

N), and
i(∇2HN(σ )) is the number of negative eigenvalues of the Hessian ∇2HN , called
the index of the Hessian at σ . We will also consider the total number CrtN(B) of
critical values of the function HN in the set NB (whatever their index)

CrtN(B) = ∑
σ :∇HN(σ )=0

1
{
HN(σ ) ∈ NB

}
.(1.10)

Our first results will give exact and asymptotic formulas for the mean values
ECrtN,k(B) and ECrtN(B), when N → ∞ and k, B and ν are fixed. This initial
computation uses the method developed in [2], where this study was initiated for
pure mixtures.

THEOREM 1.1. For any fixed integer k ≥ 0, there exists a continuous function
θk,ν(u), called the k-complexity function, explicitly given in (2.10), such that, for
any open set B ⊆ R,

lim
N→∞

1

N
logECrtN,k(B) = sup

u∈B

θk,ν(u).(1.11)

We decide to postpone to Section 2.2 the explicit expression of the k-complexity
functions θk,ν(u). However, we describe some important properties of these func-
tions (see Figure 1) in the proposition below. We first fix four important thresholds
that depend on ν. Let

E′∞ := 2ν′√ν′′
ν′ + ν′′ , E∞ := 2ν′′ − α2

ν′√ν′′(1.12)

and

E±∞ := 2ν′√ν′′ ±
√

4ν′′ν′2 − (ν′′ + ν′)(2(ν′′ − ν′ + ν′2) − α2 logν′′/ν′)
ν′ + ν′′ .(1.13)
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FIG. 1. k-complexity functions θk,ν(u) for −6 ≤ u ≤ −1, k = 1,2,3,5 in the case where ν is
pure-like, that is, θk,ν(−E∞) > 0. The dashed line is the continuation of the parabola that describes
θk,ν(u) in the interval [−E∞,∞) where they all agree.

Note that

E−∞ ≤ E′∞ ≤ E∞.(1.14)

Furthermore, E′∞ = E∞ if and only if E∞ = E−∞ if and only if α2 = 0; that is, any
equality in (1.14) implies a triple equality. It occurs if and only if the mixture is
pure; see (1.8).

PROPOSITION 1. For any mixture ν and any k ≥ 0, the k-complexity functions
θk,ν(u) satisfy the following:

(1) θk,ν(u) is continuous on R and differentiable on R \ {−E∞}.
(2) θk,ν(u) is strictly increasing on (−∞,−E′∞) and strictly decreasing on

(−E′∞,∞). Its unique maximum is independent of k and equal to

�ν := θk,ν

(−E′∞
) = 1

2
log

ν′′

ν′ − ν′′ − ν′

ν′′ + ν′ > 0.(1.15)

(3) θk,ν(u) has exactly two distinct zeros. The largest zero is given by −E−∞ and
therefore is independent of k.

(4) For any k, k′ ≥ 0 with k < k′, θk,ν(u) > θk′,ν(u) for all u ∈ (−∞,−E∞).
(5) For any k, k′ ≥ 0 with k < k′, θk,ν(u) = θk′,ν(u) for all u ∈ [−E∞,∞).

From Theorem 1.1 and Proposition 1 we obtain:
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COROLLARY 1.1. The mean total number of critical points of index k satisfies

lim
N→∞

1

N
logECrtN,k(R) = �ν.(1.16)

Furthermore, if B = (−∞, u) with u ≤ −E′∞, then

lim
N→∞

1

N
logECrtN,k(−∞, u) = θk,ν(u).(1.17)

REMARK 1. By symmetry, Theorem 1.1 also holds as stated for the random
variables CrtN,N−l(B), with l ≥ 1 fixed if one replaces θk,ν(u) by θk,ν(−u).

We now use Theorem 1.1 and Proposition 1 to describe the bottom landscape
of HN . For any integer k ≥ 0, we introduce Ek = Ek(ν) > 0 as the unique solution
in (E∞,∞) to (see Figure 1 again)

θk,ν

(−Ek(ν)
) = 0.(1.18)

That is, −Ek(ν) is the smallest zero of the k-complexity function. It is important
to note that, by items (4) and (5) of Proposition 1, the sequence (Ek(ν))k∈N is
nonincreasing. Its structure is of extreme importance and will be also explored in
Section 4. We have the following consequence of Theorem 1.1:

THEOREM 1.2. For k ≥ 0 and ε > 0, let AN,k(ε) be the event “there is a
critical value of HN below the level −N(Ek(ν) + ε) and with index larger or
equal to k,” that is,

AN,k(ε) =
{ ∞∑

i=k

CrtN,i

((−∞,−Ek(ν) − ε
))

> 0

}

and BN,k(ε) be the event “there is a critical value of index k of HN above the level
−N(E−∞ − ε),” that is,

BN,k(ε) = {
CrtN,k

((−E−∞ + ε,∞))
> 0

}
.

Then for all k ≥ 0 and ε > 0,

lim sup
N→∞

1

N
logP

(
AN,k(ε)

)
< 0 and lim sup

N→∞
1

N
logP

(
BN,k(ε)

)
< 0.(1.19)

Theorem 1.2 says that with overwhelming probability all critical values of HN

of index k are inside the interval [−NEk,−NE−∞]. A similar result was derived
for the pure case in [2]. However, in the pure case it was shown (Theorem 2.2
of [2]) that the probability of finding a critical point of finite index above the level
−NE∞ is asymptotically of order exp(−N2C).
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We now study the number of critical points with diverging index and the total
number of critical points (regardless of index). Let k = k(N) be a sequence of
integers such that as N goes to infinity,

k(N)

N
→ γ ∈ (0,1).(1.20)

Let sγ ∈ (−√
2,

√
2) be defined as solution of

1

π

∫ −sγ

−√
2

√
2 − x2 dx = γ.(1.21)

Our next result is the analogue of Theorem 1.1 for critical points of diverging
index.

THEOREM 1.3. For any sequence k(N) satisfying (1.20), as N goes to infinity,

lim
N→∞

1

N
logECrtN,k(N)(B)

= sup
y∈B

{
1

2
log

ν′′

ν′ + 1

2

(
s2
γ − 2ν′′

α2

(
sγ − ν′y

(2ν′′)1/2

)2

− y2
)}

:= sup
y∈B

θγ,ν(u).

REMARK 2. From Theorem 1.3 one can easily get analogues of Theorem 1.2
and Corollary 1.1 for the case of critical points with diverging index. Its statements
are adapted rewrites of the respective results. We leave this to the reader.

We also provide the complexity for the expected total number of critical values
at a level of energy. Precisely, define

θν(u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

θ0,ν(u) if u ≤ −E′∞,

θ0,ν(−u) if u ≥ E′∞,

1

2

(
log

ν′′

ν′ − ν′′ − ν′

ν′2 − ν′ + ν′′ u
2
)

= supγ∈(0,1) θγ,ν(u), otherwise.

(1.22)

THEOREM 1.4. The total number of critical points satisfies

lim
N→∞

1

N
logECrtN(B) = sup

u∈B

θν(u) := �ν(u).(1.23)

REMARK 3. The last result can be interpreted as follows: the mean number of
critical points at levels of the form Nu+o(N) is asymptotically given by the mean
number of local minima, local maxima or critical points of index k(N) ∼ γ (u)N

if u ≤ −E′∞, u ≥ E′∞,−E′∞ ≤ u ≤ E′∞, respectively. Here, γ (u) ∈ (0,1) is such
that sγ (u) = √

2 u
E′∞

; see (1.21).
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We also investigate the landscape of the Hamiltonian HN by analyzing the mean
Euler characteristic of level sets as N goes to infinity. In order to state our results
we need further notation. The Hermite functions φj , j ∈ N, are defined by

φj (x) = (
2j j !√π

)−1/2
hj (x)e−x2/2,(1.24)

where hj , j ∈N are Hermite polynomials,

hj (x) = ex2
(
− d

dx

)j

e−x2
.(1.25)

In particular, h0(x) = 1, h1(x) = 2x,h2(x) = 4x2 −2x. The Hermite functions are
orthonormal functions in R with respect to Lebesgue measure.

We denote by χ(Au) the Euler characteristic of a level set

Au := {
σ ∈ SN−1(

√
N) :HN(σ ) ≤ Nu

}
.

χ(·) is a topological invariant, integer valued function that is defined for any CW-
complex as the alternating sum of Betti’s numbers [16]. It is a functional that is
invariant under homotopies and satisfies

χ(A ∪ B) = χ(A) + χ(B) − χ(A ∩ B), χ(B) = 1 and
(1.26)

χ(SN) = 1 + (−1)N−1,

where B denotes a N -dimensional unit ball, SN the N -dimensional unit sphere
and A, B are CW-complexes. χ(·) roughly measures the number of connected
components and its number of attached cylindrical holes and handles. Since we
are only interested in Euler characteristics of level sets of functions that are almost
surely Morse, we use the equivalent definition that follows from Morse’s theorem
(see [1], Theorem 9.3.2),

χ(Au) :=
N−1∑
k=0

(−1)kCrtk(Au).

The strategy of using Rice’s formula to compute Euler characteristics of level
sets was developed in [1, 14, 15] and also explored in [3]. In fact, in a similar
fashion, we prove the following proposition:

PROPOSITION 2.

Eχ(Au)

= (−1)N−1
(

ν′′

ν′
)(N−1)/2 2−(N−1)N√

π�(N/2)
(1.27)

×
∫ ∞
−∞

∫ u

−∞
hN−1

(√
N(ν′x − αy)√

2ν′′

)
e−N/2(x2+y2) dx dy.
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This allows us to derive the asymptotic formula for Eχ(Au) and its relation to
the asymptotic complexity of the total number of critical points; see (1.23).

THEOREM 1.5. The mean Euler–Poincaré characteristic Eχ(Au) satisfies the
following:

(1) If u ≤ −E′∞,

Eχ(Au) = C(N,ν,u)N−1/2eN�ν(u)(1 + O
(
N−1)),(1.28)

where C(N,ν,u) is a positive constant given in (3.23).
(2) If −E′∞ < u ≤ 0, with u = −E′∞ cosω, ω ∈ (0, π)

Eχ(Au) = (−1)N−1 c(N, ν)

21/4π1/2N5/4

eN�ν(u)

f (ω)(sinω)1/2 sin
[
Nτ(ω) + ρ(ω)

]
(1.29)

× (
1 + O

(
N−1)),

where

τ(ω) = 1

2
(sin 2ω − 2ω), ρ(ω) = −1

2
τ(ω) + 3π

4
+ α(ω),

c(N, ν) is given in (3.21) and f (ω), α(ω) are given in (3.22).
(3) If u > 0, we have Eχ(Au) = Eχ(A−u) for N even and Eχ(Au) = 2 −

Eχ(A−u) for N odd.

Let us now describe in words the landscape picture emerging from Theorem 1.5.
Roughly speaking, Theorem 1.5 says that the mean Euler characteristic of Au is in
absolute value asymptotically equal to the total number of critical points at level
Nu if u < E0. This picture is fairly intuitive and easy to explain in the bottom of the
landscape. As we increase the energy level u from negative infinity to −E′∞, the
level set Au is “essentially” a union of disjoint simply connected neighborhoods of
local minima. Since these are exponentially large and dominate the total number
of critical points, the mean Euler characteristic is positive and of the same size.
As we cross the level −E′∞, local minima cease to dominate. The total number
of critical points and the Euler characteristic (in absolute value) is given by the
critical values of dominant divergent index. The landscape is then hard to visualize.
By increasing a tiny amount of energy it oscillates from a large positive to a large
negative Euler characteristic (and vice versa). This oscillation continues up to level
E′∞. It would be of interest to find a simple and intuitive geometric reason for this
large oscillation. By symmetry above E′∞ we have “essentially” covered the whole
sphere minus an exponentially large number of disjoint simply connected sets.

The rest of the paper is organized as follows. In Section 2 we prove all Theo-
rems about the complexity function. Their proofs follow the same strategy of [2].
Namely, they will follow from an exact formula for the mean number of critical



4222 A. AUFFINGER AND G. BEN AROUS

points of index k that translates the problem to a Random Matrix Theory question.
This formula is more involved than the pure case since in a mixture the Hessian
matrix gains an independent Gaussian component on the diagonal. This leads to
a different variational principle that we analyze. In Section 3 we prove the results
related to the Euler’s characteristic. In Sections 4 and 5 we explain our interest in
such functions, and we relate HN to Hamiltionians of classical models in statistical
physics.

2. Complexity of critical points.

2.1. Main identity. In this section, we introduce the main identity that relates
the mean number of critical points of index k with the kth smallest eigenvalue
of the Gaussian orthogonal ensemble. This identity, given in Proposition 3, is the
analogous of Theorem 2.1 of [2] and it is the first step of the proofs of Theo-
rems 1.1, 1.2, 1.4 and Proposition 5.

We fix our notation for the Gaussian orthogonal ensemble (GOE). The GOE is
a probability measure on the space of real symmetric matrices. Namely, it is the
probability distribution of the N × N real symmetric random matrix MN , whose
entries (Mij , i ≤ j) are independent centered Gaussian random variables with vari-
ance

EM2
ij = 1 + δij

2N
.(2.1)

We will denote by E
N
GOE the expectation under the GOE ensemble of size N × N .

Let λN
0 ≤ λN

1 ≤ · · · ≤ λN
N−1 be the ordered eigenvalues of MN .

PROPOSITION 3. The following identity holds for all N , ν, k ∈ {0, . . . ,N −1},
and for all open sets B ⊂ R:

E
[
CrtN,k(B)

]
= C

(
N,ν′, ν′′)(2.2)

×
∫
B
E

N
GOE

[
exp

{
N

2

((
λN

k

)2 − y2 − 2ν′′

α2

(
λN

k − ν′y
(2ν′′)1/2

)2)}]
dy,

where C(N,ν′, ν′′) = 2
√

2ν′′N
ν′πα2 (

ν′′
ν′ )N/2 ν′√

2ν′′ .

PROOF. Proof of Proposition 3 is a rewrite of the proof of Theorem 2.1 of [2]
with one subtle difference: the law of the Hessian in the mixed case gains an in-
dependent Gaussian component on its diagonal. In this proof, we use H to de-
note HN .



COMPLEXITY OF RANDOM SMOOTH FUNCTIONS 4223

The hypothesis on ν allows us to apply Rice’s formula, in the form of
Lemma 3.1 of [2]. It says that using dσ to denote the usual surface measure on
SN−1(

√
N),

ECrtN,k(B)

=
∫
SN−1(

√
N)

E
[∣∣det∇2H(σ )

∣∣1{H(σ ) ∈ NB, i
(∇2H(σ )

) = k
}|(2.3)

∇H(σ ) = 0
]
φσ (0)dσ ,

where φσ is the density of the gradient vector of H .
Now, since H is invariant under rotations, to compute the above expectation

it is enough to study the joint distribution of (H,∇H,∇2H) at the north pole n.
We fix a orthogonal base for the tangent plane at the north pole, and we consider
∇H(n),∇2H(n) with respect to that base. Denoting subscript by a derivative ac-
cording to a orthonormal basis in TσSN−1(

√
N) we have that

LEMMA 1. For all 1 ≤ i ≤ j ≤ N − 1,

E
[
H(n)2] = N, E

[
H(n)Hi(n)

] = E
[
Hi(n)Hjk(n)

] = 0,

E
[
H(n)Hij (n)

] = −ν′δij , E
[
Hi(n)Hj (n)

] = ν′δij

and

E
[
Hij (n)Hkl(n)

] = 1

N

[
ν′′(δikδjl + δilδjk) + (

ν′′ + ν′)δij δkl

]
.

Furthermore, under the conditional distribution P[·|H(n) = x] the random vari-
ables Hij (n) are Gaussian variables with

E
[
Hij (n)

] = − x

N
ν′δij

and

E
[
Hij (n)Hkl(n)

] = 1

N

[
ν′′(1 + δij )δikδjl + α2δij δkl

]
,

that is, if MN−1 is distributed as a (N − 1) × (N − 1) GOE matrix

E
[∇2H |H(n)

] d=
(

N − 1

N
2ν′′

)1/2

MN−1

+ 1√
N

(
αZ − 1√

N
ν′H(n)

)
I,

where Z is an independent standard Gaussian.
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The above lemma implies that (2.3) can be rewritten as

ECrtN,k(B)

= ωNE

[
E

[∣∣∣∣det
((

N − 1

N
2ν′′

)1/2

MN−1 + 1

N

(√
NαZ − ν′H(n)

)
I

)∣∣∣∣
× 1

{
i

[(
N − 1

N
2ν′′

)1/2

MN−1 +
(
α

Z√
N

− ν′ H(n)

N

)
I

]
= k

}
(2.4)

× 1
{
H(n) ∈ NB

}|H(n)

]]

× φn(n),

where ωN , the volume of the sphere SN−1(
√

N) and φn(n) are given by

ωN = (
√

N)N−1 2πN/2

�(N/2)
, φn(n) = (

2πν′)−(N−1)/2
.(2.5)

Since we can assume α 
= 0 (the case α = 0, that is, the pure p-spin was treated
in [2]), we can rewrite the conditional expectation in (2.4) as

√
N√
2π

(
2ν′′ N − 1

N

)(N−1)/2

(2.6)
×
∫
B

e−Ny2/2
E
∣∣det

(
MN−1 − X(y)

)
I
∣∣1{i[MN−1 − X(y)I

] = k
}

dy,

where X(y) is a Gaussian random variable with mean m =
√

Nν′y
(2ν′′(N−1))1/2 and vari-

ance t2 = α2

2ν′′(N−1)
. Hence, we can apply Lemma 3.3 of [2] with G = R to get

that (2.6) is equal to

�(N/2)((N − 1)/N)−N/2
√

πt2
(2.7)

×
∫
B
E

N
GOE[exp

{
N

2

((
λN

k

)2 − y2 − 2ν′′

α2

(
λN

k − ν′y
(2ν′′)1/2

)2)}
dy.

Putting (2.4), (2.5) and (2.7) together, we end the proof of Proposition 3. �

2.2. Proof of Theorems 1.1, 1.2, 1.3 and 1.4.

2.2.1. Proving Theorem 1.1 and Proposition 1. In this subsection, we will
compute the logarithm asymptotics of the left-hand side of (2.2).

Let F :R2 →R be given by

F(λ, y) = 1

2

(
− ν′′ + ν′

ν′′ + ν′ − ν′2 y2 + 2
√

2
√

ν′′ν′

ν′′ + ν′ − ν′2 λy − ν′′ − ν′ + ν′2

ν′′ + ν′ − ν′2 λ2
)
.(2.8)
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Note that F(λ, y) = −ay2 + byλ − cλ2 for some constants a, b, c > 0. Let

I1(x) =
∫ x

√
2

√
z2 − 2 dz

(2.9)

= 1

2

(
x

√
x2 − 2 + log[2] − 2 log

[(
x +

√
x2 − 2

)])
.

For any k ∈ N fixed, let

θk,ν(u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2
log

ν′′

ν′ + F(−√
2, u), if − E∞ ≤ u,

1

2
log

ν′′

ν′ + F
(
λ∗

k[u], u)− (k + 1)I1
(∣∣λ∗

k[u]∣∣),
if u ≤ −E∞,

(2.10)

where ν′√2ν′′u
ν′′−ν′+ν′2 < λ∗

k[u] ≤ −√
2 is given by

� ′(λ∗
k[u]) = 0, �(x) = 2ν′√2ν′′

α2 ux − ν′′ − ν′ + ν′2

α2 x2 − 2(k + 1)I1
(|x|),

that is, λ∗
k[u] is a solution on (−∞,−√

2] of

ν′√2ν′′
α2 u − ν′′ − ν′ + ν′2

α2 λ∗
k[u] + (k + 1)

√(
λ∗

k[u])2 − 2 = 0.(2.11)

Our goal in this section is to prove that θk,ν is the k-complexity function. When
k = 0 the formula for θ0,ν simplifies as follows.

PROPOSITION 4. For all u ∈R,

θ0,ν(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

(
log

[
ν′′

ν′
]

− u2(ν′ + ν′′)
ν′ − ν′2 + ν′′ + 4uν′√ν′′

ν′ − ν′2 + ν′′

− 2(−ν′ + ν′2 + ν′′)
ν′ − ν′2 + ν′′

)
,

if − E∞ ≤ u,

1

2
log

[
ν′ − 1

]− u2(ν′ − 2)

4(ν′ − 1)
− I1

(
− uν′

√
2
√

ν′(ν′ − 1)

)
,

if u ≤ −E∞.

(2.12)

REMARK 4. It is possible to recover all complexity functions of the pure case
by taking α to zero (i.e., recover the first results of [2]). In particular, if α = 0,
E′∞ = E∞, and we do not have the intermediate regions where the k-complexity
functions are equal for different k and nonconstant.

We postpone the proof of Proposition 4 to the end of this subsection since we
will need another characterization of θk,ν .
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PROOF OF THEOREM 1.1. To prove Theorem 1.1 it suffices to show that
θk,ν(u) is the logarithm asymptotic limit of the left-hand side of (2.2).

First, note that we can rewrite (2.2) as

CNEe−N�(λN
k ,YN )1{YN ∈ B},(2.13)

where YN is a Gaussian random variable of mean zero and variance N independent
of λN

k , E is the expectation with respect to GOE and YN and

lim
N→∞

1

N
logCN = 1

2
log

ν′′

ν′ ,
(2.14)

�(λ,y) = F(λ, y) + y2

2
= 1

2

(
λ2 − 2ν′′

α2

(
λ − ν′y

(2ν′′)1/2

)2)
.

By the independence of YN and λN
k and Theorem A.1 of [2], the sequence of

random variables (λN
k ,YN) satisfies a large deviation principle of speed N and rate

function

Ik(λ, x) =
⎧⎨
⎩

x2

2
+ (k + 1)I1

(|λ|), if λ ≤ −√
2,

∞, otherwise.

Therefore, in view of (2.13) and (2.14), we can apply Laplace–Varadhan lemma
(see, e.g., [8], Theorem 4.3.1 and Exercise 4.3.11) and get that

lim
N→∞

1

N
logECrtN,k(B)

(2.15)

= 1

2

[
log

ν′′

ν′ + max
x∈B,λ≤−√

2

{
λ2 − 1

α2

(
ν′x − √

2ν′′λ
)2 − 2Ik(λ, x)

}]
.

We will now analyze the above variational principle. We start with the case of
B = (−∞, u). We want to find

max
x≤u,λ≤−√

2

{
−x2 + λ2 − 1

α2

(
ν′x − √

2ν′′λ
)2 − 2(k + 1)I1

(|λ|)}.(2.16)

Case u ≥ −E′∞: If u ≥ −E′∞, then we maximize (2.16) in x first. The maxi-

mum is obtained at x = xλ := ν′√2ν′′
ν′′+ν′ λ ≤ u. Plugging xλ back in (2.16), we get an

increasing function in λ, since I1(|λ|) is itself decreasing. Thus the maximum is
realized at

x = xλ, λ = −√
2.

This together with (2.15) proves Theorem 1.1 in the case B = (−∞, u) with
−E′∞ ≤ u.
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Case u ≤ −E′∞: In the case u ≤ −E′∞, xλ ≤ u if and only if λ ≤
√

2u
E′∞

. Therefore
if x∗ maximizes (2.16), then

x∗ = xλ ⇔ λ ≤
√

2u

E′∞
and x∗ = u ⇔

√
2u

E′∞
≤ λ ≤ −√

2.(2.17)

If we plug in the correspondent values of x in each region, we note that in the

first case our function is again increasing in λ. Furthermore, since at λ =
√

2u
E′∞

, xλ =
u, we are led to the following variational principle valid in both cases of (2.17):

max√
2u/E′∞≤λ≤−√

2

{
−u2 + λ2 − 1

α2

(
ν′u − √

2ν′′λ
)2 − 2(k + 1)I1

(|λ|)}

= −
(

1 + ν′2

α2

)
u2 + max√

2u/E′∞≤λ≤−√
2

{
2ν′√2ν′′

α2 uλ − ν′′ − ν′ + ν′2

α2 λ2

(2.18)

− 2(k + 1)I1
(|λ|)}

= −
(

1 + ν′2

α2

)
u2 + max√

2u/E′∞≤λ≤−√
2
�(λ) = max√

2u/E′∞≤λ≤−√
2
�(λ).

Note that �(λ) is a parabola aλ2 + bλ, a < 0 plus an increasing function. The
critical point of the parabola is given by

λc = ν′√2ν′′u
ν′′ − ν′ + ν′2 ≥ −√

2 ⇐⇒ u ≥ −E∞.(2.19)

Therefore if u ≥ −E∞, � is an increasing function in λ, so its maximum is at-
tained at λ = −√

2. This proves the theorem in the region −E∞ ≤ u ≤ −E′∞.
If u < −E∞, equation (2.19) and the facts that � ′(−√

2) < 0 and � ′(λc) > 0
imply that the maximum is taken in the interior of the interval [λc,−

√
2] at λ∗

k[u].
This completes the proof of the theorem in the case B = (−∞, u).

Now, it is easy to extend it to any open set B . Let u∗ be the point that realizes
the sup{u∈B} θk,ν(u). From the continuity and uniqueness of a local maxima of θk,ν ,
it is clear that either u∗ = −E′∞ or u∗ is in the boundary of B . Assume without
loss of generality that there exists an increasing sequence un in B approaching u∗.
Since B is open, there exist εn > 0 such that

E
(
CrtN,k(−∞, un) − CrtN,k(−∞, un − εn)

) = ECrtN,k(un − εn, un)

≤ ECrtN,k(B)

≤ ECrtN,k

(−∞, u∗).
But since θk,ν is continuous and increasing for u ≤ −E′∞, the above equation
implies

θk,ν(un) ≤ lim
N→∞

1

N
logECrtN,k(B) ≤ θk,ν

(
u∗)
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for all n, which proves Theorem 1.1 for any B open. �

It remains to prove Proposition 4. We first need the following miraculous
lemma.

LEMMA 2. For all u < −E∞,

∂

∂ν′′ θ0,ν(u) = 0.

PROOF. The proof relies on how we derived θ0,ν(u). When u < −E∞, θ0,ν(u)

is the maximum over λ of the functional � (that depends on ν′′) given in (2.18).
Its maximizer λ∗(u) is the smallest root of a second degree polynomial that can be
derived from (2.11). This second degree equation is given by A + Bλ + Cλ2 = 0
where

A = 2 + 2u2ν′2ν′′

(ν′ − ν′2 + ν′′)2 ,

B = −2
√

2uν′√ν′′((−1 + ν′)ν′ + ν′′)
(ν′ − ν′2 + ν′′)2 ,(2.20)

C = 2((−1 + ν′)2ν′2 + ν′′2)
(ν′ − ν′2 + ν′′)2 .

Now the chain rule and the fact that λ∗(u) is a maximum imply that ∂
∂ν′′ θ0,ν(u) = 0

if and only if ∂
∂ν′′ (�(λ∗(u))) = 0, and this holds if and only if ( ∂

∂ν′′ �)(λ∗(u)) = 0.
The last condition can be written as a second degree equation of the form

1

2

(
− u2(−ν′ − ν′′)

(ν′ − ν′2 + ν′′)2 − u2

ν′ − ν′2 + ν′′ − 2
√

2uν′√ν′′λ
(ν′ − ν′2 + ν′′)2

+
√

2uν′λ√
ν′′(ν′ − ν′2 + ν′′)

)
(2.21)

+ 1

2

(
− λ2

ν′ − ν′2 + ν′′ + (−ν′ + ν′2 + ν′′)λ2

(ν′ − ν′2 + ν′′)2

)
+ 1

2ν′′ = 0.

Comparing the coefficients of (2.20) with (2.21) one sees that their ratios are con-
stantly equal to 1

4ν′′ . This immediately implies that they share the same roots. So
λ∗(u) indeed satisfies ( ∂

∂ν′′ �)(λ∗(u)) = 0, and the lemma is proven. �

PROOF OF PROPOSITION 4. From Lemma 2 we know that for u < −E∞, θk,ν

does not depend on ν′′. By choosing ν′′ = ν′2 − ν′ + ε and taking ε to zero we get
the desired result. Indeed, when ε goes to zero

λ∗(u) → uν′
√

2
√

(ν′ − 1)ν′ , F
(
λ∗(u), u

)→ −u2(ν′ − 2)

4(ν′ − 1)
. �
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2.2.2. Proof of Theorem 1.2. We want to prove that there are no critical values
of index k of HN above −N(E−∞ − ε). The function θk,ν is strictly decreasing on
(−E−∞,∞). Using Theorem 1.1, we have

E
[
CrtN,k

((−E−∞ + ε,∞))] ≤ exp
{
Nθk,ν

(−E−∞ + ε
)+ o(N)

}
.

The constant −E−∞ is defined by θk,ν(−E−∞) = 0 for all k. Therefore, θk,p(−Ek +
ε) = c(k, ν, ε) < 0. An application of Markov’s inequality as

P
(
BN,k(ε)

) ≤ E
[
CrtN,k

(−E−∞ + ε,∞)] ≤ e−Nc(k,ν,ε)

proves Theorem 1.2 for the event BN,k(ε). The proof for the event AN,k(ε) is
analogous.

2.2.3. Proof of Theorem 1.3. The proof of Theorem 1.3 follows the same steps
as the proof of Theorem 1.1. First by Lemma 3.5 of [2], for any ε > 0, there exists
a constant c = c(γ, ε) > 0 such that

P
(∣∣λN

k − sγ
∣∣ > ε

) ≤ e−cN2
.

Therefore if we use Proposition 3, (2.14) and the above statement we have that
for any ε > 0, δ > 0 there exists constants c = c(ε), d = d(ε) such that for N large
enough

ECrtN,k(B) ≤ CN

∫
B

eN/2(F (λN
k ,y))1

{
λN

k ∈ (sγ − ε, sγ + ε)
}+ edNe−cN2

≤ CN

∫
B

e
N/2 supλ∈(sγ −ε,sγ +ε){F(λ,y)} dy + edNe−cN2

≤ CNe
N/2 supλ∈(sγ −ε,sγ +ε),y∈B {F(λ,y)}

(1 + δ) + edNe−cN2
.

On the other hand we have the lower bound

ECrtN,k(B) ≥ CN

∫
B

eN/2(F (λN
k ,y))1

{
λN

k ∈ (sγ − ε, sγ + ε)
}

≥ CN

∫
B

e
N/2 infλ∈(sγ −ε,sγ +ε){F(λ,y)} dy

≥ CNe
N/2 infλ∈(sγ −ε,sγ +ε){supy∈B {F(λ,y)}}

(1 − δ).

Taking 1
N

log on both bounds and taking ε to zero afterward, we see that

1

N
logECrtN,k(B) = sup

y∈B

{
F(sγ , y)

}
.
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2.2.4. Proof of Theorem 1.4. We now prove the asymptotic limit of the mean
number of critical points at some level of energy.

Since the total number of critical points is greater than the number of critical
points of index k(N) with k(N) satisfying (1.20) for γ ∈ [0,1] we clearly have the
lower bound

sup
γ∈[0,1]

sup
u∈B

θγ,ν(u) ≤ lim
N→∞

1

N
logECrtN(B).(2.22)

For u ≤ −E′∞, taking γ = 0 (i.e., considering the complexity of local minima)
we get the right-hand side of (1.23). For u ∈ (−E′∞,E′∞) the supremum on γ of

θγ,ν(u) is attained at γ ∈ (0,1) such that sγ =
√

2u
E′∞

. Plugging this value back on
the left-hand side of (2.22), we get the right-hand side of (1.23). Last, for u ≥ E∞,
one just needs to take the complexity of local maxima. This is enough to prove a
lower bound.

To show a matching upper bound, we proceed as follows. A sum over k in
Proposition 3 gives us that

E
[
CrtN(B)

]

= 2N

√
2

ν′
(

ν′′

ν′
)N/2 ∫

B
E

N
GOE

∫
exp

{
NF(z, y)

}
dyLN(dz),

and LN is the empirical spectral measure of the GOE matrix. The constant in front
the integral gives a constant term Cν after the 1

N
log limit. Furthermore,∫

B
E

N
GOE

∫
exp

{
NF(z, y)

}
dyLN(dz)

≤ N

∫
B

sup
z∈R

exp
{
NF(z, y)

}
dy(2.23)

≤ N

∫
B

e−(N/2)(ν′′−ν′)/(ν′2−ν′+ν′′)y2
dy.

So if B ∩ (−E′∞,E′∞) 
= ∅, this matches the right-hand side of (1.23). If B ⊆
(−∞,−E′∞), then we can estimate (2.23) with

N

∫
B
E

N
GOE

∫
exp

{
NF(λ0, y)

}
.

Applying log, dividing by N and taking limits we get Theorem 1.4 from Theo-
rem 1.1.

3. Proof of Proposition 2 and Theorem 1.5. In this section we prove Propo-
sition 2 and Theorem 1.5.
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PROOF OF PROPOSITION 2. We start with the following identity:

Eχ(Au) =
N−1∑
k=0

(−1)kCrtk
(
A(u)

)

=
N−1∑
k=0

(−1)k
∫
SN−1(

√
N)

E
(∣∣det∇2HN(σ)

∣∣1{i(∇2HN(σ))=k}1{HN(σ)≤Nu}|

∇HN(σ) = 0
)

× φ∇HN
(0)dσ

= (
2ν′π

)−(N−1)/2∣∣SN−1(
√

N)
∣∣ 1√

2πN

×
N−1∑
k=0

∫ Nu

−∞
E
(
(−1)k

∣∣det∇2HN(σ)
∣∣1{i(∇2HN(σ))=k}|HN(σ) = x

)

× e−(1/2N)x2
dx

= (
2ν′π

)−(N−1)/2 2πN/2

�(N/2)
N(N−1)/2

×
√

N√
2π

∫ u

−∞
E
(
det∇2HN(σ)|HN(σ) = Nx

)
e−(N/2)x2

dx

= ν′−(N−1)/22−(N−2)/2

× NN/2

�(N/2)

∫ u

−∞
E
(
det∇2HN(σ)|HN(σ) = Nx

)
e−(N/2)x2

dx.

LEMMA 3. If MN is a N ×N GOE with variance EM2
ij = 1+δij

2N
, then for any

x ∈ R

Edet
(
MN − xI

) = 2−NN−N/2(−1)NhN(
√

Nx),

where hN(x) is given in (1.25).

PROOF. The proof, a straight-forward linear algebra exercise, can be found as
Corollary 11.6.3 in [1]. �

Now by Lemma 1,

Eχ(Au) = ν′−(N−1)/22−(N−2)/2 NN/2

�(N/2)

√
N√
2π

×
∫ ∞
−∞

∫ u

−∞
E

(
det

[(
N − 1

N
2ν′′

)1/2

MN−1 + (
αy − ν′x

)
I

])
(3.1)

× e−(N/2)x2
e−(N/2)y2

dx dy.
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The double integral becomes(
N − 1

N
2ν′′

)(N−1)/2

×
∫ ∞
−∞

∫ u

−∞
E

(
det

[
MN−1 +

(
N − 1

N
2ν′′

)−1/2(
αy − ν′x

)
I

])

× e−N/2(x2+y2) dx dy,

which by Lemma 3 can be rewritten as

(−1)N−1
(

ν′′

2N

)(N−1)/2 ∫ ∞
−∞

∫ u

−∞
hN−1

(√
N(ν′x − αy)√

2ν′′

)
(3.2)

× e−N/2(x2+y2) dx dy.

Combining (3.1) and (3.2) we get Proposition 2. �

We will need the following lemma to prove Theorem 1.5:

LEMMA 4. Let a, b be constants such that a > 1/2 and b ≥ 0. Set

IN(M) =
∫ ∞
M

φN−1(
√

Nx)eax2+bx dx.

As N goes to infinity:

(1) If
√

2 ≤ M , then IN(M) = O(e−N(aM2+bM+I1(M))).
(2) If −√

2 < M <
√

2 and if we set M = √
2 cosω with ε < ω < π − ε, then

IN(M) is equal to

2−3/4π−1/2e−N(aM2+bM)

N5/4|m′(2ι(M))|(sinω)1/2 sin
[(

N

2
− 1

4

)
(sin 2ω − 2ω) + 3π

4
+ α(M)

]
(3.3)

× (
1 + O

(
N−1)).

(3) If M ≤ −√
2, then IN(M) = LN−1/2e−Nλ(a,b,M) where λ(a, b,M) is the

minimum of ax2 + bx + I1(−x) in [M,−√
2] and L is a positive constant that

depends on a, b and M as in (3.19).

A few comments before the proof of the above lemma. First, under the assump-
tion that a > 1/2 and b > 0 the major contribution to the integral in part (2) comes
from a small neighborhood of M, instead of the minimum of ax2 + bx. This is due
to rapid oscillations of φN−1 inside the “bulk” (−√

2,
√

2). Second, in part (3), the
condition that the minimizer of ax2 +bx + I1(−x) lies inside [M,−√

2] is similar
to the condition on (2.11). This will lead to the asymptotic Euler’s characteristic in
the region u < −E′∞.
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The main tool to prove Lemma 4 is the following well-known formula for the
asymptotics of the Hermite functions, first proved by Plancherel–Rotach [11]. Let

h(x) =
∣∣∣∣x − √

2

x + √
2

∣∣∣∣
1/4

+
∣∣∣∣x + √

2

x − √
2

∣∣∣∣
1/4

.

LEMMA 5 (Plancherel–Rotach [11]). There exists δ0 > 0 such that for any
0 < δ < δ0, the following asymptotics hold uniformly in each region:

(1) If x < −√
2 − δ,

φN−1(
√

Nx) = (−1)N−1 e−NI1(−x)√
4π

√
2N

h(x)
(
1 + O

(
N−1)).

(2) If −√
2 − δ < x < −√

2 + δ,

φN−1(
√

Nx)

= (−1)N−1

(2N)1/4

{∣∣∣∣x − √
2

x + √
2

∣∣∣∣1/4∣∣∣∣3N

2
I1(−x)

∣∣∣∣1/6

Ai
[(

3N

2
I1(−x)

)2/3

ε(x)

]

× (
1 + O

(
N−1))

−
∣∣∣∣x + √

2

x − √
2

∣∣∣∣1/4∣∣∣∣3N

2
I1(−x)

∣∣∣∣−1/6

× Ai′
[(

3N

2
I1(−x)

)2/3

ε(x)

](
1 + O

(
N−1))},

where Ai(x) is the Airy function of first kind, Ai(x) = 2
π

∫∞
−∞ cos( t3

3 + tx)dt , and

ε(x) = −x−√
2

|−x−√
2| , x 
= −√

2, ε(−√
2) = 0 and Ai ′(x) is the derivative of Ai(x).

(3) If −√
2 + δ < x <

√
2 − δ and if we set x = √

2 cosω with ε < ω < π − ε,
then

φN−1(
√

Nx) = 21/4

π1/2N1/4

1

(sinω)1/2 sin
((

N

2
+ 1

4

)
(sin 2ω − 2ω) + 3π

4

)

× (
1 + O

(
N−1)).

(4) If x >
√

2 + δ,

φN−1(
√

Nx) = e−NI1(x)√
4π

√
2N

h(x)
(
1 + O

(
N−1)).

PROOF OF LEMMA 4. Part (1): We can use the uniform asymptotics given
by the exponential region (4) in Lemma 5. Precisely, by hypothesis, the function
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K(x) := ax2 + bx + I1(x) is increasing in [M,∞), and by Laplace’s method,

IN(M) =
∫ ∞
M

e−N(ax2+bx+I1(x))√
4π

√
2N

h(x)
(
1 + O

(
N−1))dx

= e−NK(M)

N |K ′(M)|
√

4π
√

2N

h(M)(1 + O
(
N−1).

Part (2): Choose δ < δ0 such that −√
2 < M <

√
2−δ. We eqnarray the integral

IN(M) into three parts,

IN(M) =
(∫ √

2−δ

M
+
∫ √

2+δ

√
2−δ

+
∫ ∞
√

2+δ

)
:= I1(M) + I2 + I3.(3.4)

We will show that the main contribution in this case comes from I1(M). As in
part (1), it is easy to see that

I3 = O
(
e−NK(

√
2)).(3.5)

Next since |x|1/4|Ai(x)| and |x|−1/4|Ai′(x)| are bounded functions on R, a change
of variables z = I1(−x) when using part (2) of Lemma 5 immediately implies that
for any ε > 0,

I2 = O
(
e−N(a(

√
2−δ)2+b(

√
2−δ))+ε).(3.6)

Now we estimate I1(M). Using the uniform asymptotics of φN−1 we need to
evaluate

21/4

π1/2N1/4

∫ √
2−δ

M
e−N(ax2+bx) 1

(sinω)1/2
(3.7)

× sin
((

N

2
− 1

4

)
(sin 2ω − 2ω) + 3π

4

)
dx.

Performing the change of variables x = √
2 cosω,0 < ω < π the integral above

becomes (for some different δ > 0)
√

2
∫ π−δ

ι(M)
e−N(2a cos2 ω+√

2b cosω)

(3.8)

× (sinω)1/2 sin
((

N

2
− 1

4

)
(sin 2ω − 2ω) + 3π

4

)
dω

for ι(M) = arccos(21/2M). We now rewrite cos2 ω = 1+cos 2ω
2 and use the substi-

tution 2ω = z to obtain the integral

1√
2

∫ 2π−2δ

2ι(M)
e−N(a+a cos z+(b/

√
2) cos(z/2))

(3.9)

×
(

sin
z

2

)1/2

sin
((

N

2
− 1

4

)
(sin z − z) + 3π

4

)
dz.
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Last, we write

sin
((

N

2
− 1

4

)
(sin z − z) + 3π

4

)
(3.10)

= 1

2i

[
ei(N/2)(sin z−z)eif1(z) − e−i(N/2)(sin z−z)e−if1(z)

]
,

where f1(z) = −1
4(sin z − z) + 3π

4 .
Therefore, we just need to evaluate the asymptotics of∫ 2π−2δ

2ι(M)
e−Nm(z)j (z)dz,

∫ 2π−2δ

2ι(M)
e−Nn(z)k(z)dz,(3.11)

where m and n are entire functions given by

m(z) = a + a cos z + b√
2

cos
z

2
− i

2
(sin z − z),(3.12)

n(x) = a + a cos z + b√
2

cos
z

2
+ i

2
(sin z − z)(3.13)

and j (z) = sin( z
2)1/2eif1(z), k(z) = sin( z

2)1/2e−if1(z).
We will change our contour of integration and apply Laplace’s integral in the

appropriate integrals. Notice that the steepest descent paths are given by the equa-
tions

Im
(
m(z)

) = sinx

(
a sinhy + coshy

2

)
+ b√

2
sin

x

2
sinh

y

2
− x

2
= constant,

Im
(
n(z)

) = sinx

(
a sinhy − coshy

2

)
+ b√

2
sin

x

2
sinh

y

2
+ x

2
= constant.

The phase diagram for the steepest paths of m is described as follows. First all
lines x = 2kπ , k ∈ N are steepest paths. Second, for every t ∈ (0,2π) the steepest
path that passes through t goes from 0 − i∞ to π + i∞ if b > 0 and from π − i∞
to π + i∞ if b = 0. The real part of m(z) is given by

Re
(
m(z)

) = cosx

(
a coshy + 1

2
sinhy

)
+ a + b√

2
cos

x

2
coshy − y

2
,

Re
(
n(z)

) = cosx

(
a coshy − 1

2
sinhy

)
+ a + b√

2
cos

x

2
coshy + y

2
.

If we integrate m(z) between two points α,β ∈ (0,2π), we can deform our
contour to be equal to the two steepest paths that connect α and β to z = 0 − i∞.
Precisely, we deform our contour into three pieces: we first follow the steepest
descent path from α to a point with imaginary part y0 < 0, |y0| large. From there
we go along the straight line y = y0 until we reach the steepest path that passes
through β , γy0 , and then we integrate on this steepest path back to β . We see that
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if we choose |y0| large enough, every point in the straight segment y = y0 that we
cross has real part x sufficiently close to 0 so cosx > 0. This together with a > 1/2
implies that Re(m(z)) diverges to infinity as y goes to negative infinity. The trivial
bound ∣∣∣∣

∫
γy0

e−Nm(z)j (z)dz

∣∣∣∣ ≤
∫
γy0

e−N Re(m(z)) dz sup
z∈γy0

∣∣j (z)
∣∣(3.14)

combined with the bounded length of γy0 show that the contribution of this part
can be made as small as we want by choosing y0 large enough.

In the two remaining paths the imaginary part of m is constant and therefore we
can apply Laplace’s method to get the asymptotic behavior. Since we assumed that
M <

√
2 the contribution at 2π − 2δ is negligible compared to the one at 2ι(M).

Indeed, by formula (7.2.11) of [5],∫ 2π−2δ

2ι(M)
e−Nm(z)j (z)dz

(3.15)

= e−Nm(2ι(M))+i(π−α(M))j (2ι(M))

N |m′(2ι(M))|
(
1 + O

(
N−1)),

where α(M) is the angle of the steepest descent path of m at z = 2ι(M),

α(M) = arctan
(

1 − a cos z

2a sin z + b sin(x/2)/
√

2

)
.(3.16)

The above argument adapted to the function n implies∫ 2π−2δ

2ι(M)
e−Nn(z)k(z)dz

(3.17)

= e−Nn(2ι(M))+i(π−α(M))k(2ι(M))

N |n′(2ι(M))|
(
1 + O

(
N−1)).

Noting that for any x ∈ (0,2π) |n′(x)| = |m′(x)|, we can combine (3.10), (3.15)
and (3.17) to recover that I1(M) is asymptoticly equivalent to

21/4

π1/2N5/4

e−N(aM2+bM)

2|m′(2ι(M))|(sinω)1/2

(3.18)

× sin
[(

N

2
− 1

4

)
(sin 2ω − 2ω) + 3π

4
+ α(M)

](
1 + O

(
N−1)).

This ends the proof of part (2) of lemma. The proof of part (3) follows from the
proof of part (2) and Laplace’s method as in part (1) applied to the integral

∫ −√
2−δ

M
eax2+bx+I1(−x)h(x)dx = O

(
e−Nλ(M,a,b)).
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In this case,

L(M,a, b) =
√

2πh(λ(M,a, b))

2λ(M,a, b) + b + I ′
1(λ(M,a, b))

.(3.19)

We leave the details to the reader. �

We now turn to the proof of Theorem 1.5.

PROOF OF THEOREM 1.5. We can rewrite (1.27) as

Eχ(Au) = (−1)N−1
(

ν′′

ν′
)(N−1)/2

c(N, ν)

×
∫ ∞
−∞

∫ u/(
√

2ν′′)

−∞
φN−1

(√
N
(
ν′x − αy

))
(3.20)

× e−Nν′′(x2+y2)e(N/2)(ν′x−αy)2
dx dy,

where

c(N, ν) = 2ν′′([N − 1]!√π
)1/2 2−((N−1)/2)N√

π�(N/2)
.(3.21)

For the case α 
= 0, we can change variables z = ν′x − αy, w = αx + ν′y to get

x = (
ν′z + αw

)( 1

α2 + ν′2
)
, y = (

ν′w − αz
)( 1

α2 + ν′2
)
,

and the above double integral becomes (using α2 = ν′′ + ν′ − ν′2)

1

ν′′ + ν′
∫ ∫

ν′z+αw≤(ν′′+ν′)u/2ν′′
φN−1(

√
Nz)e−(Nν′′(z2+w2))/(ν′′+ν′)eNz2/2 dz dw.

So we have to evaluate the asymptotic behavior of the following integral:

J =
∫ ∞
−∞

φN−1(
√

Nz)eN(ν′−ν′′)z2/(2(ν′′+ν′))

×
∫ 1/α((ν′′+ν′)u/(

√
2ν′′)−ν′z)

−∞
e−Nν′′w2/(ν′+ν′′) dw dz.

We write the outside integral
∫∞
−∞ dz as

∫M
−∞ + ∫∞

M with

M = (ν′ + ν′′)u√
2ν′′ν′ .



4238 A. AUFFINGER AND G. BEN AROUS

The inside integral is just a Gaussian integral, and therefore after a straight-forward
computation, the problem amounts to computing the asymptotics of the two fol-
lowing one-dimensional integrals:

J1 =
∫ ∞
M

φN−1(
√

Nz)e−N((ν′2+ν′′−ν′)/(2(ν′′+ν′−ν′2))z2−√
2ν′′ν′u/(ν′′+ν′−ν′2)z) dz,

J2 =
∫ ∞
M

φN−1(
√

Nz)e−N(2(ν′+ν′′))/(ν′′−ν′)z2
dz

as J = (J1 + J2)(1 + O(N−1/2)) if N is even and J = (J1 − J2)(1 + O(N−1/2))

if N is odd. Take u ≤ 0. We use Lemma 4 in both cases. Note that by (1.8),

a = ν′2 + ν′′ − ν′

2(ν′′ + ν′ − ν′2)
>

1

2
and b = −

√
2ν′′ν′u

ν′′ + ν′ − ν′2 ≥ 0.

Now the condition M ≤ −√
2 (M > −√

2) is exactly the condition u ≤ −E′∞
(u > −E′∞). Applying the appropriate cases of Lemma 4 we see that the integral
J2 is negligible compared to J1. A comparison with (1.22) and (2.18) gives the
proof of part (1) and part (2) of the theorem with a and b as above,

α(w) = arctan
(

1 − a cosω

2a sinω + b sin(ω/2)/
√

2

)
,

(3.22)
f (ω) = (∣∣m′(2ω)

∣∣ sin1/2 ω
)−1

and

C(N,ν,u) = 1

ν′′ + ν′ c(N, ν)L(M,a, b),(3.23)

where m is given in (3.12), c(N, ν) in (3.21) and L(M,a, b) in (3.19).
If α = 0, then the integral with respect to y in (3.20) can be explicitly computed

and the mean Euler characteristic is a single integral of the form given in Lemma 4.
Applying part (1) and (2) of Lemma 4, we get Theorem 1.5 with

C(N,ν,u) = 1√
2π�′

ν(u)
h

(
(ν′ + ν′′)u√

2ν′′ν′

)
.

Part (3) follows from symmetry of the Hamiltonian and (1.26). �

4. Connection to mean field spin glasses. In this section we discuss our main
motivation to study the problems addressed in this manuscript. The function HN

is the Hamiltonian of a classical model in statistical physics, the mixed spherical
p-spin model [7]. The study of the landscape of these Hamiltonians is intimately
related to the study of the most important question in these systems, the N limit of
the Gibbs measure

GN(σ ) = 1

ZN

eβHN(σ ).
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These mean-field models, as well as other spin glass models, are well-known to
be very challenging to analyze. It is believed (see [6] and the references therein)
that a subset of the spherical models that we study here share the same interesting
static and dynamical behavior as the famous Sherrington–Kirkpatrick model at low
temperature.

The understanding of the landscape of these Hamiltonians might prove use-
ful for the study of both static and dynamical questions of these models. First,
the structure derived from Theorem 1.1 and described below may shed a light on
the metastability of Langevin dynamics (in longer time scales than those studied
in [4]). Second, it may provide an insight (discussed below) in a possible predic-
tion for the structure of the Parisi measure, the functional order parameter of these
models.

The complexity of critical points θk,ν(u) of finite index has two pieces for neg-
ative values of u: one “with a branching” for u ∈ (−∞,−E′∞), another with a
single curve, u ∈ (−E′∞,0); see Figure 1. This difference allows us to eqnarray
the models of Gaussian smooth functions on the sphere in two classes that we
describe now.

Let

G
(
ν′, ν′′) := log

ν′′

ν′ − (ν′′ − ν′)(ν′′ − ν′ + ν′2)
ν′′ν′2 = θ0,ν(−E∞).(4.1)

DEFINITION 4.1. A mixture ν is called a pure-like mixture if and only if
G(ν′, ν′′) > 0. If G(ν′, ν′′) < 0, ν is called a full mixture. When G(ν′, ν′′) = 0,
ν is called critical.

EXAMPLE 1. One can easily verify that all pure p-spins, ν(x) = xp , p ≥ 3
are pure-like while the spherical SK model, p = 2, is critical.

EXAMPLE 2. Consider the case

ν(t) = μt2 + (1 − μ)tp,(4.2)

where μ ∈ [0,1]. Then, if p > 3, then it is possible to show that there exists a
0 < μc(p) < 1 such that ν is pure-like if and only if μ ≤ μc(p). μc(p) is given as
the unique zero in (0,1) of

−(p2 − 2p)(1 − μ)(2(p2 − p) − 3(p2 − 2p)μ + (p − 2)2μ2)

2((p2 − p)(1 − μ) + 2μ)(p + 2μ − pμ)2

+ 1

2
log

[
1 + p − 2p

p + 2μ − pμ

]
;

see Figure 2. Remarkably, p = 3 in (4.2) is the only case where the mixture is a
pure-like mixture for all values of μ.
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FIG. 2. Graph of ν′ × ν′′. In blue, the level set G(ν′, ν′′) = 0, that is, the case where ν is critical.
Dotted lines are the possible values of (ν′, ν′′) for the mixtures 2 + 6,2 + 10 and 4 + 30. The gray
region is outside the domain of possible values for (ν′, ν′′).

It follows directly from the definition of pure-like and (1.18) that:

PROPOSITION 5. If ν is a pure-like mixture, then the sequence Ek(ν) is strictly
decreasing, and Ek(ν) converges to E+∞ as k goes to infinity.

This proposition combined with Theorem 1.2 says if the mixture ν is pure-like,
then the landscape of ν at low levels of energy is similar to the pure case as in [2].
In particular, the same interesting layered structure for the lowest critical values
of the Hamiltonian HN holds. Namely, the lowest critical values above the ground
state energy are (with an overwhelming probability) only local minima, this being
true up to the value −NE1(ν), and that in a layer above, (−NE1(ν),−NE2(ν)),
one finds only critical values with index 0 (local minima) or saddle points with
index 1, and above this layer one finds only critical values with index 0,1 or 2, etc.

There is one curiosity about pure-like mixtures. Define

f1 := inf
(a,b)∈[0,∞)2

{
1

2

(
b + ν′a + 1

b

(
log

a + b

a

))}
.(4.3)

PROPOSITION 6. ν is pure-like or critical if and only if f1 = E0(ν).
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The curiosity is that f1 can be interpreted as the zero-temperature limit of the
1-RSB Parisi functional in analogy to equation (5.11) in [2]. We refer the reader
to [13] or Section 5 of [2] for a definition of this terminology. This leads us to the
following question:

QUESTION 4.1. Is it true that a mixture is 1-RSB at low temperature if and
only if ν is pure-like?

The question raised above is consistent with a picture proposed by physicists.
In [6], it is claimed that a 2 + p spherical spin glass model with p ≥ 4, at low
temperature is either 1-RSB or its Parisi measure has an absolute continuous part
(a Full RSB or a 1-Full RSB) depending on how much weight is assigned to the 2-
spin model. The regions pure-like and full mixture seem to numerically agree and
to extend (since we do not need the 2 spin component) the one proposed by [6].

We end this section with the following statement about full-mixtures. We first
need the following result about the global minima of HN which is also of indepen-
dent interest.

THEOREM 4.1. The following limit exists almost surely:

lim
N→∞

1

N
min

σ
HN(σ ) := −f∞.(4.4)

The following is now a corollary of Proposition 6 and Theorem 1.1.

COROLLARY 4.1. If ν is a full mixture, then for any u ∈ (−E0(ν),−f∞), the
probability of having a critical value below u goes to zero while the mean number
of local minima is exponentially large in N . Namely for such u there exist constants
0 < C1 < C2 such that for N sufficiently large,

ECrtN,0(−∞, u) ≥ eNC1 and P
(
CrtN(−∞, u) > eNC1

) ≤ e−NC2 .(4.5)

5. Proofs from Section 4. In this section we prove Propositions 5, 6 and The-
orem 4.1. We start by proving Theorem 4.1. We will need to introduce some no-
tation and the lemma below. Let σ ∗ be a point on the sphere such that HN(σ ∗) =
minσ HN , and let d denote the geodesic distance on the sphere. For ρ,α,K > 0,
let

BN,ρ ≡ {
σ ∈ SN−1(

√
N) :d

(
σ ,σ ∗) < ρ

}
and Aε,α,K(N), be the event

Aε,α,K(N) ≡
{

sup
σ∈B

N,
√

Nε

∣∣HN(σ ) − HN

(
σ ∗)∣∣ ≤ KNεα

}
.(5.1)
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LEMMA 6. For any 0 < α < 1, there exist constants K , K1 > 0 so that for all
ε > 0 and all N sufficiently large

P
(
Aε,α,K(N)c

)
< 2e−K1N.(5.2)

Note that this bound is independent of ε.

PROOF. Clearly,

Aε,K(N) ⊇ Âα,K(N) ≡ {‖HN‖α ≤ KN1−α/2},
where

‖HN‖α = sup
σ ,σ ′

|HN(σ ) − HN(σ ′)|
d(σ ,σ ′)α

.(5.3)

Now consider the centered Gaussian process Xα field on SN−1(
√

N) ×
SN−1(

√
N) given by

Xα

(
σ ,σ ′) =

⎧⎨
⎩

HN(σ ) − HN(σ ′)
d(σ ,σ ′)α

, if d
(
σ ,σ ′) > 0,

0, otherwise.
(5.4)

Since the Gaussian field HN is C1 almost surely, then

P
(
Âα,K(N)c

) = P

(
sup
σ ,σ ′

∣∣Xα

(
σ ,σ ′)∣∣ > KN1−α/2

)
.(5.5)

But now a simple computation yields for σ 
= σ ′,

EX2
α

(
σ ,σ ′) = 2N

d(σ 1,σ
′
1)

2α

[
1 − ν

(
1

N

〈
σ ,σ ′〉)]

(5.6)

= 2N

(
√

Nθ)2α

[
1 − ν(cos θ)

]
,

where θ is the angle between σ ,σ ′ in R
N .

Therefore by the boundedness of ν′(x) in [−1,1] there exists a constant C in-
dependent of N such that [if α < 1/2 or α < 1—using the boundedness of ν′(x)

and ν′′(x)]

sup
(σ ,σ ′)

EX2
α

(
σ ,σ ′) ≤ CN1−α.(5.7)

Now, by Borell’s inequality, (see pages 50 and 51 of [1], where we take u =
KN1−α/2, σT ≤ CN1−α) for all δ, if N,K is large enough

P

(
sup
σ ,σ ′

Xα

(
σ ,σ ′) > KN1−α/2

)
≤ eδKN1−α/2

e−K2N2(1−α/2)/(2CN1−α)

(5.8)
≤ e−K2N/(4C).
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Taking K1 = K2/4C in the last equation, using (5.5) and symmetry of Xα the
lemma is proven. �

PROOF OF THEOREM 4.1. Let GSN = 1
N

minσ HN(σ ). We will show the ex-
istence of a constant f∞ so that for any δ > 0 there exists ε(δ) such that if N is
large enough,

P
(∣∣GSN + f∞

∣∣ > δ
) ≤ P

(
Aε(δ),α,K(N)c

)
.(5.9)

The proof of Theorem 4.1 will then follow from (5.9) and Borel–Cantelli’s lemma
since for all δ > 0 by Lemma 6,

∞∑
N=1

P
(∣∣GSN + f∞

∣∣ > δ
)
< ∞.(5.10)

We will prove (5.9) by showing that for any δ > 0 if N is large enough
Aε,α,K(N) ⊂ {|GSN + f∞| < δ}.

On Aε,α,K(N),

ZN,ν(β) :=
∫
SN−1(

√
N)

e−βHN(σ )�N(dσ )

(5.11)
≥ e−βNGSN−KβNεα

�N(BN,
√

Nε).

Recall that �N(dσ ) is the surface measure of SN(
√

N) normalized to be a prob-
ability measure. We trivially have the bound

1

N
logZN,ν(β) ≤ −βGSN.(5.12)

Combining (5.11) and (5.12) we then have on Aε,α,K(N),

− 1

Nβ
logZN,ν(β) − Kεα + 1

Nβ
log�N(BN,

√
Nε)

(5.13)

≤ GSN ≤ − 1

Nβ
logZN,ν(β).

Note that using spherical coordinates and the inequality 2θ
π

≤ sin θ for θ ≤ π
2 ,

we have for ε < π/2,

�N(BN,
√

Nε) =
(∫ ε

0
sinN−2(φ)dφ

)(∫ π

0
sinN−2(φ)dφ

)−1

(5.14)

≥
(

2ε

π

)N−1 1

π(N − 1)
.

So on Aε,α,K(N), for some constant C > 0,

− 1

Nβ
logZN,ν(β) − Kεα + Cε ≤ GSN ≤ − 1

Nβ
logZN,ν(β).(5.15)
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By Holder’s inequality the function 1
N
E logZN,ν(β) is convex in β , therefore

its limit that we denote by F∞(β) is also convex. The existence of this limit is
given by the famous Parisi formula [13], Theorem 1.1.

So F(β) is convex, positive and grows at most linearly. This easily implies that

lim
β→∞

1

β
F∞(β) = sup

β

1

β
F∞(β) := f∞ ∈ [0,∞).(5.16)

Therefore, for any δ1 > 0 one can take N large enough so that

−F∞(β)

β
− Kεα + Cε − δ1

β
≤ GSN ≤ −F∞(β)

β
+ δ1

β
.(5.17)

By taking β large enough, part (a) of this theorem and by choosing ε sufficiently
small, (5.9) is proven. �

We now prove Propositions 5.

PROOF OF PROPOSITION 5. If ν is pure-like, then θk,ν(−E∞) > 0. Since
θk,ν(u) converges to negative infinity as u goes to negative infinity, Ek(ν) are well
defined. Furthermore, as k goes to infinity, λ∗

k(u) converges to −√
2 for any u ≤

−E∞, implying that θk,ν(u) converges to F(−√
2, u) pointwise. Therefore, taking

u in a small neighborhood of E+∞ and using the fact that θk,ν are increasing in
that neighborhood, we see that the zero of θk,ν has to converge to the zero of
F(−√

2, u). Namely Ek(ν) converges to E+∞. �

5.1. Proof of Proposition 6. We now provide a proof for Proposition 6. We
will need a collection of calculus exercises.

LEMMA 7. f1 depends continuously on the first derivative ν′.

REMARK 5. Note that while the k-complexity function depends on the first
two derivatives at 1 of the covariance function ν, and f1 depends only on the first
derivative ν′ and E0(ν) = f1 for any pure-like mixture.

PROOF. By solving for the critical points of (4.3), we can get an expression
for f1 in terms of ν′. Namely,

f1 = 1

2

(
ν′y2 − 1

ν′y
+ 1

y
+ ν′y

ν′y2 − 1
log

(
ν′y2)) = y + ν′ − 1

yν′ ,

where y = y(ν′) is given by the unique solution of(
ν′y2 − 1

ν′y

)2

y + ν′y2 − 1

ν′y
= y log

(
ν′y2), y > ν′−1/2.
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In other words, y =
√

a√
ν′ where a is the unique solution of

a log[a] − a + 1 − (a − 1)2

ν′ = 0, a > 1.

This immediately implies the proof of Lemma 7. �

PROPOSITION 7. A mixture ν is critical if and only if

f1 = E∞ = E0,ν = ν′′ − ν′ + ν′2

ν′√ν′′ .(5.18)

PROOF. If ν is critical, then y =
√

ν′′
ν′ is the unique solution of (5.1) with y >

1√
ν′ . Indeed,

1 − ν′′

ν′ + (−ν′ + ν′′)(−ν′ + ν′2 + ν′′)
ν′3 − (−1 + ν′′/ν′)2

ν′ = 0.

Plugging back the value of y in (5.1) we get f1. On the other hand, if f1 =
ν′′−ν′+ν′2

ν′√ν′′ , then one solves equation (5.1) in y to see that the only positive solu-

tion is y =
√

ν′′
ν

. By the definition of y in (5.1) this immediately implies that ν is
critical. And trivially, ν critical is precisely the case where E∞ = E0,ν . �

Now we analyze the case where ν is critical or a full mixture, that is, the case
where G(ν′, ν′′) ≤ 0. In this case, the zero of the complexity function can be ex-
plicitly computed and is given by

−E0,ν = −E+∞,

where E+∞ was defined in (1.13). Note that E0,ν is a function of ν′ and ν′′.

PROPOSITION 8. If G(ν′, ν′′) ≤ 0, then

∂

∂ν′′ E0,ν = 0 if and only if G
(
ν′, ν′′) = 0.

PROOF. Let

A
(
ν′, ν′′) =

√(
ν′′ − ν′2 + ν′)((ν′ + ν′′) log

[
ν′′
ν′

]
− 2

(
ν′′ − ν′)).

Calculating the derivative ∂
∂ν′′ E0,ν one gets(

ν′2ν′′(ν′ + ν′′) log
[
ν′′

ν′
]

+ (
ν′′ − ν′))

× (
ν′3 + ν′′2 − ν′2(1 + 3ν′′)− 2ν′√ν′′A

(
ν′, ν′′))(5.19)

× (
2ν′′(ν′ + ν′′)2

A
(
ν′, ν′′))−1

.
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Sufficiency comes from a simplification of the above formula. To get necessity we
solve a second degree equation on the variable M = log[ ν′′

ν′ ] to see that this second
degree equation has a unique zero given by

ν′2 − ν′3 − 2ν′ν′′ + ν′2ν′′ + ν′′2

ν′2ν′′ .

This is precisely G(ν′, ν′′) = 0. �

With the above propositions we now prove Proposition 6.

PROOF OF PROPOSITION 6. If ν is critical, Proposition 6 is Proposition 7.
Now suppose that ν is pure-like. By Lemma 7 and (2.10), both f1(ν) := f1 and
E0(ν) are independent of ν′′. Consider then another mixture μ such that μ′ = ν′
and μ satisfies G(μ′,μ′′) = 0. Since G is continuous on its domain, we have

f1(ν) = f1(μ) = E0(μ) = E0(ν).

On the other hand, if ν is a full-mixture, Proposition 8 combined with Lemma 7
shows that f1 
= E0(ν). This ends the proof of Proposition 6. �
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