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Abstract Dynamics behavior of the micromechani-

cal gyroscope designed for measuring one component

of the angular velocity is studied in the paper. The Car-

dan suspension is applied to connect the sensing plate

with the substrate whose angular velocity is measured.

The gimbal and the plate with sensors are connected via

torsional joints. Vibrating motion of the sensing plate

is excited mainly by a torque resulting from the Cori-

olis effect. The mathematical model equations have

been derived using the Lagrange equation of the second

kind. Both nonlinear effects of the geometrical nature

and the nonlinear characteristics of the torsional joints

are taken into account. The governing equations are

solved with help of the method of multiple scales in

time domain that belongs to the broad class of asymp-

totic methods. The approximate solution of analytical

form has been obtained for non-resonant vibration as

well as for the case of the main and internal resonances

that occur simultaneously. Analytical form of solution

allows for extensive analysis of the behavior of the

system. The desirable state of the gyroscope work is

steady-state vibration in resonance that is discussed in

detail.

J. Awrejcewicz

Department of Automatics and Biomechanics, Technical

University of Łódź, Lodz, Poland
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1 Introduction

Gyroscopes are present in a broad range of engineering

systems such as air vehicles, automobiles, and satel-

lites to track their orientation and control their path.

Besides the directional gyroscopes, there are variety

of gyroscopes (e.g., mechanical, optical and vibrating)

that are being used to measure the angular velocity. The

critical part of the conventional mechanical gyroscope

is a wheel spinning at a high speed. Therefore, conven-

tional gyroscopes although accurate are bulky and very

expensive and they are applicable mainly in the naviga-

tion systems of large vehicles, such as ships, airplanes,

space crafts, etc.

Micromechanical gyroscopes and angular rate sen-

sors allow for signification miniaturization in contrary

to solid-state gyroscopes, laser ring and fiber optic

gyroscopes.

Progress in micromachining technology embraces

the development of the miniaturized gyroscopes with

improved performance and low power consumption

that allow the integration with electronic circuits. Their

manufacturing cost is also significantly lower [1,2].

Such type of gyroscopes belongs to broad class of

microelectromechanical systems (MEMS). Practically,

any device fabricated using photo-lithography-based

techniques with micrometer scale features that utilizes
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both electrical and mechanical functions could be con-

sidered as MEMS.

The operating principle of vibrating gyroscopes is

based on the transfer of the mechanical energy among

two vibrations modes via the Coriolis effect which

occurs in the presence of a combination of rotational

motions about two orthogonal axes. The drive mode is

mainly generated employing the electrostatic actuation

mechanism.

However, it is widely recognized that miniatur-

ization achieved via fabrication technologies requires

detailed studies from a point of view of nonlinear

dynamical systems in order to understand and control of

sometimes unexpected behavior of microcomponents,

micromachines and MEMS/NEMS, and in particular

of micromechanical gyroscopes. Reliable modeling of

the micromechanical vibratory gyroscopes allows for

improvement in sensitive elements and circuit design,

and hence, it has an important impact on achieving high

performances of the mentioned micromechanical sys-

tems. In other words the micro- and nanotechnologies

require support of theoretical approaches based on the-

ory of vibrations and nonlinear phenomena. In what

follows, we briefly describe state of the art of the recent

achievement in modeling and analysis on some chosen

MEMS/NEMS and micro-/nanogyroscopes.

Tuner et al. [3] pointed out importance of parametric

resonances in a micromechanical system. Lifshitz and

Cross [4] investigated a response of the microring gyro-

scope under combined external forcing and parametric

excitation to achieve required parametric amplification.

Gallacher et al. [5] proposed a control scheme for

a MEMS electrostatic resonant gyroscope subjected to

both harmonic forcing and parametric excitation.

Nayfeh and Younis [6] investigated dynamics of

MEMS resonators under superharmonic/subharmonic

excitations.

Kacem et al. [7] improved the performance of

NEMS sensors based on employment of theoreti-

cal approaches of modeling nonlinear dynamics of

nanomechanical beam resonators.

Lestev and Tikhonov [8] analyzed nonlinear dynam-

ical behavior of micromechanical gyroscopes using

the method of averaging. They pointed out that even

though the parameters of the microstructural compo-

nents are chosen in a way to provide a linear response,

it cannot be achieved due to the fabrication errors.

They investigated stable steady-state modes of vibra-

tory micromechanical gyroscopes, and they presented

the corresponding resonance curves.

Nonlinear dynamics and chaos of electrostatically

actuated MEMS resonators under two-frequency exter-

nal and parametric excitations were analyzed by Zhang

et al. [9]. In particular, they illustrated effects of non-

linear square damping on the frequency response. Res-

onance frequencies and nonlinear dynamic character-

istics were also reported. However, their investiga-

tion concerned relatively simple model consisting of

a mass–spring–damper system.

Martynenko et al. [10] studied nonlinear phenomena

of a vibrating micromechanical gyroscope with a ring

resonator flexibly supported. The Krylov–Bogolubov

averaging method was employed to predict fabrica-

tion errors, unstable branches of resonance curves, and

quenching phenomenon.

Sang Won Yoon et al. [11] modeled vibratory ring

gyroscopes by four vibration models (two flexural and

two translation). The developed model consisted of

the ring structure, the support-string structure, and the

electrodes. It was shown that the developed model

becomes vibration sensitive in the presence of both

non-proportional damping and the sense electrodes

capacitive nonlinearity.

Matheny et al. [12] studied nonlinear mode-coupling

in nanomechanical systems. They demonstrated mea-

surement protocol and design rules for getting accu-

rate in situ characterization of nonlinear properties of

NEMS resonators. In particular, the employment of the

Euler–Bernoulli beam model was validated through the

carried out laboratory measurements.

Ovchinnikova et al. [13] developed a model of

micromechanical gyroscope using inertia properties

of standing elastic waves providing maximum vibra-

tion amplitude with minimum control. The employed

schemes of stabilization of the excited amplitude

reduced nonlinear transformation characteristics. The

method allowed for computation of the envelope of the

fundamental mode of vibration of the governing two

second-order ODEs yielded by the Bubnov–Galerkin

approach.

Yoon et al. [14] studied a micromechanical vibrating

ring gyroscope under high shocks based on mathemat-

ical analysis supported by the finite element method.

They suggested employment of the developed vibrat-

ing ring gyroscope in navigation systems when both

performance and high shock resistance are crucial in

getting proper measurements.
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Lestev [15] investigated combination resonances of

sensitive elements of micromechanical gyros under

translational and angular motions of the platform.

The governing nonlinear ODEs were derived and the

obtained results were validated experimentally.

Nitzan et al. [16] considered parametric amplifica-

tion of a micromechanical resonating disk gyroscope

taking into account of self-induced parametric excita-

tion and Coriolis forces. The parametric self-induced

amplification was yielded by nonlinear stiffness cou-

pling between degenerate orthogonal vibration modes

in a high-quality-factor micromechanical resonator.

Defoort et al. [17] analyzed occurrence of synchro-

nization between two degenerate resonance modes of a

microdisk resonator gyroscope. The carried out consid-

eration were based on two second-order ODEs includ-

ing a geometric nonlinearity of a cubic type. They

demonstrated how mutual synchronization between

modes was robust over temperature variation.

An impact of a cubic nonlinearity on the operation

of a rate-integrating gyroscope was studied by Nitzan

et al. [18]. It was shown how below the bifurcation

threshold of cubic nonlinearity a splitting of angle-

depending frequency between two resonant gyroscope

modes occurred which impacted angle-dependent bias,

quadrature error and controller efficacy. The method of

compensating for angle-dependent frequency error was

proposed and was experimentally validated.

A useful overview of gyroscopic technology includ-

ing mechanical and optical at macro- and microscale

was given by Passaro et al. [19].

In the present work, we conduct an analysis of

dynamics of a MEMS gyroscope. This microdevice is a

torsional resonator. Resonance is the desirable state of

work of this sensor, so the elastic properties should be

appropriately matched. Designing the resonator, only

linear elasticity is taken into account. There arises the

question what is the significance of the nonlinear prop-

erties of resilient resonator elements. Therefore, we

propose the mathematical model describing motion of

the MEMS gyroscope taking into account the nonlinear

effects generated by the elastic properties of the suspen-

sion elements [20]. The main objective of the paper is

to obtain and to examine the resonant responses of the

considered system.

The paper is organized in the following way. Sec-

tion 2 deals with a description of the further stud-

ied micromechanical gyroscope. Equations of motion

are derived in Sect. 3. Section 4 reports the analyt-

ically obtained approximate solutions to the govern-

ing two second-order nonlinear ODEs in the case of

non-resonant vibrations. Resonant vibrations are stud-

ied analytically and numerically in Sect. 5. Section 6

is devoted to investigation of steady-state gyroscope

responses. Concluding remarks are given in Sect. 7.

2 Description of micromechanical gyroscope

Dynamics of the torsional micromechanical gyroscope

used to measure one component of the angular velocity

is the subject of the paper. The Cardan suspension idea

is applied to connect the sensing plate with the substrate

whose angular velocity is measured. A diagram of the

MEMS gyroscope is presented in Fig. 1. The sensing

element “3” connects to the intermediate gyroscope

part, i.e., the gimbal “2” via two torsional joints hav-

ing a common axis called the sense axis. Two torsional

joints link the gimbal with the anchors “1” mounted

on the substrate which can be movable in the general

case. These connectors are also aligned along a com-

mon straight line designating the drive axis. The gimbal

is loaded by the external harmonically changing torque.

The sense and drive axes around which the sensing plate

and the gimbal can rotate independently are mutually

orthogonal. In the system, there is the coupling effect.

When the gyroscope is subjected to a rotation about

z-axis caused by the substrate motion the sinusoidal

Coriolis torque at the frequency of drive-mode oscil-

lations is induced in the sense direction. The Coriolis

torque excites the proof-mass to oscillate around the

sense axis. This response, caused by the Coriolis effect

1 y
0

2 3 

1 

x
0

z
0

Fig. 1 Micromechanical gyroscope suspended on a set of two

pivoted and mutually orthogonal pivot axes; 1—anchor, 2—

gimbal, 3—sensing plate
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Fig. 2 The angles of

rotation Φ and Θ: a the

rotation of F1 by Φ about

x0-axis; b the superposition

of two rotations: F1 by Φ

about x0-axis and F2 by Θ

around y1

and proportional to the angular velocity being mea-

sured, is registered by the detection electrodes. In order

to attain the maximum response of the proof-mass, the

desirable work regime of the micromechanical system

is the resonance around both sense and drive axes. This

state is achieved at the designing stage what especially

involves the proper choice of the inertial properties of

the MEMS parts and the elastic features of the torsional

joints. It seems to be advisable to consider the influ-

ence of the nonlinear elastic properties of the torsional

connectors on the micromechanical system operation.

Including into consideration these nonlinearities can

increase the working precision of the gyroscope.

Assuming the gimbal and the sensing plate are

the rigid bodies, we model the torsional gyroscope

as a two degrees-of-freedom (2-DOF) mass–spring–

damper system with one sensing axis, so it is designed

to measure one coordinate of the angular velocity of

the substrate.

When describing the movement of MEMS parts, it

is helpful to introduce three reference frames shown

in Fig. 2. These frames have the common origin at

the point O . Point O is also the center of mass of the

whole gyroscope. In the frame F0 with the Cartesian

coordinate system Ox0 y0z0 the anchors and thus also

the substrate whose angular velocity is measured are

motionless. The frame F1 with the coordinate system

Ox1 y1z1 is fixed to the gimbal, whereas the frame F in

which it is assumed the coordinate system Oxyz is rigid

connected with the sensing plate. At stable equilibrium

position of the MEMS presented in Fig. 1, the axes of

all these frames overlap with each other. Each of the

introduced frames is non-inertial. The frame F1 which

can oscillate about the drive axis x0 is presented in

Fig. 2a in the position rotated by Φ counterclockwise.

In Fig. 2b, the frame F oscillating around the sense axis

y1 is depicted in the position being a result of the rota-

tion by Θ , also counterclockwise, and the rotation of

the frame F1 associated to the gimbal. The anchors and

the substrate can rotate about a fixed pivot axis. Let us

assume that its absolute angular velocity �z projected

on the axes of the frame F0 is �z = [0, 0,Ωz]
T , where

Ωz is to be measured.

The absolute gimbal angular velocity �1 is a super-

position of the substrate rotation and own rotation about

the drive axis. When projecting it onto the axes of the

frame F1, we obtain

�1 =
[

Φ̇,Ωz sin Φ,Ωz cos Φ
]T

. (1)

The absolute angular velocity � of the sensing plate

written in the reference frame F and being a result of

the substrate motion, gimbal rotation and own rotation

about y-axis is

� =
[

−Ωz cos Φ sin Θ + cos ΘΦ̇,Ωz sin Φ

+ Θ̇,Ωz cos Φ cos Θ + Φ̇ sin Θ
]T

. (2)

3 Equations of motion

The considered micromechanical system has two

degrees of freedom in its motion relative to the sub-

strate. The rotation angles Φ(t) and Θ(t) are assumed

to be the general coordinates. The point O that is the

mass center both of the sensing plate and the gimbal is

constantly at rest. Due to assumed symmetry, the axes

of reference frames F1 and F are the principal axes of

inertia of the gimbal and the sensing plate, respectively.

Therefore, the inertia tensors of each of the gyroscope
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parts related to their own principal axes have the diag-

onal form independently of the current system config-

uration. Let Ix , Iy and Iz denote moments of inertia

of the gimbal about its principal inertia axes, whereas

Jx , Jy, Jz stand for the principal moments of inertia

of the senor plate with respect to the axes x , y and z.

So, we can write the inertia tensors of both gyroscope

parts as

Î = diag(Ix , Iy, Iz), Ĵ = diag(Jx , Jy, Jz). (3)

From the viewpoint of the absolute observer, the

kinetic energy of the whole system is a sum of two

bilinear forms

T =
1

2

(

�
T
1 · Î · �1 + �

T · Ĵ · �

)

, (4)

where symbol · denotes the inner product.

Substituting formulas (1)–(3) into Eq. (4), we get

T =
1

2
Ix Φ̇

2 +
Ω2

z

2

(

Iz cos2 Φ + Iy sin2 Φ

)

+
Jy

2

(

Ωz sin Φ + Θ̇
)2

+
Jx

2

(

Ωz cos Φ sin Θ − Φ̇ cos Θ
)2

+
Jz

2

(

Ωz cos Φ cos Θ + Φ̇ sin Θ
)2

(5)

There are assumed cubic nonlinear properties of soft

type for all torsional joints. Taking into account that the

mass center O of the whole micromechanical system

remains constantly immovable, we can write the poten-

tial energy as follows

V =
1

2
k11Φ

2 −
1

4
k12Φ

4 +
1

2
k21Θ

2 −
1

4
k22Θ

4, (6)

where k11, k12 and k21, k22 are elastic coefficients of

the torsional joints, respectively, for the anchors-gimbal

and gimbal-sensing plate connections.

Primary role in damping mechanism play the vis-

cous effects of gas flow which occurs between the

rotating surfaces and the immovable ones. As it was

mentioned, the system is excited by the driving elec-

trostatic torque M0 sin (Pt) applied to the gimbal. The

external loading and damping moments are introduced

into motion equations as the generalized forces.

The equations of motion derived using the Lagrange

equations of the second kind are as follows

1

2
(2Ix + Jx + Jz + (Jx − Jz) cos(2Θ)) Φ̈

+ C1Φ̇ + k11Φ − k12Φ
3 + (Jz − Jx ) sin(2Θ)Φ̇Θ̇

+
Ω2

z

4

(

2Iz − 2Iy + Jx − 2Jy + Jz

+(Jz − Jx ) cos(2Θ)) sin(2Φ)

−ΩzΘ̇
(

Jy + (Jx − Jz)

× cos(2Θ)) cos Φ = M0 sin(Pt), (7)

JyΘ̈ + C2Θ̇ + k21Θ − k22Θ
3

+Ω2
z (Jz − Jx ) cos Θ sin Θ cos2 Φ

+ΩzΦ̇
(

Jy + (Jx − Jz) cos(2Θ)
)

cos Φ

− (Jz − Jx ) Φ̇2 cos Θ sin Θ = 0, (8)

where C1 and C2 are the damping coefficients.

Expecting the elements of the system vibrate in very

small ranges values of angles Φ and Θ , so we carry out

the linear approximation of trigonometric functions of

these angles. It makes the equations of motion much

simpler. It is convenient to transform the governing

equations into non-dimensional form. For this purpose,

we introduce the dimensionless time τ = tω1 and the

following dimensionless parameters:

p =
P

ω1
, ωz =

Ωz

ω1
, w =

ω2

ω1
, c1 =

C1

(Ix + Jx )ω1
,

c2 =
C2

Jyω1
, α1 =

k12

(Ix + Jx )ω2
1

, α2 =
k22

Jyω2
1

,

j1 =
Iz + Jz − Iy − Jy

Ix + Jx
, j2 =

Jz − Jx

Ix + Jx
,

j3 =
Jy

Ix + Jx
, j4 =

Jz − Jx

Jy
, f0 =

M0

(Ix + Jx )ω2
1

,

(9)

where ω1 =
√

k11
Ix +Jx

, ω2 =
√

k21
Jy

.

The governing equations take the following dimen-

sionless form

ϕ̈ +
(

1 + j1ω
2
z

)

ϕ − α1ϕ
3 +

(

c1 + 2 j2ϑϑ̇
)

ϕ̇

+ ( j2 − j3) ωzϑ̇ − f0 sin(pτ) = 0, (10)

ϑ̈ +
(

w2 + j4ω
2
z − j4ϕ̇

2
)

ϑ − α2ϑ
3

+ c2ϑ̇ + (1 − j4)ωz ϕ̇ = 0, (11)

where ϕ(τ), ϑ(τ) correspond to the dimensional gen-

eral coordinates Φ(t) and Θ(t) and are functions of the

non-dimensional time. Hereafter, the dots over symbols

denote derivatives respecting to dimensionless time τ .

Equations (10)–(11) are supplemented with the

proper initial conditions
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ϕ(0) = ϕ0, ϕ̇(0) = ω0, ϑ(0) = ϑ0, ϑ̇(0) = ωϑ0,

(12)

where ϕ0, ωϕ0, ϑ0, ωϑ0 being known numbers

describe the initial kinematic state of the gyroscope.

4 Approximate analytical solution for

non-resonant case

The approximate analytical solution of the initial value

problem (10)–(12) is obtained using multiple scales

method (MSM) [21]. In accordance with MSM, the

system evolution in time is described using several vari-

ables of time nature. These variables are related to each

other by the so-called small parameter ε. We introduce

three time variables in the following manner: τ0 = τ

is the “fast” time, whereas τ1 = ετ and τ2 = ε2τ

play role of the “slow” times. Automatically, all func-

tions dependent on time become the functions of the

new time variables, and derivatives with respect to the

original time τ are replaced by the following partial

differential operators

d

dτ
=

∂

∂τ0
+ ε

∂

∂τ1
+ ε2 ∂

∂τ2
, (13)

d2

dτ 2
=

∂2

∂τ 2
0

+ 2ε
∂2

∂τ0∂τ1

+ ε2

(

∂2

∂τ 2
1

+ 2
∂2

∂τ0∂τ2

)

+ O
(

ε4
)

. (14)

The solution of the initial value problem (10)–(12)

is sought in the form of the power series of the small

parameter ε

ϕ (τ ; ε) =

k=3
∑

k=1

εkφk (τ0, τ1, τ2) + O(ε4),

ϑ (τ ; ε) =

k=3
∑

k=1

εkθk (τ0, τ1, τ2) + O(ε4). (15)

Moreover, several parameters describing the

micromechanical system and its loading are assumed

to be small, what using the small parameter ε can be

written as follows

c1 = c̃1ε
2, c2 = c̃2ε

2, ωz = ω̃zε f0 = f̃0ε
3.

(16)

When making assumptions (15), we take into

account that the substrate angular velocity is much

smaller than the frequencies of the movable gyroscope

elements.

Relations (13)–(16) are then substituted into equa-

tions of motion (10)–(11). As a result, in the equations

the small parameter ε appears in the different pow-

ers. It is required each of equations to be satisfied for

any value of ε. After arranging the components of both

equations according to the powers of the small param-

eter, this requirement is realized by equating to zero

all coefficients standing at the succeeding powers of ε.

Then, the obtained system of equations is solved recur-

sively [22–24].

At every step of the solving process, the secular

terms have to be removed. In this way, arise an ini-

tial value problem which is associated with the basic

equations set. Solution of this problem, which often is

named the modulation problem, present the slow evo-

lution of vibration amplitudes and phases in time. The

essential aspects regarding the recursive solving is pre-

sented in more detail in Sect. 5 where the resonant solu-

tion is sought.

The approximate solution of initial value problem

(10)–(12) which is obtained using MSM has the fol-

lowing form

ϕ = a1 cos(τ + ψ1) −
1

32
α1a3

1 cos(3τ + 3ψ1)

+
j2a1a2

2 cos(τ − 2wτ + ψ1 − 2ψ2)

8(w − 1)

−
j2a1a2

2 cos(τ + 2wτ + ψ1 + 2ψ2)

8(w + 1)

+
( j3 − j2)wωza2 sin(wτ + ψ2)

w2 − 1
+

f1 sin(pτ)

1 − p2
, (17)

ϑ = a2 cos(τ + ψ2) −
j4a2

1a2 cos(2τ − wτ + 2ψ1 − ψ2)

16(w − 1)

+
j4a2

1a2 cos(2τ + wτ + 2ψ1 + ψ2)

16(w + 1)

−
α2a3

2 cos(3wτ + 3ψ2)

32w2
−

( j4 − 1)ωza1 sin(τ + ψ1)

w2 − 1
.

(18)

The functions a1(τ ), a2(τ ), ψ1(τ ), ψ2(τ ) are solutions

of the modulation problem and have form

a1 = a10 exp
(

−
c1τ

2

)

, (19)

ψ1 = ψ10 −
3a2

10 (1 − exp (−c1τ)) α1

8c1

+
1

2

(

j1 −
( j2 − j3)( j4 − 1)

w2 − 1

)

τω2
z , (20)
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a2 = a20 exp
(

−
c2τ

2

)

(21)

ψ2 = ψ20 −
a2

10 (1 − exp (−c1τ)) j4

4c1w

−
3a2

20 (1 − exp (−c2τ)) α2

8c2w

+
( j3 − j2)w

2 + j4((1 + j2 − j3)w
2 − 1)

2w(w2 − 1)
τω2

z

(22)

where initial values of the amplitudes and the phases

a10, a20, ψ10, ψ20are known and compatible with the

initial values ϕ0, ωϕ0, ϑ0, ωϑ0 occurring in condi-

tions (12).

It is worth to emphasize that the solution although

approximated have however an analytical form. It

describes the forced vibration of the mechanical gyro-

scope caused by the harmonic torque acting about the

drive axis. Excluding the case when w = 0, the solu-

tion given by formulas (17)–(22) fails when p =1 or

w = 1 because some denominators are then equal to

zero. That are cases of main and internal resonances,

respectively. These two cases determine the zone of the

main and internal resonance, respectively. Therefore,

solution (17)–(22) is useful to describe the gyroscope

behavior in conditions being far from the resonance.

The time histories of the generalized coordinates ϕ and

ϑ given by (17)–(18) together with (19)–(22) are pre-

sented in Fig. 3. The calculations were carried out for

the following fixed values of parameters (several values

of the parameters are taken from the paper [25])

p = 0.021, w = 0.8, f0 = 0.0043662, α1 = 2,

α2 = 2, c1 = 0.0000575531, c2 = 0.0000575531,

ωz = 0.0000575531, j1 = 0, j2 = 0, j3 = 1, j4 = 0,

a10 = 0.009, a20 = 0.009, ψ10 = 0, ψ20 = 0.

In Fig. 3 the beginning of the motion of both gyro-

scope parts is presented. We can observe slow modula-

tion of the gimbal oscillations due to external loading.

In fact, on each of these two graphs are depicted two

curves representing the approximate solution of initial

value problem (10)–(12). One of them present the solu-

tion obtained analytically according to (17)–(22), and

the second the solution obtained numerically. The dif-

ference between these curves is unnoticeable.

The accuracy evaluation of the approximate solution

is estimated using the measures

δ1 =
1

τmax

τmax
∫

0

|G1(ϕa, ϑa)| dτ,

δ2 =
1

τmax

τmax
∫

0

|G2(ϕa, ϑa)| dτ , (23)

where G1(ϕa, ϑa) and G2(ϕa, ϑa) stand for the differ-

ential operators, i.e., the left sides of motion equations

(10)–(11), ϕa, ϑa are approximate solutions obtained

using MMS or numerically, and τmax is the total time.

Proposed measures (23) evaluate the error of fulfill-

ment of the governing equations of the simulation dura-

tion. The functions ϕa, ϑa , irrespective of the way of

their obtainment, satisfy the motion equations (10)–

(11) only approximately.

For the approximate solution presented in Fig. 3 and

obtained using MSM, the values of error are

δ1 = 6.414247 · 10−7, δ2 = 3.371118 · 10−9. (24)

The values of error of the fulfillment of the govern-

ing equations by the approximate solutions obtained

numerically using NDSolve method implemented in

Mathematica 11.1 are

δ1 = 2.562360 · 10−7, δ2 = 6.434821 · 10−8. (25)

The solutions obtained using MSM satisfy the sec-

ond of the motion equations with a significantly smaller

error.

Fig. 3 Time histories of the

forced vibration in

non-resonant conditions
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5 Resonant vibration

As it appears from equations (17)–(22), the frequen-

cies of main and internal resonances are equal to each

other. This characteristic feature of considered type of

MEMS gyroscope results from its structure and geom-

etry. Using non-dimensional parameters, we can write

that resonances occur when p ≈ 1 and w ≈ 1. In

view of assumptions (16), the substrate angular veloc-

ity do not affect significantly the resonance frequencies.

Desirable work regime of the micromechanical system

is the simultaneous resonance around both sense and

drive axes. In order to achieve the state of coincidence

of main and internal resonances, the system should be

designed like that the both eigenfrequencies to be equal.

Assuming that the permanent equalizing the eigen-

frequencies at the design stage is unobtainable in the

nonlinear systems, we take into account the following

resonance conditions

p = 1 + σ1, w = 1 + σ2, (26)

where σ1 and σ2 play role of the detuning parameters.

Additionally, we assume that σ1 = σ̃1ε, σ2 = σ̃2ε.

In order to solve the initial value problem near res-

onance, assumptions (26) and (16) are introduced into

governing equations (10)–(11). Approximate solution

is determined using MSM. We introduce three time

variables. The “fast” time τ0 = τ , and the “slow” times

τ1 = ετ and τ2 = ε2τ replace the original time τ .

According to MSM rules, we employ formulas (13)–

(15) into motion equations (10)–(11), yielding appear-

ance of the small parameter ε in various powers. After

arranging the equations with respect to the powers of

the small parameter, we realize the demand the motion

equations to be satisfied for any value of ε. We get a

system of equations which have to be satisfied in order

to guarantee satisfaction to the original equations. They

are as follows:

– the equations of the first-order approximation

∂2φ1

∂τ 2
0

+ φ1 = 0, (27)

∂2θ1

∂τ 2
0

+ θ1 = 0, (28)

– the equations of the second-order approximation

∂2φ2

∂τ2
0

+ φ2 = ω̃z( j3 − j2)
∂θ1

∂τ0
− 2

∂2φ1

∂τ0∂τ1
, (29)

∂2θ2

∂τ2
0

+ θ2 = −2σ̃2θ1 + ω̃z( j4 − 1)
∂φ1

∂τ0
− 2

∂2θ1

∂τ0∂τ1
,

(30)

– the equations of the third-order approximation

∂2φ3

∂τ2
0

+ φ3 = f0 sin(τ0 + ετ0σ̃1) − j1ω̃2
z φ1

+α1φ3
1 + ( j3 − j2)ω̃z

(

∂θ1

∂τ1
+

∂θ2

∂τ0

)

− c̃1
∂φ1

∂τ0
−

∂2φ1

∂τ2
1

− 2 j2θ1
∂θ1

∂τ0

∂φ1

∂τ0

− 2
∂2φ1

∂τ0∂τ2
− 2

∂2φ2

∂τ0∂τ1
, (31)

∂2θ3

∂τ2
0

+ θ3 = −
(

σ̃ 2
2 + j4ω̃2

z

)

θ1 + α2θ3
1

− 2σ̃ 2
2 θ2 + ( j4 − 1)ω̃z

(

∂φ1

∂τ1
+

∂φ2

∂τ0

)

− c̃2
∂θ1

∂τ0
−

∂2θ1

∂τ2
1

+ j4θ1

(

∂φ1

∂τ0

)2

− 2
∂2θ1

∂τ0∂τ2
− 2

∂2θ2

∂τ0∂τ1
. (32)

The solution to equations (27)–(28) is as follows

φ1 = B1(τ1, τ2) exp(iτ0) + B̄1(τ1, τ2) exp(−iτ0),

(33)

θ1 = B2(τ1, τ2) exp(iτ0) + B̄2(τ1, τ2) exp(−iτ0),

(34)

where B1(τ1, τ2), B2(τ1, τ2)are unknown complex-

valued functions of slow time scales, and i denotes the

imaginary unit.

The equations system (27)–(32) are solved recur-

sively, i.e., solutions (33)–(34) are substituted into

equations (29)–(30), then their solution into equations

(31)–(32). Linear differential operators of the equations

system (27)–(32) are the same on each level of approx-

imation. Therefore, it is inevitable that among solu-

tions of equations (29)–(32) the secular terms appear.

In vibration case, both generalized coordinates have to

be bounded; hence, all secular terms should be elimi-

nated from each of equations (29)–(32) after introduc-

ing into them the solutions of equations of lower levels

approximation.

After introducing solutions (33)–(34) into equations

(29)–(30) and rejection of the secular terms, one gets

∂2φ2

∂τ 2
0

+ φ2 = 0, (35)
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∂2θ2

∂τ 2
0

+ θ2 = 0. (36)

The general solutions of homogeneous equations

(35)–(36) are unknown functions of slow time variables

like in the case of solutions (33)–(34). So, it is possible

to omit these solution without lost the generality. The

particular solutions are obviously equal to zero and do

not induce any secular terms.

Inserting solutions (33)–(34) into equations (31)–

(32) and elimination of the secular terms leads to the

following equations

∂2φ3

∂τ 2
0

+ φ3 = (α1 B2
1 + 2 j2 B2

2 )B1 exp(3iτ0)

+
(

α1 B̄2
1 + 2 j2 B̄2

2

)

B̄1 exp(−3iτ0),

(37)

∂2θ3

∂τ 2
0

+ θ3 = (α2 B2
2 − j4 B2

1 )B2 exp(3iτ0)

+
(

α2 B̄2
2 − j4 B̄2

1

)

B̄2 exp(−3iτ0).

(38)

Without detracting from generality, we omit the gen-

eral solutions of equations (37)–(38). The particular

solutions are

φ3 = −
1

8
(α1 B2

1 + 2 j2 B2
2 )B1 exp(3iτ0)

−
1

8

(

α1 B̄2
1 + 2 j2 B̄2

2

)

B̄1 exp(−3iτ0), (39)

∂2θ3

∂τ 2
0

+ θ3 = −
1

8
(α2 B2

2 − j4 B2
1 )B2 exp(3iτ0)

−
1

8
(α2 B̄2

2 − j4 B̄2
1 )B̄2 exp(−3iτ0).

(40)

The solutions of the recursive system contain two

unknown complex-valued functions B1(τ1, τ2),

B2(τ1, τ2) and their complex conjugates B̄1(τ1, τ2),

B̄2(τ1, τ2).

Elimination of the secular terms in the process of

solving equation system (31)–(34) results in getting the

so-called solvability conditions

i( j3 − j2)ω̃z B2 − 2i
∂ B1

∂τ1
= 0, (41)

− i( j3 − j2)ω̃z B̄2 + 2i
∂ B̄1

∂τ1
= 0, (42)

i( j4 − 1)ω̃z B1 − 2σ̃2 B2 − 2i
∂ B2

∂τ1
= 0, (43)

− i( j4 − 1)ω̃z B̄1 − 2σ̃2 B̄2 + 2i
∂ B̄2

∂τ1
= 0, (44)

−
1

2
i f̃0 exp(iεσ̃1τ0) + 3α1 B2

1 B̄1

+
B1

4

(

−4i c̃1 + ( j2 − j3 − 4 j1 − j2 j4 + j3 j4)ω̃
2
z

)

− 2 j2 B̄1 B2
2 −

i

2

(

( j2 − j3)σ̃2ω̃z B2 + 4
∂ B1

∂τ2

)

= 0,

(45)

1

2
i f̃0 exp(−iεσ̃1τ0) + 3α1 B̄2

1 B1 +
B̄1

4

×
(

4i c̃1 + ( j2 − j3 − 4 j1 − j2 j4 + j3 j4)ω̃
2
z

)

− 2 j2 B1 B̄2
2 +

i

2

(

( j2 − j3)σ̃2ω̃z B̄2 + 4
∂ B̄1

∂τ2

)

= 0,

(46)

(3α2 B2
2 − j4 B2

1 )B̄2 +
B2

4

×
(

−4i c̃2 + ( j2 + j3( j4 − 1) − 4 j4 − j2 j4)ω̃
2
z

)

−2i
∂ B2

∂τ2
+ 2 j4 B1 B2 B̄1 −

i

2
( j4 − 1)σ̃2ω̃z B1 = 0,

(47)

(3α2 B̄2
2 − j4 B̄2

1 )B2 +
B̄2

4
(4i c̃2 + ( j2 + j3( j4 − 1)

− 4 j4 − j2 j4)ω̃
2
z

)

+ 2i
∂ B̄2

∂τ2

+ 2 j4 B1 B̄2 B̄1 +
i

2
( j4 − 1)σ̃2ω̃z B̄1 = 0, (48)

The solvability conditions create the system of eight

partial differential equations of the first order with

unknown functions B1(τ1, τ2), B2(τ1, τ2), B̄1(τ1, τ2),

B̄2(τ1, τ2). It is convenient to represent these functions

using the following exponential representation

B1 = ã1 exp(iψ1), B̄1 = ã1 exp(−iψ1),

B2 = ã2 exp(iψ2), B̄2 = ã2 exp(−iψ2), (49)

where ã1(τ1, τ2), ã1(τ1, τ2), ψ1(τ1, τ2), ψ2(τ1, τ2)

are real-valued functions.

After changing variables in (41)–(48) according to

relationships (49), we get the system of equations con-

taining the first-order partial derivatives of unknown

functions ã1(τ1, τ2), ã1(τ1, τ2), ψ1(τ1, τ2), ψ2

(τ1, τ2). We solve it with respect to these derivatives,

and then insert the solutions into Eq. (13) what make

possible to transform the system of partial differen-

tial equations (41)–(48) onto equivalent system of four
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ordinary differential equations. Applying inversely

assumptions (16), one gets

ȧ1 = −
f0

2
cos(σ1τ − ψ1)

−
j2 − j3

4
(2 + σ2)ωza2 cos(ψ1 − ψ2) −

1

2
c1a1

+
j2

4
a1a2

2 sin(2(ψ1 − ψ2)), (50)

ȧ2 = −
1

4
( j4 − 1)(σ2 − 2)ωza1 cos(ψ1 − ψ2) −

1

2
c2a2

−
1

8
j4a2

1a2 sin(2(ψ1 − ψ2)), (51)

a1ψ̇1 = −
3

8
α1a3

1 +
4 j1 + ( j2 − j3)( j4 − 1)

8
ω2

z a1

+
j2

4
a1a2

2 cos(2(ψ1 − ψ2)) −
f0

2
sin(σ1τ − ψ1)

+
j2 − j3

4
(2 + σ2)ωza2 sin(ψ1 − ψ2), (52)

a2ψ̇2 = σ2a2 −
3

8
α2a3

2 +
ω2

z

8
( j3 − j2 + (4 + j2 − j3) j4) a2

+
j4

8
a2

1a2(cos(2(ψ1 − ψ2)) − 2)

−
j4 − 1

4
(σ2 − 2)ωza1 sin(ψ1 − ψ2), (53)

where a1 = εã1 , a2 = εã2.

The initial conditions supplementing equations

(50)–(53) are

a1(0) = a10, ψ1(0) = ψ10,

a2(0) = a20, ψ2(0) = ψ20, (54)

where a10, a20, ψ10, ψ20 are that known quantities like

that the initial conditions (11) and (54) are compatible

each to other.

Rejection of the secular terms guarantee not only

that solutions of vibration problem are bounded but

also it gives a way to determine the unknown func-

tions B1(τ1, τ2), B2(τ1, τ2). It should be noticed that

although differential equations (50)–(53) are written

using derivatives with respect to the time τ , they

describe the evolution of the functions a1(τ1, τ2),

a1(τ1, τ2), ψ1(τ1, τ2), ψ2(τ1, τ2) with respect to the

slow times variables τ1 and τ2 because these functions

a priori depend only on the slow times variables.

After solving initial value problem (50)–(54), we

apply inversely formula (49) what allow to express the

complex-valued functions B1(τ1, τ2), B2(τ1, τ2) and

their complex conjugates through the real-valued func-

tions a1(τ1, τ2), a1(τ1, τ2), ψ1(τ1, τ2), ψ2(τ1, τ2)

in solutions of the equations system (27)–(32) . Next,

taking into account Eq. (15) we can write the approxi-

mate solution of original problem (10)–(12) related to

the simultaneously occurring main and internal reso-

nances. The solution has the following analytical form

ϕ = a1 cos(τ + ψ1) −
1

32
α1a3

1 cos(3τ + 3ψ1)

−
1

16
j2a1a2

2 cos(3τ + ψ1 + 2ψ2) (55)

ϑ = a2 cos(τ + ψ2) +
1

32
j4a2

1a2 cos(3τ + 2ψ1 + ψ2)

−
1

32
α2a3

2 cos(3τ + 3ψ2). (56)

The quantities a1 , a2 and ψ1 , ψ2 introduced into

consideration by exponential representation (49) are

functions of slow time variables and occur respectively

as the amplitudes and the phases of the components of

approximate solution (55)–(56). So, initial value prob-

lem (50)–(54) which is associated with basic equations

set (27)–(32) determine the slow evolution of the vibra-

tion amplitudes and phases in time. For that reason, this

issue is known as modulation problem. Contrary to the

previously discussed case of the non-resonant vibra-

tion, initial value problem (50)–(54) cannot be solved

in the analytical manner.

The time histories of the generalized coordinates in

case of the doubled resonance are presented in Fig. 4.

The values of parameters assumed in this simulation

are as follows:

σ1 = 0.01, σ2 = 0.04167, f0 = 0.0043662, α1 = 1,

α2 = 1, c1 = 0.0000575531, c2 = 0.0000575531,

ωz = 0.0000575531, j1 = 0.04, j2 = 0, j3 = 0.96, j4 = 0,

a10 = 0.008, a20 = 0.008, ψ10 = 0, ψ20 = 0.

In Fig. 4a, the black solid line represent the ampli-

tude a1 whereas the black line depicted in Fig. 4b is

the image of the amplitude a2. Both curves envelop

the graphs of fast changing oscillations. The non-

dimensional value τmax = 20,000 denoting the dura-

tion of simulation correspond to about 1.08 s.

Similarly as in Sect. 4, in Fig. 4 are depicted the

approximate solutions obtained using MSM and cal-

culated numerically. The values of error (23) for the

solutions derived using MSM are as follows

δ1 = 1.400831 · 10−7, δ2 = 8.920221 · 10−9. (57)

For comparison, the values of error for the solutions

obtained by the optimized numerical method in Math-

ematica 11.1 are

δ1 = 2.562360 · 10−7, δ2 = 6.434821 · 10−8. (58)

Both values of error measuring satisfaction of

the governing equations by approximate solution are

smaller in case of MSM solution.
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Fig. 4 Time histories in

case of doubled resonance:

a the generalized coordinate

ϕ and amplitude a1; b the

generalized coordinate ϑ

and amplitude a2

6 Steady-state responses

Initial value problem (50)–(54) arose in process of solv-

ing motion equations (10)–(12) using MSM is a good

basis for studying the steady-state forced vibration of

the micromechanical gyroscope. For this purpose, it

is convenient to introduce modified phases Ψ1(τ ) and

Ψ2(τ ) as follows

ψ1(τ ) = σ1τ −Ψ1(τ ), ψ2(τ ) = σ1τ −Ψ2(τ ) . (59)

Applying expressions (59) transforms modulation

problem (50)–(54) into an autonomous form that is

suitable to analyze steady-state motion of the system.

Oscillations of forced system can achieve the steady

state when all transient processes disappear. The symp-

tom of this state is fixing of the values of the amplitudes

a1, a2 and modified phases ψ1 , ψ2. By zeroing of the

derivatives of amplitudes and modified phases in mod-

ulation equations (50)–(53), we get the conditions of a

steady state

2 f0 cos(Ψ1) + ( j2 − j3)(2 + σ2)ωza2 cos(Ψ1 − Ψ2)

+ a1(2c1 + j2a2
2 sin(2(Ψ1 − Ψ2))) = 0, (60)

2( j4 − 1)(σ2 − 2)ωza1 cos(Ψ1 − Ψ2)

+ 4a2c2 − j4a2
1a2 sin(2(Ψ1 − Ψ2)) = 0, (61)

−8σ1a1 − 3α1a3
1 + a1 ((4 j1 + ( j2 − j3)( j4 − 1)) ω2

z

+ 2 j2a2
2 cos(2(Ψ1 − Ψ2)) − 4 f0 sin(Ψ1)

− 2( j2 − j3)(2 + σ2)ωza2 sin(Ψ1 − Ψ2) = 0, (62)

−8σ1a2 + 8a2σ2 − 3α2a3
2

+a2 ( j3 − j2 + (4 + j2 − j3) j4) ω2
z

+ j4a2
1a2(cos(2(Ψ1 − Ψ2)) − 2)

− 2( j4 − 1)(σ2 − 2)ωza1 sin(Ψ1 − Ψ2) = 0. (63)

The solution of system of nonlinear equations (60)–

(63) determine the values of amplitudes and modified

phases of the gyroscope vibration in case of main and

internal resonances that occur simultaneously.

Let us analyze resonant response of micromechani-

cal gyroscope in the general case, i.e., without any addi-

tional assumptions about its properties. The following

values of parameters are fixed

SET1 = {σ2 = −0.00333, f0 = 0.0000011,

α1 = 1.42, α2 = 2.174, c1 = 0.000010127,

c2 = 0.00001, ωz = 0.000131656, j1 = 0.0769,

j2 = 0, j3 = 0.923, j4 = 0}.

The value of the detuning parameter σ1 is increased

regularly by 0.000015, starting from σ1 = −0.0065.

The resonant response curves are obtained solving

equations (60)–(63) with help the procedure NSolve

offered in Mathematica 11.1. The results are presented

in Fig. 5.

The resonant answers of the system exhibit high

coincidence with the numerical solution of the motion

equations. The simulation was carried out assuming the

same values of parameter. Additionally, it is assumed

σ1 = −0.004, a10 = 0.01, a20 = 0.01,

ψ10 = 0, ψ20 = 0.

Time histories of the generalized coordinates for this

data are given in Fig. 6. Both graphs present the vibra-

tion just before the end of simulation which was real-

ized for τ ∈ [0, τmax], where τmax = 20,000 corre-

sponds to about 1.32s.

The values of error (23) for the approximate solution

obtained using MSM are as follows

δ1 = 1.456467 · 10−9, δ2 = 2.940916 · 10−9, (64)

while the values of the error for the numerical results

obtained using Mathematica Software are

δ1 = 2.289364 · 10−7, δ2 = 2.316752 · 10−7. (65)

Equations (60)–(63) allow for a complete analysis of

the gyroscope steady-state response for various special

case studies.
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Fig. 5 Resonance curves: a

for the gimbal vibration, b

for the sensing element

vibration; set of data: SET1

Fig. 6 Time histories of

generalized coordinates for

the set of data: SET1

Case 1 (α1 = 0, α2 = 0)

Let us consider the micromechanical gyroscope the tor-

sional joints of which have strictly linear elastic char-

acteristic. Inserting α1 = 0, α2 = 0 into equations

(60)–(63), one gets

2 f0 cos(Ψ1) + ( j2 − j3)(2 + σ2)ωza2 cos(Ψ1 − Ψ2)

+ a1(2c1 + j2a2
2 sin(2(Ψ1 − Ψ2))) = 0, (66)

2( j4 − 1)(σ2 − 2)ωza1 cos(Ψ1 − Ψ2) + 4a2c2

− j4a2
1a2 sin(2(Ψ1 − Ψ2)) = 0, (67)

−8σ1a1 + a1 ((4 j1 + ( j2 − j3)( j4 − 1)) ω2
z

+ 2 j2a2
2 cos(2(Ψ1 − Ψ2)) − 4 f0 sin(Ψ1)

− 2( j2 − j3)(2 + σ2)ωza2 sin(Ψ1 − Ψ2) = 0, (68)

−8σ1a2+8a2σ2+a2 ( j3 − j2+(4 + j2 − j3) j4) ω2
z

+ j4a2
1a2(cos(2(Ψ1 − Ψ2)) − 2)

−2( j4 − 1)(σ2 − 2)ωza1 sin(Ψ1 − Ψ2) = 0. (69)

Assumption about vanishing nonlinear does not

cause any significant simplifications. The modulation

equations are still nonlinear and majority of the non-

linear terms is conditioned by the inertial properties of

the sensing plate.

Case 2 ( α1 = 0, α2 = 0, j2 = 0, j4 = 0 ) Observe

that the steady-state equations become much simpler

when j2 = j4 = 0. These relations are satisfied if the

components Jx and Jz of the diagonal inertia tensor Ĵ

of the sense plate are equal to each other. Modulation

equations take the following form

2 f0 cos(Ψ1) − j3(2 + σ2)ωza2 cos(Ψ1 − Ψ2) + 2a1c1 = 0, (70)

2(σ2 − 2)ωza1 cos(Ψ1 − Ψ2) − 4a2c2 = 0, (71)

−8σ1a1 + 4 j1ω
2
z a1 + j3ω

2
z a1

−4 f0 sin(Ψ1) + 2 j3(2 + σ2)ωza2 sin(Ψ1 − Ψ2) = 0, (72)

−8σ1a2 + a2(8σ2 + j3ω
2
z ) − 2(σ2 − 2)ωza1 sin(Ψ1 − Ψ2) = 0.

(73)

The modified phases can be eliminated from equa-

tions (70)–(73) using trigonometric identities what

allows to express explicitly the amplitude-frequency

dependencies

a2
2

(

16c2
2 + (8σ2 − 8σ1 + j3ω

2
z )

2
)

4a2
1 (σ2 − 2)2ω2

z

= 1, (74)

(

4a1 j1ω
2
z − 8a1σ1 + a1 j3ω

2
z +

a2
2 j3(2 + σ2)(8σ2 − 8σ1 + j3ω

2
z )

a1(σ2 − 2)

)2

+
16

(

a2
1 c1(σ2 − 2) − a2

2 c2 j3(2 + σ2)
)2

a2
1 (σ2 − 2)2

= 16 f 2
0 . (75)

We get the system of two algebraic equations of the

8-th order with respect to the unknown amplitudes a1

and a2.

The resonance curves obtained in result of solving

system (74)–(75) for the following data of parameters

SET2 = { f0 = 1. × 10−7, α1 = 0, α2 = 0, c1 =

5. × 10−7, c2 = 5. × 10−7, ωz = 3. × 10−6, j1 =

0.00826, j3 = 0.9917} are presented in Fig. 7.
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Fig. 7 Resonance curves; a1—amplitude of the gimbal, a2

amplitude of the sensing plate

The full symmetry of the graphs depicted in Fig. 7

is typical behavior of the considered two-degrees-of-

freedom linear system.

The mentioned symmetry is disturbed when the sys-

tem is not perfectly tuned to the internal resonance, i.e.,

when σ2 �= 0. The angular velocity of the substrate

has also crucial influence on the resonant response.

The influence on the resonant response of the detun-

ing parameter σ2 �= 0, which means that the system

is not perfectly tuned, and with respect to the angular

velocity ωz is presented in Fig. 8.

Comparing several cases presented in Figs. 7 and 8,

we can observe that resonant picks are moving away

from each other when ωz increases. However, the

increase of σ2 disturbs symmetry of the graphs.

Case 3 ( j1 = j2 = j4 = 0, j3 = 1)

In this case, we assume that moments of inertia of the

gimbal are assumed as negligible and that the tensor

of inertia of the sensor element is isotropic. Inserting

the assumptions j1 = j2 = j4 = 0, j3 = 1 into

modulation equations (60)–(63), we get

2 f0 cos(Ψ1) + (2 + σ2)ωza2 cos(Ψ1 − Ψ2) + 2a1c1 = 0,

(76)

2(σ2 − 2)ωza1 cos(Ψ1 − Ψ2) − 4a2c2 = 0, (77)

− 8a1σ1 − 3α1a3
1 + a1ω2

z

− 4 f0 sin(Ψ1) + 2(2 + σ2)ωza2 sin(Ψ1 − Ψ2) = 0, (78)

− 8a2σ1 + a2(−3α2a2
2 + 8σ2 + ω2

z )

− 2(σ2 − 2)ωza1 sin(Ψ1 − Ψ2) = 0. (79)

Considered here assumptions cause vanishing of

trigonometric functions whose argument is difference

of the modified phases multiplied by two. This cir-

cumstance allow to eliminate from (76)–(79) the other

trigonometric functions of the modified phases. In this

manner, the following implicit dependence between the

amplitudes and frequencies in the resonance zone is

obtained

a2
2

(

16c2
2 + (−3α2a2

2 + 8σ2 − 8σ1 + ω2
z )

2
)

4a2
1 (σ2 − 2)2ω2

z

= 1, (80)

(

−3α1a3
1 − 8σ1a1 + ω2

z a1 +
a2

2 (2 + σ2)(−3α2a3
2 + 8σ2 − 8σ1 + ω2

z )

a1(σ2 − 2)

)2

+
16

(

c1(σ2 − 2)a2
1 − c2(2 + σ2)a

2
2

)2

a2
1 (σ2 − 2)2

= 16 f 2
0 . (81)

Equations (80)–(81) form the algebraic set of 48-th

order with respect to the unknown amplitudes a1 and

a2, where amplitudes appear only in even powers.

These equations allow to perform qualitative analysis

of the resonance steady-state amplitudes versus detun-

ing parameter σ1 for various parameters.

The analysis of the influence of the damping coef-

ficient on the amplitudes is presented in Fig. 9. The

assumed values of system parameters are:

SET3 = { f0 = 4.3662 × 10−7, α1 = 1,

α2 = 1, ωz = 6. × 10−5, σ2 = 0}

The influence of the amplitude f0 on the resonance

curves, for the set of parameters SET3 and c1 = c2 =

4 × 10−5, is presented in Fig. 10.

The nonlinearity parameters α1 and α2 have also

essential impact on the resonant characteristics for the

set of parameters SET3 and c1 = c2 = 2.5 × 10−6, is

presented in Fig. 11.

The values of damping coefficients for which the res-

onance curves become unique can be estimated, in the

way of numerical simulations, for the given microsys-

tem and given loading. In the case of data values spec-

ified in SET3, coefficients c1 = c2 = 0.000034 fulfill

this criterion.

Case 4 (ωz = 0)

In the case of immovable substrate the form of modu-

lation equations is simplified to the following

2 f0 cos(Ψ1) + 2a1c1 − j2a1a2
2 sin(2(Ψ2 − Ψ1))) = 0,

(82)

4a2c2 − j4a2a2
1 sin(2(Ψ1 − Ψ2)) = 0, (83)

− 8a1σ1 − 3α1a3
1 + 2 j2a1a2

2 cos(2(Ψ1 − Ψ2))

− 4 f0 sin(Ψ1) = 0, (84)

− 8a2σ1 + 8a2σ2 − 3α2a3
2

− 2a2
1a2 j4 + a2

1a2 j4 cos(2(Ψ1 − Ψ2)) = 0. (85)

The inertial parameters j1 and j3 do not appear in

equations (82)–(85). The trigonometric identities again

allow to eliminate the functions Ψ1 and Ψ2.
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Fig. 8 Resonance curves for various ωz and σ2 (set of data: SET2)

Fig. 9 Resonance curves for: (1) c1 = c2 = 1 × 10−5, (2) c1 = c2 = 2 × 10−5, (3) c1 = c2 = 3 × 10−5, (4) c1 = c2 = 4 × 10−5

Case 5 (ωz = 0, j2 = 0, j4 = 0 )

Let us assume that the substrate is immovable and addi-

tionally Jx = J z , so j2 = j4 = 0. The last assump-

tion together with ωz = 0 leads to the conclusion that

a2 = 0. When the substrate is at rest, then the sens-

ing plate does not oscillate. The forced vibration of

the gimbal does not excite the sensor what confirms

that the Coriolis torque is the main reason causing the

sense plate to vibrate. Due to the substrate and the sen-

sor plate are at rest, the equation describing the rela-

tionship amplitude–frequency for gimbal is completely
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Fig. 10 Resonance curves for: (1) f0 = 4. × 10−7, (2) f0 = 6. × 10−7, (3) f0 = 8. × 10−7, (4) f0 = 9. × 10−7

Fig. 11 Resonance curves for: (1) α1 = α2 = 1, (2) α1 = α2 = 2, (3) α1 = α2 = 2.5, (4) α1 = α2 = 3

uncoupled and has the following form

a2
1

(

16c2
1 + (3α1a2

1 + 8σ1)
2
)

= 16 f 2
0 . (86)

The family of resonance curves, obtained using Eq.

(86), for various values of damping coefficient c1 is

presented in Fig. 12. The values of parameters assumed

in this simulation are

SET4 = {σ2 = −0.0394, f0 = 4. × 10−6,

α1 = 10, α2 = 10, c2 = 0.000114,

j2 = 0, j4 = 0}

Case 6 (identification of angular velocity)

The identification problem of substrate angular veloc-

ity requires an unambiguous character of each of the

both resonance response curves. So, determination of

the value of the damping coefficient which guaran-

tee this unambiguity for given micromechanical gyro-

scope is of significant importance. It is also important to

Fig. 12 Resonance curves for the gimbal when substrate is

immovable

reduce the number of the measurement system param-

eters that can have influence on the identification. One

of the earlier discussed cases leads to essential simpli-

fication of the equations of steady state. It is the case

when the gimbal moments of inertia are sufficiently
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Fig. 13 Steady state vibration for the gimbal and the sensing plate

Fig. 14 Resonance curves. The amplitudes of the gimbal and the sensing plate versus σ2 for various values of the damping coefficients;

(1) c1 = c2 = 6 × 10−5, (2) c1 = c2 = 8 × 10−5, (3) c1 = c2 = 12 × 10−5, (4) c1 = c2 = 3 × 10−5, (4) c1 = c2 = 20 × 10−5

slight and the tensor of inertia of the sense plate is

isotropic. These assumptions that simplify the steady

state equations to form (76)–(79) can be written as fol-

lows j1 = j2 = j4 = 0, j3 = 1. Equation (77) of this

system is relatively simple and contains the smallest

number of gyroscope parameters. Let us solve Eq. (77)

for the angular velocity

ωz =
2a2c2

(σ2 − 2)a1 cos(Ψ1 − Ψ2)
. (87)

When the system is perfectly designed, made and

tuned, the detuning parameter σ2 is equal to zero. Thus

it is enough to know the damping coefficient c2 and to

measure the values of amplitudes a1 and a2 in the reso-

nance. In the steady state, the difference of the modified

phases should be set at value π . Assuming all these cir-

cumstances, we can write

ωz =
a2c2

a1
. (88)

The following simulation is carried out in order to

apply this identification way. We assume some values

of parameters of gyroscope including the value of the

substrate angular velocity, namely

SET5 = {σ1 = 0, σ2 = 0, f0 = 4.5 × 10−6,

α1 = 1, α2 = 1, c1 = 0.0005, c2 = 0.0005,

ωz = 0.0008, a10 = 0.005, a20 = 0.005,

ψ10 = 0, ψ10 = 0}.

Then, we find the approximate solution of initial

value problem (10)–(12) and determine the both val-

ues of amplitudes, replacing real measurement by the

reading the values from the graphs. The variability over

time of the both generalized coordinates for the steady-

state vibration is presented in Fig. 13. Using graphs, we

determine

a1 ≈ 0.000249, a2 ≈ 0.004 , and hence ωz

≈ 0.0008032.

However, this procedure fails when due to any rea-

son the assumptions concerning the coincidence of both
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resonances at the same resonant frequency (σ2 = 0) are

not strictly satisfied. The higher value the parameter σ2

takes, the less accurate the angular velocity measure-

ment is. In Fig. 14, there is shown the influence of

parameter σ2 on the vibration amplitude of the both the

gimbal and the sensing plate. This influence is espe-

cially spectacular when the damping is small and the

resonance response curves are ambiguous. However,

even for sufficiently large values of damping coeffi-

cients which make sure the curves are functions of the

detuning parameter σ2, the values of the both ampli-

tudes change significantly with σ2. The numerical sim-

ulation was carried out assuming the following fixed

values of parameters

SET6 = {σ1 = −10−5, f0 = 4.5 × 10−6,

α1 = 1, α2 = 1, ωz = 0.0008}.

7 Concluding remarks

The equations of motion of micromechanical gyro-

scope of torsional type has been derived. The math-

ematical model includes nonlinear characteristics of

the torsional links. According to actual work regime

of this type micromechanical gyroscope, only harmon-

ically changing torque acting about the gimbal axis has

been assumed. The dynamical problem has been solved

using the method of multiple time scales belonging

to wide class of asymptotic methods. The significant

advantage of the asymptotic methods consist in the ana-

lytical form of the approximate solutions. That gives the

opportunity to both qualitative and quantitative analy-

sis of the behavior of the system for wide range of its

parameters.

The approximate solution of analytical form has

been obtained firstly for non-resonant vibration what

among other allow to detect the resonance condi-

tions. The main and internal resonances simultaneously

occurring have been the subject of our study. The char-

acteristic feature of this type gyroscope is that the both

resonance frequencies are equal to each other. The

approximate solution has been obtained also for the

resonant vibration. Initial value problem of the modu-

lation strictly associated with the procedure of solving

the governing equations using MSM gives the possi-

bility to analyze the slow evolution of the amplitudes

and phases.

Steady-state resonance oscillations are desired

regime of work of the micromechanical gyroscope, so

this situation has been analyzed in more detail. More-

over, some special cases have been investigated. For

example, we simulated negligible inertia of gimbal

and isotropic tensor of inertia of the sensor. Another

case refers to situation when the torsional joints have

strictly linear elastic characteristic, for both symmetric

and non-symmetric moments of inertia. We have also

shown that if substrate is immovable, the modulation

equations are uncoupled and reduce to one equation

describing vibration of a gimbal. In that case the sens-

ing plate is motionless.

For all cases, the amplitude–frequency relationships

have been derived. Resonance curves have been drawn

illustrating influence of various parameters on their

shape and uniqueness. Also an impact of damping coef-

ficients and amplitude of the external excitation has

been discussed.

The approximate analytical solution has been vali-

dated using the proposed measure of the error of ful-

fillment of the governing equations and also by com-

parison with the numerical simulation.
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