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Abstract 7

The brain is a complex, nonlinear system, exhibiting ever-evolving patterns 8

of activities even without external inputs or tasks. Such intrinsic dynamics play 9

a key role in cognitive functions and psychiatric disorders. A challenge is to link 10

the intrinsic dynamics to the underlying structure, given the nonlinearity. Here 11

we use a biophysically constrained, nonlinear-dynamical model to show how 12

the complexity of intrinsic brain dynamics, manifested as its multistability and 13

temporal diversity, can be sculpted by structural properties across scales. At a 14

local level, multistability and temporal diversity can be induced by sufficient 15

recurrent excitatory connectivity and its heterogeneity. At a global level, such 16

functional complexity can also be created by the synergistic interaction between 17

monostable, locally identical regions. Coordination between model brain 18

regions across attractors in the multistable landscape predicts human functional 19

connectivity. Compared to dynamics near a single attractor, cross-attractor 20

coordination better accounts for functional links uncorrelated with structural 21

connectivity. Energy costs of cross-attractor coordination are modulated by 22

both local and global connectivity, and higher in the Default Mode Network. 23

These findings hint that functional connectivity underscores transitions between 24

alternative patterns of activity in the brain—even more than the patterns 25

themselves. This work provides a systematic framework for characterizing 26

intrinsic brain dynamics as a web of cross-attractor transitions and their energy 27

costs. The framework may be used to predict transitions and energy costs 28

associated with experimental or clinical interventions. 29

Significance Statement 30

The brain is a multifunctional system: different brain regions can coordinate flexibly 31

to perform different tasks. Understanding the regional and global structural con- 32

straints on brain function is critical to understand cognition. Here, using a unified 33

biophysical network model, we show how structural constraints across scales jointly 34

shape the brain’s intrinsic functional repertoire – the set of all possible patterns that 35

a brain could generate. The modeled functional repertoire is enriched by both the 36

flexibility of individual brain regions and their synergistic interaction in a global 37

network. By carefully examining the modeled repertoire, we found that human 38

resting-state functional connectivity was better predicted by transitions between 39

brain activity patterns rather than any specific pattern per se. 40
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1 Introduction 41

A fundamental goal of neuroscience is to understand how the structure of the brain 42

constrains its function [1]. The brain’s multiscale and nonlinear nature makes it 43

challenging [2–4]. Relevant structural factors are scattered across scales, while 44

nonlinearity makes it difficult to predict dynamic properties of the whole from its 45

parts. Nonlinear dynamical models serve as essential tools for bridging structural 46

and functional understanding of the brain [5, 6]. When equipped with plausible 47

biophysical and connectivity features of the brain, biophysical network models have 48

successfully provided insights into resting brain dynamics (e.g. [7–9]). However, their 49

dynamic capability has not been extensively studied or fully utilized with regard to 50

key nonlinear features such as multistability (c.f. [10]) and rhythmic activities. Here 51

we first provide a systematic analysis of how the dynamic landscape of the model 52

brain, its multistability and temporal diversity, vary with structural properties across 53

scales. Further, we show that functional connectivity patterns as observed in human 54

resting-state fMRI emerge spontaneously from the multistable landscape, reflecting 55

the coordination between brain regions across attractors in the dynamic landscape. 56

Intrinsic brain dynamics have long been observed [11, 12], but often treated 57

as a baseline subtracted from task-positive activities. This baseline, however, is 58

more active than meets the eye: it consumes the largest fraction of the brain’s 59

energy resources, while task-related consumption adds little [13]. It constrains task 60

performance and related neural activities across multiple time scales [14–16], and 61

sustains alteration in neurological and psychiatric disorders [17]. Neuroimaging 62

studies reveal the richness of such intrinsic brain dynamics and its subnetworks 63

[18–24]. These empirical findings drive the development of large-scale models of 64

resting brain dynamics (see [25] for a review), to reveal its functional purpose [5, 26] 65

and as tools for mechanistic diagnostics of psychiatric disorders [27]. 66

Nonlinear dynamical systems are often chosen over linear ones to account for the 67

ubiquitous multistability and coordinated rhythmic activities in biological systems— 68

the brain is one of the best examples [28–32]. To say that a system is multistable is 69

to say that multiple stable patterns of activities (attractors) are all achievable by 70

the system. Which pattern is retrieved depends on the external input or intrinsic 71

noise. Multistability of the brain signifies its multi-functionality and its ability 72

to form memory as persistent patterns of activity [2, 28, 33, 34]. The switching 73

dynamics between functional networks in the resting brain is thought to reflect noise- 74

driven exploration of the underlying multistable landscape, i.e. the brain’s intrinsic 75

functional repertoire [35]. On the other hand, brain dynamics is parsed in time 76

by a hierarchy of diverse rhythmic activities [32, 36, 37]. The coordination across 77

rhythmic activities at diverse frequencies gives rise to dynamic and flexible integration- 78

segregation across multiple scales [32, 38]. Disruption of such temporal coordination 79

is associated with neuropsychiatric disorders [39]. Together, multistability and 80

temporal diversity are key features of intrinsic neural dynamics that theorists seek 81

to capture using large-scale nonlinear dynamical models [10, 40, 41]. 82

In the present work, we use a nonlinear dynamical model that incorporates 83

structural properties of the brain across scales—from neurons, to local populations, 84

and to large-scale networks. The model is a formal unification of the Wilson-Cowan 85

model [42, 43] and the reduced Wong-Wang model [7, 8, 44]. The Wilson-Cowan 86

model [42, 43] is a population-level model of brain dynamics, widely used for modeling 87

multistability and rhythmic activity in large-scale brain networks [40, 45–50]. It 88

is unconstrained by the biophysical properties of underlying neurons that may be 89

important for predicting the outcome of electrical or pharmacological stimulation in 90

empirical settings (e.g. [51, 52]). The reduced Wong-Wang model is a biophysical 91

network model constrained by biologically plausible parameters at the neuronal 92

level [34, 53–57]. Its noise-driven dynamics near certain attractors has been used 93

to capture resting-state functional connectivity (e.g. [8, 9]). However, its reduced 94

nonlinearity limits the multistability and makes it less viable for studying oscillations. 95
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Our unified model retains both the nonlinearity of the Wilson-Cowan model and 96

the biophysical constraints of the reduced Wong-Wang model. 97

With this model, we show how the intrinsic dynamic landscape of the brain 98

can be shaped by structural properties across scales, and how multistability of the 99

landscape gives rise to functional connectivity patterns and its energy demands. 100

2 Materials and Methods 101

2.1 The present model 102

Our model describes the whole-brain dynamics as the mean-field activity of neuronal 103

populations in each brain region. Each model region contains a pair of excitatory 104

(E) and inhibitory (I) populations, whose activity is described by the local model 105

(Figure 1a, left box; equation 1-3) in terms of the state variables SE and SI . 106

Physically, SE and SI are interpreted as the fraction of open synaptic channels in 107

their respective populations, named the gating variables. Through local connections 108

(w’s), the excitatory population excites itself with strength wEE and the inhibitory 109

population with strength wEI , while the inhibitory population inhibits itself with 110

strength wII and the excitatory population with strength wIE . Local models 111

further connect to each other through a global network (Figure 1a, dashed lines), 112

i.e. the global model (right; equation 4-6). In the present work, nodes of the global 113

network correspond to anatomical regions in the human brain based on a 66-region 114

parcellation used in [7, 58] (Figure 1b); the weight of edges reflects the strength 115

of long-range structural connectivity between brain regions, either estimated using 116

structural data from the Human Connectome Project [59, 60] (Section 2.4.1) or 117

artificial constructed for comparison. 118

Figure 1: Construction of a dynamic mean-field model of the human brain. (a) The model brain (global
model) consists of a network of brain regions (local model). The local model (black box) describes the interaction
between two local neural populations — one excitatory E and one inhibitory I — via two excitatory connections
(red, wEE and wEI) and two inhibitory connections (blue, wII and wIE). The excitatory population of each brain
region can further receive input (gray arrow, IE) from other regions, allowed by the large-scale structural connectivity
(red dashed connections). (b) Nodes in the global model corresponds to 66 anatomical regions of the human brain,
which can be linked together by the human connectome (see text). Regions are index from 1 to 66 (1-33 on the right
hemisphere, 34-66 on the left hemisphere is reverse order, following [7]).
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The local model is described by the equations,

dSE

d t
= −SE

τE
+ (1− SE)γE HE(wEESE − wIESI + IE) (1)

dSI

d t
= −SI

τI
+ (1− SI)γI HI(wEISE − wIISI + II). (2)

The activity of each population has a natural decay time of τE and τI respectively.
Each population’s activity tends to increase with the fraction of closed channels
(1 − Sp) and the population firing rate (Hp), scaled by a factor γp for p ∈ {E, I}.
This is described by the second term on the right-hand-side of equation 1-2. HE and
HI are transfer functions that map synaptic current input to population firing rate
of the excitatory and the inhibitory population respectively (for example, HE shown
in Figure 2 as a black curve). In particular, they are sigmoidal functions of the form

Hp(x) =
rmax +

apx− bp − rmax

1− edp(apx−bp−rmax)

1− e−dp(apx−bp)
, (3)

whose output increases with input monotonically and saturates at rmax—the maximal 119

firing rate limited by the absolute refractory period of neurons (around 2 ms in 120

certain cell types [61, 62]). The specific shape of each transfer function is determined 121

by three additional parameters ap, bp and dp (ap and bp determine the location 122

and slope of the near-linear segment in the middle; dp determines the smoothness 123

of the corners bordering the said near-linear segment). This transfer function is 124

converted from Wong and Wang’s original formulation [44, 63] (a soft rectifier 125

function, equation 13, orange dashed line in Figure 2) into a sigmoidal form (black 126

solid line in Figure 2), while retaining the original value of parameters ap, bp, and 127

dp (shown in Table 1). The parameters were chosen to approximate the average 128

response of a population of spiking pyramidal cells (p = E) and interneurons (p = I) 129

respectively, incorporating physiologically plausible parameters [44, 57]. 130
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Figure 2: Converting a rectifier transfer function to a sigmoidal form. Black
solid line is the transfer function used in the present model HE (equation 3). It
matches the transfer function used by Wong and Wang in their original formulation
[44, 63] (orange dashed line; equation 13) for a low level of input. For a high level of
input, HE(x) saturates at rmax = 500 (Hz), while the Wong-Wang’s original version
continues to scale (almost) linearly with input.

Interaction between local populations is modulated by four coupling parameters
wpq > 0 in equation 1-2, indicating the influence from the local population p to
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q, where p, q ∈ {E, I} (Figure 1 left box). These coupling parameters reflect the
local structural connectivity. The local populations are also capable of responding
to external current inputs denoted as IE and II in equation 1-2, respectively.
Importantly, such input can come from other brain regions in a globally connected
network (Figure 1 right panel, dashed lines). This leads us to the global model.
Formally, we substitute IE in the local model (equation 1) with a global input IG
(equation 4),

dS
(i)
E

d t
= −S

(i)
E

τE
+ (1− S

(i)
E )γEHE

(

w
(i)
EES

(i)
E − w

(i)
IES

(i)
I + I

(i)
G (~SE)

)

+ σξ
(i)
E (t) (4)

dS
(i)
I

d t
= −S

(i)
I

τI
+ (1− S

(i)
I )γIHI

(

w
(i)
EIS

(i)
E − w

(i)
II S

(i)
I + II

)

+ σξ
(i)
I (t) (5)

where S
(i)
E and S

(i)
I are the synaptic gating variable of the excitatory and the

inhibitory population of the ith brain region respectively, and ξ
(i)
• is a noise term

scaled to an amplitude σ. The state of all excitatory populations is denoted as a
vector ~SE , the ith element of which is S

(i)
E . The global input to the ith brain region

depends on both its connectivity with, and the ongoing state of, other brain regions,

I
(i)
G (~SE) = G

N
∑

j=1
j 6=i

CijS
(j)
E (6)

where N denotes the total number of brain areas, Cij > 0 the long-range structural
connectivity from the jth to the ith brain region and G is a global coupling parameter
that controls the overall level of interaction across brain regions. Since Cij is only
intended to represent long-range connectivity, we let Cij = 0 for any i = j to
preclude recurrent connections. For the effects of G and Cij to be independently
comparable, here we impose a normalization condition on the matrix norm,

‖C‖∞ = max
i





N
∑

j=1

|Cij |



 ≡ 1. (7)

Since the global coupling parameter G modulates the level of input to each brain 131

region, one would expect it to have comparable influence on the local dynamics as 132

IE in the local model (equation 1). 133

Next, we discuss its formal connection to two well-studied mean-field models of 134

brain dynamics, namely, the Wilson-Cowan model (Section 2.2) [42, 43] and the 135

reduced Wong-Wang model (Section 2.3) [8, 44]. 136
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parameter interpretation value

τE decay time of NMDA receptor 0.1 (s)
τI decay time of GABA receptor 0.01 (s)
γE kinetic parameter of excitatory population 0.641
γI kinetic parameter of inhibitory population 1
aE parameter of HE 310 (nC−1)
bE parameter of HE 125 (Hz)
dE parameter of HE 0.16 (s)
aI parameter of HI 615 (nC−1)
bI parameter of HI 177 (Hz)
dI parameter of HI 0.087 (s)

rmax maximal firing rate 500 (Hz)
wEE excitatory-to-excitatory coupling ∼ (nA)
wEI excitatory-to-inhibitory coupling ∼ (nA)
wIE inhibitory-to-excitatory coupling ∼ (nA)
wII inhibitory-to-inhibitory coupling 0.05 (nA)
IE external input to excitatory population ∼ (nA)
II external input to inhibitory population 0.1 (nA)
G global coupling ∼ (nA)
Cij structural connectivity between brain regions ∼
σ noise amplitude ∼

Table 1: The interpretation and value of model parameters. Here we sum-
marize the parameters used in equation 1-5. Most parameters assume a fixed value,
which was introduced by [44]. A “∼” indicates that this parameter is manipulated
in the present study to explore the behavior of the model.

2.2 Relation to the Wilson-Cowan model 137

Formally, the above model can be considered a special variant of the Wilson-Cowan
model [42, 43]. Though the specific interpretation of certain parameters differ, the
two models describe similar dynamic mechanisms of population-level interaction.
The Wilson-Cowan model, in its initial form [42], concerns the dynamics of a
pair of interacting excitatory and inhibitory neuronal populations. The activities
of the two populations are denoted as E(t) and I(t)—the proportion of firing
excitatory/inhibitory cells averaged over a period of time (the refectory period). The
model takes the form

τE
dE

d t
= −E + (kE − rEE)SE(c1E − c2I + P ) (8)

τI
d I

d t
= −I + (kI − rII)SI(c3E − c4I +Q). (9)

τE and τI are time constants of the dynamics of the excitatory and inhibitory 138

population respectively. c•’s are the coupling parameters between the two population. 139

Coefficients k• and r• result from a temporal coarse-graining procedure in the 140

initial derivation (see [42] for detail). S• is a sigmoidal transfer function, rising 141

monotonically from 0 to 1 with non-negative input. P and Q are external inputs 142

to their respective populations. If we divide both sides of equation 8-9 by the time 143

constants, we are looking at the same general form as equation 1-2. 144

The main difference is between the respective transfer functions. Wilson and
Cowan [42] chose a particular form of S for mathematical analysis:

S (x) =
1

1 + exp [−a(x− θ)]
− 1

1 + exp(aθ)
, (10)

where parameter a determines the maximal slope of the function S and parameter θ 145

the location of the maximal slope. Technically, Wilson and Cowan [42] only requires 146
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S to be of a general sigmoidal form. It may reflect the average response of a 147

population of neurons with heterogeneous firing thresholds or heterogeneous afferent 148

connections. The distribution of the said thresholds or connections is reflected in 149

the parameters a and θ. 150

In other words, the choice of the transfer function and the parameters is non- 151

specific to a predefined microscopic model. Moreover, Wilson and Cowan [42] took 152

a function-oriented approach to analyzing the model. The key was whether the 153

model was able to produce fundamental behaviors expected from a neural model— 154

multistability, hysteresis, and oscillation—for some specific choice of parameters 155

and transfer function. Qualitative conclusions from their analysis depend on the 156

general geometric properties of the transfer function rather than the specific form of 157

equation 10. 158

The transfer function of the present model (equation 3) follows the general 159

geometric properties assumed by Wilson and Cowan [42]. The difference is that the 160

parameters in equation 3 are associated specifically with a microscopic model [57], a 161

network of leaky integrate-and-fire neurons with biologically plausible parameters, 162

as inherited from the reduced Wong-Wang model [8, 44]. This choice provides a 163

channel of correspondence between parameters of the models at different scales of 164

description. To expand on this point, we next elaborate on the connection between 165

the present model and the reduced Wong-Wang model. 166

2.3 Relation to the reduced Wong-Wang model 167

The present model is also a variant of the Wong-Wang model [44] and its high-
dimensional generalizations, here referred to as the reduced Wong-Wang model [7–9].
In particular, we consider the model of whole-brain dynamics [8, 9],

dS
(i)
E (t)

d t
= −S

(i)
E

τE
+
(

1− S
(i)
E

)

γEH̃E

(

w
(i)
EES

(i)
E − w

(i)
IES

(i)
I + I

(i)
G (~SE)

)

+ σξ(i)(t)

(11)

dS
(i)
I (t)

d t
= −S

(i)
I

τI
+ H̃I

(

w
(i)
EIS

(i)
E − w

(i)
II S

(i)
I + II

)

+ σξ(i)(t), (12)

following the same notations as in equation 4-6, where

H̃p(x) =
apx− bp

1− e−dp(apx−bp)
(13)

with p ∈ {E, I} denoting the excitatory and the inhibitory population respectively 168

(see Figure 2 dashed line for H̃E). The parameters ap, bp and dp were chosen such that 169

H̃p approximates the average firing rate of an ensemble of leaky integrate-and-fire 170

neurons receiving uncorrelated noisy inputs. 171

More specifically, the sub-threshold dynamics of the membrane potential V (t) of
each neuron can be described as

Cm
dV (t)

d t
= −gL (V (t)− VL) + Isyn(t) (14)

where Cm is the membrane capacitance, gL the leak conductance, and VL the resting 172

potential of the membrane. The total synaptic input current Isyn(t) is a random 173

process with an average µC and standard deviation σC . When V (t) reaches a 174

threshold Vth, the neuron emits a spike after which the membrane potential returns 175

to a reset voltage Vreset and stays there for a duration τref , i.e. the refractory 176

period. 177

The average firing rate ν of an ensemble of such neurons can be derived from the
Fokker-Planck approximation that describes the evolution of the membrane voltage
distribution of an ensemble of neurons (see e.g. [64, Section 1], [56] for descriptions
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of the Fokker-Planck approach). This eventually leads to the first-passage time
equation (average time for crossing the threshold),

ν =

(

τref + τm
√
π

∫

Vth−Vss

σV

Vreset−Vss

σV

ex
2

(1 + erf(x))dx

)−1

(15)

where τm = Cm/gL is the membrane time constant, σV =
√
τmσC/Cm the standard

deviation of the depolarization, erf(x) the error function

erf(x) =
2√
π

∫ x

0

e−u2

du, (16)

and Vss the steady state voltage

Vss = VL +
Isyn
gL

. (17)

The transfer function employed by Wong and Wang [44, 63], i.e. equation 13 178

with appropriate choice of parameters, is a good approximation of equation 15 when 179

the input level is low. 180

Thus, the first passage equation 15 provides a bridge between the transfer function 181

(equation 13) and the single-cell level model (equation 14) incorporating realistic 182

biophysical parameters (Table 2). In other words, it allows one to use empirically 183

measurable quantities at the neuronal level to directly constrain the the transfer 184

function and the entire model. This is a major difference with the Wilson-Cowan 185

model [42, 43]. 186

parameter interpretation value

Cm membrane capacitance 0.5, 0.2 (nF)
gL leak conductance 25, 20 (nS)
τm membrane time constant 20, 10 (ms)
τref refractory period 2 (ms)
VL resting membrane potential -70 (mV)
Vth threshold for firing -50 (mV)

Vreset reset potential -55 (mV)

Table 2: Biophysical parameters of a single leaky-integrate-and-fire neu-
ron. If two parameter values are provided in the right column, the first value is
for a generic pyramidal cell and the second is for a generic interneuron. Differences
between the biophysical parameters of different cell types lead to differences in the
transfer functions (equation 13).

According to the first passage equation 15, the firing rate ν is a sigmoidal
function of the input, which saturates at rmax ≡ 1/τref . This is not the case,
however, for the transfer function H̃ (equation 13).To make the transfer function a
better approximation of the first passage equation and at the same time retain the
mapping between their parameters, we can simply convert the transfer function by
substituting the numerator of H̃ as below

Hp(x) =
rmax − H̃p(rmax − x)

1− e−dp(apx−bp)
. (18)

Thus, we obtain the transfer function used in the present model (equation 3). As 187

shown in Figure 2, Hp matches H̃p for low levels of input but flattens out eventually 188

at rmax as one would expect from equation 15. 189

In short, the present model is endowed with the geometric properties of the 190

Wilson-Cowan model [42, 43] and at the same time consistent with the neuronal level- 191

to-population level mapping of the reduced Wong-Wang model [8, 44]. 192
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2.4 Data and methods of analysis 193

2.4.1 Human structural data 194

The human structural connectome used in the present study is an average of 195

the connectome of 11 unrelated subjects (the S1200 Release) from the Human 196

Connectome Project (HCP) [59]. The subject-level connectome data are based on 197

the Desikan-Killiany parcellation [65] obtained from [60], retaining the 66 ROIs 198

used in [58] and [7] (Figure 1b). The original diffusion imaging (dMRI) data were 199

obtained using a customized Siemens 3T scanner at Washington University in St. 200

Louis, with a standard 32-channel head coil, with TR = 5520 (ms), TE = 89.5 201

(ms), 1.25 (mm) isotropic voxels, b=1000, 2000, 3000 (s/mm2). T1 images were 202

obtained using 3D magnetization-prepared rapid gradient echo sequence (MPRAGE) 203

with TR = 2400 (ms), TE = 2.14 (ms), and 0.7 (mm) isotropic voxels. The HCP 204

minimally processed data were further processed using MRtrix3, including bias- 205

field correction, multi-shell multi-tissue constrained spherical deconvolution with 206

a maximum spherical harmonic degree 8. 10 million probabilistic streamlines were 207

generated for each subject using the 2nd-order Intergration over Fibre Orientation 208

Distributions algorithm (iFOD2) [66] and anatomically-constrained tractography 209

(ACT) [67] (FOD amplitude threshold = 0.06, step size = 0.625 mm). Each streamline 210

was assigned a weight using spherical-deconvolution informed filtering of tractograms 211

(SIFT2) [68]. Connection strengths between ROIs are summed weights of the 212

associated streamlines. Intra-ROI connections are removed. Subjects’ connectivity 213

matrices are normalized according to equation 7 before and after averaging. 214

2.4.2 Human functional data 215

Human functional connectivity used in the present study is estimated using the 216

resting-state fMRI (rfMRI) data of the same 11 unrelated subjects from the Human 217

Connectome Project [59] as the structural connectivity above. rfMRI scans were 218

acquired using EPI sequences with TR = 720 (ms), TE = 33.1 (ms), flip angle = 219

52◦, voxel size = 2.0 (mm, isotropic), multiband factor = 8. Four runs of rfMRI 220

scan were obtained from each subject in 2 separate days (2 runs in each day with 221

opposite phase-encoding direction: RL and LR). Each run last 14 min 33 s (1200 222

TR). 223

Unprocessed data were downloaded from the Human Connectome Project 224

database (https://db.humanconnectome.org) and preprocessed using fMRIPrep 225

1.4.0 ([69]; [70]; RRID:SCR_016216), which is based on Nipype 1.2.0 ([71]; [72]; 226

RRID:SCR_002502). First, a reference volume and its skull-stripped version were 227

generated using a custom methodology of fMRIPrep. A deformation field to cor- 228

rect for susceptibility distortions was estimated based on two echo-planar imaging 229

(EPI) references with opposing phase-encoding directions, using 3dQwarp [73] (AFNI 230

20160207). Based on the estimated susceptibility distortion, an unwarped BOLD 231

reference was calculated for a more accurate co-registration with the anatomical 232

reference. The BOLD reference was then co-registered to the T1w reference us- 233

ing bbregister (FreeSurfer) which implements boundary-based registration [74]. 234

Co-registration was configured with nine degrees of freedom to account for dis- 235

tortions remaining in the BOLD reference. Head-motion parameters with respect 236

to the BOLD reference (transformation matrices, and six corresponding rotation 237

and translation parameters) are estimated before any spatiotemporal filtering using 238

mcflirt [FSL 5.0.9, 75]. The BOLD time-series, were resampled to the fsaverage 239

surface space. Several confounding time-series were calculated including framewise 240

displacement (FD), DVARS and three region-wise global signals. FD and DVARS 241

were calculated for each functional run, both using their implementations in Nipype 242

[following the definitions by 76]. The three global signals were extracted within the 243

CSF, the WM, and the whole-brain masks. 244

Nuance regressions were performed on detrended, preprocessed BOLD time series 245
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in the fsaverage space (FreeSurfer), following procedures in [76]. Regressors include 246

6 motion parameters, CSF signal, WM signal, and their first derivative and second 247

power. Frames with FD>0.2 mm are censored. Spline-interpolated signals are 248

band-pass filtered between 0.009 and 0.08 Hz, and averaged within ROIs based 249

on Desikan-Killiany parcellation [65]. 66 Regions in [58] are retained and ordered 250

according to [7] (Figure 1b). Functional connectivity between ROIs are estimated 251

using Spearman correlation between z-scored time series for each rfMRI run of each 252

subject. The connectivity matrices are then averaged across all runs/subjects in Day 253

1 and in Day 2 separately. The average functional connectivity matrix from Day 254

1 is used in all comparisons with the model. The average functional connectivity 255

matrix from Day 2 is used to assess the reliability of the estimation. 256

2.4.3 Model inter-regional coordination 257

Two types of inter-regional coordination in the model are computed and compared 258

to the human functional connectivity. One estimates how every two model regions 259

move together across different attractors throughout the entire dynamic landscape, 260

namely cross-attractor coordination. The other estimates how two model regions 261

move together during noise-driven exploration near a single attractor, namely within- 262

attractor coordination. 263

For cross-attractor coordination, the attractors are first discretized by replacing 264

the state of each region with an integer, determined by a 30-bin histogram of regional 265

states S
(i)
E (Section S3). This procedure allows us to quantify whether two regions 266

move up and down together across different attractors without considering the 267

distance between attractors and the continuous shift of the position of each attractor. 268

The cross-attractor coordination between region x and y is computed as the Spearman 269

correlation (ρ) of their discrete states across a fixed set of attractors, determined by 270

structural parameters G, wEE , and wEI (see Figure 6 for a conceptual illustration). 271

Note that this procedure only requires the coordinates of each attractor through, 272

e.g. the computation of a bifurcation diagram (Section S1)—simulation of the time 273

series is not required. The distance between attractors is computed separately as 274

the difference between the average state of the excitatory population S̄E , which can 275

be interpreted as the energy cost associated with keeping additional x% synaptic 276

channels open. Within-attractor coordination is the Spearman correlation between 277

simulated time series of the excitatory population of region x and y, given an initial 278

condition right at an attractor, a moderate level of noise σ = 0.01 and a duration 279

T = 864 s (14 min 33 s to match the human data). 280

3 Results 281

In the following sections, we first examine the dynamic repertoire of isolated brain 282

regions (the local model; Section 3.1) and how nonlinearity in the present model 283

enhances multistability and produces realistic oscillations (Section 3.2). We fur- 284

ther show how long-range connectivity between these brain regions interacts with 285

local properties in shaping global multistable landscapes (Section 3.3), human func- 286

tional connectivity patterns (Section 3.3), and temporal diversity across regions 287

(Section 3.4). The numerical results are illustrated in the main text while the 288

corresponding analytical supports are provided in the Supplementary Materials. 289
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3.1 Local structural connectivity controls dynamic repertoire 290

of an isolated brain region 291

Figure 3: Local dynamics controlled by the strength of excitatory-to-
excitatory connection wEE and excitatory-to-inhibitory connection wEI .
(a)-(g) are seven different dynamic regimes of the local model (equation 1-2) in
the 2-dimensional parameters space (wEE , wEI). Here the local inhibitory-to-
excitatory connectivity wIE—the inhibitory feedback—is matched to the excitatory-
to-excitatory connectivity, i.e. wIE = wEE ; and IE = 0.382 as in [8]. Black areas (e,
g) are the regimes of stable equilibrium. Colored areas are the oscillatory regimes:
(a)-(b) for limit cycles and (c), (d), (f) for damped oscillations. The color reflects
the frequency of oscillation. A gray dashed line indicates the Hopf bifurcation.
The triangular area enclosed by white dashed lines (saddle-node bifurcation) is the
bi-stable regime (b, c). A typical phase portrait from each regime is provided in
Figure 4.

The local model exhibits a rich repertoire of dynamical features, including multista- 292

bility (b, c in Figure 3, 4), damped oscillation (c, d, f), and limit cycles (sustained 293

oscillation; a, b). Mathematical analysis of the local model (Section S7 in Sup- 294

plementary Materials) shows that nonlinearity in the dynamics can essentially be 295

controlled by two local structural properties: the strength of excitatory-to-excitatory 296

connection wEE and the strength of the excitatory-to-inhibitory connection wEI . 297

Geometrically, the two structural properties “twist” the nullclines (dashed lines in 298

Figure 4). Specifically, stronger wEE introduces a deeper twist and fold of the 299

red nullcline (compare Figure 4a and d), whereas stronger wEI introduces a more 300

vertical twist of the blue nullcline (compare Figure 4d and e). These twists are the 301

key sources of dynamic complexity—multistability and oscillation. For example, 302

when wEE is sufficiently large (equation S19), multistability becomes possible: the 303

folded red nullcline allows for multiple intersections with the blue nullcline, and 304

potentially a greater number of attractors (compare Figure 4c to a; see analytical 305

results in Section S7: Multistability). When wEI is sufficiently large (equation S27), 306

oscillatory activity becomes possible (analytical results in Section S7: Oscillation). 307

Moreover, the combination of large wEE and wEI gives rise to sustained oscillation 308
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(equation S50). The characteristic frequency of such oscillation further depends on 309

the specific values of wEE and wEI . Note that the general qualitative effects of 310

these two local structural properties are consistent with those of the Wilson-Cowan 311

model, but the specific boundaries at which transitions occur are determined by the 312

biophysical constraints inherited from the reduced Wong-Wang model (see equa- 313

tions S27, S50). Analytical results (Section S7) provide detailed quantification of 314

how these boundaries are shifted by different local structural properties. 315

To maintain a sufficient twist in the red nullcline (red dashed line in Figure 4) 316

and associated multistability and oscillation, inhibitory-to-excitatory feedback wIE 317

needs to be proportional to self-excitation wEE (c.f. equation S9). In the present 318

study, we simply let wIE = wEE . This equality is a simpler alternative to the 319

Feedback Inhibition Control adopted in [8] in both numerical and mathematical 320

analyses. 321

Figure 4: Example phase portraits from different regimes of the local
model. Phase portraits (a) to (g) are examples chosen from the corresponding
regimes in Figure 3. The specific parameters defining local structural connectivity
are (a) wEE = 4, wEI = 1; (b) wEE = 4, wEI = 0.8; (c) wEE = 2.3, wEI = 0.75;
(d) wEE = 1.5, wEI = 1; (e) wEE = 1.5, wEI = 0.5; (f) wEE = 1.5, wEI = 0.3; (g)
wEE = 1.5, wEI = 0.2. The vector fields (arrows) reflect the underlying dynamics
at different points in the state space. Gray trajectories following the vector fields
are solutions of the local model (equation 1, 2) given a fixed sets of ten different
initial conditions. Nullclines (dashed lines) indicate where the flow of the dynamics
is either purely vertical (red) or purely horizontal (blue). The intersections between
the nullclines are the fixed points. Different types of fixed points are labeled with
different markers (see legend). A fixed point is stable (×) if nearby trajectories
converge to it over time, unstable (+) if nearby trajectories diverge from it, or a
saddle (∗) if nearby trajectories approach it in some direction(s) but diverge from it
in some other direction(s). A fixed point is said to be a spiral (◦) if trajectories near
the fixed point rotate either towards the fixed point (damped oscillation) or away
from the fixed point (sustained oscillation or limit cycle in the present case). Strong
oscillation mainly appears on the ascending branch of the red nullcline. Overall,
we see that local connectivity defines the dynamics in each regime essentially by
controlling the geometry of the nullclines.
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3.2 The effects of nonlinearity in the local model 322

Before getting into the global model, we briefly demonstrate numerically how the 323

present unified model (equation 1-2) extends the reduced Wong-Wang model [8, 324

44] to more complex scenarios. As expected, the dynamics of the present model 325

match that of the reduced Wong-Wang model for low levels of excitation, i.e. weak 326

local excitatory connectivity (Figure 5a-b). In a regime of stronger local excitatory 327

connectivity, as explored in [9], the two models diverge (Figure 5c-d). In the present 328

model (Figure 5c), all trajectories are well-confined within a physiologically plausible 329

range—state variables SE and SI denote the fraction of open channels, which by 330

definition are between 0 and 1. In contrast, certain trajectories of the reduced 331

Wong-Wang model (Figure 5d) overshoot beyond the physiologically plausible range. 332

The effect of added nonlinearity in the present model manifests through the curvature 333

of the blue nullclines, which confines the flow of oscillatory activities and creates 334

extended multistability (see e.g. Figure 4b). Thus, the present model is more 335

suitable for studying key nonlinear dynamical features in the resting brain. 336

Figure 5: Comparisons between the present unified model (a, c) and the
reduced Wong-Wang model (b, d) in two dynamic regimes. (a) and (b)
show the phase portraits of the present model (equations 1-2) and the reduced Wong-
Wang model (equations 11-12) respectively in a regime of weak local excitatory
connectivity. Parameter values are obtained from [8] and identical across the two
models: wEE = 0.21, wEI = 0.15, wIE = 1, wII = 1, IE = 0.382 and II = 0.267
(unspecified parameters follow Table 1). The resulted dynamics are virtually identical.
(c) and (d) show a similar comparison between the two models in an oscillatory
regime, where the local excitatory connectivity is stronger (wEE = 4, wEI = 1).
While the dynamics of the present model (c) is well confined within a realistic range
(SE , SI ∈ [0, 1]), it is not the case for the reduced Wong-Wang model (d).
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3.3 Multistable landscape of the brain shaped by structural 337

properties across scales 338

In Figure 6, we provide basic intuitions about dynamic landscapes and their repertoire 339

of attractors as a system-level description of intrinsic brain dynamics. An attractor 340

in the global model represents a stable pattern of activation over the whole brain 341

(black boxes in Figure 6). The dynamic landscape of the brain (Figure 6a-c) defines 342

the repertoire of attractors, thereby possible patterns of activity (e.g. a1-a4), paths 343

of transitions (black arrows), and the coordination between brain regions during 344

transitions (2-by-2 matrices). As the landscape itself changes, some attractors may 345

be destroyed (Figure 6, a→b, or a→c) or created (b→a, c→a)—a discrete change of 346

the repertoire called bifurcation. In the present model, local and global structural 347

connectivity control the shape of the landscape, and thereby, the repertoire of 348

attractors, possible transitions, and associated inter-regional coordination. 349
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Figure 6: Conceptual illustration of the whole-brain dynamic landscape,
bifurcation, and phase transition. A multistable dynamic landscape (a) contains
multiple attractors, shown as troughs occupied by purple balls. For the present
model, each attractor is interpreted as a distinct pattern of activation over the whole
brain (a1-a4). Influenced by external input or intrinsic noise, the model brain may
transition from its current state (a1, bright purple ball) to a different one (a2, a3,
or a4, dim purple balls), indicated by black arrows. Structural properties of the
model brain can alter the shape of the landscape, causing some attractors to appear
or disappear through a process mathematically named bifurcation (a→b, a→c, or
the reverse). By modifying the repertoire of attractors, bifurcation alters the set
of possible transitions and the coordination between regions during transitions: in
landscape (a), the left and right hemisphere can be co-activated during a transition
(a1→a3), or activated independently through other transitions (a1→a2, or a1→a4);
in contrast in landscape (b), the left and right hemisphere can only be co-activated,
and in (c), only activated independently. Numerically, a repertoire of attractors can
be represented as a matrix, where each row is an attractor and each column is a
brain region (e.g. the 4-by-2 matrix below landscape a, for 4 attractors – a1-a4, and
2 regions – left and right hemisphere). Overall cross-attractor coordination between
regions can be estimated by rank correlation between the columns of the repertoire
matrix. The resulted square, coordination matrix summarizes how brain regions
transition together over the entire landscape, serving as a signature of the landscape
(e.g. 2-by-2 matrices next to a-c). In more complex landscapes (not shown), there
are many more attractors, and they correspond to subtler patterns of activation (d,e;
see also Figure 7). The coordination between brain regions during a transition is
correspondingly more complex (f=d-e), with some regions co-activated (red) while
others co-deactivated (blue).

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.05.14.097196doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.14.097196
http://creativecommons.org/licenses/by/4.0/


Figure 7 shows such dynamic landscapes and their changes more abstractly as 350

bifurcation diagrams (see Section S1 for computational details). In each bifurcation 351

diagram, the y-coordinate of each colored point indicates the position of an attractor 352

by an order parameter (e.g. average activity of all excitatory populations S̄E), 353

and x-coordinate a control parameter that modulates the shape of the underlying 354

dynamic landscape (e.g. global coupling G in equation 6). Each vertical slice 355

of a bifurcation diagram contains the repertoire of attractors and repellers in a 356

fixed landscape (Figure 7h), corresponding to stable and unstable patterns of brain 357

activity. Horizontal stripes are formed when an attractor changes continuously with 358

the landscape, but destroyed when they merge with a black stripe (unstable patterns) 359

at a bifurcation. Thus, the number of colored stripes reflect the complexity of the 360

landscapes: more stripes, more attractors. 361

In the simple case where all brain regions are connected to each other at the same 362

strength (uniform connectivity; Figure 7d-f), stronger local excitatory connection 363

(e,f) produces a more complex landscape (3 attractor stripes) than a weak one (d; 2 364

attractor stripes). These bifurcation diagrams are very similar to those of a single 365

brain region (Figure 7a-c), in terms of the number of attractors and the presence 366

oscillation. In fact, the whole brain (Figure 7e) moves up and down together between 367

discrete state of activation very much like a single region (Figure 7b). One remarkable 368

difference between the uniformly connected global models and the corresponding 369

local models is that, with the absence of persistent input, the global model can retain 370

memories of prior input while the local model cannot. That is, when input IE = 0, 371

the local model is monostable (bottom red stripes in Figure 7a-c), i.e. returning 372

to the same state regardless of prior input. The global model (equation 4-6) by 373

definition does not receive external input; yet the model is multistable for a sufficient 374

amount of global coupling, e.g. G > 1 (Figure 7d-f). We further substantiate and 375

generalize this result analytically and numerically (Section S8 Multistability) to 376

the case where each isolated brain region is monostable for any IE . These findings 377

suggest that the coupling between brain regions can synergistically create a functional 378

repertoire or memory capacity that isolated brain regions do not possess. 379

Given a realistic global structural connectivity (human connectome; Figure 7g-i), 380

the complexity of the whole-brain dynamic landscape is dramatically increased: 171 381

attractor stripes in (g), 610 in (h), and 682 in (i) (per single-linkage clustering). 382

Correspondingly, the patterns of activation (Figure 7f) are also more complex, with 383

greater differentiation between regions; the coordination between brain regions across 384

attractors is consequently more flexible and subtle (Figure 6f). The heterogeneous 385

nature of the human connectome breaks the large-scale spatial symmetry of the 386

model brain, creating more functional differentiation between brain regions and a 387

greater functional complexity for the whole brain. In short, the complexity of the 388

global dynamical landscape is a joint product of strong local excitatory connection 389

and complex topology of the large-scale network. See Section S8 for additional 390

analytical supports. 391
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Figure 7: Local and global structural properties jointly determine the complexity of whole-brain dy-
namics. (a-c) show the bifurcation diagrams of the local model for three different types of local excitatory connectivity:
(a) wEE = 0.7 and wEI = 0.35; (b) wEE = 2 and wEI = 1; (c) wEE = 2.8 and wEI = 1. Overall, local connectivity
increases from (a) to (c). The activity of the excitatory population SE is used as an order parameter, indicating the
location of each attractor. The external input IE is used as a control parameter. Each point in the diagram indicates
the location of a particular fixed point. The color denotes the type of each fixed point: non-black points represent
attractors, black points unstable fixed points that are not associated with a limit cycle. Horizontal stripes indicate
that the attractors are changing continuously with the control parameter for a certain range. All (a)-(c) have a upper
stripe and a lower stripe. (b)-(c) have an additional stripe in the middle, where the brain region oscillates. Insets of (b)
and (c) show the oscillation frequency of the brain region as a function of the input current. Each stripe corresponds
to a discrete level of activation for a single brain region (circled brains in b; color indicates discrete SE levels, shown
in circled legend). (d)-(f) show the corresponding bifurcation diagrams for three uniform global networks, i.e. the
large-scale structural connectivity Cij ’s are identical between any two brain regions i 6= j (equation 6). The average
activity of all excitatory populations (S̄E) is used as an order parameter and the global coupling G (equation 6) as an
control parameter. Each attractor stripe corresponds to a pattern of activation over the whole brain (circled brains
in (e) show S

(i)
E ’s on the left hemisphere). Similarly, (g)-(i) show the corresponding bifurcation diagrams for three

realistic global networks, i.e. Cij ’s reflect the human connectome (see text for details). Here each vertical slice (gray
line in h) contains the attractor repertoire of a fixed dynamic landscape shaped by the human connectome. Each
attractor repertoire is associated with a matrix describing the coordination between brain regions across attractors
(e.g. Figure 8b). See Figure 6 for a cartoon illustration of an attractor repertoire and its associated cross-attractor
coordination matrix.

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.05.14.097196doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.14.097196
http://creativecommons.org/licenses/by/4.0/


What do these complex landscapes say about the dynamics in the human brain? 392

Below we show that large-scale functional connectivity patterns in human fMRI data 393

(Figure 8a) can be aptly explained by how brain regions transition together across 394

attractors—cross-attractor coordination (Figure 8b), better than how they coordinate 395

within any single basin of attraction—within-attractor coordination (Figure 8c). 396

Human functional connectivity (Figure 8a) is calculated from the resting fMRI 397

data from the Human Connectome Project [59], averaged across the same subjects 398

whose structural connectome is incorporated in the model (Figure 8e; see Section 2.4 399

and Section S4 for more details). The human functional connectivity exhibits large- 400

scale symmetry across two hemispheres. That is, functional connectivity within the 401

right hemisphere is similar to the connectivity within the left hemisphere (compare 402

upper-left and lower-right block in Figure 8a), and similar to the connectivity across 403

the left-right hemispheres (compare upper-left and lower-left block in Figure 8a). 404

This dominant feature of human resting brain dynamics is well preserved in the 405

model by the cross-attractor coordination between model regions (Figure 8b; see 406

Section 2.4.3 for detail, Figure 6a-c for intuition regarding cross-attractor coordina- 407

tion). Quantitatively, this is also reflected as the consistent model fit for both intra- 408

and inter-hemispheric connectivity (dashed lines in Figure 8d; black dashed line: 409

whole-brain fit, ρ = 0.591, p < 0.001, R2 = 0.349; red dashed line: intra-hemispheric 410

fit, ρ = 0.582, p < 0.001, R2 = 0.338; blue dashed line: inter-hemispheric fit, 411

ρ = 0.604, p < 0.001, R2 = 0.364), and across model parameters (Figure 9a-c). 412

The above finding paints a rather different picture than previous theories in 413

which the resting brain is thought to explore the dynamic landscape near a single 414

attractor, delicately poised near a bifurcation (e.g. [7, 9]). For comparison, we 415

simulated functional connectivity within each of the individual attractors involved 416

in cross-attractor coordination. The best-fit within-attractor coordination matrix 417

is shown in Figure 8c (ρ = 0.463, p < 0.001, R2 = 0.190), clearly missing the 418

symmetry between intra- and inter-hemispheric connectivity observed in humans 419

(Figure 8a) and cross-attractor coordination of the model (Figure 8b). Moreover, 420

within-attractor coordination does not capture inter-hemispheric connectivity in 421

humans as well as intra-hemispheric connectivity (solid lines in Figure 8d), and overall 422

fits worse than cross-attractor coordination (dashed lines in Figure 8d; for comparison, 423

best-fit intra-hemispheric within-attractor coordination gives ρ = 0.534, p < 0.001, 424

R2 = 0.285). The distinction between within- and cross-attractor coordination is 425

more drastic when the contribution of structural connectivity is controlled using 426

partial correlation (Figure 8f; contrast best-fit within-attractor intra-hemispheric 427

coordination: ρ = 0.218, p < 0.001, ∆R2 = 0.0269, F (1, 1053) = 52.3, v.s. cross- 428

attractor intra-hemispheric coordination: ρ = 0.417, p < 0.001, ∆R2 = 0.0991, 429

F (1, 1053) = 221). These findings suggest that cross-attractor coordination better 430

captures features of human resting brain dynamics that are unexplained, linearly, 431

by the structure. 432
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Figure 8: Human resting functional connectivity better captured by cross-attractor, rather than within-
attractor, coordination between model brain regions. Human functional connectivity matrix (a) is calculated
using the resting fMRI data from the Human Connectome Project [59], averaged over the same subjects whose
average structural connectome defines the long-range structural connectivity in the model (e). Regions (columns
and rows) are ordered symmetrically for the left and right hemisphere (see Figure 1b) to reveal the large-scale
symmetry of resting brain dynamics. White lines delineate the matrix (a) into four blocks, describing the functional
connectivity within the right hemisphere (upper left block), within the left hemisphere (lower right), and between
two hemispheres (lower left/upper right). Functional connectivity within the hemispheres are similar to each other
(symmetric along anti-diagonal), and also similar to inter-hemispheric connectivity (symmetric along white lines).
This large-scale functional symmetry is well captured by inter-regional coordination in the model brain (wEE = 2,
wEI = 1, G = 2.22) across attractors (b; 97 attractors shown in Figure 7h for G = 2.22). Such symmetry is not
captured by the coordination within any of the said attractors (c; best fit within-attractor coordination matrix).
In (d), solid line shows the distribution of correlation coefficients between human functional connectivity (a) and
within-attractor coordination matrices (not shown except c). All of which are lower than the correlation (dashed lines
in d) between human functional connectivity (a) and the cross-attractor coordination matrix (b). (f) shows a similar
comparison as (d) using partial correlation controlling the contribution of structural connectivity (e). (*** p<0.001,
Bonferroni corrected)
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Figure 9: Model-human similarity consistent for within- and cross-hemispheric coordination, affected
by energy constraints. (a-c) Cross-attractor coordination in the model is highly similar to human functional
connectivity across different local excitatory connectivity: (a) wEE = 0.7 and wEI = 0.35, (b) wEE = 2 and wEI = 1,
(c) wEE = 2.8 and wEI = 1, as in Figure 7. Red solid lines indicate the model-human similarity (Spearman correlation)
for intra-hemispheric connectivity, blue ones for inter-hemispheric connectivity, black ones for whole-brain connectivity.
Dashed lines and shaded areas indicate the means and 95% confidence intervals of the null distributions, constructed
using 1000 random permutations of ROI labels (red, blue, black distributions are largely overlapping not visually
distinguishable). Black solid lines in (d-f) are reproduced from (a-c) indicating the model-human similarity over the
whole brain. Dashed lines in (d-f) indicate the model-human similarity when the model is not allowed to cross the
largest energy gap between attractors. The shaded area (∆ρ) indicates the loss of similarity between the model and
the humans.

As alluded to, cross-attractor coordination in the model captures human func- 433

tional connectivity for a wide range of structural configurations (Figure 9a-c; see also 434

Figure S3). Then, what roles do local (wEE , wEI) and large-scale structural proper- 435

ties (e.g. global coupling G) play in producing human-like functional connectivity? 436

The answer lies in the energy gap between different attractors. In the computation 437

of cross-attractor coordination matrices (e.g. Figure 8b, Figure 6a-c), we considered 438

only whether two brain regions move up and down together across the dynamic 439

landscape, not how difficult the movements are. In fact, the average of the pattern 440

change (∆S̄E , e.g. Figure 6f) between attractors (e.g. Figure 6, d→e) reflects an 441

energy gap — the energy needed to keep x% additional synaptic channels open. 442

The similarity to human functional connectivity drops greatly if the model brain is 443

not allowed to traverse the largest energy gap in the dynamic landscape (dashed 444

lines in Figure 9d-f). This energy constraint has a greater impact on model-human 445

similarity when the local structural connectivity is weaker (area of the shaded region 446

grows from Figure 9d to f; bars in Figure 10) and the global structural connectivity 447

is stronger (height of shaded regions grows with G in Figure 9d-f). The loss of 448

similarity grows with the maximal gap size, especially for a gap size greater than 449

0.2 (Figure 10). Thus, local and global structural connectivity both influence the 450

energy costs associated with cross-attractor coordination, and thereby how likely 451

it is for human-like functional connectivity patterns to emerge under energy con- 452
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straints. Overall, stronger local connection reduces the energy gaps (Figure 11a-c) 453

and stronger global connection (G) increases the energy gaps (Figure 11a)—local 454

and global structural connectivity pull the energy cost in different directions. 455

Figure 10: Loss of model-human similarity (∆ρ/ρall) due to energy con-
straints depends on the maximal energy gap and local excitatory connec-
tivity. Each point in the scatter plot represents the loss of model-human similarity
due to the inability to cross the maximal energy gap given a specific combination of
global coupling G, and local connectivity wEE and wEI . Overall, the loss increases
with the gap size, which in turn depends on G (Figure 11a). The average loss (bars)
decreases with increasing local excitatory connectivity (wEE , wEI). (*** p<0.001
with Tukey HSD; error bars are standard errors throughout the text)

Figure 11: Local (wEE, wEI) and global (G) structural connectivity jointly shape the energy cost of
cross-attractor coordination. (a) Overall, the maximal (solid lines) and average energy gaps (dashed lines)
increase with global coupling G, though there is a transient decrease when maximal energy gap is less than 0.2. Both
types of gaps decrease with increasing local connectivity wEE , wEI (b,c). (*** p<0.001 with Tukey HSD)

Is the energy demand for cross-attractor coordination uniform over the whole 456
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brain? Here we compare the energy demand within the Default Model Network 457

(DMN)—a signature of the resting brain—and other brain regions (Figure 12). 458

Cross-attractor coordination is more energy demanding within DMN than the rest of 459

the brain, measured by the ratio between the maximal energy gap within DMN v.s. 460

others (gap ratio>1, above dashed line in Figure 12a; or equivalently log gap ratio>0 461

in Figure 12b). DMN dominates the energy consumption primarily when the overall 462

energy consumption of the whole brain is low (max energy gap≤ 0.2, Figure 12b), 463

and when local excitatory connections are stronger (left bars in Figure 12b). 464

Figure 12: Default Model Network (DMN) is more energy demanding
than other networks. DMN and other resting-state networks are defined based
on the intersection between the present parcellation with Yeo et al’s [77] 7 networks.
(a) DMN generally contains a greater maximal energy gap than other networks (gap
ratio>1), especially when the maximal energy gap of the whole brain (x-axis) is small
(e.g. ≤ 0.2). (b) On average, the log gap ratio between DMN and other networks
is significantly greater than zero (i.e. gap ratio>1) when the whole-brain maximal
energy gap ≤ 0.2 (left three bars), but very close to zero when the whole-brain
maximal energy gap > 0.2 (right three bars). The dominance of DMN’s energy
demand increases with local excitatory connectivity (left three bars: blue > green >
red). (* p<0.05, *** p<0.001 with Tukey HSD)

3.4 Local and global causes of temporal diversity 465

Now we turn to the structural constraints on temporal diversity. In particular, we 466

show how spectral properties of the simulated neural activities and correspond- 467

ing hemodynamic responses are affected by both the diversity of local structural 468

properties and the structure of the large-scale connectome. 469

Given a uniform global network, temporal diversity across the whole brain can be 470

induced by the diversity of local excitatory-to-excitatory connection (wEE), as shown 471

in Figure 13a. Brain regions with relatively weak wEE (blue) have low characteristic 472

frequencies around 10 Hz (alpha range), while brain regions with strong wEE (red) 473

have higher characteristic frequencies around 30 Hz (beta/gamma range). In other 474

words, the characteristic frequency of the oscillation increases monotonically with 475

wEE (see also Figure S4a). This is expected from the behavior of isolated brain 476

regions (Figure 3d). In addition to the expected diversity, signs of coordination 477

between regions can be seen as the wide-spread alpha peaks (Figure 13a). In 478

contrast, regions with a higher characteristic frequency (beta/gamma range) are 479

not as influential to other regions. That is, low-frequency oscillations, rather than 480

high-frequency ones, are responsible for global coordination. 481

The above observations concern high-frequency dynamics typically measured 482
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using, e.g. electroencephalography (EEG) and magnetoencephalography (MEG). For 483

low-frequency dynamics typical for functional magnetic resonance imaging (fMRI), 484

we examine the low-frequency content (0.01-0.1 Hz) of the normalized power spectra 485

of BOLD activities, derived from the same simulated neural dynamics (see Section S2 486

in Supplementary Materials for details). The result is shown in Figure 13b: there is 487

no significant dependency of low-frequency power on wEE (Spearman correlation 488

ρ = −0.029, p = 0.81). In short, we find differential effects of local structural 489

diversity on neural dynamics at the time scales typical for different neural imaging 490

modalities. 491
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Figure 13: Temporal diversity induced by diversity in local (a, b) and
global structural connectivity (c, d). Spectral analyses are based on two
simulated trials of the global model (equation 4-6 with N = 66) each with identical
initial conditions S

(i)
E (0) = S

(i)
I (0) = 0.2, a 1200s duration, and a moderate level

of noise σ = 0.01. For the first simulated trial (a, b), different brain areas are
endowed with different local connectivity, w(i)

EE , evenly spread in the interval [1, 2];
the large-scale structural connectivity is set to be uniform, i.e. Cij = 1/(N − 1), for
i 6= j. In addition, the global coupling G = 1.35. (a) shows the power spectra of the
excitatory gating variables S(i)

E for i = 1, · · · , N . The spectrum for each brain region
is color coded by the rank of wEE—blue to red indicate the smallest to the largest
wEE . The peak frequency of these spectra clearly increases with wEE . (b) shows
the rank of the low-frequency power of the corresponding BOLD signal, integrated
over the frequency range [0.01, 0.1] Hz (see Section S2 for details), which depends
little on the rank of wEE . (c) and (d) show results of similar analyses but for the
second simulated trial, where the individual brain regions are identical (w(i)

EE = 2
for all i) but the global structural connectivity is realistic, i.e. Cij here reflects the
human connectome [59, 60] with the global coupling G = 2.5. Both low-frequency
(d) and high-frequency (c) activities are highly affected by the degree of the brain
region in the global network (rank color-coded).

On the other hand, temporal differentiation does not mandate the brain regions 492

themselves to be structurally different. As shown in Figure 13c-d, locally identical 493

brain regions can behave very differently due to the topology of the large-scale 494

network (human connectome as in Section 3.3). The influence of large-scale structural 495

connectivity on temporal diversity is manifested in both the high-frequency neural 496

dynamics (Figure 13c; Figure S5a) and the low-frequency power of the BOLD signals 497

(Figure 13d; Figure S5b). Specifically, the low-frequency power is inversely related 498
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to the degree of each node (brain region) in the large-scale network (Spearman 499

correlation ρ = −0.584, p < 10−6). 500

In Section S6, we demonstrate that the above effects are robust over 200 simulated 501

trials of the same parameter settings. Overall, both local (Figure 13a,b; Figure S4) 502

and large-scale structural connectivity (Figure 13c,d; Figure S5) contribute to the 503

diversification of local dynamics. The contribution of local structural differences is 504

stonger in a higher-frequency range (Figure 13d; Figure S4a), while the contribution 505

of global structural connectivity is stronger in a very-low frequency range (Figure 13d; 506

Figure S5b). Modeling real neural dynamics requires considering both sides of the 507

spectrum. 508

4 Discussion 509

The present work shows systematically how multistability and temporal diversity 510

of the brain can be shaped by structural constraints across scales using a biophysi- 511

cally constrained nonlinear dynamical model. We show that human-like functional 512

connectivity emerges spontaneously from the multistable landscape as brain regions 513

transition across attractors in a coordinated manner. The work suggests a transi- 514

tion-centered view of human functional connectivity, over a attractor -centered one. 515

The theoretical and empirical implications are discussed below. 516

The rich dynamics of a single isolated brain region can be effectively controlled 517

by two key local structural properties: local excitatory-to-excitatory connectivity 518

(self-excitation) and local excitatory-to-inhibitory connectivity. In the real brain, 519

local excitatory-to-excitatory connections are particularly abundant [78], and in our 520

model, they contribute indispensably to multistability (Section S7). Multistability 521

is a key source of biological complexity from molecular to social levels [30, 31], often 522

tied to self-excitation or positive feedback [79–81]. The biophysical underpinnings of 523

the present model links the mathematical prediction of multistability to physical 524

manipulations. For example, varying the local connectivity in the model can be 525

interpreted empirically as modulating the conductance of N-methyl-D-aspartate 526

(NMDA) receptors in local neuronal populations, using pharmacological and en- 527

dogenous antagonists and agonists such as ketamine [82] and dopamine [83]. Such 528

manipulations have been theoretically predicted and shown to affect memory capacity 529

[51, 52, 84]. 530

At the large-scale network level, multistability can be created or amplified by the 531

synergistic interaction between mono- or multi-stable brain regions (Section S7 Mul- 532

tistability). Different large-scale network structures have dramatically different 533

capability at amplifying local complexity: a realistic global network (Figure 7 g-i) is 534

much more powerful than a uniform one (Figure 7 d-f). The human connectome 535

breaks the spatial symmetry of the global model, whereas symmetry breaking is 536

often a key to complex dynamics [2, 38, 85–88]. The human connectome is also 537

endowed with specific features such as modularity, small-worldness, and multiscale 538

characteristics [1, 89–91]. A systematic study of how these features alter the geome- 539

try of the global dynamic landscape is worthy of further theoretical investigation 540

(see Section S8). 541

Within the multistable landscape sculpted by the human connectome, coordina- 542

tion between model brain regions across different attractors gives rise to human-like 543

functional connectivity (Figure 8b). Importantly, such cross-attractor coordination 544

better captures human functional connectivity than within-attractor coordination— 545

synchronization between brain regions near a single attractor (Figure 8c,d). This 546

raises the possibility that functional connectivity patterns reflect transitions between 547

stable brain states (Figure 6f) more than the brain states themselves (Figure 6d,e). 548

This transition-centered view offers alternative perspectives on several theoretical 549

and empirical issues. First, with a within-attractor approach [7], similar models 550

exhibited much lower inter-hemispheric connectivity than that of humans. It was 551
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attributed to an underestimation of structural connections across hemispheres [7, 552

9]. However, strong functional connectivity in humans is known to exist between 553

regions that are not directly connected [92]. Thus, strong inter-hemispheric func- 554

tional connectivity may reflect the nonlinearity in the dynamical system despite 555

the weak structural connectivity. Cross-attractor approach takes into account such 556

nonlinear effect. In contrast, within-attractor coordination can be approximated 557

by a linear dynamical system, which closely depends on the structural connectivity 558

[7, 8] (c.f. Figure 8d v.s. f). Second, cross-attractor coordination in the present 559

study is measured over the entire dynamic landscape, which itself is time invariant. 560

Empirically observed stability and convergence of human functional connectivity [93, 561

94] may reflect this invariance of the underlying landscape. The static landscape also 562

support a dynamic view on functional connectivity [95], since at any given time the 563

possible transitions depend on the current attractor (stable state). However, because 564

transitions within two different sets of attractors may be similar, similar dynamic 565

functional connectivity patterns, under a transition-centered view, may come from 566

distinct places in the landscape. Thus, clustering of dynamic functional connectivity 567

patterns may be difficult to interpret in dynamical system terms. Finally, although 568

the pattern of cross-attractor coordination can remain similar as the landscape 569

changes (Figure 9a-c), it is not the case for its energy cost (Figure 11). This means 570

that the potential for exhibiting normal functional connectivity patterns may always 571

be there, but different structural constraints impose different energy costs. In our 572

model, the Default Mode Network dominates energy consumption over other parts of 573

the brain when the energy gaps are overall small. This resonates with the empirical 574

finding that aerobic glycolysis, accommodating small and rapid energy demands, is 575

significantly elevated in the Default Mode Network [96]. 576

The temporal diversity of the model brain is also affected by both local and 577

global structural constraints. In the local model, oscillatory activity requires a suffi- 578

ciently strong excitatory-to-inhibitory connection. The oscillation may be damped 579

or sustained at various characteristic frequencies, contingent upon the strength of 580

excitatory-to-excitatory connection (see Figure 3a-d and Section S7 Oscillation). 581

The importance of inhibitory neurons and their interaction with pyramidal cells 582

for generating rhythmic activity has been well demonstrated in both theoretical 583

and empirical studies [97–101]. For multiple oscillatory processes to form complex 584

spatiotemporal patterns, it often requires the coexistence of diverse time scales [31, 585

38, 102]. In the present model, temporal differentiation can be caused by local 586

structural differences, i.e. the strength of local excitatory-to-excitatory connection 587

(Figure 13ab). It has been shown that incorporating such local structural diversity 588

in the reduced Wong-Wang model better describes real neural dynamics [9], demon- 589

strating its empirical relevance. On the other hand, temporal differentiation can 590

also be induced solely by the structure of the global network—the whole defining 591

the parts (Figure 13cd). The diversity of node degree is a key contributor to the 592

spectral diversity in the low-frequency range (Figure 13d), which has been observed 593

empirically (e.g. [103]). It resonates with earlier findings that slow dynamics are 594

more reflective of the large-scale network structure (e.g. [104]). These multiscale 595

structural sources of temporal diversity may influence each other through their joint- 596

action on brain synchronization and activity-based plasticity. Further theoretical 597

investigation of such cross-scale interaction may shed light on how structural and 598

dynamical properties stabilize each other across scales during brain development 599

(see [105]). 600

In conclusion, complex dynamic features such as multistability and temporal 601

diverse are both supported by local structural connectivity and further synergized 602

by the structure of the large-scale network. Cross-attractor coordination between 603

model brain regions in the multistable landscape provides a stronger explanation for 604

human functional connectivity than within-attractor or near-equilibrium coordination. 605

Energy costs of such coordination is further shaped by structural constraints across 606

scales and prominent in the Default Mode Network. These findings suggest that 607

26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.05.14.097196doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.14.097196
http://creativecommons.org/licenses/by/4.0/


empirically observed resting functional connectivity reflects transitions more than 608

stable brain states. Lowering the energy costs of such transitions may be a means to 609

restore normal functional connectivity. Constrained by the biophysics, the modeling 610

approach may be used to predict stimulation-induced transitions in experimental 611

and clinical settings. 612
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Supplementary Materials 874

S1 Computation of bifurcation diagrams 875

The computation of bifurcation diagrams (Figure 7) was carried out in MATLAB, 876

utilizing the build-in function fsolve. Given a proper initial guess, fsolve provides 877

the coordinates of a nearby fixed point and the Jacobian matrix at the fixed point. 878

The spectrum {λk}2Nk=1 of the Jacobian matrix is used to classify the fixed point, 879

where N is the number of brain regions in the model. The fixed point is a stable 880

equilibrium if λk is real and negative for all k. The fixed point is associated with 881

damped oscillation if Reλk < 0 for all k and Imλk 6= 0 for some k. The fixed 882

point is associated with a limit cycle if Reλk > 0 and Imλk 6= 0 for some k with 883

the additional criteria that after a small perturbation from the fixed point, the 884

time-average of the solution remains close to the fixed point. All other types of fixed 885

points are classified as unstable. For damped oscillation and limit cycles in the local 886

model, the frequency of the oscillation (Figure 3) is defined as | Imλk|/(2π). 887

For the local model, a 2D dynamical system, the complete characterization of 888

all fixed points is relatively easy by searching exhaustively through a grid of initial 889

guesses (as for Figure 7a-c). This approach becomes unfeasible when it comes to 890

the global model due to the high dimensionality. Thus, for the global model, we 891

implemented a recursive search: for each value of G, (1) find zeros of equation 4-6 892

(main text) given a set of initial guesses that includes, if any, the zeros for G− δG 893

(δG = 0.01 for the present study); (2) sort the list of zeros obtained from (1) by 894

the average of S(i)
E ’s; (3) use the middle points between consecutive zeros in the 895

sorted list as initial guesses; (4) continue to use middle points between past initial 896

guesses as new initial guesses recursively until at least one new zero is found or the 897

recursion has reached a certain depth; (5) append the new zero(s) to the list of zeros 898

and repeat (2)-(5) until the number of identified zeros exceeds a certain value. In 899

the present study, we limit the maximal depth in (4) to 8 and the maximal number 900

of zeros in (5) to 200. 901

S2 Computation of BOLD signal and low-frequency power 902

In the present study, we are interested in not only the high-frequency activity 903

measurable by, for example, EEG recordings but also low-frequency fluctuations 904

that are often a subject of investigation in fMRI studies. Therefore, we simulated 905

the BOLD activities induced by the underlying neural dynamics and examine their 906

low-frequency properties. 907

BOLD (Blood-oxygen-level-dependent) activities are computed using the Balloon-
Windkessel model [1–4]. The hemodynamic response of the ith brain area takes the
form

ṡi = zi − κisi − γi(fi − 1) (S1)

ḟi = si (S2)

τiv̇i = fi − v
1/α
i (S3)

τiq̇i =
fi
ρi
[1− (1− ρi)

1/fi ]− v
1/α−1
i qi (S4)

BOLDi = V0[k1(1− qi) + k2(1− qi/vi) + k3(1− vi)] (S5)

where the interpretation and value of the parameters are given in Table S1. The 908

initial condition is 909

[si(0), fi(0), vi(0), qi(0)] = [0, 1, 1, 1] (S6)

which is a hemodynamic equilibrium state without neural activity. zi(t) is the 910

simulated neural activity, corresponding to the gating variable of the excitatory 911

populations S
(i)
E (t). 912
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parameter interpretation value

zi neuronal activity S
(i)
E

si vasodilatory signal variable
fi blood inflow variable
vi blood volume variable
qi deoxyhemoglobin content variable
κi rate of signal decay 0.65(s−1)
γi rate of flow-dependent elimination 0.41(s−1)
τi hemodynamic transit time 0.98 (s)
α Grubb’s exponent 0.32
ρ resting oxygen extraction fraction 0.34
V0 resting blood volume fraction 0.02
k1 BOLD weight parameter 7ρi
k2 BOLD weight parameter 2
k3 BOLD weight parameter 2ρi − 0.2

Table S1: Parameters of the Balloon-Windkessel model of BOLD activities, obtained
from [4].

The power spectrum for each simulated BOLD time series is computed using
Welch’s method [5], after being subsampled at 720ms intervals (matching the TR
of resting state fMRI used in the Human Connectome Project [6]). The full power
spectrum P (ω) was first normalized such that

∫ ωN

0

P (ω) dω = 1 (S7)

where ωN is the Nyquist frequency (approximately 0.7 Hz for the chosen sampling
interval). The low-frequency power is defined as

pℓ =

∫ 0.1

0.01

P (ω) dω. (S8)

S3 Discretization of regional states 913

Although the dynamic landscape of the global model can be quite complex (Figure 7g- 914

i), each region in the globally connected network still falls into discrete states 915

(Figure S1) very much like in the local model (disconnected stripes in Figure 7a-c)— 916

it is the combination of regional states that produces a great variety of attractors at 917

the global level. Discretized regional states (number on black disks in Figure S1) 918

thus give rise to discretized attractors in the global model. Rank correlation 919

(Spearman) between regional states across these discretized attractors are used to 920

quantify cross-attractor coordination in the model brain (Figure 8b in the main text). 921

Using discretized attractors, we quantify how much two regions move up and down 922

together across attractors without considering the distance between the attractors. 923

The distance between attractors are considered separately as the energy cost that 924

constrains such transitions (Figure 11 in the main text). 925
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Figure S1: Brain regions fall into discrete states in the global model. Blue curves in (a-c) show the distribution
of the state of individual brain regions (S(i)

E for any i) in the attractors in the bifurcation diagrams (Figure 7g-i)
respectively. Black dashed lines indicate the location of local minima in the distributions. These minima are used to
discretize the continuous variable S

(i)
E into integer-indexed (discrete) states (number in black disks).

S4 Reliability of the average functional connectivity 926

The average functional connectivity is highly similar between Day 1 (Figure 8a in 927

the main text) and Day 2 (Figure S2a). Linear regression analysis indicates that 928

the Day-1 matrix is highly predictive of the Day-2 matrix (red x in Figure S2b; 929

β1 = 0.98, t(2143)=203, p<0.001, R2 = 0.951; only elements below the diagonal are 930

compared due to the symmetry of the matrix). Moreover, the functional connectivity 931

matrix (Figure 8a in the main text) obtained using Spearman correlation is highly 932

predictive of the corresponding Pearson correlation coefficients (Figure S2c; β1 = 1.03, 933

t(2143)=897, p<0.001, R2 = 0.997), which itself is highly consistent across two days 934

(blue o in S2b; β1 = 0.97, t(2143)=211, p<0.001, R2 = 0.954). 935

Figure S2: Average human functional connectivity highly reliable across two days and the types of
correlation analysis. (a) shows the functional connectivity averaged across the same subjects as in Figure 8a (main
text) but using the resting fMRI data (two runs) from Day 2. The matrices from the two days are highly correlated
(b; red x). (c) shows the functional connectivity estimated using Pearson correlation averaged over all runs in Day 1,
which is also consistent across two days (b; blue o), and is not markedly different from Figure 8a (main text). See
text for statistical information.
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S5 Mean comparisons of human-model similarity 936

Figure S3: Average effects of local structural connectivity on model-human
similarity. Cross-attractor coordination in the model well captures human func-
tional connectivity for both intra- (red) and inter-hemispheric interaction (blue).
The model-human correlation (Spearman’s ρ) is slightly worse when local excitatory
connection is too strong (wEE = 2.8, wEI = 1). (* p<0.05, *** p<0.001, with Tukey
HSD)

S6 Dependency of spectral properties on local and global 937

structural connectivity 938

In Figure 13 of the main text, we illustrate with two simulated trials how high- 939

frequency and low-frequency dynamics depend on local excitatory-to-excitatory 940

connectivity wEE and the topology of the global network. To show that these effects 941

are not incidental, we simulated 200 trials for each of the conditions: (1) the global 942

network is uniform but local connectivity wEE is diverse (as in Figure 13a,b), and 943

(2) local connectivity wEE is identical but the global network follows the human 944

connectome (as in Figure 13c,d). We characterize the high-frequency content of a 945

spectrum as its peak frequency, i.e. the frequency at which the spectral power is 946

the highest (e.g. peaks in Figure 13a,c); the low-frequency content as the integral 947

of the power between 0.01 and 0.1 Hz (Section S2). The dependency of these 948

features on local (wEE) and global structural properties (node degree) is quantified 949

using Spearman correlation. The distributions of the correlation coefficients (ρ) and 950

corresponding p-values are shown in Figure S4 and Figure S5 for condition 1 and 2 951

respectively. Figure S4 shows that local structural connectivity wEE strongly affects 952

the peak frequency of the brain region (a,c) but not so much the low-frequency power 953

(b,d). The stronger the local connectivity, the higher the peak frequency. Figure S5 954

shows that the node degree of the global network has a strong and negative effect 955
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on the low-frequency power, and a weak and positive effect on the peak frequency. 956

Figure 13 illustrates such dependencies using typical trials (median correlation 957

coefficients) from the distributions (Figure S4-S5). 958

Figure S4: Dependency of peak frequency and low-frequency power on
local excitatory-to-excitatory connectivity. 200 trials are simulated following
the same parameter setting as Figure 13a,b, where the global network is uniform but
the local connectivity wEE ’s spread between 1 to 2 for different brain regions. The
noise terms in equation 4-5 make these trials different realizations of the same noisy
process. The peak frequency of the spectra, e.g. from 10 to 30 Hz in Figure 13a,
strongly depends on local connectivity wEE (a: ρ’s all close to 1; c: p-values all less
than 0.05). In contrast, low-frequency power does not significantly depend on wEE

(b: ρ’s distribute around zero; d: p-values spread between 0 and 1). Figure 13b
shows this lack of dependency in an example trial that corresponds to the median of
the distribution (b).
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Figure S5: Dependency of peak frequency and low-frequency power on
node degree in the global network. 200 trials are simulated following the same
parameter setting as Figure 13c,d, where the local connectivity wEE ’s are the same
across brain regions but the global-network reflects the human connectome (see main
text). The peak frequency of the spectra, e.g. between 0 and 30 Hz in Figure 13c,
moderately increases with the node degree of each region (a: positive ρ’s around 0.32;
c: p-values all less than 0.05). Low-frequency power decreases more significantly
with node degree (b: ρ’s distribute around -0.6; d: p-values all less than 0.05).
Figure 13d illustrates this dependency with an example trial that corresponds to
the median of the distribution (b).

S7 Analysis of the local model 959

We can see from the numerical analysis that the nullclines (dashed lines in Figure 4)
crucially constraint the dynamics of the local model (equation 1-3). Here we take a
closer look at their shapes. Red nullcline indicates where there is only vertical flow,

dSE

d t
= 0

⇒− SE

τE
+ (1− SE)γE HE(wEESE − wIESI + IE) = 0

⇒SI = f(SE) =
wEE

wIE
SE − 1

wIE
H−1

E

(

SE

τEγE(1− SE)

)

+
IE
wIE

, (S9)

and blue nullcline indicates where there is only horizontal flow,

dSI

d t
= 0

⇒− SI

τI
+ (1− SI)γI HI(wEISE − wIISI + II) = 0

⇒SE = g(SI) =
wII

wEI
SI +

1

wEI
H−1

I

(

SI

τIγI(1− SI)

)

− II
wEI

. (S10)

What is common between the two nullcines, SI = f(SE) and SE = g(SI), is that
their shape crucially depends on a linear term Sp and the inverse of the transfer
function H−1

p for p ∈ {E, I}. Both terms are monotonically increasing with Sp

(H−1
p (•) and Sp/(1 − Sp) are both monotonically increasing function; so is their

composition). H−1
p is only defined on a domain between 0 and rmax, for which the
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nullclines are confined within the interval
[

0, 1− 1

rmaxτpγp

]

. (S11)

Within this interval SI = f(SE) (equation S9; red nullcline), overall, goes down 960

from +∞ to −∞, while SE = g(SI) (equation S10; blue nullcline) goes up from −∞ 961

to +∞. This results from the dominant effect of H−1
p for a very large or very small 962

input. 963

In between these extremes, the effect of the linear term is more pronounced. This
is especially the case for SI = f(SE) (red nullcline): the linear term monotonically
increases with SE , counteracting the descending trend of −H−1

E . Given a sufficiently
strong excitatory-to-excitatory connection wEE (self-excitation), the linear term
“twists” the nullcline counterclockwise, creating an ascending branch in the middle.
If we balance the level of self-excitation with inhibitory-feedback—let wEE = wIE—
equation S9 becomes

SI = f(SE) = SE − 1

wEE
H−1

E

(

SE

τEγE(1− SE)

)

+
IE
wEE

. (S12)

In this simplified case, increasing self-excitation wEE reduces the influence of H−1
E 964

such that the slope of middle branch approaches 1. 965

For SE = g(SI) (equation S10), the linear term and the H−1
I term increase 966

together, so that SE = g(SI) (blue nullcline) is always monotonically increasing. 967

Given a fixed wII , SE = g(SI) increases with SI at an overall slower rate for larger 968

wEI , or more conveniently seen as SI = g−1(SE) increasing faster with SE for larger 969

wEI . Intuitively, increasing wEI twists SE = g(SI) counterclockwise, seen as the 970

middle segment of the blue nullcline becoming more vertical. 971

We have discussed above how local connectivity wEE and wEI influence the gross 972

geometry of the nullclines—twisting the middle segment of the curve counterclockwise. 973

But how are these geometric changes going to affect the dynamics? We show below 974

that they critically control the multistability and oscillation in the local model. 975

Multistability. For the local model to be multistable, SI = f(SE) (red nullcline) 976

must have an ascending branch, i.e. f(SE) cannot be monotonically decreasing. 977

Proof. Suppose that f(x) and g−1(x) are monotonic functions for x ∈ [0, 1]. Specially, 978

g−1(x) is monotonically increasing; f(x) is monotonically decreasing. Assume that 979

f(x) and g−1(x) intersect at two points x1 6 x2, i.e. f(x1) = g−1(x1) and f(x2) = 980

g−1(x2). Since g−1(x) is monotonically increasing, we have g−1(x1) 6 g−1(x2), 981

which implies f(x1) 6 f(x2). Meanwhile, since f(x) is monotonically decreasing, 982

f(x1) > f(x2). Thus, we have f(x1) = f(x2), and by monotonicity, x1 = x2. In 983

other words, if the two functions intersect, there must be a unique intersection. 984

Since g−1(x) is always monotonically increasing and the existence of multistability 985

requires the existence of multiple intersections between g−1(x) and f(x), a monoton- 986

ically decreasing f(x) implies that the system cannot be multistable. In other words, 987

if the system is multistable, then f(x) cannot be monotonically decreasing. 988

This result highlights the importance of self-excitation wEE in equation S9 989

and equation S12—multistability can only occur when wEE is sufficiently large. 990

Correspondingly in the numerical result (Figure 3), the region of multistability 991

appears only for larger wEE ’s. 992

Note that the above argument is not restricted to the present model, but applica-
ble to models that share the geometry form of the Wilson-Cowan model in general.
Nevertheless, one would hope to know how large a wEE is large enough for multista-
bility to be possible, and this depends on the specific formulation of the transfer
function (equation 3) and the underlying assumptions about neuronal level properties
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(equation 15). Ideally, to know the minimal wEE , one need to find the minimal slope
of H−1

E (u(SE)) with respective to SE , where u(SE) := SE/ (τEγE(1− SE)). The
exact solution is, however, rather perplexing to calculate. Here we provide a rough,
but simple, estimation instead. The slope of interest is

d

dSE
H−1

E (u(SE)) =
dH−1

E (u)

du

du

dSE
(S13)

=

(

H−1
E

)′
(u)

τEγE(1− SE)2
. (S14)

Instead of finding the minimum of equation S14, we aim to find a representative 993

point S∗
E such that equation S14 is relatively small. 994

One option is to use the minimum of the numerator. The minimum of the
numerator

(

H−1
E

)′
(u) is simply the reciprocal of the maximum of H ′

E(v), where
v = H−1

E (u). By design, HE reaches its maximal slope aE at the inflection point x̂,
where HE(v) = rmax/2. That is, we need

S∗
E

τEγE(1− S∗
E)

=
rmax

2

S∗
E =

1

2 r−1
maxτ

−1
E γ−1

E + 1
.

But note here that, in the case where rmax is a large number, the representative point 995

S∗
E is very close to one, which further results in a small denominator in equation S14 996

and a large slope for H−1
E . Thus, the inflection point of HE(v) is not a very good 997

choice. 998

To avoid the small denominator problem for equation S14, we need to choose
a S∗

E as small as possible while HE(v) remains close to the line aE v − bE . For
this purpose, we take v∗ to be the intersection between the line aE v − bE and the
horizontal axis,

aE v∗ − bE = 0

⇒ v∗ =
bE
aE

⇒HE(v
∗) ≈ 1

dE
, H ′

E(v
∗) ≈ aE

2
(S15)

(approximate values can be obtained from the Taylor expansion of ĤE near v∗).
Given equation S15, we need

S∗
E

τEγE(1− S∗
E)

=
1

dE
(S16)

⇒S∗
E =

1

dEτ
−1
E γ−1

E + 1
(S17)

and

dH−1
E (u(SE))

dSE

∣

∣

∣

∣

SE=S∗

E

=
2

aEτEγE(1− S∗
E)

2

=
2(1 + d−1

E τEγE)
2

aEτEγE
=: hE . (S18)

Now for the nullcline SI = f(SE) to have a positive slope at S∗
E , one simply needs 999

wEE > hE . (S19)

Here hE is approximately 0.2 based on the present parameter choices, inherited from 1000

Wong and Wang’s initial derivation [7]. This result is confirmed numerically by the 1001

bifurcation diagrams (Figure 7a-c vs. Figure S6a) of the local model—multistability 1002

exists for some level of input IE when wEE > 0.2. 1003
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Oscillation. Now we look for the conditions for oscillation to emerge. Here we 1004

are mainly concerned with the oscillation occurring on the ascending segment of 1005

SI = f(SE) (red nullcline). Following a similar argument as Wilson and Cowan 1006

[8], one notice that for the flow around a fixed point—an intersection between the 1007

nullclines—to have consistent rotation, the nullcline g−1(SE) (blue) must have a 1008

greater slope than f(SE) (red nullcline). Qualitatively, one would expect oscillation 1009

to be induced by increasing wEI , which twists g(SI) (blue nullcline) counterclockwise. 1010

This expectation is confirmed by the numerical results in Figure 3a-d: oscillation 1011

emerges for sufficiently large wEI for fixed points on the ascending branch of 1012

SI = f(SE) (Figure 4a-d). 1013

Quantitatively, we consider the derivative of the two nullclines at a respective
representative point. First, we extend the results in equation S17-S18 to the second
nullcline SE = g(SI) (blue):

S∗
I =

1

dIτ
−1
I γ−1

I + 1
(S20)

hI : =
dH−1

I (u(SI))

dSI

∣

∣

∣

∣

SI=S∗

I

=
2(1 + d−1

I τIγI)
2

aIτIγI
. (S21)

For parameters used in the present study, hI ≈ 0.4. We have the slope of the two
nullclines at their respective representative points,

f ′(S∗
E) =

wEE − hE

wIE
(S22)

g′(S∗
I ) =

wII + hI

wEI
, (S23)

and we need

1

g′(S∗
I )

> f ′(S∗
E) (S24)

⇒ wEI

wII + hI
>

wEE − hE

wIE

⇒wEI >
(wEE − hE)(wII + hI)

wIE
. (S25)

With balanced inhibitory feedback wIE = wEE , we have

wEI > (1− hE/wEE)(wII + hI). (S26)

For very large wEE , one simply need 1014

wEI > wII + hI . (S27)

Given the present parameter choices, we need wEI > 0.45 to induce oscillation for 1015

some level of input IE and II . This is in line with the numerical results in Figure 3. 1016

For hE > 0, as assumed here, lowering wEE also lowers the threshold for oscillation. 1017

Linear stability analysis. In addition to the presence of oscillation, one would
also want to know if such oscillation is sustainable or damped. Here we extend the
above analysis by linearizing the system near a specific fixed point. A fixed point
is where the two nullclines (equations S9-S10) intersect. Conveniently, we let them
intersect at their respective representative points (S∗

E , f(S
∗
E)) and (g(S∗

I ), S
∗
I ) (see

equation S17 and equation S20),

S∗
E = g(S∗

I ) (S28)

f(S∗
E) = S∗

I . (S29)
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The two equations can be satisfied by the appropriate choice of IE and II . The fixed
point of our choice (S∗

E , S
∗
I ) inherits a couple of properties from the above analysis,

which we shall soon see. First, we define

dSE

d t
= F (SE , SI) := −SE

τE
+ (1− SE)γE HE(wEESE − wIESI + IE) (S30)

dSI

d t
= G(SE , SI) := −SI

τI
+ (1− SI)γI HI(wEISE − wIISI + II). (S31)

At the fixed points, we have from equation S30

HE(wEES
∗
E − wIES

∗
I + IE) =

S∗
E

τEγE(1− S∗
E)

(S32)

=
1

dE
(by definition, c.f. equation S16) (S33)

which implies that

IE =
bE
aE

− wEES
∗
E + wIES

∗
I (S34)

and

H ′
E(wEES

∗
E − wIES

∗
I + IE) =

aE
2

(per equation S15). (S35)

Similarly from equation S31, we have

HI(wEIS
∗
E − wIIS

∗
I + II) =

S∗
I

τIγI(1− S∗
I )

=
1

dI
(S36)

II =
bI
aI

− wEIS
∗
E + wIIS

∗
I (S37)

H ′
I(wEIS

∗
E − wIIS

∗
I + II) =

aI
2
. (S38)

Now we are take the partial derivatives of F and G at (S∗
E , S

∗
I ),

∂F

∂SE

∣

∣

∣

∣

(S∗

E
,S∗

I
)

= − 1

τE
− γEHE(wEES

∗
E − wIES

∗
I + IE)

+ (1− S∗
E)γEwEEH

′
E(wEES

∗
E − wIES

∗
I + IE)

= − 1

τE
− γE

dE
+ wEEγEaE(1− S∗

E)/2 (S39)

∂F

∂SI

∣

∣

∣

∣

(S∗

E
,S∗

I
)

= −(1− S∗
I )wIEγEH

′
E(wEES

∗
E − wIES

∗
I + IE)

= −wIEγEaE(1− S∗
I )/2 (S40)

∂G

∂SE

∣

∣

∣

∣

(S∗

E
,S∗

I
)

= (1− S∗
I )wEIγIH

′
I(wEIS

∗
E − wIIS

∗
I + II)

= wEIγIaI(1− S∗
I )/2 (S41)

∂G

∂SI

∣

∣

∣

∣

(S∗

E
,S∗

I
)

= − 1

τI
− γIHI(wEIS

∗
E − wIIS

∗
I + II)

− (1− SI)wIIγIH
′
I(wEIS

∗
E − wIIS

∗
I + II)

= − 1

τI
− γI

dI
− wIIγIaI(1− S∗

I )/2. (S42)
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For simplicity, let parameters

αp : =
1

τp
+

γp
dp

(S43)

βp : = γpap(1− S∗
p)/2 (S44)

=
γpapdp

2(dp + γpτp)
(S45)

for p ∈ {E, I}. Note that by definition, both αp and βp are positive. Given 1018

parameters used in the present study, we have αE ≈ 14, αI ≈ 111, βE ≈ 71, and 1019

βI ≈ 276. 1020

We write the Jacobian matrix as

J =

(

−αE + βEwEE −βEwIE

βIwEI −αI − βIwII

)

. (S46)

The eigenvalues of the Jacobian are

λ1,2 =
trJ±

√
tr2 J− 4 detJ

2
(S47)

where

trJ = −αE − αI + βEwEE − βIwII (S48)

detJ = αEαI + αEβIwII − αIβEwEE + βIβE(wIEwEI − wEEwII). (S49)

Assuming that the system is already oscillatory near the fixed point, i.e. tr2 J <
4 detJ, to have sustained oscillation (limit cycle), we need

trJ > 0

⇒wEE > (αE + αI + βIwII)/βE . (S50)

Given the parameters used in the present study, the emergence of limit cycles requires 1021

wEE > 2. Correspondingly in the numerical results (Figure 3), equation S50 provides 1022

an estimate of the lower bound of the Hopf bifurcation (gray dashed line). Note 1023

that stronger inhibitory-to-inhibitory connection wII increases the minimal wEE 1024

required to induce sustained oscillation. Overall, these analyses show that sustained 1025

oscillation requires both strong self-excitation and a sufficiently active inhibitory 1026

population. 1027

1028

In summary, we have shown analytically how structural connectivity wEE and 1029

wEI critically shape the dynamics—in this very low-dimensional parameter space, 1030

the system can easily switch between qualitatively different behavior. In particu- 1031

lar, excitatory-to-inhibitory connectivity wEI controls the emergence of oscillation; 1032

excitatory-to-excitatory connectivity wEE controls both the emergence of multistabil- 1033

ity and sustained oscillation. The qualitative description of the system only depends 1034

on the gross geometric form of the Wilson-Cowan model, but the exact bound- 1035

aries between regimes depend on the specific transfer function and the associated 1036

biophysical constraints. 1037

S8 Analysis of the global model 1038

Now we take a look at the deterministic version of the global model,

dS
(i)
E

d t
= −S

(i)
E

τE
+ (1− S

(i)
E )γEHE

(

w
(i)
EES

(i)
E − w

(i)
IES

(i)
I + I

(i)
G (~SE)

)

(S51)

dS
(i)
I

d t
= −S

(i)
I

τI
+ (1− S

(i)
I )γIHI

(

w
(i)
EIS

(i)
E − w

(i)
II S

(i)
I + II

)

(S52)
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where

I
(i)
G (~SE) = G

N
∑

j=1
j 6=i

CijS
(j)
E . (S53)

In this case, the nullclines are hyper-surfaces,

w
(i)
IES

(i)
I = f (i)

(

~SE

)

:= w
(i)
EES

(i)
E −H−1

E

(

S
(i)
E

τEγE(1− S
(i)
E )

)

+G
∑

j 6=i

CijS
(j)
E (S54)

w
(i)
EIS

(i)
E = g(i)

(

S
(i)
I

)

:= w
(i)
II S

(i)
I +H−1

I

(

S
(i)
I

τIγI(1− S
(i)
I )

)

− II . (S55)

From equation S54 one can see that the local effect of global coupling is simply 1039

tilting the nullcline S
(i)
I = f (i)

(

~SE

)

/w
(i)
IE upwards with respect to S

(j)
E . 1040

The tilting of the nullcline S
(i)
I = f (i)

(

~SE

)

/w
(i)
IE impact its number of intersec- 1041

tions with S
(i)
E = g(i)

(

S
(i)
I

)

/w
(i)
EI in each level set of G

∑

j 6=i CijS
(j)
E . The number 1042

of intersections consequently constrains the number of stable states. A precise char- 1043

acterization of intersections is beyond the scope of the present work. Nevertheless, 1044

we hope to provide a few insights about the global geometry below. 1045

Multistability. Following a similar argument as for the local model, we first show 1046

that, without global interaction (i.e. G = 0), the system cannot be multistable, if 1047

wEE is sufficiently small such that f (i)(~SE) monotonically decreases with S
(i)
E for 1048

all i. As shown above, the monotonicity condition implies that each local node by 1049

itself is not multistable. 1050

Proof. Assume there are at least two distinct fixed points of the system: ~S∗ and ~S∗∗, 1051

where ~S = (~SE , ~SI) and ~Sp = (S
(1)
p , · · ·S(i)

p , · · ·S(N)
p ) for p ∈ {E, I}. Since they are 1052

distinct points, there exists an 0 < i 6 N such that S
∗(i)
E 6= S

∗∗(i)
E (S∗(i)

I 6= S
∗∗(i)
I 1053

implies S
∗(i)
E 6= S

∗∗(i)
E due to the monotonicity of g). Without loss of generality, we 1054

let S
∗(i)
E < S

∗∗(i)
E . 1055

Since we know that g−1 (i)(w
(i)
EIS

(i)
E ) is always a monotonically increasing function,

we have

g−1 (i)(w
(i)
EIS

∗(i)
E ) < g−1 (i)(w

(i)
EIS

∗∗(i)
E ) (S56)

⇒S
∗(i)
I < S

∗∗(i)
I , (S57)

which also implies that

f (i)
(

~S∗
E

)

< f (i)
(

~S∗∗
E

)

(S58)

by definition of the nullcline S
(i)
I = f (i)

(

~SE

)

/w
(i)
IE , for any choice of G and Cij . 1056

Now if f (i)(~SE) is monotonically decreasing with respect to S
(i)
E , we know that

at least for G = 0,

f (i)
(

~S∗
E

)

> f (i)
(

~S∗∗
E

)

, (S59)

which leads to a contradiction. Thus, if the system has multiple fixed points, f (i)(~SE) 1057

cannot be monotonically decreasing with respect to S
(i)
E for all i when G = 0. 1058

However, given a sufficiently large global coupling, especially for G > 1, multi- 1059

stability becomes possible. 1060
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Proof. Following the above proof, the assumption S
∗(i)
E < S

∗∗(i)
E leads us to equa-

tion S58, or ∆G < 0, where

∆G := f
(i)
G

(

~S∗
E

)

− f
(i)
G

(

~S∗∗
E

)

(S60)

for any global coupling G > 0. 1061

On the other hand, for the special case of G = 0, we can plug equation S54 into
the definition S60 and have

∆0 = f
(i)
G=0

(

~S∗
E

)

− f
(i)
G=0

(

~S∗∗
E

)

= w
(i)
IE

(

S
∗(i)
I − S

∗∗(i)
I

)

(S61)

= f
(i)
G=0

(

S
∗(i)
E

)

− f
(i)
G=0

(

S
∗∗(i)
E

)

> 0, (S62)

by our assumption that f (i)
G (~SE) is a monotonically decreasing function with respect

to S
(i)
E . Since by definition, the coordinates of each fixed point is bounded between

0 and 1, we have

0 < ∆0 6 w
(i)
IE . (S63)

In the case of G = 0, this leads to a contradiction ∆G > 0, as we have already shown 1062

above. 1063

Now we consider what happens when G > 0. Again, by plugging equation S54
into the definition S60, we have

∆G = ∆0 +G
∑

j 6=i

CijS
∗(j)
E −G

∑

j 6=i

CijS
∗∗(j)
E

= ∆0 +G
∑

j 6=i

Cij(S
∗(j)
E − S

∗∗(j)
E ). (S64)

We need a bound on the second term in equation S64. Since G > 0 and Cij > 0,
∣

∣

∣

∣

∣

∣

G
∑

j 6=i

Cij(S
∗(j)
E − S

∗∗(j)
E )

∣

∣

∣

∣

∣

∣

6 G
∑

j 6=i

Cij

∣

∣

∣(S
∗(j)
E − S

∗∗(j)
E )

∣

∣

∣

6 G
∑

j 6=i

Cij (since 0 6 S
(j)
E 6 1)

6 G (by equation 7).

This gives us

∆0 −G 6 ∆G 6 ∆0 +G. (S65)

Thus, contradiction with equation S58 is inevitable if G < ∆0. On the other hand, 1064

by equation S63, we know that for G > ∆0, there exists some ~S∗
E and ~S∗∗

E for some 1065

global network Cij such that ∆G < 0 consistent with equation S58. Thus it is 1066

possible for the global model to be multistable if G > ∆0, especially if G > w
(i)
IE , 1067

or G > w
(i)
EE given matched inhibitory feedback wEE = wIE . This does not mean, 1068

however, that the system has to be multistable, due to the dependency on Cij . 1069

To summarize, the above analyses suggest that a collection of brain regions that 1070

have no independent memory capacity (i.e. multistability) can acquire memory 1071

capacity when connected to each other in a global network, given sufficient global 1072

coupling. We further support this claim with numerical analysis (Figure S6). We 1073

refer to this kind of memory as synergistic memory—it is an emergent property that 1074

the parts themselves do not possess. 1075
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Figure S6: Synergistic memory between monostable nodes. Three bifurcation diagrams are shown for local
parameters wEE = 0.1 and wEI = 0.35. They correspond to Figure 7a, d, g but with a lower wEE such that each
local node by itself is monostable for any level of input (a). While each local node is completely monostable (no
memory capacity), once there is sufficient global coupling G between them, the whole brain acquires memory capacity
(b, c) that cannot be attributed to the parts alone—synergistic memory. Nevertheless, the size of the global memory
capacity is still fundamentally constrained by the complexity of the local node (42 attractor branches in (c), very
small compare to Figure 7g, h, i). See text for further discussion.

What we have not addressed in the above analyses is to what extent the global 1076

system is multistable—what is the number of stable states, or the size of the memory 1077

capacity—and what are the contributions from local self-excitation and global 1078

network connectivity. An analytical approach to this problem is difficult; thus, it 1079

is mainly addressed numerically (c.f. Figure S6 and Figure 7). Nevertheless, we 1080

provide an intuitive argument below as to how local and global connectivity affects 1081

the relevant geometrical properties of the dynamical system. 1082

Local origin of geometrical complexity. At an intuitive level, the number of 1083

intersections between these hypersurfaces (equation S54-S55) is likely to increase with 1084

the number of folds of each surface. In the present case, the folding of hypersurfaces 1085

entails the temporary reversal of the sign of its partial derivative along a certain 1086

direction. Observe equation S54 and see that global coupling cannot create any 1087

folding of the surfaces. Thus, the geometrical complexity of the nullclines purely 1088

depends on the local properties of each node, in particular, the folding effect of 1089

self-excitation w
(i)
EE . 1090

The effect of global coupling. Without global coupling (G = 0), the number
of fixed points of the global model is simply

n =
N
∏

i=1

n
(i)
0 6

(

max
i

n
(i)
0

)N

(S66)

where n
(i)
0 is the number of fixed points for each corresponding local model when 1091

IE = 0. Introducing global coupling (G 6= 0) tilts each surface (equation S54) in a 1092

way dependent on the structure connectivity Cij . This may remove or introduce new 1093

intersections between the surfaces without changing the geometrical complexity of 1094

these surfaces. Thus, global coupling allows system-level multistability to be created 1095

synergistically, given appropriate structural connectivity Cij . 1096

1097

In summary, local and global coupling produce different geometrical effects on 1098

the system and jointly affect the number of possible stable states. 1099
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