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Complexity of Simple Nonlogarithmic Loss Functions
Jorma Rissanen, Fellow, IEEE

Abstract—The loss complexityfor nonlogarithmic loss functions
is defined analogously to the stochastic complexity for logarithmic
loss functions such that its mean provides an achievable lower
bound for estimation, the mean taken with respect to the worst
case data generating distribution. The loss complexity also pro-
vides a lower bound for the worst case mean prediction error
for all predictors. For the important -loss functions ^ ,
where ^ denotes the prediction or fitting error and is in
the interval [1 2], an accurate asymptotic formula for the loss
complexity is given.

Index Terms— -loss functions, complexity, maximum entropy,
min-max bounds, prediction bound.

I. INTRODUCTION

I N [13], Yamanishi defined anextended stochastic complexity
for a variety of bounded loss functions as follows:

(1)

where is a parametric estimate or prediction of,
and measures the distance betweenand its estimate;

is a prior density function for the parameters andis an-
other positive parameter. The main justification for this defini-
tion is that its estimation with predictor functions was shown
to give effective learning algorithms such as the aggregating
strategy for computational learning theory introduced by Vovk
[12], who also pioneered the mixture of type (1). With Laplace’
method of integration ,Yamanishi further derived an asymptotic
expansion, which gives an upper bound for the predictive esti-
mation associated with the extended stochastic complexity and
for the batch-mode loss; i.e., one resulting from estimators com-
puted from all the data. In [15] and [14], Yamanishi showed fur-
ther that the extended stochastic complexity attains a min-max
cumulative prediction loss under specific restricted loss func-
tions, where the maximum is taken over sequences.

Inspired by these works, we define an extension of stochastic
complexity, which we callloss complexity, in a way analogous
to that of the stochastic complexity [10] and [11], namely, such
that its mean provides a lower bound for the mean accumulated
loss. The mean is taken with respect to the worst case data gener-
ating distribution in a class that need not coincide with the class
of models defined by the loss function. The loss complexity
gives also a lower bound for the worst case mean prediction error
resulting from any predictor. The analysis of the unbounded loss
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functions differs drastically from that of the bounded ones, and
these bounds appear to be new.

In order to be able to calculate the loss complexity we con-
sider mainly the so-called simple loss functions, [6], for which
the normalizing coefficient

does not depend onnor . This class is seen to include the im-
portant -loss functions for positive , [13].
For in the range , we derive an accurate asymptotic
formula for the loss complexity. We also determine the optimal
parameter as a function of the data, in which case the lower
bound for the worst case mean loss is given by the loss com-
plexity itself rather than by its mean. The formula for the loss
complexity provides a convenient criterion for the selection of
model classes, in particular for the absolute value error function,
where the lack of everywhere differentiability has been an ob-
stacle in the past. These results allow us to generalize an earlier
prediction bound for Gaussian autoregressive moving average
(ARMA) processes in [9], which further shows that the lower
bound for prediction and estimation, much as the stochastic
complexity, is not restricted to a single worst case data gener-
ating distribution, but it actually holds in essence for a wide class
of distributions.

The loss complexity for simple loss functions turns out to
consist of the minimized loss and a term that can be viewed
as the ideal code length for the optimal parameters, suitably
weighted. The extended stochastic complexity, also, was shown
in [13] to admit a similar asymptotic upper bound, where the
second term was a weighted real code length for the optimally
quantized parameters.

II. DISTRIBUTIONSINDUCED BY SIMPLE LOSSFUNCTIONS

Consider a sequence of observed data
, where are vectors of real-valued

components and also are real numbers. We are interested
in modeling the data generating machinery with a parametric
function to capture the statistical relationship be-
tween the two data sequences and , the parameters

ranging over a subset of the -dimensional Eu-
clidean space. As a rule, we take this as a compact set and
denote its interior by , which throughout is assumed to be
nonempty. To measure the inevitable deviations between the ob-
served values and their predicted or fitted values a loss function

is needed, which gives the accumulated loss on the data
as

(2)
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The loss function defines a probability model, conditioned on
, as follows:

(3)

where is another positive real-valued parameter and
the normalizing constant

(4)

assumed to exist. Extending this model to sequences by inde-
pendence, we obtain for eacha class

of probability models

(5)

where

(6)

Of particular interest to us are the loss functions, calledsimple
in [6], where does not depend on the parameter

nor on . For them the estimate that minimizes
the loss (2) is the same as the maximum-likelihood estimate that
minimizes the other loss function for this class, the ideal code
length . The class of simple loss functions
includes the loss for binary data which isfor no prediction
error and unity otherwise. More importantly, this family also
includes all loss functions of the form

(7)

called -loss functions, [13], for which a formula for the nor-
malizing coefficient is given below. Notice that the important
quadratic loss function is a special case, giving rise to the normal
distribution, and so is the absolute value loss function for ,
in which case (3) gives Laplace’ distribution.

If the integral

(8)

is finite, we can define the normalized maximum-likelihood
(NML) model, [2], [10]

(9)

(10)

where

(11)

We derive next a few important properties of the models in
the class for a simple loss function, which are shared by
the exponential family of densities. First, by differentiating the

integral (4) with respect to we get for all of type
and all positive

(12)

where and denotes the expectation with
respect to . That the order of the differentiation and
integration may be switched can be seen by the very definition
of the derivative. We also follow the custom to denote random
variables by capital letters while using lower case letters for data
strings. Further, let minimize the ideal code length

(13)

and suppose that for all values of and , the derivative with
respect to vanishes at

(14)

Then, because of (12)

(15)

where the expectation is taken for the fixed value
.

Next, differentiate the integral (8) with respect to. The result
is for all

(16)

where and the expectation is with
respect to . Let denote the
value of that minimizes

(17)

and assume that at

(18)

for all values of such that . Then

(19)

To conclude this section, we show that the distributions
are maximum-entropy distributions. The simple

proof is similar to that given in [3, Ch. 11]. Consider the problem

(20)

where the maximization is over allsuch that

We have first by this restriction on the density functions

where denotes the entropy of . Then, by
Shannon’s inequality, the entropy of satisfies
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the right-hand side being upper-bounded by . The equality
is reached with . This result generalizes the familiar fact
that the normal distribution with variance has the maximum
entropy among all distributions whose variance does not ex-
ceed .

III. L OSSCOMPLEXITY

In [11], we showed that the NML density function solves the
min-max problem

(21)

where and range over a wide class of distributions, in par-
ticular, not restricted to independent and identically distributed
(i.i.d.) distributions, and the min-max value , (11),
is reached for . Consider the analogous
min-max problem

(22)

where

(23)

and is obtained either by a predictor ,
, or a more generalestimatorfunction

. Specifically, we consider estimator functions of the
form , where the parameter, ranging over a subset

, has components, . With denoting
any estimate of the parameter we then write

(24)

Denote by the set of all such estimator functions.
We have

(25)

(26)

where denotes the Kullback–Leibler distance

for a predictor
for an estimator(27)

and

(28)

assumed to be finite; denotes the interior of . Further,
, (10), and

(29)

The role of the data generating distributionsis to model
the statistical restrictions in the data, all of which may not be
captured by the models in the class . Hence, we should not
restrict the distributions to the set . However, to obtain

stronger inequality bounds we should not let them be just any
distributions, and in light of (16), we restrict them to the set

(30)

where the right-hand side of the inequality by (16) equals
. This restriction for the data

generating distributions is quite natural if we bear in mind
the role of the parameter, which in case of the normal
density functions is inversely proportional to the variance; it is
characteristic of the size of the typical loss functions modeled
for the data. For a large value of, the bulk of the probability
mass modeled is for data with small loss andvice versa. Hence,
in the set we want to include only the data generating
density functions that we consider to be “relevant” for the
data we have selected to model. This is also analogous to the
restrictions taken in the maximum entropy problem (20), where
the data generating distributions are restricted not to exceed the
mean loss.

We have the following theorem.

Theorem 1: For all positive and for all estimators
of the form (24),

(31)

The equality is reached for

For all positive and all predictors of the form

(32)

Proof: By (16) is in , and

(33)

In view of (26), (11), and (27), the inequality (31) is equivalent
with

(34)

Since is in , the left-hand side is lower-bounded
by , which is nonnegative. Clearly, the equality is
reached for .

Further, for predictors

(35)

which gives the claim.

An indication of the loss on the data at hand is
, and by picking in view of (19)
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as , the theorem gives lower bounds which are relevant for the
observed data; the set gets replaced by

(36)

In view of Theorem 1 we define

(37)

to be theloss complexityof the data , relative to the
model class . Similarly, relative to the model class

(38)

the loss complexity is defined to be

(39)

Remarks: The term in the loss complexity (37)
can be interpreted as the logarithm of the number of “distin-
guishable” models [1]; i.e., models that can be distinguished
from data in such a manner that the probability of error goes
to zero as ; see also the discussion in [11]. Hence, it
may be viewed as the code length for the parameter, in effect
optimally quantized, needed to implement the optimal model.
The parameter provides a weight by which the code length
for the model is converted into loss,being the optimal weight.
In [13], the extended stochastic complexity, too, was shown to
admit an asymptotic expansion as the sum of the minimized
accumulated loss and a term which is upper-bounded by an
explicitly calculated code length for the parameters, written
to an optimal precision and weighted by . This makes the
extended stochastic complexity and close for long
data strings. In [13], no explicitly optimized value for as
a function of the data string was determined. Rather, it was
replaced by an asymptotic expression.

In case of the logarithmic loss, the interpretation of the
stochastic complexity as the sum of the negative logarithm
of the maximum likelihood and the ideal code length for
the parameters is natural, because both are code lengths and
hence expressed in the same units. Moreover, since the code
length for the parameters must satisfy the Kraft inequality any
such two-part code length provides a natural requirement for
the estimator functions to be admissible in
providing a fair comparison of the losses; the density function
they define must integrate to unity. In case of a nonlogarithmic
loss function there is no obvious normalization requirement for
the estimator function, and one may wonder why not permit the
“perfect” estimator defined by , which gives zero loss.
On intuitive grounds it is reasonable to demand for a fair loss
comparison that the estimator function must be described in a
decodable manner, but adding the code length of the parameters
to a non-code length loss appears arbitrary. The inequality (31)
provides the required normalization, and we call any estimator
realizableand its accumulated mean loss, the left-hand side of
(31),achievable, if it satisfies this inequality.

As a final comment, we mention that the inequalities in
Theorem 1 hold not only for the worst case data generating
distribution but for almost all distributions in the family .
We prove this later for the-loss functions, which are analyzed
in detail in the following section.

IV. -LOSSFUNCTIONS

We begin by giving an explicit formula for the normalizing
coefficient for -loss functions, obtained from the integral [5]

with the change of variables

(40)

Here, is the gamma function. With such models we write
, where is a function vanishing at .

In order to simplify matters we take this function as the inner
product . A generalization to other functions is possible,
but for our results it would require assumptions that make them
behave like the inner product. Extend the so-defined density
function

to sequences by independence with the result

(41)

and denote the family of such models as

(42)

where is a compact subset of with nonempty interior .
For -loss functions, the mean loss (12) can be evaluated for

all as

(43)

where the expectation is with respect to .
Denoting the normalizing constant (11) by , we

have with the restriction an accurate asymptotic
formula for it, which permits calculation of the loss complexity.
The result is in the theorem proved in Appendix A.

Theorem 2: For the model class let be a closed
bounded subset of with nonempty interior . Further let

(44)
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as . Then for all positive and in the interval

for

for

(45)

where denotes the volume of .

Remark: The condition (44) is typical for regression
problems, where the rows of the matrixare defined by the
inner products of the basis vectors in an infinite-dimensional
space such as the polynomials, sinusoidals in Fourier series, or
wavelets.

We recall the definition of as the value of
that minimizes (17). By Theorem 2, it is clear that it is close to
the value, say , that minimizes

(46)

where and denotes
the normalizing coefficient in Theorem 2 without
the remainder term . In fact, we show in Appendix B that

(47)

where .
Our main theorem is as follows.

Theorem 3: Let be positive, and let

where denotes the fixed parameter . Then for all
in the interval and for all estimators (24)

(48)

where

finite or not, and is defined as

(49)

The equality is reached for .
Further, for all predictors and all

(50)

We emphasize again that the data generating distributions
are not restricted to i.i.d. distributions.

Proof: From Theorem 1 with (19)

(51)

We need to express in terms of .
This is done with (47), where is written in terms of

. With the behavior of
from Theorem 2 we get the claim (48). The rest follows in a
straightforward way.

By providing the reachable lower bound for estimation the
loss complexity with Theorem 2 provides a criterion for selec-
tion of model classes

(52)

We show next that the worst case bound for predictors in The-
orem 1 is not an isolated case, for the same bound in effect holds
even when the mean is taken with respect to most of the data
generating distributions , (41). We
also have an easy generalization of the inequality for the mean
quadratic prediction error for Gaussian processes in [9]; a some-
what different generalization of the quadratic error bound is in
[8, eq. (32)].

Theorem 4: Let be any predictor. Then
for all in the interval and all positive , the inequality

(53)

holds for large enough and for all , except in a set whose
volume goes to zero asgrows to infinity.

Proof: Consider

As stated at the end of Appendix A, the Central Limit Theorem
holds for the family , which implies the con-
dition required for [9, Theorem 1] to hold. Hence, the right-hand
side exceeds with the quantifications given. With (43)
we get (53).

The question remains of how tight the lower bound in
Theorem 3 is for prediction. This is tantamount to the question
whether the mean stochastic complexity can be reached predic-
tively in an asymptotic sense. The lower bound can be shown
to be reached asymptotically for in the case where the
data generating model is in the class , because then

In general, however, the problem appears to be more difficult
and we settle here for an example. The reachability of the lower
bound in the almost sure sense for Gaussian autoregressive (AR)
processes was shown in [7]; a good survey of predictive coding
for a number of loss functions other than the-types is [8].
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Example: Let and take the predictor as the arithmetic
mean of the past data

Write

and

We have the identity

Let and . Then

Further

(54)

and for

Hence,

By (54) , and by putting
we see with the formula for

in Theorem 2 that the lower bound in Theorem 4 is reached
asymptotically to within a constant.

APPENDIX A
EVALUATION OF

In [10], conditions were given under which the quite accurate
asymptotic formula for the normalizing coefficient for the NML
density function, in our case , holds

(55)

where is the Fisher information to be given below. The
validity of the formula requires conditions on the density func-
tions of the family considered, all involving at least two times
differentiability with respect to the parameters. The-loss func-
tions are not even once differentiable at the origin for all values
of of interest such as . We overcome this obstacle by
considering the modified loss functions as follows:

for

for
(56)

where is a parameter taking small values, in the limit even zero.
Because of symmetry it is enough to letrange through nonneg-
ative values only. The coefficients of the fifth degree polynomial
required are determined such that at the two pieces of
the function have equal values including the first three
derivatives. This gives for the scaled coefficients ,

, , and the equations

(57)

The solution is given by

and the polynomial part in (56) by

(58)

By a direct evaluation of for a number of different values
of in the interval we verified that it is nonnegative
and zero only at , which fact, however, is not required for
our analysis.

Consider then the class of density functions

where



482 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 2, FEBRUARY 2003

and , as before, is a closed and bounded subset ofwith
as its nonempty interior. Notice that we restrict the predictor

function to be linear, which is not unreasonable.
The conditions in [10], under which the expansion (55) holds,

are for the model class as follows.
Conditions:

1) The elements defining
the matrix are continuous in , and

(59)

where the expectation is with respect to .
Moreover, the limit satisfies for
all , and

(60)

2) The maximum-likelihood estimator satisfies the Central
Limit Theorem: The distribution of
converges to the normal distribution with mean zero and
covariance for . (Because of the com-
pactness of the requirement in [10] that the convergence
is uniform is not needed nor was used in the proof.)

3) Finally

(61)

where is a positive-definite matrix, and is such
that the maximum-likelihood estimate

. In addition, and most stringently, the family of the
elements

(62)

for , , as a function of the normalized
variable , where , is equicon-
tinuous at .

We verify that the members of the model family sat-
isfy these conditions for , and we prove Theorem 2
for the original family . In the proof, we use repeatedly
the formulas [5]

(63)

(64)

We evaluate first the normalizing constant

(65)

where the subindexes in the polynomial are dropped.
By expanding

(66)

we get with (58)

(67)

In the second integral in (65) put and apply (64) and
(63) to get

Hence, with (40)

(68)
In order to verify Conditions 1)–3), we need to evaluate the

first three derivatives of . For they
are as follows:

(69)

(70)

(71)

For they are

(72)

(73)

(74)

where

(75)

(76)

(77)

The elements of the matrix in Condition 1) are
clearly continuous in . Denote their expected value needed
in (59) by , which with (70) and (76) becomes

(78)
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Introduce from (58) into (66), multiply the result with the
second derivative from (76), and integrate term by term to get
the first integral

For put in the second integral in (78) and apply
(64) and (63), which with gives

(79)

(80)

By combining the two integrals and substituting the expression
of we get

for

for .

(81)

The convergence (59) in Condition 1) is satisfied with the
assumption (44)

(82)

as . We also see that

(83)

as , so that the limit may be taken as the Fisher information
matrix of even though the double derivative does
not exist everywhere. Since does not depend onand
since is bounded the rest of Condition 1), (60), is satisfied.

We next verify Condition 2). The maximum-likelihood es-
timates of a scalar-valued parameter satisfy the Central Limit
Theorem, provided Cramer’s conditions, [4], on the differentia-
bility of the likelihood function are satisfied. The proof extends
to vector-valued parameters provided the conditions hold com-
ponentwise. These conditions require in the present case, first,
that is three times differentiable in the interior of,
which it is. Secondly, we need to show that the absolute values of
the first two derivatives of the likelihood function are integrable

The first inequality is equivalent with

(84)

which follows from (69) and (72). To verify the second in-
equality note that

The integral of the first term is finite by (70), (73), and (76),
while the finiteness of the integral of the second terms follows
from (69), (72), and (75).

Further, Cramer’s condition

(85)

needs to be verified. From (71)

and from (58) and (77) we get

Hence, the inequality (85) holds. Finally, the Fisher information
matrix is clearly bounded and positive definite, and by
Cramer’s conditions [4], the Central Limit Theorem holds for
the family .

To verify Condition 3) we get from (73) and (76) for

while by (70) for

where the last inequality holds for . Hence, Condition 3)
holds for .

To complete the proof of Theorem 2 notice first that for
every

as . By [10, Theorem 1], (55) holds for the family
, where is replaced by in (82), and letting

we get with (83) the formula in Theorem 2.
We conclude this appendix by showing that the Central Limit

Theorem holds for the maximum-likelihood estimates in the
family . In fact, let be an open set in the parameter
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space, and put , where de-
notes the maximum-likelihood estimator in the family .
Similarly, put . Then, by (67) and (68)

as . Since the Central Limit Theorem holds for the family
, the left-hand side for eachconverges to the proba-

bility of under the limiting normal density function, as
, and so does the right-hand side.

APPENDIX B

With the definitions of , (46), and , (18), we get

where by the expression for in Theorem 2 the
-terms go to zero as grows to infinity. These imply

From the fact that

we then deduce

By expanding the logarithm into Tailor series we get

which implies (47).
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