
Complexity of Some Geometric and Topological

Problems

Marcus Schaefer�

DePaul University, Chicago, IL 60604, USA
mschaefer@cs.depaul.edu

Abstract. We show that recognizing intersection graphs of convex sets
has the same complexity as deciding truth in the existential theory of
the reals. Comparing this to similar results on the rectilinear crossing
number and intersection graphs of line segments, we argue that there is
a need to recognize this level of complexity as its own class.

1 Introduction

We show that determining whether a graph can be realized as an intersection
graph of convex sets in the plane has the same complexity as deciding the truth of
existential first-order sentences over the real numbers. This connection between
geometry and logic is not uncommon: Kratochv́ıl and Matoušek [11], for example,
showed that recognizing intersection graphs of line segments also has the same
complexity as the existential theory of the reals (we include a slightly simplified
proof of that result), and there are several other geometric problems that share
the same complexity. We therefore suggest the introduction of a new complexity
class ∃R, which captures the complexity of deciding the truth of the existential
theory of the reals.

Remark 1. In the formal definition of ∃R we will not allow equality. If we de-
fine ∃=R like ∃R, but with equality allowed, we obtain a complexity class for
which there is a name in the Blum-Shub-Smale model of computing over the
reals: BP(NP0

R
) [3]; this class has not played a major role in that model so

far (as reflected by the complexity of the notation). Somewhat surprisingly,
∃R = ∃=R [21], even though algebraically the two classes differ, e.g. x2 = 2
defines an irrational point, which is not possible without equality.

The first combinatorial problem shown complete for ∃R was stretchability of
simple pseudoline arrangements, a result due to Mnëv as a byproduct of his uni-
versality theorem [14,18,23]. There have been several other problems classified as
∃R-complete since, including the algorithmic Steinitz problem [2], intersection
graphs of line segments [11], and straight-line realizability of abstract topologi-
cal graphs [13]. Very often, however, ∃R-completeness is not claimed explicitly;
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for example, in the case of the rectilinear crossing number, Bienstock gave a re-
duction from stretchability to the rectilinear crossing number problem. Since the
problem can easily be shown to lie in ∃R (see Section 3) computing the rectilinear
crossing number is ∃R-complete. So—in a sense—the complexity of the problem
is known precisely, but it is not unusual to see the complexity question for the
rectilinear crossing number listed as an open problem [15]. There is some good
reason for that: we do not know how to capture ∃R well with respect to clas-
sical complexity classes: we know that it contains NP (this follows easily from
the definition of ∃R; also, Shor gave a direct proof that stretchability is NP-
hard [23]) and is itself contained in PSPACE, a remarkable improvement on
Tarski’s original decision procedure for the theory of reals by Canny [4]. So, in a
sense, we do not know the complexity of the rectilinear crossing number problem,
since we can only position it between NP and PSPACE. We should approach
this situation in the same spirit as we do NP-completeness: NP-completeness
of a problem does not exclude the possibility that the problems is in P or EXP-
complete, but proving it NP-complete focuses that question on the real issue,
away from the particular problem, and towards the study of the structural as-
pects of NP-completeness as a whole. Something similar should be possible for
∃R-completeness. Knowing that a problem is ∃R-complete does not tell us more
than that it is NP-hard and in PSPACE in terms of classical complexity, but it
does tell us where to start the attack: by studying the structure of ∃R-complete
problems; so asking, like [15], whether the rectilinear crossing number can be
decided in NP is really asking whether ∃R lies in NP. And that puts a different
perspective on the problem. A solution will likely not come out of graph drawing
or graph theory, but out of a better understanding of real algebraic geometry
and logic; what satisfiability is for NP, the existential theory of the reals is
for ∃R.

To justify our claim of the importance of ∃R and the necessity of a new com-
plexity class, we need to find natural ∃R-complete problems. In this note we give
three examples: two known (one implicitly), one new. Plus one bonus problem
in topological inference. This work is part of a more comprehensive project in
which we survey many other problems as candidates for ∃R-completeness includ-
ing several other new results, including graph and linkage realizability and the
complexity of finding Brouwer fixed points and Nash equilibria [19].

2 Background

The existential theory of the reals is the set of true sentences of the form

(∃x1, . . . , xn) ϕ(x1, . . . , xn),

where ϕ is a quantifier-free Boolean formula (without negation) over the sig-
nature (0, 1, +, ∗, <) interpreted over the universe of real numbers. It was first
shown by Tarski that this theory is decidable; it is now known to be decidable
in PSPACE by a result of Canny [4].
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By disallowing negation, we restrict ourselves to strict inequalities, which is
the version of the problem relevant to the examples presented in the current
note; let us call the set of true sentences of this theory STRICT INEQ. With
this we define the complexity class ∃R as the closure of STRICT INEQ under
polynomial-time reductions. A problem is ∃R-complete if it belongs to ∃R and
every problem in ∃R can be reduced to it by a polynomial-time reduction. Note
that NP ⊆ ∃R, since we can express satisfiability of a Boolean formula in ∃R.
For example, (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z) is equivalent to

(∃x, y, z)[ (−ε < x < 2) ∧ (−ε < y < 2) ∧ (−ε < z < 2)
∧ (x(1 − y)z) + ((1 − x)yz) + ((1 − x)(1 − y)(1 − z)) < ε],

if we choose ε = 1/8(1 + 4m) = 1/104 where m is the number of clauses, so
m = 3 in the example.

A pseudoline is a simple closed curve in the projective plane that is home-
omorphic to a straight line. An arrangement of pseudolines is a collection of
pseudolines so that each pair of pseudolines cross at most once (and do not
touch). An arrangement is simple if no more than two pseudolines pass through
a point. Two arrangements are equivalent if there is a homeomorphism of the pro-
jective plane turning one into the other. An arrangement of pseudolines is simply
stretchable if it is equivalent to a simple arrangement of straight lines. (So being
simply stretchable means the original arrangement is simple and stretchable.)

Remark 2. If one wants to avoid the reference to the projective plane, one can
define pseudolines in the plane as simple x-monotone curves, that is curves that
cross every vertical line exactly once. If one takes this route, one needs to require
that in an arrangement of pseudolines every pair of pseudolines crosses exactly
once (as opposed to at most once).

Mnëv showed that STRICT INEQ reduces to SIMPLE STRETCHABILITY; since
the reverse is also true, SIMPLE STRETCHABILITY is ∃R-complete. Shor later
simplified the reduction [23]. From this it immediately follows that SIMPLE
STRETCHABILITY is NP-hard, since ∃R-hardness implies NP-hardness as we
saw above. (Shor [23] also gave a direct proof.)

∃R-hard problems typically require large representations; Goodman, Pollack
and Sturmfels [8] showed that there are stretchable arrangements of n pseudo-
lines whose coordinate representation requires 2cn bits for some constant c > 0.
(Equivalently, if we want to draw the endpoints on a grid, it must have size at
least 22c′n

for some c′ > 0.) Typically, reductions from an ∃R-hard problem A to
another problem B are geometric in the sense that if we are given a geometric
representation of B, we can derive a geometric representation of A which is of at
most polynomial size in the bit-size of the original representation. For example,
this is the case for Bienstock’s reduction from simple stretchability to rectilinear
crossing number. We can then conclude (as Bienstock did) that there are graphs
for which any straight-line drawing with optimal rectilinear crossing number re-
quires 2cn bits of storage. All other reductions in this note are also geometric,
so geometric representations of these problem will require exponential precision.



Complexity of Some Geometric and Topological Problems 337

3 Rectilinear Crossing Number

The rectilinear crossing number of G, lin-cr(G), is the smallest number of cross-
ings in a straight-line drawing of G, that is, a drawing in which every edge is
represented by a straight-line segment and at most two edges intersect in a point.
The problem is NP-hard by Garey and Johnson’s original proof that comput-
ing the crossing number is NP-hard [7] and it remains NP-hard even if the
graph is cubic and 3-connected [9,16]. Bienstock gave an easy and elegant reduc-
tion that shows that SIMPLE STRETCHABILITY reduces to deciding whether
lin-cr(G) ≤ k, even if G is restricted to be cubic [1].

Theorem 1 (Bienstock [1]). Computing the rectilinear crossing number of a
(cubic) graph is ∃R-complete. There are graphs for which the coordinates of the
vertices in an lin-cr-optimal drawing of the graph require exponential precision
(in the size of the graph).

Proof. ∃R-hardness follows from Bienstock’s reduction as does the claim about
exponential precision, so we only have to show that determining whether
lin-cr(G) ≤ k lies in ∃R; the only, small, difficulty is that we do not know
which edges of the graph cross, so we need to guess a subset of pairs of edges of
size at most k using real numbers.

Using quantifier-free formulas, we can define colinear (x1, y1, x2, y2, x3, y3) to
express that the three points (xi, yi)i∈[3] are not colinear and a predicate
cross(x1, y1, x2, y2, x

′
1, y

′
1, x

′
2, y

′
2) expressing that the two line segments deter-

mined by (x1, y1), (x2, y2) and (x′
1, y

′
1), (x′

2, y
′
2) do not have a point in common

(details in the full paper).
For a fixed k and m = |E(G)|, we can write a predicate atmostk(z1, . . . , zm2)

which guarantees that at most k of the zi are greater than zero:
∧

i∈[m2]

(
(−1/2m4 < zi < 0) ∨ (1 + 1/2m2 < zi)

) ∧
∑

i∈[m2]

zi < k + 1.

Since lin-cr(G) ≤ (
m
2

)
, we can assume that k ≤ (

m
2

)
; so the sum of the negative

zi is at least −1/2m2. If more than k of the zi are positive, their sum is at least
k + 1 + (k + 1)/2m2, but then the total sum is at least k + 1. On the other
hand, given any subset of the zi of size at most k, we can assign each zi in
the set the value 1 + 2/3m2 and every other zi gets the value −2/3m4, so that∑

i∈[m2] zi ≤ k + 2/3 < k + 1, showing that any subset of the zi can be realized
by atmostk.

With these predicates, we can express lin-cr(G) ≤ k; to simplify the formula,
suppose that V (G) = [n], E(G) = [m], and we have two functions h, t : E → V
so that h(e) = x and t(e) = y if e ∈ E is an edge between x, y ∈ V . We
use z(i−1)m+j > 0 to indicate that edges i and j are allowed to cross. Now
lin-cr(G) ≤ k if and only if
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(∃x1, y1, . . . , xn, yn, z1, . . . , zm) [ atmostk(z1, . . . , zm2)

∧
∧

i<j<k∈[n]

colinear (xi, yi, xj , yj, xk, yk)

∧
∧

i<j∈[m],
not adjacent

(z(i−1)m+j >0) ∨ cross(xh(i), yh(i), xt(i), yt(i), xh(j), yh(j), xt(j), yt(j))].

4 Intersection Graphs of Segments

G = (V, E) is an intersection graph of line segments if for each v ∈ V there is a
line segment �v in the plane so that uv ∈ E if and only if �u and �v intersect.

Theorem 2 (Kratochv́ıl, Matoušek [11]). Recognizing intersection graphs
of line segments is ∃R-complete. There are graphs for which the coordinates of
the endpoints of the line segments in any intersection representation of the graph
require exponential precision (in the size of the graph).

Remark 3. Kratochv́ıl and Pergel showed that the recognition of intersection
graphs of line segments remains NP-hard if the graphs have girth at least k for
any fixed k [12]. Can this be extended to ∃R-completeness?

We give a slightly simplified proof of Theorem 2; the argument will also be used
in Theorem 3. We write [n] for {1, . . . , n}.
Lemma 1. Suppose we have Jordan curves �, (�i)i∈[n], (sj

i )i∈[n−1],j∈[3], and
(ci)i∈[4n] in the plane so that

(i) � crosses �i, i ∈ [n], and s2
i , i ∈ [n − 1],

(ii) ci crosses ci+1 (c1 for i = 4n) exactly once, i ∈ [4n],
(iii) �i crosses c2i and c4n−2i+2, i ∈ [n],
(iv) both s1

i and s3
i cross s2

i , i ∈ [n − 1],
(v) s1

i crosses c2i+1 and s3
i crosses c4n−2i+1, i ∈ [n − 1],

(vi) the only other crossings among these curves are between pairs of �i.

Then the curves �i cross � either in order �1, . . . , �n or in the reverse of that
order. The conclusion remains true if instead of (i) we only require that (i′) �
crosses �i, i ∈ [n], and (i′′) s2

i , i ∈ [n − 1], may cross �, but it does lie in the
same connected component of R

2 − ∪i∈[4n]ci as �.

We call the collection of curves (sj
i )i∈[n−1],j∈[3], and (ci)i∈[4n] and the way they

cross each other and the curves � and (�i)i∈[n] the ordering gadget for � with
respect to (�i)i∈[n]. The intended drawing of the curves of the lemma is shown
in Figure 1, but there are other drawings.

Proof. The set
⋃

i∈[4n] ci contains a (unique) closed Jordan curve C. C separates
the plane into two faces; without loss of generality (since we are dealing with
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Fig. 1. An ordering gadget

curves), we may assume that � lies in the inner face. Since � crosses every s2
i , and

these curves do not cross any cj , all the s2
i also lie in the inner face of C (indeed,

(ii′) is sufficient to draw this conclusion). Within each Si := c2i+1 ∪ s1
i ∪ s2

i ∪
s3

i ∪ c4n−2i+1, i ∈ [n− 1] choose a Jordan arc si with endpoints on C. The si are
chords of C that lie in the inner face of C (since s2

i does); moreover, the si do
not intersect each other (since any two Si are disjoint) or any of the �i (since Si

and �j are disjoint for all i, j ∈ [n]). Now the ends of the si and �i along C are in
order �1, s1, �2, . . . , sn−1, �n, �n, sn−1, . . . , s1, �1 (up to cyclic shifts). Since every
�i has to cross � and has to do so within C, it must do so in order �1, . . . , �n or
its reverse.

Proof (Theorem 2). It is easy to see that the problem lies in ∃R. To show ∃R-
hardness, we reduce from SIMPLE STRETCHABILITY. Suppose we are given
a simple arrangement A of pseudolines. Remark 2 allows us to think of the
arrangement as a set of simple, x-monotone curves.

Add a triangle T formed by three pairwise crossing curves so that all crossings
of curves in A lie within the region enclosed by T and one edge of T crosses all
curves in A (for example, choose a vertical line segment to the left of all crossings
in A that is long enough to cross every curve in A). We can choose T so that
we know the order of crossings of curves belonging to A with the curves of T .

Cut off the pseudolines just beyond the boundary of T and let C contain
all the resulting curves together with the three curves from T . For each curve
� ∈ C add the ordering gadget—as constructed in Lemma 1—with respect to
all remaining curves in C. Also, require that curves c2i and c4n−2i+2 for � cross
the corresponding two c-curves of �i (see Figure 2). Let GA be the resulting
intersection graph of all curves.

In any (curvilinear) drawing of GA, the order of crossings along each curve
from A and T with curves from that set is as in the original arrangement or
reversed by Lemma 1, since we added ordering gadgets for each of those curves.
In particular, the crossings with T are first and last along each curve from A, and
therefore all crossings between curves of A occur within the region enclosed by
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T . Now the crossings of A with the edge of T that crosses all curves in A occur
either in the original order or in the reversed order. However, this means that
the order of crossings along edges realizing A must either all be in the original
order, or all of them are reversed. Hence, if GA can be realized as an intersection
graph of straight-line segments, then A is stretchable.

It is easy to see that if the original arrangement A is stretchable, then so is
the extended arrangement (the intended drawing of the ordering gadget is shown
in Figure 1).

Finally, the reduction is geometric, so the claim about exponential precision
follows.

Fig. 2. Two arrangement lines crossing, with gadgets

5 Intersection Graphs of Convex Sets

G = (V, E) is an intersection graph of convex sets if for every v ∈ V there is a
convex set Cv in the plane so that uv ∈ E if and only if Cu and Cv intersect.
We say two regions in the plane intersect if they share a common point. The
problem is known to be in PSPACE and NP-hard [11].

Theorem 3. Recognizing intersection graphs of convex sets is ∃R-complete.
There are graphs for which any realization as intersection graphs of convex poly-
gons requires exponential precision in writing down the coordinates of the vertices
of the polygon.1

For the ∃R-hardness proof we carefully adapt the reduction from
SIMPLE STRETCHABILITY to SEG we saw in Theorem 2, and we begin by
restating Lemma 1 for convex sets.

1 The result on exponential precision has been independently obtained by Martin
Pergel[10].
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Lemma 2. Suppose we have convex sets L, (Li)i∈[n], (Sj
i )i∈[n−1],j∈[3], and

(Ci)i∈[4n] in the plane so that

(i) L intersects Li, i ∈ [n], and S2
i , i ∈ [n − 1],

(ii) Ci intersects Ci+1 (C1 for i = 4n), i ∈ [4n],
(iii) Li intersects C2i and C4n−2i+2, i ∈ [n],
(iv) both S1

i and S3
i intersect S2

i , i ∈ [n − 1],
(v) S1

i intersects C2i+1 and S3
i intersects C4n−2i+1, i ∈ [n − 1],

(vi) the only other intersections among these regions are between pairs of Li.

Moreover, suppose we have Jordan curves � in L and �i in Li, i ∈ [n] so that
every �i crosses �. Then the order of the intersections along � is either �1, . . . , �n

or the reverse of that order.

We call the collection of convex sets (Sj
i )i∈[n],j∈[3], and (Ci)i∈[8n−4] and the way

they intersect each other and the sets L and (Li)i∈[n] the ordering gadget for L
with respect to (�i)i∈[n]. The intended drawing of the convex sets is similar to
the one shown in Figure 1 with line segments replaced by convex sets.

Proof. Pick vertices vi ∈ Ci ∩ Ci+1, i ∈ [4n − 1], and v4n ∈ C4n ∩ C1, and let ci

be a straight-line segment in Ci connecting vi to vi+1 (v1 for i = 4n). Then the
ci form a cycle C without crossings (since any two non-adjacent segments of C
belong to disjoint convex sets). Now we can extend �i in Li ∪ C2i so it connects
to v2i−1 and in Li ∪ C4n−2i+2 so it connects to v4n−2i+1 without crossing C.
Pick vertices t1i ∈ S1

i ∩ S2
i and t2i ∈ S2

i ∩ S3
i . We can connect t1i by a curve s1

i

in S1
i ∪ C2i+1 to v2i and t2i by a curve s3

i in S3
i ∪ C4n−2i+1 to v4n−2i without

crossing any of the curves we have already constructed; finally, we can connect
t1i to t2i within S2

i by a curve s2
i not crossing any other curve except, possibly,

�. Now extend the curves we have constructed slightly, so that shared endpoints
become crossing points. The resulting curves fulfill Lemma 1 with condition (i′)
in place of (i): (i′) is true, since L intersects S2

i , i ∈ [n − 1], and none of these
sets intersect C, so they must all lie on the same side of C. Now Lemma 1 allows
us to conclude that � is crossed by (�i)i∈[n] in order �1, . . . , �n or the reverse of
that order.

Proof (Theorem 3). It it easy to see that the problem lies in ∃R. Suppose we
are given a simple arrangement A of pseudolines. As earlier, we think of the
arrangement as a set of simple, x-monotone curves.

Let D be a disk which contains all the crossings of the pseudolines in its
interior. Cut all the pseudolines at the boundary of D and let their order of
intersection with the boundary be A1, . . . , An, A1, . . . , An. Add sets (Bi)i∈[2n],
required to intersect cyclically: Bi with Bi+1 and B2n with B1, with no other
intersections, and sets (Hi)i∈[2n], so that Hi intersects Bi, and Ai if i ≤ n and
Ai−n otherwise. Now for each of the A-, B- and H-sets add the ordering gadget
described in Lemma 2. Call the resulting intersection graph GA. (We will only
make use of the ordering gadgets for (Ai)i∈[n], but we need to add them in such
a way that they allow for the intersections with the other sets as well.)
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If A is stretchable, then the intersection graph we specified is realizable by
convex sets (actually by line segments).

So suppose there is a drawing of convex sets realizing GA. Pick a vertex
ui ∈ Bi ∩ Bi+1 for i ∈ [2n − 1], and u2n ∈ B2n ∩ B1, and let bi be a straight-
line segment between ui and ui+1 (u1 for i = 2n). Then the bi form a cycle B
(without crossings). None of the Ai intersect any of the Bj so all Ai must be
on the same side of B. For each Ai, i ∈ [n], pick a straight-line segment �i that
starts in Ai ∩ Hi and ends in Ai ∩ Hi+n. We claim that any two �i cross each
other: each �i can be extended through Hi and Hi+n to connect to the cycle B.
But then since two �i connect to alternating endpoints along B and both curves
are on the same side of the cycle, the curves must cross; since the Hi do not
intersect each other, that crossing must occur along the straight-line segments
�i.

Now Lemma 2 implies that the order of crossings along each �i is either the
original order or the reversed order; however, since the order of intersection with
D is fixed by the cycle B, either all those orders are in the original order, or
they are all reversed. But then, in either case, A is stretchable.

The claim about exponential precision again follows because the reduction we
gave is geometric.

6 Topological Inference

Topological inference problems ask whether a specification of topological rela-
tionships can be realized by regions. The problems vary by what type of relation-
ships (e.g. “contained in” and “disjoint with”) and predicates (e.g. “connected”,
“convex”) are available and what types of regions belong to the universe of dis-
course (2-dimensional, 3-dimensional, closed, regular, connected). For the cur-
rent discussion we will restrict our universe to regular regions in the plane, not
necessarily connected, where a region is regular if it is the closure of its interior.

There is a standard set of topological relationships, called RCC8, from the re-
gion connection calculus, that, in some sense, cover all possibilities of how two
regions can be related to each other; the relations are, “disconnected” (DC), “ex-
ternally connected” (EC), “equal” (EQ), “partially overlapping” (PO), “tangen-
tial proper part” (TPP), “tangential proper part inverse” (TPPi), “non-tangential
proper part” (NTPP), and “non-tangential proper part inverse” (NTPPi), for de-
tails see [6,17]. Other relations can be defined from the basic relations, for example
“proper part” (PP) is the disjunction of TPP and NTPP.

In the language of RCC8 a relationship between two regions is a constraint
and the conjunction of several constraints a constraint network (we do not need
to allow negation, since the 8 relations are exhaustive (at least one of them has to
hold). These are special cases of topological expressions, that is, Boolean formulas
involving the 8 relations (typically excluding negation, since it is not necessary).
We say a topological expression is realizable, if it is realized by regular regions
in the plane.
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The problem of determining whether a constraint network (or a topological
expression in general) is realizable lies in NP and is NP-complete for the full set
of relations, though there are tractable fragments [17, Section 6]. If we restrict
the universe to connected regions, the problem remains NP-complete, as shown
in [20,22].

If we add the predicate “convex” to the signature of topological expressions,
then the problem becomes ∃R-complete.

Theorem 4 (Davis, Gotts, Cohn [5]). RCC8 with convexity is ∃R-complete,
this remains true even if the signature is restricted to EC, PP and “convex” or
PO, DC and “convex”. In the second case the result remains true if the constraint
network contains a constraint for every pair of regions (the constraint network
is fully specified).

Davis, Gotts, Cohn [5] only show the first part (EC, PP, and “convex”), we show
the second part (restriction to PO, DC and “convex”) here.

Proof. PO, DC and “convex” are enough to express that a graph G is the in-
tersection graph of convex regions in the plane (we require every region to be
convex, so we are not bothered by the disconnected regions contained in the uni-
verse), which, together with Theorem 3 suffices to establish ∃R-hardness. Note
that we specify for every pair of regions whether they overlap (PO) or are dis-
joint (DC), so the resulting constraint network is fully specified. Davis, Gotts,
Cohn [5] show that the problem lies in ∃R.

Remark 4. If we restrict the universe of discourse to connected sets, then it is
not immediately obvious that the realizability problem (with convexity) remains
in ∃R: the issue at stake is that in this case the realizability problem without
convexity is equivalent to the string graph problem, for which membership in
NP is not trivial [22,20].
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