
Complexity of the AdS Soliton

Alan P. Reynolds∗ and Simon F. Ross†

Centre for Particle Theory, Department of Mathematical Sciences
Durham University

South Road, Durham DH1 3LE

February 25, 2018

Abstract

We consider the holographic complexity conjectures in the context of the AdS soli-
ton, which is the holographic dual of the ground state of a field theory on a torus
with antiperiodic boundary conditions for fermions on one cycle. The complexity is
a non-trivial function of the size of the circle with antiperiodic boundary conditions,
which sets an IR scale in the dual geometry. We find qualitative differences between
the calculations of complexity from spatial volume and action (CV and CA). In the
CV calculation, the complexity for antiperiodic boundary conditions is smaller than
for periodic, and decreases monotonically with increasing IR scale. In the CA calcu-
lation, the complexity for antiperiodic boundary conditions is larger than for periodic,
and initially increases with increasing IR scale, eventually decreasing to zero as the IR
scale becomes of order the UV cutoff. We compare these results to a simple calculation
for free fermions on a lattice, where we find the complexity for antiperiodic boundary
conditions is larger than for periodic.
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1 Introduction

In principle, holography provides a well-defined non-perturbative formulation of quantum
gravity. But to really use it to address questions about the nature of spacetime, we need to
understand the emergence of the bulk spacetime from the dual field theory description. Since
the conjecture of Ryu and Takayanagi [1], there has been growing evidence that entanglement
plays an important role, and a variety of tools from quantum information have been applied
to understand how spacetime emerges from the field theory. In [2], Susskind conjectured a
new relation between the bulk geometry and the dual boundary state, proposing that the
time-dependent geometry of the region behind the horizon of an AdS black hole could be
related to the complexity of the dual boundary state.1 This proposal was refined in [4] into
the conjecture that the computational complexity of the boundary state at a given time
(on some spacelike slice of the boundary) could be identified with the volume of a maximal
volume spacelike slice in the bulk, ending on the given boundary slice. This will be referred
to as the CV conjecture. This was further developed in [5, 6].

More recently, it was conjectured that the complexity is related instead to the action of
a Wheeler-DeWitt patch in the bulk bounded by the given spacelike surface [7, 8]. This is
referred to as the CA conjecture. An appropriate prescription for calculating the action for
a region of spacetime bounded by null surfaces was obtained in [9]. Further related work is
[10, 11, 12, 13, 14].

No derivation of these conjectures, relating them back to the basic AdS/CFT dictionary,
has yet been given. They are supported by the relation between the results of the bulk
calculation and general expectations for the behaviour of the complexity in a generic quantum
system. This evidence comes so far from the study of black hole spacetimes. Both the CV
and CA conjectures produce results for the complexity that grow linearly in time at late
times, coming from the contributions from the region behind the black hole horizon. This
linear growth is supposed to be generic for interacting quantum systems in states of non-
maximal complexity [8, 15]. Furthermore, the time derivative is simply proportional to the
mass of the black hole, which can be interpreted as the energy of the state in the dual theory.
This saturates a proposed bound on the growth of the complexity [16, 8]. (Note however
that recent studies of the finite-time growth rate find some violations of this bound [17, 18];
see [19] for a discussion of the validity of the bound in a black hole context.) From the bulk
point of view, it is highly non-trivial that one obtains simply the mass. This relation to
the mass persists in studies of the effects of higher-curvature corrections [20, 21, 22, 23, 24],
although recent work on the inclusion of flavour branes finds that the bound is satisfied but
no longer saturated [25].

It is interesting to study the conjectures in other spacetimes. In recent work [26], we
investigated the extension of these calculations to solutions which are asymptotically AdS in
a de Sitter slicing, dual to field theories in de Sitter space. For a particular set of de Sitter×
S1 boundary conditions, there are bubble solutions where the geometry terminates at a
finite position in the bulk, where the circle direction closes off smoothly. We found striking
differences between the CV and CA calculations for these bubble solutions.

1The quantum computational complexity is a measure of the minimum number of elementary gates needed
in a quantum circuit which constructs a given state starting from a specified simple reference state (see e.g.
[3]).
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A simpler context in which similar differences can be seen is the field theory on a torus
with antiperiodic boundary conditions for fermions on (at least) one cycle. The ground state
for such boundary conditions is dual to the AdS soliton [27], where the cycle with antiperiodic
boundary conditions closes off smoothly in the bulk at a “bubble”, at a radius r+ which is
inversely proportional to the size of this cycle. In this paper, we consider the holographic CV
and CA calculations of the complexity of this ground state. This is a simple adaptation of our
earlier calculations; this geometry arises as a limit of the de Sitter geometries we considered
previously. In either case we get a time-independent result, which depends non-trivially on
the size of the cycle with antiperiodic boundary conditions, through the dependence on the
position of the “bubble” in the bulk soliton solution.

We again find striking differences between the CV and CA calculations. The CV cal-
culation for this case is straightforward, and gives a smaller complexity for antiperiodic
than for periodic boundary conditions. The complexity for antiperiodic boundary condi-
tions decreases monotonically as the circle radius decreases, bringing the bubble closer to
the boundary. For the CA calculation, by contrast, the complexity is larger for antiperiodic
than for periodic boundary conditions, and initially increases for decreasing circle radius
(while that radius is large compared to the UV cutoff scale). It eventually turns around and
decreases, going to zero as the bubble approaches the boundary as one would expect. While
the complexity goes to zero as the bubble approaches the boundary in both cases, we find
that this involves different powers of the separation in the two cases.

The two proposals for holographic complexity thus give very different answers already
in this simple context. We make some first steps towards comparing these holographic
calculations to field theory, building on [28, 29], where a free boson on a toroidal lattice was
considered. We extend these calculations to consider free fermions. We can then consider
the change in complexity resulting from changing the fermion boundary conditions from
periodic to antiperiodic. We find that in a simple lattice calculation, we get a larger result
for the complexity for antiperiodic boundary conditions than for periodic, and the complexity
increases as the circle radius decreases. It is worth emphasizing that the calculation we carry
out has strong limitations, and an important direction for future work is to refine the field
theory calculation and see what effect this has on the behaviour we find.

In section 2, we review the holographic complexity conjectures. We discuss the AdS
soliton solution in section 3, and carry out the CV calculation. In section 4, we carry out the
CA calculation. In section 5, we consider free fermions on a lattice, and give a calculation
of the difference in complexity for the two boundary conditions on the fermions. In section
6, we conclude with a brief summary of the results and discussion of future directions.

2 Review of CV and CA

We first review the two proposals for the holographic calculation of the complexity. In the
CV conjecture of [2], the complexity C of a pure state |Ψ〉 of a holographic field theory
on some spatial slice Σ on the boundary of an asymptotically AdS spacetime is identified
with the volume V of the maximal volume codimension one slice B in the bulk having its
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boundary on Σ,

CV ∝
V (B)

GNlAdS

. (1)

This was motivated by the study of the behaviour of Schwarzschild-AdS black hole solutions,
where it was found that the volume of the maximal volume slice grows linearly with time,
even at late boundary times when other observables have thermalized. The complexity
conjecture relates this linear growth to linear growth of the complexity of the dual state,
which is expected to continue for exponentially long times in a generic interacting theory,
starting from a low-complexity initial state (see [15] for a recent discussion of this growth of
complexity). The volume of the maximal volume slice has a divergence proportional to the
volume of Σ.

In [7, 8], an alternative CA conjecture was proposed. This identifies the complexity of
|Ψ〉 with the action of the “Wheeler-DeWitt patch”, the domain of development of the slice
B considered previously. The proposal is that

CA =
SW

π~
, (2)

where SW is the action of the Wheeler-DeWitt patch. This proposal has the advantage that
the formula is more universal, containing no explicit reference to a bulk length scale. It is
also often easier to calculate, as there is no maximisation problem to solve. Finding the
Wheeler-DeWitt patch for a given boundary slice is easier than finding the maximal volume
slice.

For the black hole solutions, the action of the Wheeler-DeWitt patch turns out to also
exhibit linear growth in time at late times. In [7, 8], it was argued that the black hole
saturates a conjectured universal upper bound on the rate of growth of the complexity [16]

dC
dt
≤ 2M

π~
. (3)

From the field theory point of view, the massM is the energy of the state. The saturation says
that black holes represent the situation where the complexity is growing at its maximal rate,
analogous to the conjecture that black holes are the fastest scramblers in nature [30, 31, 32].
Note however that recent studies of the finite-time growth rates in black holes found violations
of the bound [17, 18]. Further work on the CA proposal for charged black holes is found in
[33, 34, 20], while extensions to black holes in more general gravitational theories are found
in [21, 22, 23, 24].

This bound is saturated by all Schwarzschild-AdS black holes in the CA conjecture [7, 8].
It is also saturated in the CV conjecture for large Schwarzschild-AdS black holes if we take
an appropriate normalization of the complexity in the latter case,

CV =
(d− 1)V

2π2GN`
=

8(d− 1)V

π`
, (4)

where in the second equality we adopt units where 16πGN = 1, as we will do henceforth. We
will also set ~ = 1. We will adopt this normalization of the complexity in the CV conjecture
for definiteness in our later calculations.
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To apply the CA conjecture, we need to define a prescription for the calculation of the
action. The Wheeler-DeWitt patch has null boundaries, for which the appropriate boundary
terms needed for the Einstein-Hilbert action were not yet known. In [9], motivated by
the CA conjecture, a prescription for the action of a region of spacetime containing null
boundaries was constructed (see also [35, 36]). The prescription was obtained by requiring
that the variation of the action vanish on-shell when the variation of the metric vanishes on
the boundary of the region.

The prescription of [9] is coordinate-dependent; the value of the action depends on the
parametrization adopted on null geodesics along the null boundaries. However, there is a
term identified in [9] which can be added to the action to eliminate this dependence. In
previous work [37], we showed that including this term has the additional virtue that it
removes the leading divergences in the action.

For the AdS soliton and pure AdS solutions we consider in this paper, the action of the
Wheeler-DeWitt patch in the prescription of [9] is

SV =

∫
W

(R− 2Λ)
√
−g dV −2

∫
F

κ dS dλ+2

∫
P

κ dS dλ−2

∮
Σ

a dS, (5)

where F (P) are respectively the future (past) boundary of the Wheeler-DeWitt patch, λ is
a parameter on the null generators increasing to the future, so kα = ∂xα/∂λ is the tangent
to the generators, and kα∇αk

β = κkβ. Σ is their intersection at the AdS boundary, and
a = ln |kF · kP/2|.

To this we add the additional contribution

∆S = −2

∫
F

Θ ln |`Θ|dSdλ+ 2

∫
P

Θ ln |`Θ|dSdλ, (6)

where Θ = 1
2
γ−1∂λγ is the expansion of the null surfaces, where γ is the determinant of the

metric on the cross-sections of constant λ. Our total action is S = SV + ∆S.
The simplest example of the calculation is to consider vacuum AdSd+1 in Poincaré coor-

dinates,

ds2 =
`2

z2
(dz2 − dt2 + d~x2), (7)

where ` is the AdS scale, Λ = −d(d−1)
2`2

, which is dual to the field theory in flat space. We
consider a d+ 1 dimensional AdS space, with a d dimensional boundary.

For the CV conjecture, the maximal volume slice with boundary at t = 0 is simply the
t = 0 surface in the bulk, whose volume is

V (B) =

∫
dz dd−1x

√
h = `dVx

∫ ∞
ε

dz

zd
=

`dVx
(d− 1)εd−1

, (8)

where Vx is the IR divergent coordinate volume in the ~x directions. Thus, the complexity
calculated according to the CV prescription is, with the normalization of (4),

CV =
8`d−1Vx
πεd−1

. (9)

This is proportional to the volume of the space the field theory lives in, in units of the cutoff.

5



z = 0

t = 0

F

P

z = t = z -  

t = -(z - ) 

t

z

Figure 1: The Wheeler-DeWitt patch in Poincaré coordinates.

Turning to the CA conjecture, consider the Wheeler-DeWitt patch of this cutoff surface.
If we ask for the complexity of the field theory on the t = 0 surface, cut off at z = ε, the
Wheeler-DeWitt patch lies between t = z−ε and t = −(z−ε). With an affine parametrization
along the null surfaces,

λ = − `
2

αz
on F, λ =

`2

βz
on P, (10)

where α, β are arbitrary constants representing the freedom in the choice of parametrization,
the action calculated according to (5) is2

SV =
`d−1Vx
εd−1

[−4 ln(ε/`)− 2 ln(αβ)− 4

d− 1
]. (11)

We include the additional contribution (6). The metric on F has
√
γ = `d−1/zd−1, so the

expansion is

Θ =
1
√
γ

∂
√
γ

∂λ
= − 1
√
γ
α
z2

`2

∂
√
γ

∂z
= (d− 1)α

z

`2
. (12)

The surface term is

SF = 2(d− 1)`d−1Vx

∫ ∞
ε

z−d ln(α(d− 1)z/`) dz

= 2
`d−1

εd−1
Vx

(
ln(α(d− 1)ε/`) +

1

d− 1

)
,

and similarly SP = 2 `
d−1

εd−1Vx
(
ln(β(d− 1)ε/`) + 1

d−1

)
, so

S = SV + ∆S = 4
`d−1

εd−1
Vx ln(d− 1). (13)

2With an affine parametrization, the null surface terms along F and P in (5) vanish.
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Taking the proposal (2) for the complexity, this gives

CA =
4`d−1Vx
πεd−1

ln(d− 1). (14)

This has the same divergence structure as in (9), but with a different coefficient. Subleading
divergences in both calculations can be expressed in terms of local geometric properties of
the boundary in both cases, but the relative coefficients differ.

3 AdS soliton

If we consider a field theory defined on a flat torus, with periodic boundary conditions for
the fermions (preserving supersymmetry), the holographic dual of the ground state is the
pure AdS solution in Poincare coordinates considered above. If however we take antiperiodic
boundary conditions for the fermions on one or more directions, while the pure AdS solution
is still a solution, it no longer corresponds to the ground state in the field theory. The
holographic dual of the ground state is instead the AdS soliton [27],

ds2 =
r2

`2

[
−dt2 +

(
1−

rd+
rd

)
dχ2 + d~x2

]
+

(
1−

rd+
rd

)−1
`2

r2
dr2, (15)

where χ is the circle with antiperiodic boundary conditions (or if there is more than one
such circle, the one with the smallest period). We take a d-dimensional boundary, so there
are d − 2 coordinates ~x. Imposing smoothness at r = r+ relates the parameter r+ to the
periodicity of χ, ∆χ = 4π`2

dr+
. This solution has a negative boundary energy,

E = −
rd+∆χVx
`d+1

= −Vx`
d−1(4π)d

dd∆χd−1
. (16)

This can be understood as a Casimir energy for the ground state due to the periodicity of
χ. Because of the antiperiodic boundary conditions for the fermions, the Casimir energies
of bosons and fermions fail to cancel.

Note that the dependence on r+ can be converted into an overall scale by a change of
coordinates: if we set

r = r+r̃, t =
t̃

r+

, χ =
χ̃

r+

, xi =
x̃i

r+

, (17)

the metric becomes

ds2 =
r̃2

`2

[
−dt̃2 +

(
1− 1

r̃d

)
dχ̃2 + d~̃x2

]
+

(
1− 1

r̃d

)−1
`2

r̃2
dr̃2. (18)

Let us write for later convenience

f(r) = 1−
rd+
rd
, f̃(r̃) = 1− 1

r̃d
. (19)
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It is interesting to consider the complexity of the ground state for the field theory with
these boundary conditions, and specifically its dependence on the size of the χ circle. For
the CV conjecture, the maximum volume calculation is easily carried out. Because of the
time-independence of the metric (15), the maximum volume slice will lie at constant t, so
the volume is simply

V (B) =

∫
dr dd−2x dχ

√
h = Vx∆χ

∫ rmax

r+

rd−2

`d−2
=
Vx∆χ

d− 1

rd−1
max − rd−1

+

`d−2
, (20)

where we introduce a UV cutoff at r = rmax. This gives us a complexity

CV =
8Vx∆χ

π

rd−1
max − rd−1

+

`d−1
. (21)

The first term is the same UV divergence we saw in the pure AdS solution in (9). If we
were to take the difference, defining a ‘complexity of formation’ as in [14], there is a finite
negative difference; changing the boundary conditions has lowered the complexity. Put
another way, the pure AdS solution, which corresponds to some excited state with these
boundary conditions, has higher complexity than the ground state. This seems a plausible
result; adding excitations might be expected to generically increase the complexity of the
state.

If we were to take r+ → rmax, the complexity would go to zero. As this limit corresponds
to the proper size of the χ circle at the UV cutoff scale vanishing, this seems physically
reasonable. Note that the complexity vanishes linearly in rmax − r+ in this case.

4 Holographic action calculations

We now turn to the calculation of the complexity using the CA conjecture, calculating the
action of the Wheeler-DeWitt patch for the AdS soliton. We will find that the action of the
Wheeler-DeWitt patch initially increases with r+, although it does ultimately go to zero as
r+ → rmax as well.

The calculation of the action is quite similar to the calculation in the bubbles with de
Sitter boundaries in our previous work [26], although somewhat simpler. Indeed, in the limit
of large r+, the Wheeler-DeWitt patch in those bubble solutions approaches the Wheeler-
DeWitt patch in the AdS soliton.

The action will have an overall scaling as rd−1
+ , which is evident if we perform the cal-

culation in the rescaled coordinates of (18). If the original coordinates have a UV cutoff at
r = rmax, then in the tilded coordinates r̃ ∈ (1, rmax/r+), so the result of the action integrals
will be some function of rmax/r+, times the coordinate volume in the spatial directions

S = Ṽx∆χ̃I(rmax/r+). (22)

If we rewrite the spatial volumes in terms of the original coordinates, we get an overall factor
of rd−1

+ . Thus
S = Vx∆χr

d−1
+ I(rmax/r+). (23)
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If we take the UV cutoff large at fixed r+, there will be a power series expansion in powers
of rmax/r+. From the results of [38], we know the divergent terms in this expansion will be
determined by the local geometric invariants of the boundary. For the flat boundary we are
considering, the only non-zero term is the leading divergence, proportional to the volume,
which agrees with the result in the pure AdS case. Thus, in the large rmax limit, the action
looks like

S = 4Vx∆χ ln(d− 1)
rd−1

+

`d−1

[(
rmax
r+

)d−1

+ I0 + . . .

]
=

4Vx∆χ

`d−1
ln(d− 1)(rd−1

max + I0r
d−1
+ + . . .),

(24)
where the dots denote terms which vanish in the limit of large rmax. Thus, as in the volume
calculation above, there is a finite difference between the complexity with antiperiodic and
periodic boundary conditions, determined by the numerical parameter I0. We will calculate
the action in detail to determine I0; from our previous work on the de Sitter case [26], we
expect it to be positive, in contrast to the CV calculation.

In our numerical calculation of the action, we add to (13) a local integral over Σ con-
structed to cancel the leading divergence;

Sct = −4 ln(d− 1)

∫
Σ

√
hdS = −4Vx∆χ

`d−1
ln(d− 1)rd−1

max

√
1− rd+

rdmax
. (25)

Thus, the action S ′ = S+Sct has I0 as its leading contribution at large rmax/r+. This change
in the action is a part of the remaining ambiguity unfixed by the prescription of [9]. The
interpretation of this kind of renormalization in terms of the complexity is unclear, but it is
convenient for the numerics, and since the counterterm is a known function, one can remove
it at the end of the calculation if desired. Note that the subleading contribution in Sct is of
order rd+/rmax, so adding this term does not affect the finite contribution I0.

We now turn to the details of the calculation of the action. In the metric (15), if we take
a slice of the boundary at t = 0, the null boundaries of the Wheeler-DeWitt patch are given
by

t(r) = ±`2

∫ rmax

r

dr′

r′2
√
f(r′)

, (26)

or in terms of the tilded coordinates,

t̃ = ±`2

∫ rmax/r+

r̃

dr̃′

r̃′2
√
f̃(r̃′)

. (27)

The volume integral is

SVol = −2dV~x∆χ

`2

∫ rmax

r+

dr
rd−1

`d−1
2t(r)

= −2dV~x∆χr
d−1
+

`d+1

∫ rmax/r

1

dr̃ r̃d−12t̃(r̃).

(28)
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If we write

F (r) =

∫ rmax

r

dr′

r′2

(
1−

rd+
r′d

)−1/2

=

∫ rmax/r+

r̃

dr′

r′2

(
1− 1

r′d

)−1/2

, (29)

we can write this as

SVol = −4dV~x∆χr
d−1
+

`d−1

∫ rmax/r+

1

r̃d−1F dr̃ . (30)

The tangent to the null surface is

k = α(
`

r2
∂t−

√
f(r)

`
∂r) (31)

on F and

k̄ = β(
`

r2
∂t +

√
f(r)

`
∂r) (32)

on P , where α, β are some arbitrary positive constants. The corner term in the action is

SΣ = −2V~x∆χr
d−1
max

√
f(rmax) ln

(
αβ

r2
max

)
. (33)

The expansions are

ΘF = −α
√
f

`

1
√
γ

∂
√
γ

∂r
= −α

√
f

`

(
1

2

f ′

f
+

(d− 1)

r

)
(34)

and

ΘP = β

√
f

`

1
√
γ

∂
√
γ

∂r
= β

√
f

`

(
1

2

f ′

f
+

(d− 1)

r

)
(35)

so the surface integrals are

SF = 2V~x∆χ
rd−1

+

`d−1

∫ rmax/r+

1

√
frd−1

(
1

2

f ′

f
+

(d− 1)

r

)
ln |`ΘF | dr (36)

and

SP = 2V~x∆χ
rd−1

+

`d−1

∫ rmax/r+

1

√
frd−1

(
1

2

f ′

f
+

(d− 1)

r

)
ln |`ΘP | dr (37)

So the total integral is

S ′ =
2V~x∆χ

`d−1

[
−2drd−1

+

∫ rmax/r+

1

rd−1F dr−
√
f(rmax)rd−1

max ln

(
αβ

r2
max

)
+rd−1

+

∫ rmax/r+

1

√
frd−1

(
1

2

f ′

f
+

(d− 1)

r

)
ln |`ΘF | dr

+rd−1
+

∫ rmax/r+

1

√
frd−1

(
1

2

f ′

f
+

(d− 1)

r

)
ln |`ΘP | dr

−2 ln(d− 1)rd−1
max

√
f(rmax)

]
. (38)
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Figure 2: We plot the action (38) for d = 4 and ` = 1, omitting the overall factor
of 2V~x∆χ/`

d−1, as a function of r+ at fixed rmax = 10000. We see that it initially
increases with r+, but eventually decreases to zero as r+ → rmax. The initial
increase scales as rd−1

+ , as indicated by the general scaling argument, with I0 found
to be approximately 1.27.

This integral is a function of rmax and r+, which is homogeneous of degree d − 1. It is
straightforward to evaluate these expressions numerically for fixed values of the parameters.
In figure 2, we plot the action as a function of r+ at fixed rmax; in figure 3, we plot the action
as a function of rmax at fixed r+.

We see that the action initially increases at small r+, indicating that I0 is positive (ap-
proximately 1.27). This is qualitatively different from the behaviour of the volume (20). The
increase comes basically from the negative volume contribution; increasing r+ decreases the
volume of the Wheeler-DeWitt patch, and the volume contribution to the action is negative.

In the CA calculation, the complexity for antiperiodic boundary conditions is higher than
for periodic boundary conditions. Equally, the complexity for the excited state represented
by the pure AdS solution with antiperiodic boundary conditions is lower than that of the
ground state.

We see that numerically the action goes to zero as r+ → rmax. It is interesting to compare
the approach to zero in this regime to the volume calculation (20). Suppose rmax−r+ � r+,
and define ε = rmax/r+ − 1. Set r = r+(1 + εz), so z ∈ (0, 1). Then

f(r) ≈ (r − r+)f ′(r+) ≈ dεz, (39)

and F (r) ∼
∫
dr/
√
f(r) scales as

√
ε, so that the volume contribution to the action scales

as ε3/2. The contributions from Σ scale as
√
f , that is as

√
ε, but the slowest falloff comes

from the expansion contributions on the null surfaces:

ΘF,P ∼
f ′√
f
∼ 1√

ε
, (40)

so

SF,P ∼
∫

f ′√
f

ln |`ΘF,P |dr ∼
√
ε ln ε. (41)

Thus, the action goes to zero more slowly than the volume, as
√
rmax − r+ ln(rmax − r+).
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Figure 3: We plot the action (38) for d = 4 and ` = 1, omitting the overall
factor of 2V~x∆χ/`

d−1, as a function of R = rmax at fixed r+ = 1. We see that it
is a monotonically increasing function of rmax, which seems physically reasonable
behaviour for the complexity.

5 Lattice calculations

The holographic complexity calculations gave qualitatively different answers for the two cal-
culation methods. It is interesting to understand what notions of complexity we can identify
in the field theory that could reproduce these behaviours. Since the AdS soliton is distin-
guished by the boundary conditions for fermions, we want to consider a fermionic theory.
We consider free fermions on a rectangular lattice. We will consider both the case where the
fermions have conventional periodic boundary conditions on all the spatial directions, and a
lattice with antiperiodic boundary conditions on one spatial direction and periodic bound-
ary conditions in the remaining directions, and study the difference between the complexity
with the antiperiodic boundary conditions and the complexity with the periodic boundary
conditions as a function of the size of the spatial direction with the changing boundary
conditions.

Complexity for fermionic field theories was previously considered in [39]. Our analysis
will also draw inspiration from the recent study of scalar field theories [28], where connections
to the holographic calculation were also considered.

5.1 Free fermion theory

We will first review the details that we need of the lattice fermion theory. We consider a
theory of a single free fermion ψ(~x) on a spatial lattice. We will discuss explicitly lattices
in two and three dimensional spacetimes. The generalisation to higher dimensions has some
additional technical complications, so we leave it to the appendix.
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5.1.1 Two dimensions

The simplest case is two dimensions. Then the lattice has a single spatial direction; we can
take either periodic or antiperiodic boundary conditions on this direction. The absence of ad-
ditional spatial directions with periodic boundary conditions makes this case rather special.3

We have N lattice sites, xi = ia, i = 0, . . . , N , with xN = x0, and the boundary condition
is ψ(xN) = ±ψ(x0) for the periodic (antiperiodic) case respectively. The Hamiltonian of the
free fermion theory is

H = a
N−1∑
i=0

[
mψ̄(xi)ψ(xi)− iψ̄(xi)γ

1 (ψ(xi + a)− ψ(xi − a))

2a

− rψ̄(xi)
(ψ(xi + a)− 2ψ(xi) + ψ(xi − a))

2a

]
, (42)

where the last term is the Wilson term, used to prevent fermion doubling [40]. The fermion
ψ has two components, we define ψ̄ = ψ†γ0, and we work with the gamma matrix represen-
tation4

γ0 =

[
0 −i
i 0

]
, γ1 =

[
0 −i
−i 0

]
. (43)

We will primarily work in momentum space, writing ψ(xj) = 1√
N

∑N−1
i=0 e−ipixjψ(pi), where

the momentum lives in the dual lattice or Brillouin zone; for periodic boundary conditions,

pi =
2π

Na
i, i ∈ ZN , (44)

while for antiperiodic boundary conditions

pi =
2π

Na
(i+

1

2
). (45)

The Hilbert space can be written as a tensor product of the Hilbert space Hp acted on by
the fermionic operators ψ(p) at each momentum. The Hamiltonian in momentum space is

H = a
∑
p∈Ω

[
mψ̄(p)ψ(p) +

sin pa

a
ψ̄(p)γ1ψ(p) +

2r

a
sin2

(pa
2

)
ψ̄(p)ψ(p)

]
, (46)

where Ω is the lattice of momentum values in (44) or (45) depending on the boundary
conditions. The term in the Hamiltonian at a given momentum has eigenspinors5

u =
1√
2E

[ √
E − P

i
√
E + P

]
, v =

1√
2E

[ √
E + P

−i
√
E − P

]
, (47)

3From the holographic perspective, with a two-dimensional boundary the AdS soliton is actually global
AdS3, and the geometry in the bulk does not change as we vary ∆χ.

4Note that our Clifford algebra conventions correspond to taking the lattice theory’s spacetime metric
to be ds2 = dt2 − dx2, the opposite sign convention to our holographic discussion. We have adopted this
convention for consistency with standard references.

5Usually the convention for negative energy states associates them with momentum −p; the convention
here will be more convenient for our calculations.
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with eigenvalues ±E, where

P =
sin pa

a
, M = m+

2r

a
sin2

(pa
2

)
, E =

√
M2 + P 2. (48)

Thus, the fermion can be written in terms of ladder operators as

ψ(p) = u(p)a(p) + v(p)b†(p), (49)

and the ground state is the state annihilated by a(pi), b(pi) for all pi; it is the tensor product
of the ground state in each Hp.

5.1.2 Three dimensions

For the three dimensional case, we can take a representation of the Clifford algebra where
we enlarge the previous representation by adding

γ2 =

[
i 0
0 −i

]
. (50)

The fermions still have two components. We will take the direction with variable boundary
conditions to be the x direction. The spatial lattice has Nx sites in the x direction with
lattice spacing ax, and Ny sites in the y direction with lattice spacing ay. The momentum
vector then lives in a lattice

~p = (
2π

Nxax
i,

2π

Nyay
j) (51)

for periodic boundary conditions, and

~p = (
2π

Nxax
(i+

1

2
),

2π

Nyay
j) (52)

for antiperiodic boundary conditions, where in both cases i ∈ ZNx , j ∈ ZNy . The Hilbert
space is a tensor product of spaces H~p associated with each lattice site. The Hamiltonian is

H = axay
∑
~p∈Ω

[
mψ̄(~p)ψ(~p) +

sin pxax
ax

ψ̄(~p)γ1ψ(~p) +
sin pyay
ay

ψ̄(~p)γ2ψ(~p) (53)

+2r
[
a−1
x sin2

(pxax
2

)
+ a−1

y sin2
(pyay

2

)]
ψ̄(~p)ψ(~p)

]
,

where Ω is the relevant momentum lattice. The eigenspinors at a given momentum are

u =
1√
2E

[ √
E − Px

ieiβy
√
E + Px

]
, v =

1√
2E

[ √
E + Px

−ieiβy
√
E − Px

]
, (54)

with eigenvalues ±E, where

Pi =
sin piai
ai

, M = m+ 2r
∑
i

a−1
i sin2

(piai
2

)
, E =

√
M2 + ~P 2 (55)
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and

eiβy =
M + iPy√
M2 + P 2

y

. (56)

Thus, the fermion can again be written as

ψ(~p) = u(~p)a(~p) + v(~p)b†(~p), (57)

and the ground state is the state annihilated by a(~p), b(~p) for all ~p; it is the tensor product
of the ground state in each H~p.

5.2 Complexity

We wish to evaluate the complexity of the ground state in the free fermionic theories reviewed
in the previous subsection. There are two key choices we need to make: we need to choose
a reference state, and we need to define a measure of the complexity of the transformation
from the reference state to the physical ground state.

5.2.1 Reference state

In [39], the reference state is taken to be the ground state of the fiducial Hamiltonian

H0 = axay
∑
~x

m0ψ̄(~x)ψ(~x) = axay
∑
~p∈Ω

m0ψ̄(~p)ψ(~p), (58)

where the kinetic and Wilson terms are removed from the physical Hamiltonian. This Hamil-
tonian could also be viewed as a high-mass limit of our original Hamiltonian, where the
momentum dependence becomes negligible. This is a useful choice as the resulting reference
state is a tensor product state in the position space representation and in the momentum
space representation, so both the reference and target states are tensor products in the mo-
mentum space representation. A similar choice was made in the scalar case in [28], where
the reference state was taken to be a fixed Gaussian at each spatial lattice site; the tensor
product of these Gaussian states in the spatial basis is also a tensor product of Gaussian
states in the momentum basis.

For the two and three-dimensional cases, the eigenspinors of this Hamiltonian are simply

u0 =
1√
2

[
1
i

]
, v0 =

1√
2

[
1
−i

]
. (59)

We can easily see that these are the high mass or low-momentum limit of the eigenspinors
of the physical Hamiltonian found in the previous subsection. We write the spinor operator
as

ψ(~p) = u0a0(~p) + v0b
†
0(~p), (60)

and we take the reference state to be the state annihilated by all the a0(~p), b0(~p) for all ~p.
The physical creation and annihilation operators can be related to a0 and b0 by making

use of the orthonormality of our eigenspinors, taking inner products in the spinor indices.
In the two and three-dimensional cases,

a(p) = u†(p)ψ(~p) = u†u0a0(~p) + u†v0b
†
0(~p), (61)
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b†(p) = v†(p)ψ(~p) = v†u0a0(~p) + v†v0b
†
0(~p). (62)

The key point is that this is a Bogoliubov-style transformation, mixing creation and annihi-
lation operators, so the vacuum state with respect to a(p), b(p) will be a mixture of particle
states with respect to a0(p), b0(p). For a given momentum,

|00〉phys = u†u0|00〉0 − u†v0|11〉0. (63)

We note that this is a mixture of states with even numbers of fermions in the reference
basis, so the transformation between the reference ground state and the physical ground
state involves only fermion bilinears, so we do not need to worry about the difficulties of
simulating fermionic gates reviewed for example in [39].

For two dimensions, this gives

|00〉phys =
1

2
√
E

[
(
√
E + P +

√
E − P )|00〉0 − (

√
E + P −

√
E − P )|11〉0

]
(64)

=

√
E +M

2E
|00〉0 −

√
E −M

2E
|11〉0.

For three dimensions, we have

|00〉phys =
1

2
√
E

[
(e−iβy

√
E + Px +

√
E − Px)|00〉0 − (e−iβy

√
E + Px −

√
E − Px)|11〉0

]
.

(65)
By changing the phase of the physical ground state, we can simplify this to

|00〉phys =

√
E +M

2E
|00〉0 − eiφ2

√
E −M

2E
|11〉0, (66)

where

eiφ2 =
Px − iPy
Px + iPy

. (67)

Note that unlike the scalar case in [28], there is no dependence on the mass scale m0 in the
fiducial Hamiltonian. The reference ground state is the same, independent of which H0 we
choose.

5.2.2 Complexity measure

We want to compute the complexity of the least complex unitary operator U such that the
physical ground state |ψ〉 = U |ψ〉0, where |ψ〉0 is the reference state. Ideally, to respect the
locality of the field theory, we would like to do this calculation taking as an elementary gate
set some set of unitary operators which act on nearest neighbour sites in the spatial lattice.
However, this calculation is extremely difficult, so following [28], we will make the simplifying
assumption that we can take the elementary gate set to include unitary operators acting on
the individual momentum sites in the momentum lattice. (Such operators can be built from
a linear combination of operators acting on pairs of lattice sites in the spatial lattice, but we
need to include arbitrary pairs of sites.)
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Making this assumption allows us to exploit the special structure of our states: our
ground state is the product of the ground state |~0〉phys in Hp at each momentum, and our
reference state is the product of |~0〉0 in Hp at each momentum, so it is plausible that the
least complex unitary will also have a tensor product decomposition, U = ⊗pUp. That is,
we expect, as in [28], that the path of least complexity with such an elementary gate set
will not involve introducing entanglement between different momenta at intermediate scales.
Identifying the appropriate unitary U then reduces to identifying an appropriate Up at each
momentum.

In the two and three-dimensional cases, the transformations (64,65) from the reference
state to the physical ground state at a given momentum can be implemented by a unitary
transformation on the two-dimensional subspace of the Hilbert space spanned by |00〉0, |11〉0.
(We assume that considering more general transformations in Hp that take us out of this
subspace will not reduce the complexity.) Such unitary transformations can be parametrized
as

Up = eiα
(
e−iφ1 cos θ e−iφ2 sin θ
−eiφ2 sin θ e−iφ1 cos θ

)
. (68)

requiring that the unitary maps |00〉0 to |00〉phys fixes the first column of Up, giving three
constraints on the parameters (since the target state is normalized, its form in terms of |00〉0
and |11〉0 involves three free parameters); that leaves one free parameter in Up, which we
need to minimize over.

As in [28], we will be inspired by the work of [41, 42, 43] to take a geodesic distance in
a suitable metric in the space of unitaries as a proxy for the complexity. In the space at a
given momentum, we will take the usual metric on U(2),

ds2 = −1

2
tr(dUU−1dUU−1) = dα2 + dθ2 + cos2 θdφ2

1 + sin2 θdφ2
2. (69)

The remaining parameter in Up is determined by minimizing the distance from the identity
in this metric.6

To calculate the overall complexity, we need to combine the complexities of the individual
Up to obtain a complexity for U . We will simply sum up the complexities of each of the Up:

C(U) =
∑
p∈Ω

C(Up). (70)

in the geometrical language of [41], this corresponds to taking an F1 or “Manhattan” metric,
where the total distance is the sum of the distances along each of the basis directions. This is
a natural choice for the calculation of complexity; it can be thought of as adding contributions
from the different elementary gates acting on each Hp.

It is worth noting however that working in the Manhattan metric makes geometric anal-
ysis more challenging, which is why [42, 43] sought to replace it with a Riemannian metric
with suitable cost factors on directions not corresponding to the elementary gate set. No-
tably, the Manhattan metric, unlike a Riemannian metric, depends on the choice of basis,
so our choice to use gates acting on momentum subspaces in the Hilbert space rather than

6This minimization to determine an appropriate Up becomes more difficult in higher dimensions; see the
discussion for four dimensions in the appendix.
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gates acting on pairs of position subspaces becomes significant. Even though the unitaries
acting on a momentum subspace can be written as a linear combination of unitaries acting
on position subspaces, taking one rather than the other as the basis in a Manhattan metric
leads to a different formula for the complexity.

The choice of a Manhattan metric is further supported by the results of [28], who found
that it reproduces the UV divergence structure of the holographic calculation. The same will
be true in our fermionic calculation; the complexity defined by (70) is roughly proportional
to the number of lattice sites, which we can interpret as the volume in units of the UV cutoff,
reproducing the divergence in the holographic calculation. Using a Riemannian metric to
combine the metrics (69) would by contrast give a result scaling roughly as the square root
of the number of sites. We will however not consider these divergent contributions further;
our focus is on evaluating the finite difference between the complexities with periodic and
antiperiodic boundary conditions,

∆C = Canti − Cper. (71)

We now implement this programme for the two- and three-dimensional cases. In the
two-dimensional case, the unitary of minimum distance which realises the transformation
(64) is simply a rotation,

Up =

(
cos θ sin θ
− sin θ cos θ

)
(72)

with

cos θ =

√
E +M

2E
. (73)

The distance from the identity in the standard metric is simply θ, so we take C(Up) = θ(p).
This amounts to taking an infinitesimal rotation in this direction as an element of the
elementary gate set.

We sum over the contributions from the individual momenta, and take the difference
between antiperiodic and periodic boundary conditions to calculate ∆C in (71). We plot this
difference as a function of L = aN in figure 4.7 We see that the difference is positive, as for
the holographic CA calculation, but unlike the holographic CV calculation.

We find that the difference decreases as the size of the circle increases. This is unlike
the holographic calculation; there, the difference in complexity went as ∆χrd−1

+ ∝ rd−2
+ (see

(23)), so in d = 2, the difference in the holographic calculation is independent of the size of
the circle. This is because in d = 2 the AdS soliton is actually global AdS3, and the finite
part is the difference in volume or action between the M = 0 BTZ black hole and global
AdS3, which is some finite constant.

In the three-dimensional case, the simplest unitary realising the transformation (66) has
α = 0, φ1 = 0,

cos θ =

√
E +M

2E
, eiφ2 =

Px − iPy
Px + iPy

, (74)

7For numerical convenience, we vary the length of the circle with a fixed number of sites, so we are varying
both the size of the circle and the UV cutoff scale here. These results are thus not directly comparable to
the holographic results, where we varied size of the circle at fixed UV cutoff scale. However, so long as the
circle is large compared to the UV cutoff scale we would not expect ∆C to depend on the UV cutoff scale,
so this should not have a significant effect.
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Figure 4: We plot the difference ∆C between the complexity of the ground states
for a fermion with antiperiodic boundary conditions and a fermion with periodic
boundary conditions on a one-dimensional spatial lattice, as a function of the size
of the circle. We see that the difference is positive, and decreases as we increase
the size of the circle.

and the complexity is again C(Up) = θ(p). We add up these contributions for each site in
the momentum lattice, and take the difference between antiperiodic and periodic boundary
conditions to calculate ∆C in (71). We plot this difference as a function of Lx in figure 5.8

We see that the difference is again positive, and decreases as a function of the size of the
circle. In this case this is also the behaviour expected holographically. Holographically, the
complexity would fall off as 1/Lx. The numerical results for the lattice computation exhibit
a faster falloff than the two-dimensional case, but it is not well fit by a simple power law.

We have found that with our definition of the complexity, the complexity for antiperiodic
boundary conditions is higher than for periodic boundary conditions. It seems surprising
that the generic expectation that raising the energy increases the complexity is not borne
out in this case. It is possible that the key ingredient in the increase in complexity in the
antiperiodic case is the difference in the momentum lattices: in the antiperiodic case, the
lowest momentum value is non-zero. Since the reference Hamiltonian is the zero-momentum
limit of the physical Hamiltonian, this increase in the minimum momentum value may be
responsible for the increase in complexity of the ground state relative to the reference state.

In our calculation, we decomposed the unitary in terms of operators acting on different
momentum subspaces of the Hilbert space. An important problem for the future is to
study the decomposition in terms of operators acting on position subspaces and see if this
modifies the results. Our use of the Manhattan metric makes this choice of basis particularly
salient, and ultimately one would like to include appropriate penalty factors for non-local
transformations in the position space decomposition.

8Note that the plot is again generated by varying the length of the circle with a fixed number of sites, so
we are varying both the size of the circle and the UV cutoff scale.
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Figure 5: We plot the difference ∆C between the complexity of the ground states
for a fermion with antiperiodic boundary conditions in one direction and a fermion
with periodic boundary conditions in both directions on a two-dimensional spatial
lattice, as a function of the size of the circle with the varying boundary conditions.

6 Discussion

We have studied the dependence of the complexity of the ground state of a field theory on a
torus on the boundary conditions for fermions, both holographically and in a simple lattice
model of a free fermion. We compared the results for antiperiodic and periodic boundary
conditions for the fermions. In the holographic calculation, the former corresponds to the
AdS soliton, where the spacetime closes off at a radius r+ determined by the size ∆χ of
the circle with antiperiodic boundary conditions, while the latter corresponds to a simple
Poincare-AdS geometry.

Without doing any calculations, we can argue that the holographic complexity for an-
tiperiodic boundary conditions in the regime where r+ is small compared to the UV cutoff
rmax will have the form

Canti ∝ V~x∆χ(rd−1
max + I0r

d−1
+ + . . .), (75)

where V~x is the volume in the remaining spatial dimensions, d is the spacetime dimension
of the field theory, I0 is a purely numerical coefficient, and the suppressed terms vanish
in the limit as rmax → ∞. Since the result for periodic boundary conditions is simply
Cper ∝ V~x∆χr

d−1
max, the difference between periodic and antiperiodic boundary conditions is

finite.
By explicit calculation, we find that the result in the complexity volume (CV) calculation

is I0 = −1, while for the complexity action (CA) calculation I0 is roughly 1.27. This
provides a qualitative distinction between these two bulk calculations. In the CV calculation,
the change in boundary conditions reduces the complexity, while in the CA calculation it
increases it. We initially thought a decrease was the more intuitive result, as the ground
state with antiperiodic boundary conditions has lower energy than the one with periodic
boundary conditions. However, the ground state is far from maximum complexity, so it is
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important to understand the overall effect of the change in boundary conditions.
We investigated this in a simple lattice calculation for a free fermion, extending the work

of [28] for bosons. The complexity of the fermion ground state is divergent, as for bosons,
but the difference between the complexity for antiperiodic and periodic boundary conditions
is finite. We find that this is positive, as in the holographic CA calculation.

These results thus seem to support the holographic action calculations over the volume
calculations. However, in the lattice calculation, there are a number of choices and approxi-
mations we need to make to render the calculation feasible, and improving this calculation is
an important goal for future work. In particular, we would like to move from considering a
basis of elementary operations that acts on the factors in a momentum space decomposition
of the Hilbert space to one that acts in a position space decomposition, and ultimately to
incorporate spatial locality into the calculation by penalizing operations that are not acting
on nearest neighbour sites in position space.

It would also be interesting to study the dependence of the complexity on other changes in
the ground state, for example if we deform the field theory by relevant or marginal operators.
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Appendix: Lattice fermions in higher dimensions

Here we discuss the lattice fermion theory in the four dimensional case in some detail, and
comment on the extension to higher dimensions. In these cases the dimension of Hp is larger,
and as a consequence the transformation between the reference state and the physical ground
state is more involved. In four dimensions, we take the Dirac representation of the Clifford
algebra, with

γ0 =

[
1 0
0 −1

]
, γi =

[
0 σi

−σi 0

]
, (76)

where each entry represents a 2 × 2 matrix, and σi are the Pauli matrices. The fermions
then have four components. We will take the direction with variable boundary conditions
to be the x direction again. The spatial lattice has Nx sites in the x direction with lattice
spacing ax, Ny sites in the y direction with lattice spacing ay, and Nz sites in the z direction
with lattice spacing az. The momentum vector then lives in a lattice

~p = (
2π

Nxax
i,

2π

Nyay
j,

2π

Nzaz
k) (77)

for periodic boundary conditions, and

~p = (
2π

Nxax
(i+

1

2
),

2π

Nyay
j, ,

2π

Nzaz
k) (78)
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for antiperiodic boundary conditions, where in both cases i ∈ ZNx , j ∈ ZNy , k ∈ ZNz .
The Hilbert space is a tensor product of spaces H~p associated with each lattice site. The
Hamiltonian is

H = axayaz
∑
~p∈Ω

[
mψ̄(~p)ψ(~p) +

∑
i

sin piai
ai

ψ̄(~p)γiψ(~p) + 2r
∑
i

a−1
i sin2

(pia
2

)
ψ̄(~p)ψ(~p)

]
,

where Ω is the relevant lattice. A convenient choice of eigenstates are

u1 =
1√

2E(E +M)


M + E

0
Pz

Px + iPy

 , u2 =
1√

2E(E +M)


0

M + E
Px − iPy
−Pz

 , (79)

with eigenvalue E, and

v1 =
1√

2E(E +M)


−Pz

−Px − iPy
M + E

0

 v2 =
1√

2E(E +M)


−Px + iPy

Pz
0

M + E

 , (80)

with eigenvalue −E, where

Pi =
sin piai
ai

, M2 = m2 + 2r
∑
i

a−1
i sin2

(piai
2

)
, E =

√
M2 + ~P 2. (81)

Writing the fermion as
ψ(~p) = uα(~p)aα(~p) + vα(~p)bα†(~p), (82)

α = 1, 2, the ground state is the state annihilated by aα(~p), bα(~p) for all ~p; it is the tensor
product of the ground state in each H~p.

Taking the reference Hamiltonian H0 = axayaz
∑

~p∈Ω m0ψ̄(~p)ψ(~p), the diagonal structure

of γ0 makes the eigenspinors even simpler; they are just

u1
0 =


1
0
0
0

 , u2
0 =


0
1
0
0

 , v1
0 =


0
0
1
0

 , v2
0 =


0
0
0
1

 . (83)

The positive frequency eigenspinors for the physical Hamiltonian overlap with both of the
negative frequency eigenspinors of the reference Hamiltonian. Thus

aα(p) = uα†(p)ψ(~p) = uα†uβ0a
β
0 (~p) + uα†vβ0 b

β†
0 (~p), (84)

bα†(p) = vα†(p)ψ(~p) = vα†uβ0a
β
0 (~p) + vα†vβ0 b

β†
0 (~p), (85)

where

uα†uβ0 =

√
E +M

2E
δαβ, vα†vβ0 =

√
E +M

2E
δαβ, (86)
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u1†v1
0 =

Pz√
2E(E +M)

, u1†v2
0 =

Px − iPy√
2E(E +M)

, (87)

u2†v1
0 =

Px + iPy√
2E(E +M)

, u1†v2
0 = − Pz√

2E(E +M)
, (88)

v1†u1
0 = − Pz√

2E(E +M)
, v1†u2

0 =
−Px + iPy√
2E(E +M)

, (89)

v2†u1
0 = − Px + iPy√

2E(E +M)
, v1†u2

0 =
Pz√

2E(E +M)
. (90)

Using these relations, we find that the physical ground state is

|0000〉phys =
1

2E
[(E +M)|0000〉0 + Pz|0101〉0 − (Px + iPy)|0110〉0 (91)

−(Px − iPy)|1001〉0 − Pz|1010〉0 + (E −M)|1111〉0] .

We want a unitary realising the transformation (91). This is in a six-dimensional subspace
of the Hilbert space Hp, so we’re looking for a U(6) transformation Up. The ambiguity in the
choice of Up corresponds to left multiplication by a U(5) transformation which fixes |~0〉phys.
Minimizing over this U(5) ambiguity to find the Up closest to the origin in the standard
metric on U(6) is non-trivial; we have not carried out the calculation explicitly.

However, we can simplify the problem considerably by noting that the momentum space
Hamiltonian (79) is

H = axayaz
∑
~p∈Ω

[
Mψ̄(~p)ψ(~p) +

∑
i

Piψ̄(~p)γiψ(~p)

]
, (92)

which looks just like the continuum Hamiltonian for a fermion of mass M and momentum
~P . As a result, we would expect the distance between the physical vacuum and the reference
state in Hp to be invariant under the symmetries of a continuum theory, and depend only
on P 2. If we make this assumption, we can determine the dependence on P 2 by considering
a case with a single momentum component.

For example, take just Pz. Then

u1 =
1√

2E(E +M)


M + E

0
Pz
0

 , u2 =
1√

2E(E +M)


0

M + E
0
−Pz

 , (93)

with eigenvalue E, and

v1 =
1√

2E(E +M)


−Pz

0
M + E

0

 v2 =
1√

2E(E +M)


0
Pz
0

M + E

 , (94)

23



and u1, v1 are a mixture of u1
0, v

1
0, while u2, v2 are a mixture of u2

0, v
2
0. As a result, we can

decompose the Hilbert space Hp as a tensor product of the space acted on by a1, b1 and the
space acted on by a2, b2, and the physical ground state in H1

p is

|00〉phys,1 =

√
E +M

2E
|00〉0 −

√
E −M

2E
|11〉0,

while the physical ground state in H2
p is9

|00〉phys,2 =

√
E +M

2E
|00〉0 +

√
E −M

2E
|11〉0.

Thus, the transformation from the reference state to the physical ground state is a product
of a rotation in H1

p and a rotation in H2
p. These individually are the same as the two-

dimensional case. The complexity is then just the combination of the contributions from H1
p

and H2
p. Thinking of this as calculated in the Riemannian metric on the unitaries on Hp, the

minimum distance would be obtained by rotating in the two factors simultaneously, giving
C(Up) =

√
2θ, where10

cos θ =

√
E +M

2E
. (95)

We obtained this result by considering a momentum where only Pz was non-zero, but if we
assume the complexity is a function only of P 2, we can apply this result to all the momenta
in the lattice. We can check that we get the same answer by taking a different component,
that is taking only Px or Py nonzero.

We add up these contributions for each site in the momentum lattice, and take the
difference between antiperiodic and periodic boundary conditions to calculate ∆C in (71).
We plot this difference as a function of Lx in figure 6. We see that the difference is again
positive, and decreases as a function of the size of the circle. In this case this is also the
behaviour expected holographically. Holographically, the complexity would fall off as 1/L2

x.
Again the numerical results for the lattice computation look slightly faster than in three
dimensions but are not well fit by a simple power law.

We can calculate the complexity in higher dimensions along similar lines. As we increase
the spacetime dimension the dimension of the spinor representation increases, so the calcu-
lation for generic momentum values gets more complicated, but we can proceed by doing
the calculation in the case where the momentum has only one non-zero component, where
the unitary transformation will again be a simple rotation, and extrapolating to the general
case assuming the complexity at a given momentum is a function only of P 2.

9To see that |0000〉phys = |00〉phys,1×|00〉phys,2 = 1
2E [(E +M)|0000〉0 + Pz|0101〉0 − Pz|1010〉0 + (E −M)|1111〉0],

we need to recall that |1111〉0 = a1†0 a
2†
0 b

1†
0 b

2†
0 |0000〉0, so |11〉0 × |11〉0 = a1†0 b

1†
0 a

2†
0 b

2†
0 |0000〉0 = −|1111〉0.

10If we combined the contributions from H1
p and H2

p in a Manhattan metric, we would have C(~p) = 2θ.
This seems less appropriate as the way Hp splits up into a tensor product depends on which component
of the momentum we consider; for example taking Px decomposes Hp into a subspace acted on by a1, b2

and a subspace acted on by a2, b1. But this overall numerical difference is in any case unimportant for our
considerations.

24



5 10 15 20
Lx

0.5

1.0

1.5

2.0

ΔC

Figure 6: We plot the difference ∆C between the complexity of the ground states
for a fermion with antiperiodic boundary conditions in one direction and a fermion
with periodic boundary conditions in both directions on a three-dimensional spatial
lattice, as a function of the size of the circle with the varying boundary conditions.
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