
Complexity of the Collision and Near-Collision

Attack on SHA-0 with Different Message

Schedules

Mitsuhiro HATTORI, Shoichi HIROSE, and Susumu YOSHIDA

Graduate School of Informatics, Kyoto University, Kyoto, 606–8501 JAPAN
hattori@hanase.kuee.kyoto-u.ac.jp

Abstract. SHA-0 employs a primitive polynomial of degree 16 over
GF(2) in its message schedule. There are 2048 primitive polynomials
of degree 16 over GF(2). For each primitive polynomial, a SHA-0 variant
can be constructed. In this paper, the security of 2048 variants is ana-
lyzed against the Chabaud-Joux attack proposed in CRYPTO’98. The
analysis shows that all the variants could be collision-attacked by us-
ing near-collisions as a tool and thus the replacement of the primitive
polynomial is not a proper way to make SHA-0 secure. However, it is
shown that the selection of the variants highly affects the complexity
of the attack. Furthermore, a collision in the most vulnerable variant is
presented. It is obtained by the original Chabaud-Joux attack without
any improvements.

1 Introduction

The cryptographic hash function SHA-0 was issued by NIST (National Insti-
tute of Standards and Technology) in 1993[1]. Its structure is mainly based on
MD4[2], but there are some differences such as a message schedule. In 1995, an
addendum was made on SHA-0 and the new version was called SHA-1[3]. SHA-1
is widely used as a cryptographic tool while SHA-0 is rarely used. However, it
is still important and meaningful to invent attacks on SHA-0 because it can be
a clue about finding effective attacks on SHA-1 and making clear how to design
secure cryptographic hash functions.

A differential attack was proposed by Chabaud and Joux in 1998[4]. Using
this attack, they found a collision in the reduced version of SHA-0. They also
claimed that a collision could be found with complexity 261 by the attack.

Recently a few significant results of collision attacks have been reported[5,
6, 7]. In 2004, Biham and Chen proposed a method to reduce the complexity of
the Chabaud-Joux attack using “neutral bits”[5]. They reduced the complexity
to 256. They also showed that near-collisions can be used as a tool for find
collisions. They found near-collisions of 18-bit differences with complexity 240.
Wang et.al. found a collision attack on SHA-0 whose complexity is about 240[6].
However, the details of the attack are not reported. Collisions in SHA-0 have
finally been found in [7].

In spite of the recent success in the attacks on SHA-0, SHA-1 seems still
secure. The only addendum to SHA-1 is the one-bit rotate shift operation in
the message schedule. It implies that the message schedule is very critical in the
design of cryptographic hash functions.

The message schedule process in SHA-0 expands 16 words {W0, . . . ,W15} to
80 words {W0, . . . , W79} using the equation

Wi = Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16, i = 16, . . . , 79 , (1)

where ⊕ is bitwise exclusive OR. (1) is derived from a primitive polynomial of
16 degrees over GF(2)[8], that is

x16 + x13 + x8 + x2 + 1 . (2)

There are 2048 primitive polynomials of 16 degrees and (2) is one of them. It
has not been made public why this polynomial is adopted and it is still unclear
how appropriate the selection is. We analyze it in this paper.

We deal with 2048 SHA-0 variants each of which employs one of 2048 prim-
itive polynomials. We estimate their collision and near-collision resistance to
the Chabaud-Joux attack. We do not consider the complexity reduction by the
Biham-Chen neutral bit. This is because it seems difficult to estimate the com-
plexity of their attack. The complexity depends on the number of neutral bits
obtained experimentally.

First we estimate collision resistance of SHA-0 variants. We find 412 variants
are totally resistant to the Chabaud-Joux attack and 817 variants are more re-
sistant than the original SHA-0. Notice that the “neutral bits” technique cannot
be applied to the totally resistant 412 variants. We also find a collision in the
most vulnerable variant using the original Chabaud-Joux attack without any
improvements. The complexity is estimated at about 245.

Second, we estimate near-collision resistance of the SHA-0 variants. We find
no variants are totally resistant to the Chabaud-Joux near-collision attack. There-
fore all the variants could be collision-attacked by using such near-collisions as
a tool. The complexity of the most resistant one is 269, while that of the most
vulnerable one is 235. It is concluded that the replacement of the primitive poly-
nomial is not a proper way to make SHA-0 secure.

This paper is organized as follows: Section 2 describes the algorithm of SHA-
0. Section 3 describes the Chabaud-Joux attack and Section 4 describes our
analysis. Section 5 concludes the paper.

2 Description of SHA-0

This section describes the algorithm of SHA-0. Prior to the description, we define
a few notations. ⊕ is the bitwise addition mod 2 and ⊞ is the addition mod 232.
ROLl(W) is the l-bit left rotate shift operation of the 32-bit word W . Numbers
with a prefix “0x” are represented in hexadecimal.

2.1 Algorithm of SHA-0

The hash value of a message M is computed as follows[3, 9].

1. Append a single bit ‘1’ to the end of M , followed by k-bits ‘0’. k is the smallest
non-negative solution to the equation |M |+1+k = 448 mod 512, where |M |
is the bit length of M . Then append the 64-bit binary representation of |M |.
The length of the padded message is a multiple of 512. Divide them into
512-bit blocks M1, . . . ,Mn.

2. Initialize a 5-word buffer H0 to

H0 = (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0) .

3. For each Mj , proceed a compression function as follows:

Hj = compress(Mj ,Hj−1) .

The compression function is described momentarily.
4. Output Hn. This is the hash value of M .

2.2 Algorithm of the Compression Function

The compression function compress(Mj ,Hj−1) proceeds the following opera-
tions.

1. Initialize five registers A, B, C, D, and E by

(A0, B0, C0, D0, E0) = Hj−1 .

2. Divide the 512-bit message block Mj to 16 words W0, . . . , W15. The length
of a word is 32 bits.

3. Expand the 16 words to 80 words by

Wi = Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16, i = 16, . . . , 79 . (3)

We call this operation the message schedule.
4. For i = 0 to i = 79, iterate the following operations.

Ai+1 = ROL5(Ai) ⊞ fi(Bi, Ci, Di) ⊞ Ei ⊞ Ki ⊞ Wi

Bi+1 = Ai

Ci+1 = ROL30(Bi)

Di+1 = Ci

Ei+1 = Di ,

where fi and Ki are defined in Table 1.
5. Output Hj = (A0 ⊞ A80, B0 ⊞ B80, C0 ⊞ C80, D0 ⊞ D80, E0 ⊞ E80).

Table 1: Definition of fi and constant Ki

Round i fi(B, C, D) Ki

0, . . . ,19 (B ∧ C) ∨ (¬B ∧ D) 0x5a827999

20, . . . ,39 B ⊕ C ⊕ D 0x6ed9eba1

40, . . . ,59 (B ∧ C) ∨ (C ∧ D) ∨ (D ∧ B) 0x8f1bbcdc

60, . . . ,79 B ⊕ C ⊕ D 0xca62c1d6

3 The Chabaud-Joux Attack

In this section we describe how the Chabaud-Joux attack[4] is intended to work.
The main idea of their attack is to flip several bits in a message and adjust

the influence caused by the inversion within 5 succeeding rounds. Let M =
{W0, . . . , W79} and M ′ = {W ′

0, . . . ,W
′

79} be a pair of colliding messages. Suppose
that Wi ⊕W ′

i = 0x00000002. This implies that the bit 1 of Wi is inverted (note
that the LSB is bit 0). Then a difference is made in Ai+1 and A′

i+1. If no
adjustment is made, the difference triggers other differences in Ai+2 and A′

i+2,
Ai+3 and A′

i+3, and so on. These differences also trigger many differences. To
prevent this, adjustment is made on W ′

i+1, W ′

i+2, W ′

i+3, W ′

i+4, and W ′

i+5. Let
W ′

i+1 = Wi+1 ⊕ 0x00000040. Then Ai+2 = A′

i+2 with some probability. Let
W ′

i+2 = Wi+2 ⊕ 0x00000002. Then Ai+3 = A′

i+3 with some probability. Let
W ′

i+k = Wi+k ⊕ 0x80000000 (k = 3, 4, 5). Then Ai+k+1 = A′

i+k+1
with some

probability.
In order to maximize the success probability of the adjustment, the first

inversions are always on bit 1 of a message. The 80-bit sequence of the inversion
bits is called a mask base m. Let mi be the i-th bit of m. Since m is a part of a
message, m must follow the following equation:

mi = mi−3 ⊕ mi−8 ⊕ mi−14 ⊕ mi−16, i = 11, . . . , 79 , (4)

where i starts at 11 because m11 is used for calculating the adjustment of W ′

16,
and W ′

16 must follow the equation (3).
A constraint is needed on m. m75, . . . , m79 must be 0 because such inversions

cannot be adjusted in the left few rounds. Since each mi can be represented
by a linear combination of m0, . . . , m10, the constraint on m75, . . . , m79 is also
represented by a linear combination of m0, . . . , m10. In case of the original SHA-
0, the constraint is as follows:

m75 = m0 ⊕ m1 ⊕ m4 ⊕ m5 ⊕ m8 ⊕ m9 = 0

m76 = m1 ⊕ m2 ⊕ m5 ⊕ m6 ⊕ m9 ⊕ m10 = 0

m77 = m2 ⊕ m6 ⊕ m7 ⊕ m8 ⊕ m10 = 0

m78 = m0 ⊕ m7 ⊕ m9 = 0

m79 = m1 ⊕ m8 ⊕ m10 = 0 .

Therefore the number of possible mask bases is 26 = 64. Since m = 000 . . . 0 is
not an appropriate mask base, the number of mask base candidates is 63. For
each mask base, the probability of succeeding in finding a collision is calculated,
and the most effective mask base is selected for the attack.

Here we show an example of calculation of success probability for

m = 0001 0000 0001 0010 0000 0010 0001 1011 0111 1110

1101 0010 0001 0101 0010 1010 0010 1110 0110 0000 .

The calculation is performed as shown in Table 2. Let us take an example of
round 3 in Table 2. The probability that A4 and A′

4 differs only in bit 1 is
1/2. The probabilities that the adjustments in f5, f6 and f7 succeed are 1/22,
1/2 and 1/2, respectively. Therefore the probability that the flip on round 3 is
appropriately adjusted is 1/25. For each 1 in the mask base, the probability of
the success in adjustment can be evaluated in the similar way. Refer to [4] for
details.

4 The Attack on SHA-0 Variants

The message schedule formula (3) is derived from the 16-degree primitive poly-
nomial (2) over GF(2). The number of 16-degree primitive polynomials over
GF(2) is 2048. It has not been made public why the polynomial (2) is adopted
among these primitive polynomials, and it is still unclear how appropriate the
selection is.

We shed light on this question. For each primitive polynomial, a SHA-0
variant is constructed whose message schedule is based on it. Thus, we have
2048 SHA-0 variants (including the original one). We evaluate their resistance
to the Chabaud-Joux differential attack. First we evaluate their resistance to the
collision attack. Then we evaluate their resistance to the near-collision attack.

4.1 The Collision Attack

In this section we evaluate the resistance of SHA-0 variants to the Chabaud-Joux
collision attack.

Method. For each primitive polynomial, the complexity of the attack is calcu-
lated as follows.

1. Derive the recurrence formulas on Wi and mi.
2. Calculate all the mask base candidates, taking a constraint on m75, . . . , m79

into consideration.
3. For each mask base candidate, compute the maximum probability of suc-

ceeding in the attack.
4. Select a mask base which has the maximum success probability and compute

the computational complexity of the attack.

Table 2: Success probability for mask base m. “No difference in propagation” is the
probability that the disturbance in W ′

i does not cause the difference in carry
propagation between the computation of A′

i+1 and that of Ai+1. The total
probability is 1/282, but the first 1/214 is ignored because it is the probability
of succeeding in the initiation of the attack.

Round i
No difference

fi+2 fi+3 fi+4 Overall probability
in propagation

3 1/2 1/22 1/2 1/2 1/25

11 1/2 1/22 1/2 1/2 1/25

14 1/2 1/22 1/2 1/2 1/24
× 1/2

22 1/2 1/2 1 1 1/22

27 1/2 1/2 1 1 1/22

28 1/2 1/2 1 1 1/22

30 1/2 1/2 1 1 1/22

31 1/2 1/2 1 1 1/22

33 1/2 1/2 1 1 1/22

34 1/2 1/2 1 1 1/22

35 1/2 1/2 1 1 1/22

36 1/2 1/2 1 1 1/22

37 1/2 1/2 1 1 1/22

38 1/2 1/2 1 1/2 1/23

40 1/2 1/2 1/2 1 1/23

41 1/2 1/2 1 1/2 1/23

43 1/2 1/2 1/2 1/2 1/24

46 1/2 1/2 1/2 1/2 1/24

51 1/2 1/2 1/2 1/2 1/24

53 1/2 1/2 1/2 1/2 1/24

55 1/2 1/2 1/2 1/2 1/24

58 1/2 1/2 1 1 1/22

60 1/2 1/2 1 1 1/22

62 1/2 1/2 1 1 1/22

66 1/2 1/2 1 1 1/22

68 1/2 1/2 1 1 1/22

69 1/2 1/2 1 1 1/22

70 1/2 1/2 1 1 1/22

73 1/2 1/2 1 1 1/22

74 1/2 1/2 1 1 1/22

Here we show an example of applying the method to x16 + x12 + x11 + x7 +
x4 + x + 1.

1. Based on the polynomial, the recurrence formulas on Wi and mi are

Wi = Wi−4 ⊕ Wi−5 ⊕ Wi−9 ⊕ Wi−12 ⊕ Wi−15 ⊕ Wi−16, i = 16, . . . , 79(5)

mi = mi−4 ⊕ mi−5 ⊕ mi−9 ⊕ mi−12 ⊕ mi−15 ⊕ mi−16, i = 11, . . . , 79. (6)

2. For this example, m79 is always 0. Constraints are

m7 = m2 ⊕ m3

m8 = m3 ⊕ m4

m9 = m0 ⊕ m4 ⊕ m5

m10 = m1 ⊕ m5 ⊕ m6 .

The number of mask base candidates is 27 − 1 = 127.
3. For all the 127 mask base candidates, compute the probability of succeeding

in the attack. The result is in Table 3.
4. The maximum probability is 1/252 and the complexity for the attack is about

252.

As shown in this example, the number of mask base candidates differs ac-
cording to polynomials.

Results. We calculated the computational complexity of the attack for all the
2048 primitive polynomials. The result is shown in Table 4. The complexity of
the attack on the original SHA-0 is 268. Actually, in [4], it is stated that the
complexity is reduced to 261 for the original SHA-0 by some improvements.
However, the result in Table 4 shows computational complexity of the attack
without any improvements for each SHA-0 variant.

The maximum complexity represented by 2∞ in Table 4 means that no mask
base is usable for the attack. Thus, 412 variants are totally resistant. In order for
the attack to succeed, a mask base must not have any mi (0 ≤ i ≤ 15) such that
mi = mi+1 = 1. If it has, a disturbance caused by mi would never be corrected
and a collision would never happen.

The number of variants which are not totally resistant but more resistant to
the attack than the original one is 817, and the number of variants which are as
resistant as or more vulnerable to the attack is 818. The original one is therefore
weaker one among 2048 variants.

The most vulnerable variant employs the polynomial x16 +x14 +x12 +x10 +
x8 + x7 + x6 + x5 + x4 + x2 + 1. The complexity is 245. We found a collision of
this variant after two days of computation on 16 PCs;

af3bd4fd ada5ead4 5d1da03d ccf3db2e

b3887606 5e068898 40c134dc 263294bf

cbf91ff0 1b997ed2 92118e2f fae0fd89

846f3d48 a53fafd5 cb3a1deb 5f46b7b0

Table 3: Probability of success in the attack using each mask base on x16 +x12 +x11 +
x7 + x4 + x + 1. A mask base consists of 11 bits and it is represented as
m0 . . . m10. Probability 0 means the attack cannot work at all.

Mask base Probability

00000010001 0

00000100011 0

00000110010 0

00001000110 0

00001010111 0

00001100101 0

00001110100 0

00010001100 0

00010011101 0

00010101111 0

00010111110 0

00011001010 0

00011011011 0

00011101001 0

00011111000 0

00100001000 1/278

00100011001 0

00100101011 0

00100111010 0

00101001110 0

00101011111 0

00101101101 0

00101111100 0

00110000100 0

00110010101 0

00110100111 0

00110110110 0

00111000010 0

00111010011 0

00111100001 0

00111110000 0

01000000001 0

01000010000 1/278

01000100010 1/277

01000110011 0

01001000111 0

01001010110 0

01001100100 0

01001110101 0

01010001101 0

Mask base Probability

01010011100 0

01010101110 0

01010111111 0

01011001011 0

01011011010 0

01011101000 0

01011111001 0

01100001001 0

01100011000 0

01100101010 0

01100111011 0

01101001111 0

01101011110 0

01101101100 0

01101111101 0

01110000101 0

01110010100 0

01110100110 0

01110110111 0

01111000011 0

01111010010 0

01111100000 0

01111110001 0

10000000010 0

10000010011 0

10000100001 1/278

10000110000 0

10001000100 1/279

10001010101 0

10001100111 0

10001110110 0

10010001110 0

10010011111 0

10010101101 0

10010111100 0

10011001000 0

10011011001 0

10011101011 0

10011111010 0

10100001010 1/252

Table 3: Continued

Mask base Probability

10100011011 0

10100101001 1/268

10100111000 0

10101001100 0

10101011101 0

10101101111 0

10101111110 0

10110000110 0

10110010111 0

10110100101 0

10110110100 0

10111000000 0

10111010001 0

10111100011 0

10111110010 0

11000000011 0

11000010010 0

11000100000 0

11000110001 0

11001000101 0

11001010100 0

11001100110 0

11001110111 0

11010001111 0

Mask base Probability

11010011110 0

11010101100 0

11010111101 0

11011001001 0

11011011000 0

11011101010 0

11011111011 0

11100001011 0

11100011010 0

11100101000 0

11100111001 0

11101001101 0

11101011100 0

11101101110 0

11101111111 0

11110000111 0

11110010110 0

11110100100 0

11110110101 0

11111000001 0

11111010000 0

11111100010 0

11111110011 0

and

af3bd4fd ada5ead4 5d1da03d ccf3db2e

b3887606 5e06889a 40c1349c 263294bd

4bf91ff0 9b997ed0 12118e6f fae0fd8b

046f3d48 253fafd5 4b3a1de9 5f46b7f0

give the same hash value

e930e9be 464527bf e489b780 a3314c11 fcb6ea88 .

The minimum number of terms of primitive polynomials is 5. We call such
polynomials 5-term polynomials, and we call variants employing 5-term polyno-
mials 5-term variants. The original SHA-0 is a 5-term variant. The fewer the
number of terms is, the faster the message schedule proceeds. The result of 5-
term variants is extracted in Table 5. There are 10 5-term variants which are
totally resistant to the attack. For example, x16 + x14 + x9 + x4 + 1 is totally
resistant. One of the most vulnerable 5-term variants is with x16+x9+x4+x2+1
and the complexity is about 255.

Table 4: Computational complexity needed for the collision attack on SHA-0 variants

Complexity
Number of variants

Summation

2∞ 412 412

2101 1 413

2100 0 413

299 0 413

298 0 413

297 0 413

296 0 413

295 0 413

294 0 413

293 1 414

292 1 415

291 1 416

290 3 419

289 4 423

288 7 430

287 7 437

286 9 446

285 10 456

284 12 468

283 12 480

282 20 500

281 22 522

280 29 551

279 34 585

278 36 621

277 47 668

276 44 712

275 70 782

274 57 839

Complexity
Number of variants

Summation

273 65 904

272 78 982

271 90 1072

270 79 1151

269 79 1230

268 84 1314

267 81 1395

266 79 1474

265 80 1554

264 68 1622

263 73 1695

262 59 1754

261 52 1806

260 49 1855

259 41 1896

258 31 1927

257 27 1954

256 24 1978

255 16 1994

254 11 2005

253 11 2016

252 11 2027

251 5 2032

250 3 2035

249 5 2040

248 5 2045

247 1 2046

246 1 2047

245 1 2048

4.2 The Near-Collision Attack

In this section we evaluate the resistance of SHA-0 variants to the Chabaud-Joux
near-collision attack.

The Near-Collisions in This Paper. In this paper, the restricted near-
collisions are treated. This is because we are concerned with the near-collisions
which can be used as a tool for finding collisions.

Biham and Chen stated in their paper[5] that near-collisions can be used
as a tool in order to find collisions, but the details have been unpublished. We
examined them and found that only such near-collisions can be used for finding
collisions as the differences exist only on bit 1 of A80 and B80 and bit 31 of
C80, D80 and E80. These differences can be adjusted within several steps at the

Table 5: Computational complexity needed for the collision attack on 5-term variants.
“Polynomials” denotes the powers of three terms except for x16 and 1. x16

and 1 are omitted because each polynomial includes them. As an example,
“fc1” stands for x16 + x15 + x12 + x + 1.

Complexity
Number of variants Polynomials

Summation (in hexadecimal)

2∞ 10 10
fc1, fa4, f42, f41, ed5,
e94, dc7, b97, a73, 943

283 1 11 974

282 1 12 c72

281 0 12

280 1 13 ba5

279 0 13

278 0 13

277 4 17 e83, b98, b32, 952

276 0 17

275 0 17

274 0 17

273 2 19 a76, 972

272 1 20 a74

271 1 21 eb7

270 5 26 fd4, f97, f96, b65, a53

269 2 28 f72, c96

268 5 33 f94, e91, dcb, d82, a71

267 3 36 c97, c61, 975

266 1 37 875

265 1 38 c71

264 3 41 ec7, c31, 532

263 4 45 fca, ec1, ca3, a96

262 1 46 543

261 1 47 db6

260 0 47

259 1 48 d96

258 1 49 d64

257 0 49

256 1 50 edb

255 2 52 942, 641

next compression function in the scheme of the Chabaud-Joux and Biham-Chen
attack. Our consideration is supported by the fact that the one-bit difference of
the near-collision shown as an example in [10] is on bit 1 of B80.

We estimate the complexity of finding such near-collisions in the scheme of
the Chabaud-Joux attack. Since the Biham-Chen attack is an improved version
of the Chabaud-Joux attack, the complexity will be reduced by the Biham-Chen
attack instead.

Method. The complexity of the near-collision attack is calculated in the same
way as that of the collision attack. In the near-collision attack, the constraint on
a mask m is cancelled that is m75, . . . , m79 must be 0. If mi(i = 75, . . . , 79) is 1,
the adjustment of the influences of the flip will not be completed, which results
in one-bit difference in one of the 5-bits we mentioned. Thus this near-collision
can be used for the collision attack.

Results. We calculated the computational complexity of the near-collision at-
tack for all the 2048 SHA-0 variants. The result is shown in Table 6. In the col-
lision attack there are 412 totally resistant variants. In the near-collision attack,
however, all variants can be attacked by the Chabaud-Joux attack. Therefore all
variants could be collision-attacked by using the near-collisions as a tool. The
complexity of the near-collision attack on the original SHA-0 is 251. The original
one is therefore weaker one among 2048 variants.

The most resistant variant whose complexity is 269 seems secure, but the
complexity may be reduced by using the Biham-Chen attack. Therefore, all the
variants do not seem acceptable for a replacement of SHA-0.

5 Conclusion

In this paper we evaluated the complexity of the Chabaud-Joux attack on SHA-0
variants which employ 16-degree primitive polynomials over GF(2). We showed
that all the variants could be collision-attacked by using near-collisions as a
tool. It is revealed that the value of the complexity of the collision attack is
distributed from 245 to 2∞, and that of the near-collision attack is distributed
from 235 to 269. We also showed that the most vulnerable SHA-0 variant can
be collision-attacked within a few days. These results imply that the message
schedule should be designed carefully because it affects heavily the security of
customized hash functions.

References

[1] National Institute of Standards and Technology, Secure hash standard, FIPS Pub-
lication, no.180, 1993.

Table 6: Computational complexity needed for the near-collision attack on SHA-0 vari-
ants

Complexity
Number of variants

Summation

269 3 3

268 4 7

267 8 15

266 35 50

265 55 105

264 71 176

263 121 297

262 167 464

261 192 656

260 188 844

259 198 1042

258 189 1231

257 189 1420

256 132 1552

255 125 1677

254 87 1764

253 84 1848

Complexity
Number of variants

Summation

252 57 1905

251 38 1943

250 33 1976

249 22 1998

248 20 2018

247 11 2029

246 5 2034

245 5 2039

244 5 2044

243 1 2045

242 1 2046

241 0 2046

240 0 2046

239 0 2046

238 0 2046

237 1 2047

236 0 2047

235 1 2048

[2] R. Rivest, “The MD4 message digest algorithm,” CRYPTO’90, Lecture Notes in
Computer Science, vol. 537, pp.303–311, 1991.

[3] National Institute of Standards and Technology, Secure hash standard, FIPS Pub-
lication, no.180-1, 1995.

[4] F. Chabaud and A. Joux, “Differential collisions in SHA-0,” Crypto’98, Lecture
Notes in Computer Science, vol. 1462, pp.56–71, 1998.

[5] E. Biham and R. Chen, “Near-collisions of SHA-0,” Cryptology ePrint Archive,
Report 2004/146, 2004. http://eprint.iacr.org/2004/146

[6] X. Wang, D. Feng, X. Lai, and H. Yu, “Collisions for hash functions MD4, MD5,
HAVAL-128 and RIPEMD,” Cryptology ePrint Archive, Report 2004/199, 2004.
http://eprint.iacr.org/2004/199

[7] A. Joux, “Collisions in SHA-0,” Short talk presented at CRYPTO 2004 Rump
Session, 2004.

[8] W.W. Peterson, Error-correcting codes, M.I.T. Press, 1961.
[9] National Institute of Standards and Technology, Secure hash standard, FIPS Pub-

lication, no.180-2, 2002.
[10] E. Biham and R. Chen, “New results on SHA-0 and SHA-1,” Short talk presented

at CRYPTO 2004 Rump Session, 2004.

