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ABSTRACT

The Gaia space astrometry mission (to be launched in 2012) will use a continuously spinning spacecraft to construct a global system
of positions, proper motions and absolute parallaxes from relative position measurements made in an astrometric focal plane. This
astrometric reduction can be cast as a classical least-squares problem, and the adopted baseline method for its solution uses a simple
iteration algorithm. A potential weakness of this approach, as opposed to a direct solution, is that any finite number of iterations results
in truncation errors that are difficult to quantify. Thus it is of interest to investigate alternative approaches, in particular the feasibility
of a direct (non-iterative) solution. A simplified version of the astrometric reduction problem is studied in which the only unknowns
are the astrometric parameters for a subset of the stars and the continuous three-axis attitude, thus neglecting further calibration
issues. The specific design of the Gaia spacecraft and scanning law leads to an extremely large and sparse normal equations matrix.
Elimination of the star parameters leads to a much smaller but less sparse system. We try different reordering schemes and perform
symbolic Cholesky decomposition of this reduced normal matrix to study the fill-in for successively longer time span of simulated
observations. Extrapolating to the full mission length, we conclude that a direct solution is not feasible with today’s computational
capabilities. Other schemes, e.g., eliminating the attitude parameters or orthogonalizing the observation equations, lead to similar
or even worse problems. This negative result appears to be a consequence of the strong spatial and temporal connectivity among
the unknowns achieved by two superposed fields of view and the scanning law, features that are in fact desirable and essential for
minimizing large-scale systematic errors in the Gaia reference frame. We briefly consider also an approximate decomposition method
à la Hipparcos, but conclude that it is either sub-optimal or effectively leads to an iterative solution.
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1. Introduction

The Gaia mission (Perryman et al. 2001; Lindegren et al. 2008)
has been designed to measure the astrometric parameters (po-
sitions, proper motions and parallaxes) of around one billion
objects, mainly stars belonging to our Galaxy. Gaia is a spin-
ning spacecraft equipped with two telescopes that point in direc-
tions orthogonal to the spin axis and that share the same focal
plane composed of a large mosaic of CCDs. The spin axis is ac-
tively maintained at a a fixed angle of 45◦ with respect to the
satellite-Sun direction, while performing a precession-like mo-
tion around the Sun direction with a period of about 63 days
(Jordan 2008). The elementary astrometric observations consist
of quasi-instantaneous measurements of the positions of stellar
images with respect to the CCDs, from which the celestial coor-
dinates of the objects may be computed.

One challenging aspect of the Gaia mission is precisely how
to build the catalogue of astrometric parameters from such ele-
mentary measurements. The image of each star will pass many
times through the focal plane. In order to build the celestial map
with the required accuracy (a few microarcsec, μas), it is neces-
sary to recover the attitude of the spacecraft and calibrate the in-
strument to the same accuracy. This can only be achieved by con-
sidering the strong interconnection between all the unknowns
throughout all the observations. Effectively it means that all the

data must be treated together in a single solution, which makes
this task computationally difficult but also results in a numeri-
cally “stiff” solution, i.e., one in which observation noise cannot
easily generate large-scale distortions of the celestial reference
frame.

In this highly simplified description of the astrometric so-
lution for Gaia we have ignored the complex pre-processing of
the raw CCD data as well as its interaction with the photometric
and spectroscopic data (e.g., in order to calibrate colour depen-
dent image shifts) and the circumstance that a large fraction of
the objects are resolved or astrometric binaries, solar system ob-
jects, etc., requiring special treatment. We are here concerned
with the core astrometric solution of perhaps 108 well-behaved
“primary sources” which also provides the basic instrument cal-
ibration and attitude parameters. Following accepted nomencla-
ture in the Gaia data processing community, the term “source”
is here used to designate any (point-like) object detected by the
instrument. The primary sources may include some extragalactic
objects (AGNs or quasars) in addition to stars.

In the core astrometric solution all the calibration, attitude
and primary source parameters must therefore be adjusted to fit
all the measurements as best as possible. From a mathemati-
cal point of view the adjustment can be understood as a least-
squares problem. The resulting large, sparse system of equa-
tions has superficial similarities with many other problems, for
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example in geodesy and finite element analysis – an analogue
in classical astrometry is the plate-overlap technique (Jefferys
1979). However, the actual structure of the system is in each
case intimately connected to the physics of the problem and this
strongly influences the possible solution methods. The idea of
using a spinning spacecraft to measure the large angles between
stars, using two telescopes with a common focal plane, is due
to Lacroute (1967, 1975). This genial design principle, first used
for Hipparcos, has been adopted for Gaia too and has a strong
impact on the structure of the observed data.

In this paper we investigate the structure of the equations re-
sulting from a simplified formulation of the astrometric adjust-
ment problem and demonstrate how it is directly connected with
the Gaia instrument design and scanning law. The purpose of
this exercise is to motivate a posteriori the use of iterative meth-
ods to the numerical solution of the adjustment problem. The
method actually adopted for the Gaia data processing (Mignard
et al. 2008) is the iterative, so-called Astrometric Global Iterative
Solution (AGIS), fully described by Lindegren et al. (in prep.)
and O’Mullane et al. (in prep.). The original Hipparcos solu-
tion (Kovalevsky et al. 1992; Lindegren et al. 1992; ESA 1997,
Vol. 3) used an approximate decomposition method, while the
recent re-reduction of the main Hipparcos data by van Leeuwen
(2007) used the iterative method.

It is a well know paradigm (Björck 1996, Sect. 7.1.1) that
there does not exist an “optimal” algorithm capable of solv-
ing efficiently any large and sparse least-squares problem. Given
the unknowns and the structure of their interdependencies, each
problem requires its specific algorithm and software in order to
be solved with a reasonable computational effort. Direct methods
are suitable for certain problems, whereas for others an iterative
method can be much more efficient. Iterative methods with a pre-
conditioner can be seen as a hybrid between direct and iterative
schemes. But, whereas a direct method by definition achieves
its result in a finite number of arithmetic operations, an iterative
method depends on some stopping criterion, i.e., the required
number of iterations is not known a priori. Furthermore, direct
methods may provide direct estimates of the statistical proper-
ties of the solution (e.g., from selected elements of the covari-
ance matrix), which are not so easily obtained from an iterative
solution1.

In this study, we derive an estimate of the number of opera-
tions required for a direct solution based on normal equations by
taking advantage of their special structure in the most straight-
forward manner. We argue that the complexity of the Gaia astro-
metric problem renders such a direct method, and simple vari-
ants of it, likely unfeasible in the foreseeable future. Apart from
this negative result, the study provides new insights into the de-
sign principles of the Gaia mission.

In the context of solving large, sparse systems of equations
it is necessary to make a clear distinction between the sparse-
ness as such and the complexity of the sparseness structure.
Sparseness refers to the circumstance that most of the elements
in the large matrices that appear in these problems are zero, and
therefore need not be stored. Complexity refers to the circum-
stance that the structure of non-zero elements is non-trivial in
some sense that is difficult to define precisely. However, one pos-
sible way to quantify complexity, which we adopt for this paper,
is simply by the number of floating-point operations required
to solve the system (essentially the total number of additions

1 Standard errors and correlations can nevertheless be estimated
through statistical techniques, see Holl et al. (2009) for a first study
of spatial correlations in the global astrometric solution for Gaia.

and multiplications), assuming a reasonably efficient method
that takes into account its sparseness. We argue that the Gaia
astrometric least-squares problem is both very sparse and very
complex.

The paper is organized as follows. In Sect. 2 we present the
basic observation equations and normal equations of the least-
square problem associated with the astrometric data reduction
process. We give these equations in an abstract form, emphasiz-
ing the connection between different data items, but without go-
ing into the mathematical details. In the subsequent sections we
discuss and compare the different approaches to the astromet-
ric solution (Sects. 3–5.3) and draw some general conclusions
(Sect. 6). Appendix A and B give further details on the sparse-
ness structure and fill-in of the normal equations for the direct
method, based on simulated observations.

2. The astrometric equations

2.1. Input data for the astrometric solution

The astrometric solution links the astrometric parameters (i.e.,
the positions, parallaxes and proper motions) of the different
sources by means of elementary measurements in the focal plane
of Gaia. These measurements, which thus form the main input to
the astrometric solution, consist of the precisely estimated times
when the centres of the star images cross over designated points
on the CCDs. They are the product of a complex processing task,
known as the initial data treatment (IDT; Mignard et al. 2008),
transforming the raw satellite data into more readily interpreted
quantities. Although the details of this process are irrelevant for
the present problem, a brief outline is provided for the reader’s
convenience.

The astrometric focal plane of Gaia contains a mosaic of 62
CCDs, covering an area of 0.5 deg2 on the sky. Two such areas,
or fields of view, are imaged onto the focal plane by means of an
optical beam combiner. On the celestial sphere these fields are
separated by a fixed and very stable “basic angle” of 106.5◦. The
slow spinning of the satellite (with a period of 6 hr) causes the
star images from either field of view to flow through the focal
plane, where they are detected by the CCDs. The measurements
are one-dimensional, along the scanning direction defined by the
spin axis perpendicular to the two fields of view. The optical ar-
rangement allows sources that are widely separated on the sky to
be directly connected through quasi-simultaneous measurements
on the same detectors. This is a key feature for achieving Gaia’s
highly accurate, global reference frame; but, as we shall see, it
is also an important factor for the complexity of the astrometric
solution.

Each CCD has 4500 pixels in the along-scan direction, with
a projected pixel size of 59 mas matching the theoretical reso-
lution of the telescope. The charge image of a source is built up
while being clocked along the pixels in synchrony with the mo-
tion of the optical image due to the satellite spin. As the optical
stellar images move off the edge of the CCD, the charges are
read out as a time series of pixel values, corresponding to the
along-scan intensity profile of each stellar image. In the initial
data treatment, a calibrated line-spread function is fitted to the
pixel values, providing estimates of the along-scan position of
the image centroid in the pixel stream, as well as of the total flux
in the image.

While the total integration time of the charge build-up along
the CCD is about 4.4 s, it is usually a good enough approxi-
mation to regard the resulting observation as instantaneous, and
referring to an instant of time that is half the integration time
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earlier than the readout of the image (Bastian & Biermann 2005).
Thus, we may represent the astrometric observation by the pre-
cisely estimated instant when the image centre crosses the CCD
“observation line” nominally situated between the 2250th and
2251st pixel. This instant is called the CCD observation time
and denoted tl, where l is the index used to distinguish the dif-
ferent CCD observations obtained over the mission. The ensem-
ble of CCD observation times, here formally represented by the
vector t (of dimension ∼1011; see Sect. 2.4), is the main data in-
put for the astrometric solution. The timing observations provide
accurate (typically ∼ 0.1 to 1 mas) information about the instan-
taneous relative along-scan positions of the observed objects.

2.2. The general problem

In its most general formulation, the Gaia astrometric solution
can be considered as the minimization problem

min
s, a, c, g

|t − f (s, a, c, g)| , (1)

where s, a, c and g are parameter vectors related to the sources,
instrument attitude, instrument calibration, and global model of
the observations, and f is a vector function of calculated CCD
observation times based on the given parameters. The func-
tion |.| is the vector norm on a suitable metric, taking into ac-
count the different weights of the observations and the treat-
ment of outliers. The function f is in principle highly non-linear,
but the initial data treatment provides an initial approximation
to all the unknowns which is good enough (e.g., with errors
ε < 10−6 rad � 0.2 arcsec) that effectively all subsequent calcu-
lations can work with the linearized function (resulting in errors
of the order of ε2 < 10−12 rad � 0.2 μas).

In Eq. (1) we distinguish between four categories of param-
eters because of their different physical origins and the way they
appear in the equations. For example, each source (distinguished
by index i) has its own set of astrometric parameters, represented
by a sub-vector si. Similarly, while the instrument attitude (i.e.,
its precise spatial orientation with respect to a celestial reference
system) is in principle a single continuous function of time, its
numerical representation is for practical reasons (data gaps, etc.)
subdivided into time segments (index j) with independent atti-
tude parameter sub-vectors a j. The instrument calibration (i.e.,
the precise geometry of the optics and focal-plane assembly in-
cluding the CCDs) is also subdivided into units (index k), e.g.,
for the different CCDs, with independent calibration parameter
sub-vectors ck. By definition, the global parameter vector is not
similarly subdivided: it contains parameters that affect all ob-
servations, such as the parameterized post-Newtonian (PPN) pa-
rameter γ (Hobbs et al. 2009).

Each CCD observation l is therefore uniquely associated
with a specific object i, an attitude time segment j, and a cali-
bration unit k. This mapping is formally expressed by the func-
tions i(l), j(l), k(l). Adopting a weighted L2 (Euclidean) norm in
Eq. (1), the minimization problem can then be written

min
s, a, c, g

∑
l

∣∣∣∣∣∣tl − fl(si(l), a j(l), ck(l), g)
∣∣∣∣∣∣2 Wl , (2)

where Wl is the statistical weight associated with CCD observa-
tion l. Subsequently we assume that the weights are fixed and
known.

The attitude parameters define the spatial orientation of the
instrument as function of time, relative to the celestial reference
system. For AGIS, the instantaneous attitude is represented by
a unit quaternion (Wertz 1978), and the four components of the

quaternion are represented as continuous functions of time by
means of cubic spline functions on a (more or less regular) knot
sequence. Since the quaternion is normalized to unit length, the
model has three degrees of freedom per knot. In general, three
independent quantities are needed to describe the orientation at
any time, and we may assume that one of them to represent the
rotational state around the satellite spin axis. Information about
this (along-scan) attitude component is provided by the CCD ob-
servation times. Some of the CCD observations will give an ad-
ditional measurement of the across-scan coordinate of the source
image at the time of the observation. These observations are ob-
tained with a lower accuracy than the along-scan (timing) obser-
vations, but are crucial for determination of the remaining two
components of the attitude, representing orientation about two
axes perpendicular to the spin axis. These measurements have
to be included in the actual minimization problem (2), but they
can be neglected here because they do not change the formal
structure of the problem (i.e., they do not create additional links
between the unknowns). For the present discussion it is useful
to think of the instantaneous attitude as represented by three an-
gles, one of which describing the along-scan orientation of the
instrument and the other two being across-scan components of
the attitude.

2.3. The simplified problem

In order to simplify the description of the astrometric problem,
we will subsequently assume that the instrument is perfectly cal-
ibrated and that the global parameters are perfectly known, so
that in effect we can ignore c and g in Eq. (1). The resulting
simplified problem is therefore

min
s, a

∑
l

∣∣∣∣∣∣tl − fl(si, a j)
∣∣∣∣∣∣2 Wl , (3)

where, for conciseness, the dependence of i and j on l is not
explicitly written out but is implied in this and the following
equations.

There are several reasons for introducing the simplification
of neglecting c and g. Concerning the global parameters, they
are typically of such a nature that they can be considered known
from first principles; e.g., the PPN parameter γ = 1 according to
General Relativity. Furthermore, there are much fewer calibra-
tion (<∼106) and global parameters (<∼102) than attitude (>∼2×107)
and source parameters (�5 × 108 for the primary sources). More
importantly, experience both from the Hipparcos reductions and
simulated Gaia data processing shows that the geometrical in-
strument calibration (e.g., determination of the effective field
distortion) is quite straightforward and well separated from the
determination of source and attitude parameters (e.g., by accu-
mulating a map of average positional residuals across the field
of view). The real problem lies in separating the source and at-
titude parameters. This can be qualitatively understood from a
consideration of how the calculated observation times depend
on the different parameters. Because each global or calibration
parameter affects a very large number of observations spread
over the whole celestial sphere, or a large part of it, its deter-
mination is not greatly affected by localized errors related to the
source and attitude parameters. By contrast, both the attitude and
source parameters may have a very local influence function on
the sky, which could render their disentanglement more difficult
(cf. van Leeuwen 2007, Sect. 1.4.6).

One further reason for considering the simplified problem is
that we want to study the feasibility of a direct solution of the
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least-squares problem. It is then necessary that an efficient direct
algorithm should first work for the simplified problem. Adding
the calibration and global parameters can only make the problem
more difficult.

2.4. Observations (data) and unknowns (parameters)

The simplified least-squares problem involves three very large
vectors: t containing the observations (CCD observation times),
s containing the unknown source parameters, and a containing
the unknown attitude parameters.

To give an idea of the number of observations and unknowns
we give rough approximations based on the current (and final)
Gaia design. Gaia will observe a total of about 109 objects, but
only a fraction of them will be used for the astrometric solution,
i.e., as “primary sources”. (Astrometric parameters for other ob-
jects can be calculated off-line, one object at a time, once the atti-
tude and calibration parameters have been determined by means
of the primary sources.) The primary sources are selected it-
eratively for their astrometrically benign nature, e.g., avoiding
all known or suspected double stars as well as sources showing
unexpectedly large residuals in the astrometric solution. Apart
from these constraints it is advantageous to use as many primary
sources as possible because that will increase the accuracy of
the instrument calibration and attitude determination. It is not
known how many primary sources will eventually be used for
Gaia, but a design goal for AGIS is to be able to handle at least
108 primary sources, covering the full range of magnitudes and
colours, with a not too uneven distribution on the sky, and being
observed throughout the duration of the mission.

Neglecting observational dead time, the average number of
CCD observations per object is directly given by the number
of superposed fields (=2), the number of astrometric CCDs that
the object successively crosses in each field of view (=9), the
transverse (across-scan) size of the field of view (Φ = 0.676◦),
the mission length (T = 5 years), and the satellite spin rate (ω =
60 arcsec s−1). The result is 2 × 9 × ΦTω/(4π) � 776 CCD
observations per object. With n = 108 primary sources the total
number of observations is o = dim(t) � 8 × 1010.

There are five astrometric parameters per primary source
(two components for the position at the reference epoch, one
for the parallax, and two proper motion components, Lindegren
et al., in prep.); hence dim(s) = 5n � 5 × 108.

The number of free attitude parameters depends on the
adopted attitude model. This, in turn, should be optimized by
taking into account the nature and level of perturbations on one
hand, and the number and quality of primary source observa-
tions on the other. The new Hipparcos reduction (van Leeuwen
2007) used a dynamical model of the satellite to reduce the num-
ber of attitude parameters and hence improve the accuracy of
the solution. For Gaia, the attitude control using continuously
active gas thrusters will introduce high-frequency perturbations
that make it meaningless to dynamically predict the along-scan
attitude motion over intervals longer than a few seconds – after
that the new observations are more accurate than the prediction.
This suggests that the attitude model should have one degree of
freedom per axis for every 10–20 s. With the adopted (cubic)
spline representation of the attitude components as functions of
time (see Sect. 2.2), and assuming a maximum knot interval of
about 20 s, the minimum number of scalar attitude parameters
for a 5-year mission is m = dim(a) � 2 × 107.

It is reasonable to ask whether cubic splines are the best
choice for a direct solution. It might be that a different rep-
resentation of the attitude could reduce the number of attitude

unknowns, in particular if the noise level introduced by the con-
trol system is less than currently foreseen. However, splines have
an important advantage from a computational viewpoint, namely
that they are local in the sense that a change in the data at point t′
has little effect on the fitted spline at t, provided that |t′−t| is large
enough (typically spanning tens of knots). The use of a dynam-
ical model or other approximation schemes is likely to cause a
partial loss of this “locality”, and it can be inferred from the
present study that this would vastly modify the sparseness struc-
ture of the adjustment problem in the sense of making a direct
solution even harder.

2.5. Observation equations

The weighted least-squares problem (3) corresponds to the over-
determined system of non-linear observation equations

∀l : tl = fl(si, a j) (weight Wl) . (4)

Since the function fl is non-linear but smooth, we use a linear ex-
pansion around some suitable reference values s0

i , a0
j . With xsi,

xa j denoting the displacements around the reference values, the
over-determined system of linearized observation equations is

∀l :
∂ fl
∂s′i

xsi +
∂ fl
∂a′j

xa j = tl − fl (weight Wl) , (5)

with fl and partial derivatives evaluated at the reference point
(s0

i , a
0
j). (The prime ′ denotes matrix transpose or the scalar prod-

uct of vectors.) Multiplying each equation by the square root of
its statistical weight (or, equivalently, dividing by its standard er-
ror), and introducing hl = (tl − fl)

√
Wl, Sl = (∂ fl/∂s′i )

√
Wl, and

Al = (∂ fl/∂a′j)
√

Wl, we obtain a set of observation equations of
equal (unit) weight,

∀l : Slxsi + Alxa j = hl (weight 1) . (6)

The choice of spline functions for representing the attitude has
a direct influence on the structure of the observation equations
(6) through the definition of a j. A spline of order M (e.g.,
M = 4 for cubic splines) can be written as the linear combina-
tion of basis functions called B-splines (de Boor 1978) that are
uniquely defined by M and the non-decreasing knot sequence
τ = {τ0, τ1, . . .}. The B-splines have minimal support; more pre-
cisely, at any time tl there are at most M non-zero B-splines. If
τ� ≤ tl < τ�+1, then the M non-zero B-splines may be denoted
B�−M+1(tl), B�−M+2(tl), . . . , B�(tl) and the associated spline coef-
ficients a�−M+1, a�−M+2, . . . , a�. The sub-vector a j of the attitude
parameters will therefore consist of at least 3M scalar values,
namely one spline coefficient for each of the three orientation
angles in each of at least M adjacent knots.

From Eq. (6) it is evident that observation equations for dif-
ferent sources involve disjoint source parameter sub-vectors si
but may refer to the same attitude sub-vector a j. Sorting all the
observation Eqs. (6) by the source index i and collecting them
in one matrix we get a non-square block angular matrix2 (see
Björck 1996):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Si=1 0 · · · 0 Ai=1
0 Si=2 · · · 0 Ai=2
...

...
. . .

...
...

0 0 · · · Si=n Ai=n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xs1
xs2
...

xsn

xa

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hs1
hs2
...

hsn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇔ Mx = h, (7)

2 Also called Helmert blocking in reference to the German geodesist
F. R. Helmert who described this structure in 1880.
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with n the number of primary sources (108). The matrices Si, Ai

and vector hsi are the vertical concatenations of, respectively, Sl,
Al, and hl for all observations l referring to source i; xa is the
vector of all the attitude parameter displacements xa j.

In Eqs. (6)–(7) and all following equations, it is important
to note our (slightly unconventional) use of indices in the sub-
scripts. Since index l is exclusively used for the observations,
and i, j respectively for the sources and attitude time segments,
Sl and Si signify different matrices, even when the indices l and
i happen to have the same numerical value. Sl is the 1× 5 matrix
containing the partial derivatives of fl with respect to the five
astrometric parameters of source number i(l), multiplied by the
square root of the weight of observation tl. Suppose that there are
oi observations of source i. Si is then the oi × 5 matrix obtained
by stacking Sl for every l such that i(l) = i. A similar distinction
is made between Al, referring to observation l, and Ai, obtained
by stacking all Al for which i(l) = i.

For example, consider the source i = 1 with o1 = 3 observa-
tions for l = 7, 22 and 3999, each occurring at a different attitude
interval with index j = 11, 123 and 200, respectively. Then

Si=1 =

⎡⎢⎢⎢⎢⎢⎢⎣
Sl=7
Sl=22

Sl=3999

⎤⎥⎥⎥⎥⎥⎥⎦ , hs1 =

⎡⎢⎢⎢⎢⎢⎢⎣
hl=7
hl=22

hl=3999

⎤⎥⎥⎥⎥⎥⎥⎦ . (8)

and

Ai=1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
· · · ( j=11) · · · ( j=123) · · · ( j=200) · · ·
· · · Al=7 · · · 0 · · · 0 · · ·
· · · 0 · · · Al=22 · · · 0 · · ·
· · · 0 · · · 0 · · · Al=3999 · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (9)

where the column indices of the three non-zero columns are
shown in the top row. Note that Ai=1 in Eq. (7) is multiplied
by xa, which is the vertical concatenation of xa j for the different
attitude time segments j. The first row in Eq. (7) therefore only
involves the attitude unknowns xa j=11, xa j=123 and xa j=200.

2.6. Normal equations

The system (7) is over-determined: there are more equations than
unknowns. Due to measurement errors, there does not exist a
solution that simultaneously satisfies all the equations. However
the problem becomes mathematically well posed when we try to
minimize the norm of the post-fit residual vector,

min
x
||h − Mx|| . (10)

This is the ordinary least-squares problem, which is classically
solved by forming the normal equations

M′Mx = M′h , (11)

or⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1
′S1 0 · · · 0 S1

′A1

0 S2
′S2 · · · 0 S2

′A2

...
...
. . .

...
...

0 0 · · · Sn
′Sn Sn

′An

A1
′S1 A2

′S2 · · · An
′Sn
∑

i Ai
′Ai

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xs1

xs2

...

xsn

xa

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1
′hs1

S2
′hs2

...

Sn
′hsn∑

i Ai
′hsi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (12)

where the prime (′) denotes matrix transpose and the numerical
subscripts refer to the source index i. The full normal equations
matrix N = M′M is symmetric of size 5n + m (equal to the total
number of unknowns), with n the number of primary sources

and m = dim(a) the number of attitude parameters. It has the
doubly bordered block diagonal form (Björck 1996, Sect. 6.3.1)
with block size 5 and border width m.

Thanks to the scanning law of Gaia, and provided that a
sufficient number of sources are observed a sufficient number
of times over the mission, it is found that each of the diago-
nal sub-matrices Si

′Si and
∑

i Ai
′Ai are positive-definite. Yet the

complete system (12) is in principle singular (although round-
ing errors will in practice make it non-singular): it is expected
to be positive-semidefinite with rank 5n + m − 6, owing to the
circumstance that all the observations are invariant with respect
to the choice of celestial reference system. The 6-dimensional
nullspace is in fact well known and corresponds to the undefined
orientation and spin of the reference system in which both the
source parameters and the attitude are expressed. This singular-
ity is therefore of a benign nature and the associated numerical
difficulties can easily be overcome (Lindegren et al., in prep.).
For simplicity we subsequently ignore this particular feature of
the problem and assume that the normal matrix N is positive-
definite.

2.7. Sparseness structure

In this section we investigate the sparseness structure of the ob-
servation matrix M and the normal matrix N. In linear algebra
the sparseness notion refers to matrices or systems of equations
where only a (very small) fraction of the elements have non-
zero values. We use η(X) to denote the fill factor of the matrix
X, i.e., the fraction of non-zero elements. The sparseness struc-
ture of the present equations is directly related to the design of
Gaia: two telescopes separated by a large fixed angle, orthogo-
nal to a spin axis, and a scanning law that has been optimized to
maximize the sky coverage within given technology constraints,
leading to a satellite spin period of 6 hr with a precession rate of
approximately 4◦ day−1 (see Lindegren et al. 2008).

With oi = dim(ti) denoting the number of observations of
source i and m = dim(a) the number of attitude parameters,
the dimensions (rows× columns) of the various sub-matrices in
Eq. (7) are as follows:

Si (oi × 5) Ai (oi × m) hsi (oi × 1)

xsi (5 × 1) xa (m × 1)

}
, (13)

Si are full matrices, while the Ai are very sparse, with element
[Ai]αβ � 0 only if the αth observation of source i is linked to the
βth attitude parameter. As discussed in Sect. 2.5, a given obser-
vation is linked to 3M consecutive attitude parameters, where M
is the order of the spline; thus η(Ai) = 3M/m. For the total ob-
servation matrix we have η(M) = (5+3M)/(5n+m). Assuming,
as in Sect. 2.4, n = 108, m = 2 × 107 and M = 4, we find
η(Ai) � 6 × 10−7 and η(M) � 3 × 10−8.

For the normal equations (12) we have the dimensions:

Si
′Si (5 × 5) Si

′Ai (5 × m) Si
′hsi (5 × 1)

Ai
′Si (m × 5)

∑
i Ai
′Ai (m × m)

∑
i Ai
′hsi (m × 1)

}
. (14)

Si
′Si is full, while the βth column of Si

′Ai is non-zero if at
least one observation of source i is linked to the βth attitude
parameter. Typically, each field-of-view transit consists of nine
CCD observations, spanning a time interval of T � 40 s and
thus linking on average 3(T/Δτ + M) � 18 consecutive atti-
tude parameters (M = 4 is the order of the attitude spline and
Δτ � 20 s the interval between knots). Since there are on av-
erage 86 field transits per source over the mission, we have
in the mean η(Si

′Ai) � 18 × 86/m � 8 × 10−5.
∑

i Ai
′Ai is
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symmetric with non-zero elements only in a band along the di-
agonal; the half-bandwidth (maximum number of non-zero el-
ements to the left or right of the diagonal) is 3M − 1, but ac-
tually the non-zero part consists of (3 × 3)-submatrices on the
diagonal plus M − 1 of them on each side of the diagonal. Thus
η(
∑

i Ai
′Ai) � 3(2M − 1)/m � 1 × 10−6. For the full normal

matrix we have η(N) � 310/n � 3 × 10−6.

3. Direct solution method

In this section we consider the possibility of computing a direct
(i.e., non-iterative and algebraically exact) solution to the normal
Eqs. (12). Already in the early phases of the Hipparcos project it
was concluded that a direct solution of the corresponding (much
smaller) problem would not be feasible, and the so-called three-
step procedure was invented as a practical, albeit approximate
workaround (Sect. 5.3). Since then, the available storage and
computing power have increased by many orders of magnitude
and it is not obvious that even the much larger Gaia problem is
intractable by a direct method. However, as we shall see below, it
appears that the direct method is still quite unfeasible, although
it may be difficult to prove such an assertion in full mathematical
rigour.

Let us start with a few general observations. The solution of
a non-sparse system of normal equations with N unknowns in
general requires a minimum of about N3/6 floating-point opera-
tions3, where an operation typically involves one multiplication
(or division) and one addition, plus some subscripting (Golub &
van Loan 1996). For a sparse matrix there is no general formula,
since the required effort depends critically on the detailed sparse-
ness structure (i.e., the connectivity amongst the unknowns), the
ordering of the unknowns, and the chosen solution algorithm. A
lower bound is given by � η2N3/8, which applies to a banded
matrix (George & Liu 1981). Considering the normal matrix N
in Eq. (12) with N = 5n + m � 5 × 108 and η(N) = 3 × 10−6

this gives operation counts from 1014 to a few times 1025 flop. It
is envisaged that the astrometric solution for Gaia will run on a
computing system with a performance of about 10 TFLOPS, or
1013 floating-point operations per second (Lammers et al. 2009).
Theoretically, this gives a computing time of tens of seconds for
the lower bound, and tens of thousands of years for the upper
bound, i.e., ranging from clearly feasible to clearly unfeasible4.
In order to refine the estimate we need to specify the solution
method more precisely and take a closer look at the sparseness
structure. In this section we consider a solution based on the
elimination of the source parameters, which seems the most nat-
ural approach for the present problem. In Sect. 5 we briefly con-
sider some possible alternative approaches to the direct solution.

3.1. Reduced normal matrix

A standard way to handle normal equations with the block-
diagonal-bordered structure of Eq. (12) is to successively elim-
inate the unknowns along the block-diagonal (in our case the
source parameters), leaving us with a “reduced” normal equa-
tions system for the remaining unknowns (in our case the attitude

3 A floating-point is a standard that defines the representation of ra-
tional numbers in a computer. The term flop is used as a unit for the
number of floating-point operations needed to solve a problem.
4 For comparison, it is estimated that the entire Gaia DPAC processing
will require of the order of 1021 flop (Mignard et al. 2008), compa-
rable to several other large computational projects. On a 10 TFLOPS
machine, the corresponding computing time is three years.

parameters). The gain is a huge reduction in the size of the sys-
tem that has to be solved, at the expense of a much denser re-
duced matrix.

A straightforward computation shows that the solution of
Eq. (12) can be accomplished by first solving the reduced normal
equations for the attitude parameters,

Raxa =

n∑
i=1

(
Ai
′hsi − Ai

′Si
(
Si
′Si
)−1 Si

′hsi

)
, (15)

where

Ra =

n∑
i=1

(
Ai
′Ai − Ai

′Si
(
Si
′Si
)−1 Si

′Ai

)
, (16)

is the reduced normal matrix, and then forwarding the solution
xa to solve all the source equations

xsi =
(
Si
′Si
)−1 (Si

′hsi − Si
′Aixa

)
, i = 1, 2, . . . , n . (17)

This well-known computational trick, tantamount to a block-
wise gaussian elimination, was used e.g. for the Hipparcos
sphere solution (see ESA 1997, Vol. 3, p. 208) and is also used
for the one-day astrometric solution as part of the Gaia first look
processing (see Bernstein et al. 2005; Bombrun 2008a; Jordan
et al. 2009). The initial problem has been reduced to a smaller
one. For the global space astrometry problem, the complexity es-
sentially consists of solving the reduced normal equations (15),
which involves the sparse symmetric positive-definite matrix Ra
of size m × m, with m � 2 × 107 for Gaia.

3.2. Complexity of the Cholesky factorization

In order to solve Eq. (15), we investigate the Cholesky factoriza-
tion of the reduced normal matrix Ra. The Cholesky factoriza-
tion is a useful and well-known method to solve linear equations
involving a positive-definite matrix, see Appendix B. Moreover,
the complexity of this factorization, which is strongly related to
the sparseness structure of the matrix to be factored, can easily
be computed. In Appendix A we present the sparseness structure
of the reduced normal matrix. As we are here only concerned
with the complexity of the factorization, not by the actual nu-
merical values, we use symbolic computation. For sparse matri-
ces this means that the indices of non-zero elements occurring
during the computation are traced, which enables us to compute
the number of floating-point operations required for the factor-
ization, as well as the sparsity of the resulting factor.

Even using symbolic computation, Ra is far too large to be
easily studied in full. Instead we consider sequences of increas-
ingly larger submatrices that allow extrapolation to the full-size
problem. A principal submatrix of Ra is obtained by deleting a
certain subset of the rows and the corresponding columns. Since
Ra is symmetric and positive-definite, that is also true of all its
principal submatrices (Stewart 1998).

As explained in Sect. 2.4, the attitude parameters are grouped
in sub-vectors a j corresponding to non-overlapping time seg-
ments. Deleting the rows and columns in Ra for a certain time
segment is clearly equivalent to excluding all observations in that
time segment. Conversely, by considering only the observations
in selected time segments, we obtain a principal submatrix of Ra.

Using the small-scale simulation software AGISLab (Holl
et al. 2009), the structures of various principal submatrices of Ra
were computed for a problem with one million primary sources.
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Fig. 1. The fill factor η of the reduced normal matrix in (15), and of
its Cholesky factor, as function of the number of spins (6 h intervals)
included in the solution. Three sequences of increasing number of spins
are considered, labelled set 1, 3 and 12, as explained in the text.

Each complete rotation (spin) of the satellite constitutes an atti-
tude time segment of 6 h, which is divided into 1000 knot inter-
vals of Δτ = 21.6 s. For each pair of knot intervals, (�, �′), where
� and �′ may belong to different time segments (spins), AGISLab
provides the number of sources observed in both intervals. If this
number is not zero, then the 3×3 block elements of the principal
submatrix with |� − �′| ≤ 2M will be non-zero, where M = 4 is
the order of the attitude spline (Sect. 2.5).

We consider three sequences of principal submatrices of Ra,
labelled set 1, 3 and 12, each covering up to 400 spins ( j):

set 1: j = 0, 1, 2, 3, . . . , 399 (� 100 days)
set 3: j = 0, 3, 6, 9, . . . , 1197 (� 300 days)
set 12: j = 0, 12, 24, 36, . . . , 4788 (� 1200 days).

The number of spins included is successively increased to
study the sparsity structure of the resulting principal submatrix.
Symbolic Cholesky factorization was performed after a reorder-
ing of the attitude unknowns. We used the minimum degree al-
gorithm and the reordering software Metis (Karypis & Kumar
1998), which implements one of the most efficient reordering
algorithms. We also tried the reverse Cuthill-McKee algorithm
(George & Liu 1981) but it is clearly less efficient than the mini-
mum degree algorithm in terms of the sparseness of the resulting
Cholesky factor.

Figure 1 shows the fill factors η for the different submatrices,
and for the Cholesky factors after reordering using the minimum
degree algorithm, as functions of the total number of spins con-
sidered. The full problem (5 yr) corresponds to about 7300 spins.
As shown by the lower set of curves in Fig. 1, the fill factor for
the principal submatrices of Ra decreases with the number of
spin rotations, although it appears to level out at a few times
10−4. By contrast, for the corresponding Cholesky factors the fill
factor quickly approaches 1 (the upper set of curves), implying
that sparse matrix algorithms (including reordering) tend to be
useless when more than a few hundred spins are included.

Figure 2 shows the complexity of the solution in terms
of the number of floating-point operations needed to compute
the Cholesky factors, taking into account the sparseness. Also
shown (by the upper, straight line) is the complexity of the
Cholesky factorization of the corresponding full matrices. It is
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Fig. 2. Same as Fig. 1, but showing the complexity of reduced normal
equations in terms of the number of floating-point operations (flop)
needed to compute the Cholesky factors, using the minimum degree
reordering algorithm and Metis software.

clear that the complexity of the sparse submatrices tends towards
the upper bound for the full matrices.

Roughly speaking, the connectivity between the observa-
tions increases when more and more spins are included. Even
if the submatrices tend to be sparser, it is not possible to break
the increasing connectivity by reordering of the unknowns, at
least not with the commonly used reordering algorithms. Hence,
once Gaia has covered the whole sky, the Cholesky factor of
the reduced normal matrix will be almost full and as difficult to
compute as for a full matrix.

Extrapolating to the full size of the problem (7300 spins), we
find that a direct solution of the reduced normal equations (15)
will require about 1.3 × 1021 flop, the operation count for the
Cholesky decomposition of a full matrix of dimension m × m,
viz. m3/6.

As explained in the introduction, we have deliberately ig-
nored the calibration and global unknowns of the full Gaia
adjustment problem. Both groups of unknowns will add more
complexity and more fill-in. Similarly we have not discussed the
numerical stability of a direct solution, and it is possible that a
more refined numerical method, requiring an even greater com-
putational effort than the Cholesky factorization, may be needed
to compute an accurate solution. Moreover one should not forget
about the complexity of storage. An upper triangular matrix with
the dimension of the reduced normal matrix will require around
2 million Gigabytes. Operating efficiently on such a large matrix
is certainly a very difficult problem in itself.

4. Iterative solution method

In this section we present the currently implemented iterative
solution, AGIS (Lindegren et al., in prep.; O’Mullane et al.,
in prep.), adopting the simplifications of the present paper and
comparing its complexity to that of the direct solution. The so-
lution method outlined below belongs to a large and impor-
tant class of iterative algorithms for the solution of sparse lin-
ear equations, known as Krylov subspace methods (van der
Vorst 2003). The class includes well-known methods such as
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conjugate gradient which can be used for AGIS (Bombrun et al.
in prep). The basic AGIS scheme described above is equivalent
to the simplest of all Krylov subspace methods, appropriately
termed “simple iteration”.

4.1. The “simple iterative” scheme

In the present context, the iterative algorithm originally adopted
for the Gaia astrometric solution (AGIS) can be described as fol-
lows. As in Eq. (11), let Nx = b be the linear system of equations
to be solved, where N is symmetric. This system has the prop-
erty that the matrix–vector product Ny can be calculated rather
easily, for arbitrary y, while the direct solution of Nx = b is very
difficult. Now let K be some square matrix (“preconditioner”) of
the same size as N, which in some sense approximates N, but
has the property that the system Ky = z can easily be solved for
arbitrary z. Writing N = K − D (where D is sometimes called
the “defect” matrix) the original system becomes Kx − Dx = b,
which naturally leads to the iteration formula5

x(k+1) = K−1(b + Dx(k)) , (18)

for successive iterations k = 0, 1, 2, . . . A possible starting
approximation is x(0) = 0. Substituting D = K − N in Eq. (18)
leads to the alternative expression

x(k+1) = x(k) + K−1r(k) , (19)

where

r(k) = b − Nx(k) , (20)

is the residual vector in the kth iteration. With e(k) = x(k) − N−1b
denoting the error of the kth iteration, r(k) = −Ne(k) and we find
from Eqs. (18)

e(k+1) = e(k) + K−1r(k) = K−1 De(k) = (K−1 D)k+1e(0) . (21)

The algorithm converges to the correct solution if |e(k)| → 0 as
k → ∞. Equation (21) shows that this is the case if and only
if the spectral radius of the so-called iteration matrix K−1 D is
strictly less than one. For the residual vector we similarly have

r(k+1) = r(k) − NK−1r(k) = DK−1r(k) = (DK−1)k+1r(0) . (22)

The spectral radius of DK−1 is the same as that of the iteration
matrix, so the residual vector goes to zero at asymptotically the
same rate as the errors.

The choice of preconditioner has a profound influence on the
rate of convergence in the simple iteration scheme. In analogy
with classical iteration schemes, using the diagonal (or block-
diagonal) part of the N as preconditioner may be referred to
as a Jacobi iteration scheme, while the lower (block-) triangu-
lar part of N is referred to as a Gauss–Seidel iteration scheme.
As shown below, AGIS is close to the classical Gauss–Seidel
scheme known to be a converging residual-reducing scheme
(Björck 1996, Sect. 7.3.2).

4.2. Implementation in AGIS

The full normal Eqs. (12) can be written as[
Nss Nsa

Nas Naa

] [
xs

xa

]
=

[
bs

ba

]
, (23)

5 In this and subsequent formulae, an expression like y = K−1 z is
shorthand notation for the solution of Ky = z. Naturally, the inverse
matrix is never computed unless explicitly needed.

where Nss is the 5n×5n upper-left submatrix of N, Nsa = N′as is
of dimension 5n×m, Naa is m×m, and x and b are similarly split
in a source part (of length 5n) and an attitude part (of length m).
It is important to note that the submatrices Nss and Naa, although
large, have a simple block-diagonal or band-diagonal structure,
which makes it simple to solve systems involving only these ma-
trices. The complication comes from the off-diagonal blocks Nsa

and Nas, which couple the source and attitude parameters.
A natural choice to split the normals is therefore the follow-

ing Gauss–Seidel scheme:

K =
[

Nss ∅

Nas Naa

]
, D =

[
∅ −Nsa

∅ ∅

]
, (24)

where each ∅ stands for a zero matrix of the appropriate dimen-
sions. With this preconditioner, the update equation (19), split
into its source and attitude parts, becomes

x(k+1)
s = x(k)

s + δ
(k)
s , with δ(k)

s = N−1
ss r(k)

s , (25)

x(k+1)
a = x(k)

a + δ
(k)
a , with δ(k)

a = N−1
aa (r(k)

a − Nasδ
(k)
s ) , (26)

where r(k)
s and r(k)

a are the source and attitude parts of the resid-
ual vector in iteration k. From Eq. (19) it can be seen that
r(k)

a − F′Δx(k)
s is the attitude part of the residual vector computed

with the updated source parameters x(k+1)
s and current attitude

parameters x(k)
a . Each iteration can therefore be implemented by

means of the following two steps: (i) Compute the source part
of the residual vector, r(k)

s , and update the source parameters ac-
cording to Eq. (25). (ii) Using the updated source parameters,
recalculate the attitude part of the residual vector, equivalent to
r(k)

a − F′Δx(k)
s , and update the attitude parameters according to

Eq. (26). Note that the coupling matrix F is not explicitly needed
and that the derivatives used to set the observation Eq. (5) are in-
deed recomputed at each iteration.

The two steps (i) and (ii) exactly correspond to the source
update and attitude update blocks of the original AGIS scheme,
which therefore effectively implements the simple iteration with
Gauss–Seidel preconditioner. The scheme is easily paralleliz-
able, resulting in efficient and scalable software. The source
and the attitude equations can even be accumulated in paral-
lel, successively solved for each source, whereupon the updated
source parameters are passed to the attitude equations. When all
the sources have thus been processed, the attitude equations are
ready to be solved.

4.3. Complexity of the iterative solution

In Sect. 3 we did not consider the complexity of computing the
normal matrix and the reduced normal matrix. Indeed these com-
putations are negligible compared with the complexity of solv-
ing the reduced normal matrix. This is not the case for the it-
erative method. For the present comparison, let us assume that
the calculation of a single observation equation (i.e., of the ob-
servation residual and 5 + 3M = 17 partial derivatives) requires
some p = 104 flop. Assuming, as in Sect. 2, n = 108 sources,
o = 8 × 1010 observations, and m = 2 × 107 attitude param-
eters, the complexity of building the source part of the normal
equations (25) is around (p + 20)o � 8 × 1014 flop, while its so-
lution and updating of the source parameters only requires some
20n � 2×109 flop. For the attitude part, assuming that the resid-
uals and partial derivatives are calculated afresh (as is the case
in AGIS), building the normal equations in (26) requires around
(p+90)o � 8×1014 flop and another (3M)2m/6 � 5×108 flop for
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its solution. Thus the total complexity per iteration is of the order
of 2×1015, by far dominated by the setting up of the observation
equations.

We have seen that the complexity of one iteration of the iter-
ative method is much smaller than the complexity of solving the
full system. An additional question that needs to be addressed
then is the number of iterations needed in order to obtain a good
approximation to the solution of the least squares problem. It is
a drawback of any iterative method over the direct method that a
convergence criterion must be set up, and there is in principle no
way to know in advance how many iterations are needed to sat-
isfy the criterion. For the present application, both the full-scale
AGIS implementation (Lindegren et al., in prep.; O’Mullane et
al., in prep.) and small-scale AGISLab experiments (Holl et al.
2009) indicate that of the order of 100 simple iterations are re-
quired to reach parameter updates that are negligible to the nu-
merical precision of the 64-bit arithmetics. This can be improved
by a moderate factor (2 to 4) by the use of slightly more com-
plex iteration schemes, including conjugate gradients (Bombrun
et al., in prep.). These schemes are not elaborated here since they
do not so much affect the complexity of each iteration. The total
complexity of the iterative solution is therefore of the order of
1017 flop, or a factor ∼104 smaller than the direct solution.

5. Some alternative approaches to the direct
solution

The scheme described in Sect. 3 is not the only possible way to
obtain a direct solution, and in this section we briefly consider
some alternative approaches.

5.1. Elimination of attitude parameters

As an alternative to eliminating the source parameters, we may
consider instead the elimination of the attitude parameters, one
attitude segment ( j) at a time. This results in a reduced matrix Rs

for the source parameters, of size 5n × 5n. It consists of subma-
trices of size 5 × 5, such that the (i, i′)th submatrix is associated
with a pair of primary sources i and i′. The minimum fill factor
can easily be estimated from the geometry of the observations,
submatrix (i, i′) being non-zero if and only if the two sources i
and i′ are observed in the same attitude interval at some point
of the mission. From the size of the fields of view of Gaia and
the number of field transits per source (cf. Sect. 2.4) it is found
that η(Rs) ∼ 10−3, which is similar to the fill factor found for
the reduced attitude matrix Ra (Fig. 1). However, since for Gaia
dim(Rs) = 5n � 5 × 108, while dim(Ra) = m � 2 × 107, the
storage of Rs requires 2–3 orders of magnitude more memory
than Rs. We have not studied the complexity of the Cholesky
factorization of Rs, but it seems likely that it is at least as large
as that of Ra, and possibly several orders of magnitude larger.
This is based on the observations that the scanning law does not
admit any natural way of ordering the sources in order to reduce
the bandwidth of Rs.

Given that 5n  m for Gaia, elimination of the attitude pa-
rameters thus appears to be much less advantageous than the
scheme described in Sect. 3, although it may potentially be in-
teresting for other missions involving a much smaller number of
sources.

5.2. Orthogonal transformation of the observation equations

Forming normal equations, that are then solved by means of a
Cholesky factorization, is generally speaking the most efficient

direct way of solving the linear least-squares problem (10), both
in terms of storage and number of floating-point operations re-
quired. Numerically, however, it is less stable and less accurate
than some other methods that do not form and operate on the
normal equations. The basic reason for this is that the condition
number6 of the normal equations matrix is the square of that
of the observation equations matrix, that is κ(M′M) = κ(M)2.
log10 κ is approximately the number of significant decimal digits
lost in computing the solution with finite-precision arithmetics.
Thus, a least-squares problem with a moderately high condi-
tion number, say κ(M) ∼ 108, could give a virtually useless
solution in double-precision arithmetic (�16 significant digits)
if normal equations are used, while a solution of the same ob-
servation equations using orthogonal transformation could very
well be viable. For this and related reasons, orthogonal trans-
formation methods are often strongly recommended for solving
least-squares problems. Compared with the normal equations ap-
proach, the increase in the number of floating-point operations
need not be very high. For example, when Householder trans-
formations are applied to solve a non-sparse problem with many
more observations than unknowns, the increase in the operation
counts is typically around a factor 2 (Björck 1996, Sect. 2.4).

Fortunately, the Gaia astrometric problem is well-
conditioned by design, so the superior numerical properties of
orthogonal transformation methods are not necessarily a strong
argument in their favour. A more important argument could be
that the observation equations have a vastly simpler structure
than the normal equations. If this can somehow be taken
advantage of in the solution process, it could potentially lead to
significant savings in terms of storage and flop. The standard
approach is the QR factorization, which uses a sequence of
orthogonal transformations to decompose the observation equa-
tions matrix as M = QU, where Q is orthogonal and U is upper
triangular7. The application of the QR factorization to a block
angular matrix as in Eq. (7) is described for example in Sect. 6.3
of Björck (1996). Briefly, for each source (i) the observation
Eqs. (6), here summarized by [Si Ai hsi], are first reduced to
upper triangular form by the orthogonal transformation

Q′i
[

Si Ai hsi

]
=

⎡⎢⎢⎢⎢⎢⎣
Ui Vi ci

∅ Ti di

⎤⎥⎥⎥⎥⎥⎦ , (27)

where Ui and Ti are upper triangular. In parallel with this, the
equations Tixa = di, here summarized by [Ti di], are succes-
sively brought into upper triangular form by a sequence of or-
thogonal transformations, finally yielding the system

Q′a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1 d1

...
...

Tn dn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

Ua ca

∅ da

⎤⎥⎥⎥⎥⎥⎦ . (28)

The original least-squares problem is then equivalent to solving
the system for the attitude unknowns, Uaxa = ca, and obtaining
the source unknowns by back-substitution. It is easy to see that
the triangular matrix Ua obtained at the end of this process is
mathematically identical to the Cholesky factor of the reduced
matrix Ra in Eq. (15), i.e., U′aUa = Ra. From the analysis in

6 The condition number of the arbitrary (square or rectangular) matrix
X is defined in terms of the Euclidean matrix norm as κ(X) = ||X|| ||X†||,
where X† is the pseudo-inverse of X (e.g., Stewart 1998).
7 The standard notation uses R for the upper-triangular matrix; hence
the name QR factorization. For consistency with Appendix B and to
avoid confusion with the reduced matrix, we use U instead.

Page 9 of 13



A&A 516, A77 (2010)

Sect. 3.2 we therefore conclude that Ua is essentially full and that
the number of operations needed to compute it must be at least
as large as for the Cholesky factorization of Ra. Thus, in terms of
storage and complexity, the approach using QR factorization of
the observation equations is not an improvement over the normal
equations approach.

5.3. Hipparcos-type decomposition

For completeness we mention here also the astrometric solu-
tion method adopted for the original reduction of the Hipparcos
data by the two data analysis consortia, FAST (Kovalevsky et al.
1992) and NDAC (Lindegren et al. 1992). The astrometric solu-
tion for Hipparcos involved about o � 108 observations of n �
105 sources (stars), and m � 107 attitude parameters. Already
in the very early mission studies (in the 1970’s) it was realized
that the complexity of the astrometric solution would be daunt-
ing; for example, a comparison with the then recently developed
photographic plate overlap reduction technique (Eichhorn 1960;
Jefferys 1963, 1979) gave estimates of ∼1016 floating-point op-
erations (flop). This basically assumed a solution based on the
approach in Sect. 5.1, viz., that the attitude unknowns were first
eliminated, leading to a nearly full, reduced normal equations
matrix Rs of dimension 5n × 5n. Its Cholesky decomposition
would require (5n)3/6 � 2 × 1016 flop.

The so-called three-step method was proposed by Lindegren
in 1976 (unpublished) as a practical way to achieve a solution
with only marginal degradation compared with a theoretically
optimum solution (ESA 1997, Vol. 3, Sect. 4.1). The three steps
are:

1. The “great-circle reduction” uses observations in a few con-
secutive spins to solve the one-dimensional positions (“ab-
scissae”) of the sources along a reference great circle, to-
gether with the relevant attitude and calibration parameters.
The origin (zero point) of the abscissae along the reference
great circle is arbitrary in each such solution.

2. The “sphere solution” uses all the abscissae from Step 1 as
“observations” for a least-squares solution of the abscissa
zero points. The observation equations also involve the five
astrometric parameters per source, but they can be eliminated
successively (analogous to the calculation of Ra in Sect. 3.1).
The resulting system for the abscissa zero points is nearly
full, and can be solved by standard methods.

3. The “astrometric parameter determination” is a back-
substitution of the abscissa zero points from Step 2 into the
observation equations for the individual sources. The result-
ing least-squares systems, analogous to Eq. (17), were solved
one source at a time to give the source parameters.

Different variants of this scheme were adopted by both FAST
and NDAC for their astrometric solutions.

The three-step method appears simple and logical in view
of the scanning law and basic one-dimensionality of the mea-
surements (both for Hipparcos and Gaia). Moreover, it has been
shown to work in practice for Hipparcos. It may therefore be of
some interest to examine the approximations involved in it, and
why it has not been adopted for Gaia.

The use of one-dimensional abscissae as an intermediate
step is clearly an approximation in the sense that the infor-
mation contained in the perpendicular coordinate (“ordinate”)
is ignored. Moreover, since the instantaneous scanning circle
can be inclined with respect to the reference great circle by
up to a few degrees, initial errors in the source ordinates, and

the corresponding attitude errors, effectively add some (much
smaller) along-scan observation errors, due to their projection
onto the instantaneous scanning circle. This makes it necessary
to iterate the three-step procedure at least a few times, as was
actually done for the Hipparcos reductions.

However, the restriction of the intermediate data to one-
dimensional abscissae is not a fundamental one. Indeed, it is
possible to use two-dimensional positions (albeit with a highly
anisotropic precision), as in the so-called Ring Solution, also
called the one day astronomical solution, of the Gaia First-Look
Processing (Bernstein et al. 2005; Bombrun 2008a; Jordan et al.
2009), or even five-dimensional data, using the full parametriza-
tion of the primary sources, by a slight generalization of the
method.

The abscissae in the Hipparcos great-circle solution, and the
two-dimensional positions in the Ring Solution, are somewhat
akin to the “normal places” (Normalorte in German) often en-
countered especially in older astronomical literature, e.g., for
least-squares determination of the orbits of asteroids, comets
and visual binaries. The basic idea is that multiple observations,
usually obtained in a limited time interval, can be grouped to-
gether, and subsequently treated as a single observation with the
combined weight of the individual observations. When consider-
ing a single coordinate (e.g., declination, δ) the method amounts
to computing a weighted mean of a group of residuals (O−C)δ
with respect to some reference orbit, and then treating this mean
residual as an observation referring to the weighted mean time of
observation within the group (von Oppolzer 1880, p. 371). This
can greatly reduce the amount of computation needed to process
long series of observations, and the method of normal places was
understandably popular before the advent of electronic comput-
ers. In the present context, a generalization of the method might
be relevant for reducing the amount of computation needed to
obtain the Gaia astrometric solution. The method is conveniently
discussed in terms of Ring Solutions (roughly corresponding to
Step 1 above) producing multiple two- or higher-dimensional
normal places for each source, and a single Ring-to-Sphere so-
lution putting all the normal places on a common reference sys-
tem (roughly corresponding to a combination of Step 2 and
3 above).

A closer examination of the procedure reveals several weak-
nesses. They are all related to the circumstance that each Ring
Solution must use only observations in a limited time interval
(hours to days). One weakness concerns the availability of po-
sitional information for the across-scan attitude determination.
Normally this information would come primarily from scans
making a large angle to the present scan, i.e., from other time in-
tervals. Restricting the processing to data within a limited time
interval will always entail a loss of positional information for
the attitude determination. Another weakness is that instrument
parameters that are constant on time scales longer than a Ring
Solution cannot easily be correctly treated in the Ring Solutions.
Further weaknesses are the arbitrariness of the division of the
time line into Ring Solutions, and the absence of continuity at the
times of division. Obviously, all these weaknesses can be elim-
inated by extending the Ring Solution to encompass the whole
mission; this is however equivalent to the previously studied di-
rect solution. Thus it appears that decomposition methods of this
kind are always sub-optimal, to some extent arbitrary, and in any
case requires iteration to propagate information back from the
Ring-to-Sphere solution to the Ring Solutions. Although a vi-
able solution along these lines could no doubt be found, it is
difficult to see any real advantages over an iterative solution of
the rigorous normal equations, as discussed in Sect. 4.

Page 10 of 13



A. Bombrun et al.: Complexity of the Gaia astrometric least-squares problem

Fig. A.1. Left: Structure of the reduced normal matrix Ra (Eq. (16)) for 10 successive spins (2.5 days). Non-zero elements are filled. The row
and column indices refer to groups of three attitude parameters (representing the three orientation angles). Thus the actual number of attitude
parameters in this time segment is 30 000, and each element represents a 3 × 3 submatrix. Right: A detail from the left diagram (the square in the
upper-right corner), showing how the attitude parameters over a single 6 h period (one spin) are connected to the attitude parameters two days
previously. See Fig. B.1 for an explanation of the geometry.

6. Conclusions

We have analyzed the structure of the least-squares problem to
simultaneously determine the astrometric parameters (position,
parallax, proper motion) of a large number of sources and the
three-axis attitude of a scanning satellite, with application to
the Gaia mission. Although the resulting normal matrix is very
sparse, its structure is complex and related to the specific design
of Gaia’s instrument and scanning law. For simplicity only two
kinds of unknowns were considered, viz., the source parameters
(∼5 × 108) and the attitude parameters (∼2 × 107). Eliminating
either kind results in a reduced normal matrix, and we have stud-
ied the smaller of them (for the attitude parameters) in detail us-
ing numerical simulations and symbolic computation. Although
the reduced attitude matrix is still sparse, Cholesky decompo-
sition gives a high degree of fill-in even after re-ordering the
unknowns. In particular, we have seen that the minimum-degree
re-ordering algorithm is not efficient to solve this problem. Some
alternative approaches to the direct solution (eliminating the at-
titude unknowns, and orthogonal transformation of the obser-
vation equations) have also been briefly considered, but appear
to be at least as complex. These findings make it unlikely that
any direct method can be found to solve the overall Gaia astro-
metric adjustment problem with current practical limitations in
terms of storage and floating-point operations. By comparison, a
simple iteration scheme requires negligible storage and a factor
∼10−4 less computations, and is clearly feasible. Alternative so-
lution methods, along the lines of the Hipparcos three-step pro-
cedure, involve undesirable approximations without offering any
clear advantages.

It should be stressed that the present results do not prove that
a direct method is unfeasible. Indeed, even if it appears unlikely,
it cannot be excluded that a good permutation of the unknowns
can be found that dramatically reduces the fill-in of the Cholesky
factor. Nonetheless, our conclusions support the current plans to
implement relatively straightforward iteration schemes for the
core astrometric solution of Gaia (Lindegren et al., in prep.).
Their optimization is the subject of a separate paper (Bombrun
et al., in prep.).
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search training network ELSA (contract MRTN-CT-2006-033481) and by the
Swedish National Space Board. The first author thanks Ulrich Bastian and Hans
Bernstein for their useful comments on earlier versions of this paper (Bombrun
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Appendix A: Sparseness structure of the reduced
normal matrix

In this appendix we give some more details concerning the struc-
ture of the reduced normal matrix Ra (Eq. (16)) computed by the
process described in Sect. 3.

Figure A.1 (left) shows the sparseness structure of the re-
duced normal matrix calculated from simulated Gaia observa-
tions covering a period of 2.5 days (10 successive spins). Non-
zero values are filled and the zeroes left blank. This figure is
similar to Fig. 3 in Bernstein et al. (2005) and some figures in
Bombrun (2008b). We can observe the effects of the Gaia design.
The two fields of view and the scanning law introduce a banded,
almost periodic, pattern. The first and second bands parallel to
the diagonal are due to connections introduced by sources suc-
cessively seen in the two fields of view, whereas the third band
is due to connections over a full spin period (6 h). The distance
between the diagonal and the third band corresponds to a full ro-
tation (360◦) of Gaia around its spin axis, whereas the distance
between the diagonal and the first band corresponds to the ba-
sic angle between the two fields of view (106.5◦). Moreover, we
observe that the farther away from the diagonal a band is, the
sparser is becomes. This is due to the spin axis slowly changing
its direction, by about 1◦ per spin period. Some points on the
celestial sphere are repeatedly observed during more than a day,
whereas others are only observed in a single passage of one of
the fields of view.

In the right diagram of Fig. A.1 we plot an isolated pattern
that appears in the reduced normal matrix some distance away
from the diagonal. This pattern is composed of eight blocks of
points. In order to understand this pattern, we should look at it as
composed of two squares, one following the other in time, i.e., in
the diagonal direction. On the time scale of a spin period (6 h),
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Fig. B.1. Illustration of the two great-circle scans (A, B) that may pro-
duce a connectivity diagram similar to the right graph in Fig. A.1. The
two circles intersect at the nodes N1 and N2. The points marked A1,
A2, A3, A4 are successive pointings of the instrument x axis (bisect-
ing the two viewing directions) along scan A when either N1 or N2 is
observed in one of the fields of view. The angle from N1 to A1 or A2
is half the basic angle, 53.25◦, as is the angle from N2 to A3 or A4.
Similarly B1, B2, B3, B4 are successive pointings of the x axis along
scan B when either N1 or N2 is observed in one of the fields of view.
The times corresponding to the pointings A1, . . ., B4 indicated in the
left diagram of Fig. A.1.

Gaia will scan the celestial sphere roughly along a great circle.
Considering any two points in time during the mission, there
are two such great circles (A and B in Fig. B.1) which usually
intersect at a significant angle. This means that they only have
common sources in two small areas (N1, N2) symmetrically with
respect to the center of the celestial sphere. The sources at N1
link the attitude parameters around times A1, A2, B1 and B2. In
Fig. B.1, the pointings A1, A2, B1 and B2 show the positions of
the instrument x axis (half-way between the two fields of view)
at these times. In Fig. A.1 (right) the corresponding connections
are seen as the four groups of non-zero elements forming the
corners of a square. Similarly, the sources around N2 link the
attitude parameters around times A3, A4, B3 and B4 forming a
second square in the diagram.

Although the approximate size and repetition period of the
pattern shown in the right part of Fig. A.1 are determined by
the angle between the two fields of view and the spin period, the
pattern is not repeated with strict periodicity, due to the preces-
sional motion of the spin axis around the Sun-Earth axis, which
itself is rotating. Over the time, the spinning axis is again point-
ing toward one of its previous directions. Hence, far away from
the diagonal, the pattern can become similar to the structure ob-
served close to the diagonal. It may also happen that the non-
zero bands are orthogonal, rather than parallel to the diagonal,
viz., when the spin axis is pointing in the opposite direction. The
complexity of the Cholesky decomposition (see Appendix B)
of the reduced normal matrix is due to this particular structure
that strongly connects all the attitude parameters over the whole
mission.

Appendix B: Cholesky factorization
and the Minimum Degree algorithm

Any real symmetric positive semidefinite matrix N (i.e., N = N′
is such that x′Nx ≥ 0 for all vectors x) can be factored into

N = U′U, where U is a real, upper triangular matrix. The
factorization is achieved by means of the Cholesky algorithm
(e.g., Björck 1996; Golub & van Loan 1996; Stewart 1998).
Cholesky factorization is particularly useful for least-squares
problems, where the normal matrix N is always symmetric posi-
tive semidefinite. After factorization, the normal equations Nx =
b are solved as the two triangular system U′y = b and Ux = y.
The factorization can be made “in place”, which means that the
elements in (the upper triangular part of) N are successively re-
placed by the elements of U. During this process elements in N
that are strictly zero may be replaced by non-zero elements in U.
This is known as “fill-in”. Thus, factorization of a sparse matrix
N usually results in a less sparse triangular factor U. However,
certain sparseness structures of N (e.g., a band-diagonal struc-
ture) do not produce fill-in when computing the Cholesky factor.

It is important to note that the fill-in of the Cholesky fac-
tor U depends on the order of the unknowns. Any reordering of
the unknowns can be formally represented by an orthogonal per-
mutation matrix P such that Px is the vector of the reordered
unknowns. The permuted normal equations are PNP′Px = Pb.
The permuted normal matrix, PNP′, is obtained by reordering
both the rows and columns of N, and is also symmetric positive
semidefinite, and can be factorized by the Cholesky algorithm.

The fill-in of the Cholesky factor thus depends on P. In par-
ticular, there is a permutation that minimizes the number of non-
zero elements in U. The computation of the best permutation
matrix P is an NP-complete problem (Cook 1971; Pothen 1988),
i.e., a problem with a complexity that grows faster than any poly-
nomial in the size of the matrix N. Since no “fast” algorithm is
known for this problem, essentially all permutations have to be
tested in order to find the one that minimizes the fill-in of the
Cholesky factor. This is not very meaningful, however, since it
will take less resources to solve the normal equations without
reordering than to find the best permutation.

The Minimum Degree algorithm (Markowitz 1957) is a clas-
sical heuristic process that computes a reordering of N that de-
creases the fill-in of the Cholesky factor. This reordering is not
the best, but is usually a good one. The idea of the minimum
degree reordering is to consider the graph of the sparseness
structure and to perform at each step the Gauss pivoting on the
node with the minimum number of direct connections with other
nodes. For more information about the minimum degree reorder-
ing, see for example Sect. 6.5.2 of Björck (1996) and the descrip-
tion of the Matlab command symamd in Davis (2006).
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