
1230 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

Complexity of Two-Level Logic Minimization
Christopher Umans, Tiziano Villa, and Alberto L. Sangiovanni-Vincentelli, Fellow, IEEE

Abstract—The complexity of two-level logic minimization is a
topic of interest to both computer-aided design (CAD) special-
ists and computer science theoreticians. In the logic synthesis
community, two-level logic minimization forms the foundation
for more complex optimization procedures that have significant
real-world impact. At the same time, the computational com-
plexity of two-level logic minimization has posed challenges since
the beginning of the field in the 1960s; indeed, some central
questions have been resolved only within the last few years, and
others remain open. This recent activity has classified some logic
optimization problems of high practical relevance, such as finding
the minimal sum-of-products (SOP) form and maximal term ex-
pansion and reduction. This paper surveys progress in the field
with self-contained expositions of fundamental early results, an
account of the recent advances, and some new classifications. It
includes an introduction to the relevant concepts and terminology
from computational complexity, as well a discussion of the major
remaining open problems in the complexity of logic minimization.

Index Terms—Computational complexity, logic design, logic
minimization, two-level logic.

I. INTRODUCTION

COMPUTER-AIDED design (CAD) specialists [14], [32]
and computer science theoreticians [26] alike investigated

the computational complexity of logic minimization problems.
The motivation lies both in their practical importance for design
automation [3], [4], [28] and in their paradigmatic nature in the
landscape of computational complexity classes.

Even though logic synthesis has grown increasingly sophisti-
cated, building complex optimization scenarios that span from
regular fabrics of restricted depth [5], [18] up to multilevel and
multivalued logic realizations [8], two-level logic minimization
[good old time programmable logic arrays (PLAs)] retains a
central role as a key procedure in more complex logic op-
timization packages. Indeed, the search for better algorithms
for two-level logic minimization has been pursued relentlessly,
delivering practically efficient tools from ESPRESSO [21] to
ESPRESSO-SIGNATURE [17] to SCHERZO [6]. SCHERZO uses

Manuscript received October 4, 2004; revised March 10, 2005. The work of
C. Umans was supported by National Science Foundation (NSF) under Grant
CCF-0346991. The work of T. Villa was supported by Project for Advanced
Research of Architecture and Design of Electronic Systems (PARADES). The
work of A. L. Sangiovanni-Vincentelli was supported by the Center for Hybrid
and Embedded Software Systems (CHESS) under Contract NSF ITR Grant
CCR-0225610. This paper was recommended by Associate Editor L. Stok.

C. Umans is with the Department of Computer Science, California Institute
of Technology, Pasadena, CA 91125 USA (e-mail: umans@cs.caltech.edu).

T. Villa is with Department of Electrical, Industrial and Mechanical En-
gineering (DIEGM), Universita’ di Udine, Udine 33100, Italy and also with
PARADES, Rome 00186, Italy (e-mail: villa@parades.rm.cnr.it).

A. L. Sangiovanni-Vincentelli is with the Department of Electrical Engi-
neering and Computer Sciences (EECS), University of California at Berkeley,
Berkeley, CA 94720 USA and also with PARADES, Rome 00186, Italy
(e-mail: alberto@parades.rm.cnr.it).

Digital Object Identifier 10.1109/TCAD.2005.855944

two graph-based data structures to represent Boolean functions,
namely, binary decision diagrams (BDDs, called OBDDs when
they are reduced and ordered) and zero-suppressed decision
diagrams (ZDDs); BDDs and ZDDs have the advantage that
there is no linear relation between their sizes and the number
of elements of the sets that they represent. More recently, SAT-
ESPRESSO [22] was proposed, which is a re-implementation of
ESPRESSO based on a SAT solver as the underlying engine.

Therefore, an in-depth investigation of two-level logic mini-
mization has a special place in studying the complexity of logic
synthesis problems. The history of classifying the complexity of
two-level logic minimization accompanies the field of computa-
tional complexity from its beginnings in the 1960s [10] to now.
This history extends to a result of only a few years ago settling a
conjecture open for more than 20 years, namely, that the follow-
ing problem is Σp

2-complete [30], [31]: “given a sum-of-product
(SOP) form of a logic function, is there an equivalent SOP form
with at most a given number of terms?” This result spawned
the complexity classification of the main optimization problems
routinely solved by software packages like ESPRESSO, such
as maximal term expansion and reduction. With this recent
activity, important theoretical achievements are linked with
state-of-the-art exact or heuristic algorithmic practice.

Relevant material is scattered in various sources and some
key older items are hard to find and/or inaccurate in their
original version. This paper presents the progress of the field
with a self-contained exposition that sets the record straight,
states precisely the results, and introduces the most valuable
proof techniques. The CAD practitioner should gain an up-
dated understanding of the complexity of relevant fundamental
problems, while the theorist will find a gentle survey of this
literature.

The remainder of this paper is organized as follows.
Section II introduces basic definitions related to logic func-
tions. Section III gives a brief introduction to the relevant
complexity classes and to their canonical complete problems.
Section IV discusses the relation between two-level minimiza-
tion and covering problems by introducing Gimpel’s reduc-
tion that shows the NP -completeness of two versions of this
problem. Section V reports a revised version of Masek’s proof
that SOP minimization is NP -complete when the input is
given by the full truth table of a completely specified function.
Section VI discusses the complexity of two-level minimization
and various subproblems used in major logic minimization
suites (i.e., ESPRESSO) when the input is given as an SOP. Many
of these problems turn out to be Σp

2-complete. Section VII
reviews past achievements and major open problems.

II. BACKGROUND ON BOOLEAN FUNCTIONS

Let f be a Boolean function. An implicant of f is a con-
junction C of literals that implies f . For a conjunction C, we

0278-0070/$20.00 © 2006 IEEE

UMANS et al.: COMPLEXITY OF TWO-LEVEL LOGIC MINIMIZATION 1231

denote by lit(C) the set of literals appearing in C. In this
notation, if C1 and C2 are conjunctions with lit(C1) ⊆ lit(C2)
and C1 is an implicant of f , then C2 also is an implicant of f .

A conjunction C covers those assignments with no variable
set in contradiction to its setting in C. We write C1 ⊆ C2 to
mean that the minterms covered by C1 are a subset of the
minterms covered by C2. Note that C1 ⊆ C2 is equivalent to
lit(C1) ⊇ lit(C2).

An implicant C is a prime implicant (or just a “prime”) if the
only conjunction C ′ ⊇ C that is an implicant of f is C itself.
An essential prime implicant is a prime implicant that covers
some assignment that is covered by no other prime implicant.

An implicant is also called a product or term, and a dis-
junction of products of literals is called an SOP. We write
φ = ∨i∈Iti to mean the SOP formula φ with terms ti for i ∈ I .
Formula φ is equivalent to formula φ′, written φ ≡ φ′, if and
only if (iff) the two SOPs cover exactly the same assignments
(i.e., the functions computed by φ and φ′ are the same).

III. INTRODUCTION TO COMPUTATIONAL COMPLEXITY

In this section, we introduce the main concepts from the com-
putational complexity needed in the paper. We refer to [2], [9],
and [19] as standard references.

For the purposes of this paper, a computational problem is
formalized as a decision problem. Given as input a string (the
instance), the solution to a decision problem is either “yes”
or “no.” The set of strings whose answer is “yes” completely
specifies the problem and is sometimes called the language
associated with the decision problem.

If Σ is a finite alphabet and L ⊆ Σ∗ is a language, we define
the complement language, denoted L, as the set of strings that
are not in L (in other words, L = Σ∗ − L). In most reasonable
schemes for encoding instances of real-world problems as
strings, some strings do not correspond to valid encodings of
any instance. For this reason, we often abuse notation slightly
and use L to refer to only those strings in Σ∗ − L that are valid
encodings of some instance. This is standard and does not affect
any of the results we cite or prove.

Example 3.1: CNF-SAT is the problem of deciding if a given
Boolean expression in conjunctive normal form (CNF) has a
satisfying assignment. Given a reasonable rule to encode CNF
expressions, the language CNF-SAT will contain all strings in
Σ∗ that encode CNF expressions that are satisfiable. The com-
plement problem CNF-SAT is the problem of deciding if the
given CNF is unsatisfiable. The language CNF-SAT contains
all strings that encode CNF expressions that are unsatisfiable.
As noted above, strings in Σ∗ that do not encode any CNF
expression are neither in CNF-SAT nor in CNF-SAT.

Computational complexity studies the computational re-
sources required to solve problems. Formally, an algorithm for a
decision problem is a Turing Machine that accepts exactly those
strings in the associated language and rejects those not in the
language.1 We are primarily interested in the worst-case run-
ning time of such an algorithm, as measured in steps taken by

1Some problems are undecidable and possess no such algorithm, but they are
not of interest here.

the Turing Machine. This measure is polynomially related to the
running time of all other commonly used computational mech-
anisms (for instance, a C program running on a Von Neumann
computer).

A complexity class is a set of languages. As we are interested
in running time, an important class is P , the set of languages
possessing algorithms that run in time that is a polynomial in
the length of the input. Another important class of languages
is NP , the set of languages possessing algorithms that run in
nondeterministic polynomial time. For this paper, we will use
the following alternate equivalent definition.

Definition 3.1: A language L is in the class NP iff there is
another language R in the class P and an integer k for which

L =
{
x : ∃y, |y| ≤ |x|k, (x, y) ∈ R

}
.

For example, CNF-SAT is a language in NP . This is true
because we can define the language R in P to consist of those
pairs (φ,A) for which φ is a CNF formula, and A is a satisfying
assignment for φ. We see that CNF-SAT = {φ : ∃A, (φ,A) ∈
R}, which shows that CNF-SAT is in NP . It can be seen from
the above definition that NP are exactly those languages whose
“yes” instances possess succinct witnesses that can be verified
in polynomial time.

To understand the importance of NP in studying the running
time required for various problems, we must describe the cen-
tral notions of reductions and completeness in computational
complexity. A reduction from language A to language B is
a transformation T that maps “yes” instances of A to “yes”
instances of B and “no” instances of A to “no” instances of B.
Formally, T is a function from A to B that satisfies x ∈ A ⇔
T (x) ∈ B. We require our reductions T to be computable in
polynomial time. Intuitively, a reduction T from A to B that
runs in polynomial time implies that B is at least as hard as A.

Let C be a complexity class. A language L is C-hard if every
language in C reduces to L in polynomial time. Such a language
may be regarded as “at least as hard” as any language in C.
A language L that is C-hard and also in the class C is called
C-complete. Such a language may be regarded as the “hardest”
language in C. Complete languages are very useful because
they allow one to reason about an abstract complexity class by
studying a concrete natural computational problem. Perhaps the
most well known example of a complete problem is CNF-SAT.

Theorem 3.1 [Cook (see [9])]: CNF-SAT is NP -complete.
The importance of the class NP in studying the time com-

plexity of problems stems from 1) the fact that many natural
problems are known to be NP -complete, and 2) the widely
believed assumption that P �= NP . If any NP -hard problem is
in P then P = NP , and so showing that a problem is NP -hard
amounts to a proof (subject to the above assumption) that the
problem does not have any polynomial-time algorithm.

We now describe some complexity classes beyond P and
NP that we will need to correctly classify some of the problems
we encounter in this paper.

In general, for a complexity class C, we can define the
complement class, denoted coC, to be the set of all complements
of languages in C, i.e., coC = {L : L ∈ C}. The complement
of P is just P again, but the complement of NP is the class

1232 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

coNP , which is believed to be different from NP . Using the
fact that P is closed under complement, and Definition 3.1, we
arrive at the following.

Definition 3.2: A language L is in the class coNP iff there
is another language R in class P and an integer k for which

L =
{
x : ∀y, |y| ≤ |x|k, (x, y) ∈ R

}
.

The canonical coNP -complete language is SOP-VALIDITY
(also called DNF-TAUTOLOGY). This language consists of
all strings encoding SOP expressions that are satisfiable by all
truth assignments, or “valid.” From Theorem 3.1, we know that
CNF-SAT is coNP -complete, and a simple reduction (map-
ping CNF formula φ to SOP expression ¬φ) then shows that
SOP-VALIDITY is coNP -complete.

Both NP -complete and coNP -complete problems are
“hard” in the sense that they cannot have polynomial-time
algorithms under the assumption P �= NP . Still, it is useful to
maintain the distinction, because in practice heuristics attacking
NP problems can stop once they find a witness; and this posi-
tive feature cannot be exploited for a coNP -complete problem
(assuming NP �= coNP).

A more esoteric class that we will need is the class DP ,
which is defined in terms of NP and coNP .

Definition 3.3: The class DP is the set of languages L that
can be expressed as

L = {x : x ∈ A and x ∈ B}

where A is a language in NP and B is a language in coNP .
The canonical complete language for DP is the language

SAT-UNSAT, which consists of all pairs (φ1, φ2), where φ1 is
a satisfiable CNF expression and φ2 is an unsatisfiable CNF
expression. Note that DP contains all of NP (because given a
language L in NP , it can be seen to lie in DP by taking A = L
and B = Σ�) and DP also contains all of the coNP (because
given a language L in coNP , we can take A = Σ� and B = L).
Thus, a problem that is DP -hard is both NP -hard and coNP -
hard (although the converse is not necessarily true).

A. Oracles and the Polynomial Hierarchy

We say that a Turing Machine is equipped with an oracle L
when it has available a subroutine that charges one unit of com-
putation to answer whether a given string is in L. For example, a
Turing Machine equipped with a CNF-SAT oracle can in a sin-
gle step determine whether a CNF expression generated in the
course of its computation is satisfiable by “querying” its oracle.
We define complexity classes involving oracles using a standard
shorthand: if C and B are complexity classes, then CB is the
class of languages decided by a machine of the type that defines
C, augmented with oracle language in B. This is not a precise
definition, but the meaning should be clear for the classes
we apply this to.

An example of an oracle complexity class is PNP . This class
includes all languages decidable by a Turing Machine running
in polynomial time that is equipped with a CNF-SAT oracle

since CNF-SAT is in NP .2 An example of a language in PNP

is the language consisting of all m-tuples of CNF expressions
for which an odd number of them are satisfiable. Given such
an instance (φ1, φ2, . . . , φm), we can make m queries to the
CNF-SAT oracle to determine exactly which of the m expres-
sions are satisfiable and accept if the number of satisfiable
expressions is odd.

A refinement of PNP is the class PNP
‖ , in which the queries

to the oracle are required to be nonadaptive. That is, no query
depends on the outcome of previous queries, and so the compu-
tation can always be organized as follows: first compute in poly-
nomial time a set of polynomially many oracle queries, then
perform the queries “in parallel,” and finally decide whether to
accept or reject the input with a polynomial-time computation
on the input and the outcomes of the parallel queries. The
example above in fact lies in PNP

‖ . Clearly, PNP
‖ is contained

in PNP , and we observe that DP , NP , and coNP are all
contained in PNP

‖ . Complexity theorists believe that all of these
classes are distinct.

Just as it is meaningful to augment a polynomial-time deter-
ministic Turing Machine with an oracle, we can also augment
a polynomial-time nondeterministic Turing Machine with an
oracle. This gives rise to an infinite hierarchy of complexity
classes collectively called the polynomial hierarchy (PH). We
describe the levels of the PH below using the shorthand for ora-
cle classes and follow that with an alternate (formal) definition
that generalizes Definition 3.1, i.e.,

ΣP
0 =P ΠP

0 = P

ΣP
1 =NP ΠP

1 = coNP

ΣP
2 =NPNP ΠP

2 = coNPNP

...
...

ΣP
i =NPΣP

i−1 ΠP
i = coNPΣP

i−1

...
...

Definition 3.4: A language L is in the class ΣP
i iff there is

another language R in the class P and an integer k for which

L =
{
x : (∃y1)(∀y2)(∃y3) · · · (Qyi), |yi| ≤ |x|k

for all i, [(x, y1, y2, . . . , yi) ∈ R]}
where the sequence of quantifiers alternates, ending with Q = ∃
if i is odd or Q = ∀ if i is even.

Definition 3.5: A language L is in the class ΠP
i iff there is

another language R in the class P and an integer k for which

L =
{
x : (∀y1)(∃y2)(∀y3) · · · (Qyi), |yi| ≤ |x|k

for all i, [(x, y1, y2, . . . , yi) ∈ R]}

2In fact, PCNF-SAT = P NP , because for any Turing Machine running in
polynomial time that is equipped with any language L ∈ NP as an oracle, we
can build another Turing Machine running in polynomial time equipped with
a CNF-SAT oracle that decides the same language. The new Turing Machine
simply applies the polynomial-time reduction from L to CNF-SAT prior to
making each of its oracle calls.

UMANS et al.: COMPLEXITY OF TWO-LEVEL LOGIC MINIMIZATION 1233

where the sequence of quantifiers alternates, ending with Q = ∀
if i is odd or Q = ∃ if i is even.

A few facts can be immediately gleaned from these defi-
nitions. First, ΠP

i = coΣP
i for all i. Second, for each i, ΣP

i

contains ΠP
i−1 and ΣP

i−1. In particular, ΣP
2 contains both NP

and coNP , and it is not much more difficult to show that it
contains in addition all of the other classes we have considered,
namely DP , PNP

‖ , and PNP . The most important class in the
PH for this paper will indeed be Σp

2; an example of a natural
problem in this class follows.

Example 3.2: The language EQUIVALENT FORMULAS
consists of those pairs (φ, k) where φ is a Boolean expression
for which there exists an equivalent Boolean expression φ′ of
length at most k.

This language is in ΣP
2 because we can define a language R

that lies in P as follows: R accepts those tuples ((φ, k), φ′, A)
for which φ and φ′ are Boolean formulas, φ′ has length of at
most k, and φ agrees with φ′ on assignment A. We then see that

(φ, k) ∈ EQUIVALENT FORMULAS

⇔ (∃φ′)(∀A) [((φ, k), φ′, A) ∈ R] .

It is not known whether EQUIVALENT FORMULAS is Σp
2-

complete or not, although many people believe that it is. Some
natural problems have been shown to be complete for various
levels of the PH above the first level (see the surveys [23], [24]),
although not nearly the same number as are known to be NP -
complete.

The canonical complete problems for the PH are “quantified
satisfiability” problems. The instances of these problems are
Boolean expressions φ built on a set of Boolean variables ∪iXi,
where Xi = {xi,j : 1 ≤ j ≤ mi} for positive integers mi. The
language k-QBF consists of those expressions for which

(∃X1)(∀X2) · · · (QXk) [φ(X1,X2, . . . , Xk)]

where the sequence of quantifiers alternates, ending with Q = ∃
if k is odd or Q = ∀ if k is even. Here, “(∃Xi)” is to be
read as “there exists an assignment of values to the variables
xi,1, . . . , xi,mi

”, and “(∀Xi)” is to be read as “for all assign-
ments of values to the variables xi,1, . . . , xi,mi

.”
Theorem 3.2 (see [19]): For all k ≥ 1, the problem k-QBF

is Σp
k-complete.

IV. COVERING AND MINTERM MINIMIZATION PROBLEMS

We begin our examination of the complexity of two-level
logic minimization by considering several variants of the prob-
lem of finding a minimum SOP representation of a specified
Boolean function, described below.

INCOMPLETE TRUTH TABLE MIN SOP

INSTANCE: Onset and offset of incompletely specified
function f (i.e., disjoint sets A,B ⊆ {0, 1}n) and a
positive integer k.

QUESTION: Is there an SOP representation of f (i.e., an
SOP formula φ for which x ∈ A ⇒ φ(x) = 1 and x ∈
B ⇒ φ(x) = 0) with at most k terms?

FULL TRUTH TABLE MIN SOP

INSTANCE: Onset and offset of completely specified func-
tion f (i.e., disjoint sets A,B ⊆ {0, 1}n with A ∪
B = {0, 1}n) and a positive integer k.

QUESTION: Is there an SOP representation of f (i.e., an
SOP formula φ for which x ∈ A ⇒ φ(x) = 1 and x ∈
B ⇒ φ(x) = 0) with at most k terms?

ONSET TRUTH TABLE MIN SOP

INSTANCE: Onset of completely specified function f (i.e.,
a set A ⊆ {0, 1}n) and a positive integer k.

QUESTION: Is there an SOP representation of f (i.e., an
SOP formula φ for which φ(x) = 1 ⇔ x ∈ A) with at
most k terms?

All three of these problems are in NP because given a “can-
didate” SOP φ with at most k terms, one can determine whether
it is a representation of f in polynomial time in the size of the
instance. For the first and second problems, this simply requires
evaluating f at all of the points in A and B. For the third
problem, we can check that φ is a representation of f as follows:
we explicitly construct the set {x : φ(x) = 1} by adding the
minterms covered by each term in φ one at a time and only once.
If at any point our set size exceeds |A|, we know that φ is not a
representation of f ; otherwise, if at the end our set equals A, we
know that φ is indeed a representation of f .

In fact, all three of these problems are NP -complete. We
will give proofs of this fact for the first and the third problem
in this section. The NP -completeness proof for the problem
FULL TRUTH TABLE MIN SOP is contained in Section V. We
first discuss the “covering problems” that play an important role
in the reductions.

A. Incomplete Truth Table MIN SOP

A classical exact procedure for finding the minimum SOP
representation of a Boolean function f is due to Quine–
McCluskey [16]. This procedure first computes all of the prime
implicants of f and then finds a minimum cardinality subset of
these prime implicants that cover all of the minterms of f .

The first part of this procedure requires polynomial time in
the size of the onset of f [27] (and so is efficient for any of
the three variants of TRUTH TABLE MIN SOP that we consider
above). The second part of the Quine–McCluskey procedure is
a special case of the well-known NP -complete problem below.

MINIMUM COVER

INSTANCE: Collection C of subsets of a finite set S and a
positive integer k ≤ |C|.

QUESTION: Does C contain a cover for S of size at most
k; i.e., is there a subset of C ′ ⊆ C with |C ′| ≤ k such
that every element of S belongs to at least one member
of C ′?

MINIMUM COVER has been shown to be NP -complete in
Karp’s seminal paper [13]. It is also well known that the prob-
lem remains NP -complete even when we restrict the subsets in
C to all having a size of exactly three [9].

Now it might be the case that when we restrict to the subprob-
lem of MINIMUM COVER consisting of only those instances
arising from the Quine–McCluskey procedure, the problem

1234 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

becomes tractable. A couple of papers [10], [20] investigated
this question and gave transformations that show that even this
subproblem remains NP -complete. We summarize here their
main results.

It will be convenient to represent covering problems as ma-
trices, or covering tables. The elements of S index the rows and
the columns are indexed by the subsets of C. Entry (i, j) is 1 if
subset j contains element i, in which case column j is said to
cover row i.

Definition 4.1: Let X and Y be finite sets. A function A :
X × Y → {0, 1} is a covering table iff

• ∀x ∈ X∃y ∈ Y : A(x, y) = 1
• ∀y ∈ Y ∃x ∈ X : A(x, y) = 1.

A subset Z ⊆ Y is called a cover of X if ∀x ∈ X∃z ∈ Z :
A(x, z) = 1.

As noted, a Boolean function f , possibly incompletely spec-
ified, gives rise to a covering table. Adapting terminology from
[20], we denote by PI(f) the prime implicants of f and by
Af−1(1),PI(f) the covering table whose rows are the minterms
of f and whose columns are the prime implicants of f , called
also the Minterm–Prime (MP) table of f .

Despite the fact that an MP table seems to possess additional
structure, it turns out that every covering table can arise as the
MP table of an incompletely specified function.

Theorem 4.1: Let A : X × Y → {0, 1} be a covering prob-
lem such that A has no equal rows, and let k = |Y |. Then, there
is an incompletely specified Boolean function f : D → {0, 1}
with D ⊆ {0, 1}k for which Af−1(1),PI(f) equals A (possibly
after renaming rows and columns).

Proof: We define the positive monotone3 function f as
follows. The offset contains a single point: the all zeros point.
The onset contains one minterm for each row of A: the minterm
whose coordinates are exactly that row of A.

It is easy to verify that the primes of f are exactly those
implicants with a single 1, with all zeros raised to “-”.4 Thus,
|PI(f)| = k. Moreover, the jth column of A equals the column
of Af−1,PI(f) labeled with the prime p that has a 1 in the
jth position. This is because for each i, the ith row of A
corresponds to a minterm of f that is covered by p iff entry
A(i, j) = 1. �

Example 4.1: Consider the following covering table A with
X = {1, 2, 3} and Y = {1, 2, 3}

1 2 3

1 0 1 1

2 1 0 1

3 1 1 0

The above transformation gives the incompletely speci-
fied function f that has f−1(0) = {000} and f−1(1) =

3A function f is positive monotone if x < y implies f(x) < f(y).
4In this section, we use an alternative notation for implicants: a string of 0s,

1s, and -s. A 0 (resp. 1) in location i means that literal xi (resp. xi) appears in
the implicant.

{011, 101, 110}. The primes of f are 1 −−, −1−, and −− 1,
and Af−1(1),PI(f) is

1 −− − 1 − −−1

011 0 1 1

101 1 0 1

110 1 1 0

The following problem formalizes the second step in the
Quine–McCluskey algorithm.
MINTERM–PRIME MINIMUM COVER

INSTANCE: Minterm–Prime table A : X × Y → {0, 1}
and a positive integer k ≤ |Y |.

QUESTIONS: Does A contain a cover of size at most k; i.e.,
is there a cover Z ⊆ Y with |Z| ≤ k?

Theorem 4.1 can be interpreted as a reduction from an
instance of MINIMUM COVER to an instance of MINTERM–
PRIME MINIMUM COVER, which gives the following.

Theorem 4.2: MINTERM–PRIME MINIMUM COVER is NP -
complete.

Also using Theorem 4.1, we have a reduction from MINI-
MUM COVER to INCOMPLETE TRUTH TABLE MIN SOP, giving
the following.

Theorem 4.3: INCOMPLETE TRUTH TABLE MIN SOP is NP -
complete.

This can be interpreted to mean that there are in fact no
“better ways” to solve the problem of INCOMPLETE TRUTH

TABLE MIN SOP than Quine–McCluskey—any alternative ap-
proach must also be NP -hard.

B. Onset Truth Table MIN SOP

The transformation in Theorem 4.1 cannot be used directly
to prove that ONSET TRUTH TABLE MIN SOP or FULL TRUTH

TABLE MIN SOP is NP -complete. The reason is that it pro-
duces a function f whose number of variables k is equal to
the number of columns of the original covering table A. A
completely specified function consistent with f might have
exponentially many minterms and would certainly have an
exponentially large truth table. Thus, a reduction to ONSET

TRUTH TABLE MIN SOP or FULL TRUTH TABLE MIN SOP

based directly on Theorem 4.1 would not be a polynomial-time
reduction.

However, a different transformation than the one in
Theorem 4.1 will allow us to prove the NP -hardness of
ONSET TRUTH TABLE MIN SOP. The same authors [10], [20]
describe how to produce a completely specified function that in
a certain sense still represents the original covering table.

Theorem 4.4: Let A : X × Y → {0, 1} be a covering prob-
lem such that A has no row that dominates another5 and let
n = |X|. Then there is a completely specified function g :
{0, 1}n+2 → {0, 1} whose MP table equals A after removal of

5A row dominates another if the 1s in the first row are a superset of the 1s in
the second. We can remove dominant rows in polynomial time. The resulting
covering problem is equivalent to the initial one.

UMANS et al.: COMPLEXITY OF TWO-LEVEL LOGIC MINIMIZATION 1235

the essential prime implicants and of the minterms they cover
(possibly after renaming rows and columns).

Proof: We construct g in several steps. We first construct
a function g′ whose variables are z1, z2, . . . , zn.

• For each i ∈ {1, . . . , |X|}, define minterm qi = z1, . . . ,
zi−1zizi+1, . . . , zn.

• For each j ∈ {1, . . . , |Y |}, define Qj =
∏

i:A(i,j)=0 zi.
• Let p1, p2, . . . , pm be an enumeration of all minterms

covered by the Qj for some j that are not among the qi.
We may assume that the first " of these minterms have
an even number of negated variables, and the remaining
m− " have an odd number of negated variables.

• We define g whose variables are z1, z2, . . . , zn+2 as

g =
n∑

i=1

qizn+1zn+2 +
m∑

i=1

pizn+1zn+2

+
�∑

i=1

pizn+1zn+2 +
m∑

i=�+1

pizn+1zn+2.

We can verify that the prime implicants of g are exactly·
• Qjzn+1zn+2 for each j
• pizn+1 for i = 1, 2, . . . , "
• pizn+2 for i = " + 1, " + 2, . . . ,m.

The last two of these sets of primes are actually es-
sential prime implicants. After removing these essential
prime implicants and the minterms that they cover, we
are left with minterms qizn+1zn+2, and prime implicants
Qjzn+1zn+2. Notice that A(i, j) = 1 iff qizn+1zn+2 is
covered by Qjzn+1zn+2, and hence the MP table of g
is equivalent to A after removal of the essential prime
implicants and the minterms they cover. �

Example 4.2: Starting with the covering table A from Exam-
ple 4.1, we have q1 = z1z2z3, q2 = z1z2z3, q3 = z1z2z3 and
Q1 = z1, Q2 = z2, Q3 = z3.

There are four minterms covered by Qj that are not among
the qi. They are p1 = z1z2z3, p2 = z1z2z3, p3 = z1z2z3, and
p4 = z1z2z3. In this example, all of the pi have an even number
of negated variables, so we obtain

g =
3∑

i=1

qiz4z5 +
4∑

i=1

piz4z5 +
4∑

i=1

piz4z5.

The primes of g are z1z4z5, z2z4z5, z3z4z5, z1z2z3z4,
z1z2z3z4, z1z2z3z4, and z1z2z3z4, of which all but the
first three are essential. After removing the essential prime
implicants and the minterms they cover, we are left with
minterms z1z2z3z4z5, z1z2z3z4z5, z1z2z3z4z5 and primes
z1z4z5, z2z4z5, z3z4z5. This portion of g’s MP table is
shown as

1 −−11 − 1 − 11 −−111

01111 0 1 1

10111 1 0 1

11011 1 1 0

which can be seen to equal the covering table A.

Czort [7] described how to use this construction to prove that
ONSET TRUTH TABLE MIN SOP is NP -complete.

Theorem 4.5: ONSET TRUTH TABLE MIN SOP is NP -
complete.

Proof: We have already argued that ONSET TRUTH TABLE

MIN SOP is in NP . We reduce from the variant of MINIMUM

COVER in which every set has a size of exactly three (which re-
mains NP -complete). An instance of this problem gives a cov-
ering table A in which each column has exactly three ones.
Our reduction outputs the function g coming from the trans-
formation in Theorem 4.4.

We critically use the fact that A has only three ones per
column to ensure that the onset of g has size polynomial in the
size of A. Using the terminology of the proof of Theorem 4.4,
the onset of g has n + 2m points. Each Qj has exactly n− 3
variables, and so it can cover at most 23 points. Thus, m is at
most |Y |23. So the onset of g has at most |X| + 16|Y | points,
which is polynomial in the size of A.

There are exactly m essential prime implicants of g, and the
remaining MP table is equivalent to A. Thus, g has an SOP
representation with at most k terms iff A has a cover of size at
most k −m. This completes the reduction. �

V. FULL TRUTH TABLE MIN-SOP IS NP -COMPLETE

Masek [15] showed that the problem of finding a minimum
SOP representation is NP -complete even when the input is
given as a fully specified truth table. For this problem, an
input of size n specifies a function of only log n variables. An
efficient algorithm for this problem (one that runs in polynomial
time in the size of the input) is therefore allowed exponential
time in the number of variables. It is further evidence of
the hardness of this problem that even under these favorable
circumstances an efficient solution is unlikely.

The heart of Masek’s reduction6 is a method for “em-
bedding” any Boolean circuit C of size n into a O(log n)-
dimension Boolean hypercube, whose subcubes of dimension
one are its vertices or nodes. Roughly speaking, the gates of the
circuit are embedded by setting a cluster of adjacent vertices to
one; specified vertices in this cluster are the input and output
vertices. These clusters are the gadgets used in the reduction.
Wires between an input vertex and an output vertex belonging
to different gadgets are embedded by setting the hypercube
vertices along a path between them to one. The gadgets and
wires are separated sufficiently so that no product in an SOP
cover of the resulting function can cover vertices belonging to
different gadgets or distinct wires.

By an interpretation described in more detail below, every
SOP cover assigns truth values (TRUE or FALSE) to the input
and output vertices according to how they are covered. Each
gadget is designed so that it is covered most efficiently (i.e., by
the fewest products) when it “computes” the intended function
of its inputs. Similarly, the wires are designed so that they are
covered most efficiently when they “transmit” a consistent truth
value from their source to their destination. The final gadget in
the embedding has a single input and is most efficiently covered

6Our exposition in this section largely follows [7], with some simplifications.

1236 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

Fig. 1. AND/OR gadget.

when that input has value TRUE. By connecting the output of
the embedded circuit to this gadget, we ensure that the function
on O(log n) variables defined by this embedding has a small
SOP cover iff the circuit C is satisfiable.

We will describe the desired embedding with the aid of an
adjacency diagram, whose vertices correspond to nodes of the
hypercube that are set to one and whose edges connect exactly
those pairs of nodes that differ in exactly 1 bit. As a final step,
we will argue that the adjacency diagram we produce is real-
izable in a hypercube of O(log n) dimensions.

As mentioned, the basic components of the embedding are
gadgets with distinguished I/O nodes and wires between them.
In our embedding, every I/O node will be adjacent to a node
belonging to a wire. Given a SOP cover, we say that an I/O node
is TRUE if it is covered by a product that also covers the
adjacent wire node, and FALSE otherwise.

In counting the number of terms in an SOP cover for our em-
bedding, we would like to be able to count the terms that cover
each component separately, and then sum them to get the total
number. This is not quite possible because some product may
simultaneously cover nodes in a gadget and an adjacent wire.
To avoid double counting this product, we adopt the following
convention: for a product covering both an I/O node and the
adjacent wire node, we charge 1/2 to the gadget and 1/2 to the
wire. This simple accounting trick will simplify the exposition
that follows significantly.

A. AND/OR Gadget

The AND/OR gadget has two inputs, i1 and i2, and two
outputs, which “compute” the AND and OR of the two input
truth values, respectively. It has the adjacency structure shown
in Fig. 1.

Lemma 5.1: Given an SOP cover C, let x and y be the
truth values assigned to the I/O nodes labeled i1 and i2 in the
figure, respectively. Then C covers the AND/OR gadget with
11 terms if it assigns truth values x ∧ y and x ∨ y to the I/O
nodes labeled o1 and o2, respectively. Otherwise, C covers the
AND/OR gadget with more than 11 terms.

Proof: The full proof (by case analysis) can be found in
the Appendix. �

Fig. 2. Cover of AND/OR gadget.

Fig. 3. GENERATOR gadget.

Fig. 2 shows one possible cover of an AND/OR gadget. In this
example, x is FALSE and y is TRUE. Note that the two terms
that extend outside the dotted line each contribute 1/2 to the
overall sum of 11, according to our accounting convention.

B. GENERATOR Gadget

The GENERATOR gadget has a single input i1 and three
outputs, which “generate” three copies of the input truth value.
It has the adjacency structure shown in Fig. 3.

Lemma 5.2: Given an SOP cover C, let x be the truth value
assigned to the I/O node labeled i1 in the figure. Then C covers
the GENERATOR gadget with seven terms if it assigns truth
value x to the I/O nodes labeled o1, o2, and o3. Otherwise,
C covers the GENERATOR gadget with more than seven
terms.

Proof: The full proof (by case analysis) can be found in
the Appendix. �

Fig. 4 shows two possible covers of a GENERATOR gadget,
each using seven terms. In the first cover, x is TRUE; in the
second cover, x is FALSE.

C. WIRE Gadget

The WIRE gadget has no I/O nodes of its own; it is used to
connect two I/O nodes belonging to GENERATOR or AND/OR

gadgets. A WIRE gadget is simply a path between two I/O

UMANS et al.: COMPLEXITY OF TWO-LEVEL LOGIC MINIMIZATION 1237

Fig. 4. Covers of GENERATOR gadget.

Fig. 5. WIRE gadget.

Fig. 6. Covers of WIRE gadget.

nodes. The length of the wire is the number of nodes in the
path, not counting the I/O nodes at either end. WIRE gadgets of
length 2 and 3 are shown in Fig. 5.

Lemma 5.3: An SOP cover C covers a WIRE gadget of
length k with at most k/2 terms if either

• the wire has even length and C assigns the same truth
values to the I/O nodes connected by the wire, or

• the wire has odd length and C assigns opposite truth values
to the I/O nodes connected by the wire.

Otherwise, C covers the WIRE gadget with more than k/2
terms.

Proof: It is clear that only terms covering one or two
points can cover points belonging to the WIRE gadget; op-
timal covers in the two cases are then easy to determine by
inspection. �

Fig. 6 shows covers of the two WIRE gadgets. The first cover
uses one term and assigns TRUE to the I/O nodes connected by
the wire. The second cover uses 3/2 terms and assigns TRUE to
the I/O node on the left and FALSE to the I/O node on the right.

We remark that it is common in some of the more compli-
cated proofs of NP -completeness to have “gadgets” such as
these that play a crucial role in reduction.

D. Building the Adjacency Diagram

We now describe how to attach these gadgets together to
“simulate” a given Boolean formula f(x1, x2, . . . , xn). We
assume that f has fan-in 2, fan-out 1 AND and OR gates, and
WLOG that all the negations occur at the leaves. In fact, we
will simulate both f and its complement; the added symmetry
is needed, for example, because we do not have a separate AND

gadget at our disposal, but only a combined AND/OR gadget.
The final adjacency diagram will be coverable by at most N

terms iff f is satisfiable, where N is the sum over all gadgets in

the diagram of the optimal cover numbers given in the previous
three lemmas.

We first create a set of “variables” sufficient to supply the
variable values at the leaves of the formula. For each i, let ni be
the number of occurrences of the variable xi as a leaf of the f .
Because we are simulating f and its complement, we need to
supply 2ni occurrences of xi; however, we also know that there
will be an equal number of positive and negative occurrences of
xi, which will make the construction easier. If ni = 1, a single
odd-length wire will supply a positive and negative occurrence
of xi, one at either end of the wire.

If ni = 2, we use two GENERATOR gadgets. We connect
the input I/O nodes of these two GENERATOR gadgets with
an odd length wire, and we connect the third outputs of these
two generator gadgets with an odd length wire. The remaining
four outputs (two belonging to each of the GENERATOR
gadgets) provide two copies each of positive and negative
occurrences of xi. For ni > 2, we repeat this process: pick
an output supplying a positive occurrence of xi and connect a
fresh GENERATOR gadget to it with an even length wire, and
similarly, pick an output supplying a negative occurrence of xi

and connect a fresh GENERATOR gadget to it with an even
length wire. Finally, connect the third outputs of each of these
two fresh GENERATOR gadgets with an odd length wire. After
connecting 2(ni − 1) GENERATOR gadgets in this fashion, we
have, altogether, ni I/O nodes that supply positive occurrences
of xi and ni I/O nodes that supply negative occurrences of xi.
Fig. 7 shows a cover of the adjacency diagram of an example
of generators for ni = 3; the generator gadgets supply three
copies of variable xi and three copies of its complement. In
the pictured cover, xi is TRUE for all copies and xi is FALSE
for all copies.

We can now construct the “gates” that simulate the gates of
f . For each AND or OR gate g in the lowest level of the formula,

1238 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

Fig. 7. Cover of generators supplying three copies of variable xi (and three copies of its complement).

we have an AND/OR gadget. Let xa
i and xb

j (where a, b ∈ {0, 1})
be the two literals that are inputs to gate g in the formula
f . We attach the two input I/O nodes of the AND/OR gadget
to I/O nodes supplying the literals xa

i and xb
j with two even

length wires. We also add an additional AND/OR gadget that
will compute the complement of g. We attach the two input I/O
nodes of this AND/OR gadget to I/O nodes supplying the literals
x1−a

i and x1−b
j with two even length wires. Finally, if g was an

AND gate, we attach the second output (the “OR” output) of the
first AND/OR gadget to the first output (the “AND” output) of the
second AND/OR gadget with an odd length wire. If g was an OR

gate, we attach the first output (the “AND” output) of the first
AND/OR gadget to the second output (the “OR” output) of the
second AND/OR gadget with an odd length wire. The remaining
two outputs supply the value g(xa

i , x
b
j) and its complement

¬g(xa
i , x

b
j).

Now, we move on to the next level of gates, using the outputs
from the previous level as the inputs for the current level, and
so on. The final gate’s output is attached to an odd length wire,
and the complementary output is attached to an even length
wire. Note that this odd length wire (say, with length k) can
be covered with k/2 terms if it assigns TRUE to the single I/O
node to which it is attached, and it requires more than k/2 terms
otherwise. Similarly, the even length wire (say, with length k′)
can be covered with k′/2 terms if it assigns FALSE to the single
I/O node to which it is attached; otherwise, it requires more
than k′/2 terms.

E. Realizing the Adjacency Diagram

In the previous section, we have built an adjacency diagram
with m = O(|f |) gadgets. These gadgets have certain points
that play the role of input nodes and certain points that play
the role of output nodes. In the above construction, we have
used odd-length wires to connect input nodes to input nodes,
and also to connect output nodes to output nodes. We have used
even length wires to connect output nodes to input nodes.

In this section, we describe how to map the points of the
adjacency diagram from the previous section into points of a
hypercube of dimension O(logm). This mapping will realize
the adjacency diagram: a pair of nodes in the adjacency diagram
will be mapped to two nodes in the hypercube that differ in
exactly 1 bit iff there is an edge in the adjacency diagram be-
tween those two nodes. In order to construct this realization, we
need to allow ourselves the freedom to choose wire lengths that
may differ from the ones in the adjacency diagram; however,
the odd/even parity of their lengths (which is what matters) will
be preserved.

As an example of a realization of the adjacency diagrams of
the AND/OR and GENERATOR gadgets in a hypercube of di-
mension six, see Fig. 8. This embedding will play an important
role in the “global” realization momentarily.

We first describe how to map all of the nodes belonging to
AND/OR and GENERATOR gadgets into the hypercube. In the
following description, the weight of a bit string is the number
of ones in it; the parity of a bit string is “even” if it has even
weight and “odd” otherwise. For each of the AND/OR and
GENERATOR gadgets, we assign a unique even parity ID
string of length 2" (the parameter " will be specified momen-
tarily), and for each of the WIRE gadgets we assign a unique
even parity ID string of length 4" and weight 2". We ensure that
every pair of distinct WIRE gadget ID strings differs in at least
four positions. This can be achieved, for example, by choosing
each WIRE gadget ID string to be an even parity string of length
2" with weight ", repeated twice. If there are m gadgets in the
diagram (including WIRE gadgets), we need " = O(logm) to
be able to choose the IDs as described.7

Our hypercube will have dimension 6" + 6, and for conve-
nience we routinely refer to nodes of the hypercube with three-
tuples whose fields have bit lengths 2", 6 and 4", respectively.

7From
(
2�
�

)
> m (the number of 2� bit strings with weight � must be at

least m) and
(
2�
�

)
> 2�, it suffices to take � = log2 m.

UMANS et al.: COMPLEXITY OF TWO-LEVEL LOGIC MINIMIZATION 1239

Fig. 8. Embedding of GENERATOR (left) and AND/OR (right) gadgets.

For AND/OR or GENERATOR gadget i that has been assigned
ID id(i), we map the node labeled with the 6-bit string x in
Fig. 8 to the hypercube node (id(i), x,(0) (where (0 refers to the
4"-bit all-zero string). The fact that this is a valid embedding so
far follows from the validity of the embeddings in Fig. 8.

We now turn to the wires in the adjacency diagram. Note
that, from the previous paragraph and Fig. 8, all of the input I/O
nodes are embedded at hypercube nodes with even parity and all
of the output I/O nodes are embedded at hypercube nodes with
odd parity (our construction requires to connect input points to
input points and output points to output points with odd length
wires, and output points to input points with even length wires;
this implies that the parity—number of ones in the encoding
vectors—of the outputs must be the same and opposite to the
parity of the inputs). For each wire, we will describe a sequence
of adjacent points whose endpoints are the I/O nodes that the
wire connects. By the above observation regarding the parity of
the various I/O node labels, the length of these embedded wires
will retain the required even/odd parity that they have in the
adjacency diagram (even if their lengths may change).

A wire with ID id(k) between gadgets i and j with IDs id(i)
and id(j), respectively, is embedded as follows. Let x and y be
the 6-bit labels of the I/O nodes we are connecting, belonging to
gadget i and j, respectively. The wire will contain the following
hypercube nodes:

1) (id(i), x,(0);
2) (id(i), x, id(k));
3) (id(j), y, id(k));
4) (id(j), y,(0).

In addition, we include the hypercube nodes along an arbi-
trary shortest path between each of these points, changing 1 bit
a time. For example, between the first and second points in the
above list, we include 2"− 1 additional hypercube nodes to get
from (0 to id(k).

There are two special wires in our adjacency diagram that
do not terminate at I/O nodes; the odd length wire connected
to the output of the final gate of the circuit and the even length
wire connected to its complement output. We may take this even
length wire to be a length 0 wire (and therefore we need to add

no new nodes to our embedding). For the odd-length wire (with
label id(k)), which is connected to some node with 6-bit label x
in some gadget i with label id(i), we add the single hypercube
node (id(i), x, 00 · · · 01). This forms a wire of length 1.

The validity of the overall embedding may be verified by case
analysis. The main effort involves verifying that we have not
introduced any “unintended” adjacencies in our embedding (to
that purpose the third field of the embedding vectors plays a
role, especially to enforce that there is no spurious adjacency
between points across wires).

Lemma 5.4: The embedding just described realizes the ad-
jacency diagram of the Boolean formula f in an O(log |f |)-
dimension Boolean hypercube.

Proof: The full proof (by case analysis) can be found in
the Appendix. �

Our main theorem is as follows.
Theorem 5.1: In the above embedding of f , let N be the sum

of the following

• the total length of wires divided by 2;
• the number of AND/OR gadgets times 11;
• the number of GENERATOR gadgets times 7.

Then the function whose onset is exactly those hypercube nodes
in the above embedding has an SOP cover of size N iff the
function f is satisfiable.

Proof: If f is satisfiable, we can have each gadget and
each wire behave “as intended,” and this defines a cover with
exactly N products using Lemmas 5.1, 5.2, and 5.3.

In the other direction, suppose we have a cover C with
exactly N products. Then, by Lemmas 5.1, 5.2, and 5.3, every
gadget must behave “as intended”—for if even a single gadget
did not, the number of products of the cover would exceed N .
We conclude that the output of the f is one for some setting of
its input variables. This setting is determined from the truth val-
ues C defined at the input I/O nodes. The fact that C optimally
covers the special odd length wire extending from the final
output node implies that f evaluates to TRUE for this setting
of the variables. �

Observe that if we write down the complete truth table of
the function on 6" + 6 variables whose onset is exactly those

1240 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

hypercube nodes in the above embedding, it will have a length
of 2O(log |f |), which is polynomial in |f |. The mapping from
formula f to this truth table is straightforward to compute, and
thus the overall transformation can be computed in polynomial
time in |f |. This observation together with Theorem 5.1 gives
us the following.

Theorem 5.2: FULL TRUTH TABLE MIN SOP is NP -
complete.

A different reduction to show that FULL TRUTH TABLE MIN

SOP is NP -complete (this time reducing from SET COVER) has
been recently obtained by Allender et al. [1]. This proof also
gives new inapproximability results for FULL TRUTH TABLE

MIN SOP.

VI. SOP MINIMIZATION PROBLEMS ARE ΣP
2 -COMPLETE

In this section, we discuss logic minimization problems
whose input is an SOP form, whereas in the previous formula-
tions the input was a truth table. The prototypical such problem
is MIN SOP-2-SOP asking, given an SOP formula φ, what is
the smallest SOP φ′ equivalent to φ.8 Can this problem be in
NP ? It cannot, if one believes (as complexity theorists do) that
coNP is different from NP—because MIN SOP-2-SOP can
easily be seen to be coNP -hard.9 In fact, MIN SOP-2-SOP ex-
hibits the ∃∀ quantifier alternation of ΣP

2 —it asks if there exists
a short-SOP φ′(x) such that for all x, φ′(x) = φ(x)—so we
might expect it to be ΣP

2 -complete. Indeed, MIN SOP-2-SOP

was conjectured to be complete for ΣP
2 in a seminal 1976 paper

by Stockmeyer [26].
For over 20 years, it was an open problem to prove complete-

ness for MIN SOP-2-SOP, until Umans proved it in his disserta-
tion [30], [31]. Moreover, he proved the ΣP

2 -completeness for
a number of other logic minimization problems that model the
most common operations performed in modern logic minimiza-
tion packages (see ESPRESSO [3]), like maximal expansion and
reduction of implicants.

Just as NP -complete problems probably require exponential
time, ΣP

2 = NPNP -complete problems probably require expo-
nential time with access to an NP oracle, so ΣP

2 -completeness
allows us to classify what can or cannot be done in polynomial
time with access to an NP oracle. Notice that almost every
heuristic, approximate, or exact method for solving logic min-
imization problems employs a tautology subroutine. If we as-
sume the presence of such a subroutine, ΣP

2 -completeness plays
exactly the role of NP -completeness for ordinary optimization
problems: it distinguishes the intractable from the efficiently
solvable.

We will now review the complexity of MIN SOP-2-SOP and
of various logic minimization steps used in the major logic
minimization suites when the input is given as an SOP.

8MIN SOP-2-SOP, called also MIN DNF in the computational complexity
literature, is a specialized version of the problem MIN FORMULA, where the
input is a generic Boolean formula. The latter problem motivated the definition
of the polynomial hierarchy.

9A satisfiable DNF φ has an equivalent DNF of size 0 iff φ is a tautology,
and one can check whether a DNF is satisfiable in polynomial time.

A. Complexity of Term Expansion and Reduction

The expand step in ESPRESSO attempts to expand as much
as possible the set of minterms covered by a given term by
removing literals from that term. One way to formalize the
computational problem underlying this routine is as follows.

SHORTEST IMPLICANT CORE

INSTANCE: SOP formula φ = ∨i∈Iti, j ∈ I , and an
integer k.

QUESTION: Is there an implicant t′j of φ, with lit(t′j) ⊆
lit(tj), of length at most k?

Theorem 6.1: SHORTEST IMPLICANT CORE is ΣP
2 -

complete.
The proof is by reduction from 2-QBF and can be found in

[30] and [31].
A variant of this problem asks not for a minimum length im-

plicant t′j for which lit(t′j) ⊆ lit(tj) but rather a minimal length
(in other words, prime) implicant t′j for which lit(t′j) ⊆ lit(tj).
Usually, this latter variant is used in practice; in complexity
terms, it is also “easier” since it lies in the class PNP , as can
be seen from the following algorithm. For each literal in term
tj , we use an NP query to determine if tj with that literal
deleted remains an implicant of φ. If so, delete that literal and
repeat from the resulting expanded term the process of deleting
literals. Otherwise (no expanded term with a deleted literal is an
implicant of φ), the term is a prime. Overall, the running time
is at most quadratic in the number of literals in tj .

In a similar manner, we can formalize the step of reduce
in ESPRESSO. This procedure attempts to reduce as much as
possible a given term by adding literals while still covering the
given function.

LONGEST IMPLICANT EXTENSION (TERM REDUCTION)
INSTANCE: An SOP formula φ = ∨i∈Iti, a j ∈ I , and an

integer k.
QUESTION: Is there an implicant t′j of φ, with lit(t′j) ⊇

lit(tj), such that φ ≡ ∨i∈I\{j}ti ∨ t′j and t′j has length
of at least k?

It is noted in [30] and [31] that this problem is in the class
PNP
‖ . This is true because t′j can contain literal " iff the

conjunction tj ∧ "̄ is an implicant of ∨i∈I\{j}ti. For each literal
", an NP query will tell us whether the above condition holds.
Thus, with polynomially many parallel NP queries, we can
determine exactly which literals can be added to tj to form t′j .

B. Complexity of Minimum SOP

This is the key problem introduced at the beginning of the
section and asking, for a given a SOP formula φ, what is the
smallest SOP φ′ equivalent to φ. The size of the SOP can be
measured by the number either of literals or of terms, yielding,
respectively, MIN LIT SOP-2-SOP or MIN TERM SOP-2-SOP.
MIN LIT SOP-2-SOP

INSTANCE: An SOP formula φ and an integer k.
QUESTION: Is there an SOP φ′ with at most k occurrences

of literals and for which φ′ ≡ φ?

UMANS et al.: COMPLEXITY OF TWO-LEVEL LOGIC MINIMIZATION 1241

Theorem 6.2: MIN LIT SOP-2-SOP is ΣP
2 -complete.

The proof is by reduction from SHORTEST IMPLICANT CORE

and can be found in [30] and [31]. Given an instance (φ =
∨i∈Iti, j, k) of SHORTEST IMPLICANT CORE, the general idea
of the reduction is to construct an SOP φ′ from φ in which
every term except one corresponding to tj must occur in any
equivalent SOP. The size of the minimum SOP equivalent to
φ′ is then determined by the size of the smallest implicant core
contained in that term.

As noted in [30] and [31], the proof also shows that a
seemingly easier SOP minimization problem, which requires
only minimality term-by-term, is also ΣP

2 -complete: given φ =
t1 ∨ t2 ∨ . . . ∨ tn and a bound k, find an equivalent SOP φ′,
with at most k occurrences of literals, of the form φ′ = t′1 ∨
t′2 ∨ . . . ∨ t′n such that for all i, lit(t′i) ⊆ lit(ti).

The second main variant of MIN SOP-2-SOP asks for an
equivalent SOP that is minimum with respect to terms (rather
than occurrences of literals).
MIN TERM SOP-2-SOP

INSTANCE: An SOP formula φ and an integer k
QUESTION: Is there an SOP φ′ with at most k terms and for

which φ′ ≡ φ?
Theorem 6.3: MIN TERM SOP-2-SOP is ΣP

2 -complete.
The proof can be found in [30, Th. 5.5, p. 44] by reduction

from SHORTEST IMPLICANT CORE.

C. Complexity of Irredundant Cover

The following problem formalizes the step of irredundant in
ESPRESSO, namely, remove as many terms as possible from a
given SOP.
IRREDUNDANT COVER

INSTANCE: An SOP formula φ = ∨i∈Iti and an integer k.
QUESTION: Is there a subset I ′ ⊆ I such that φ ≡ ∨i∈I′ti

and |I ′| ≤ k?
Theorem 6.4: IRREDUNDANT COVER is ΣP

2 -complete.
The proof can be found in [30, Th. 5.7, p. 50] by reduction

from SHORTEST IMPLICANT CORE.

D. Complexity of Detecting Implicants

The most basic logic containment operation is to check if a
conjunction t is an implicant of SOP φ.
IMPLICANT

INSTANCE: An SOP formula φ and a term t.
QUESTION: Is t an implicant of φ?

Theorem 6.5: IMPLICANT is coNP -complete.
Proof: This problem is in coNP because the complement

problem of determining whether t is not an implicant of φ can
be solved by guessing a point covered by t but not φ.

We show that it is coNP -complete by reducing from SOP-
VALIDITY. Given an SOP φ, which is an instance of SOP-
VALIDITY, we produce the instance (φ, 1) of IMPLICANT.
It is clear that 1 is an implicant of φ iff φ is a tautology. �

The next problem formalizes the step of detecting essential
implicants. Here, we want to determine if a term tj of an SOP
φ covers some point that no other term in φ covers.

ESSENTIAL IMPLICANT

INSTANCE: An SOP formula φ = ∨i∈Iti and j ∈ I .
QUESTION: Is φ �≡ φ′, where φ′ = ∨i∈I\{j}ti?

Theorem 6.6: ESSENTIAL IMPLICANT is NP -complete.
Proof: The problem is in NP because one can guess a

point and verify that it is covered by tj but is not covered by
∨i∈I\{j}ti (note that checking whether a given point is covered
by a term is a polynomial-time operation).

Completeness is shown by reduction from CNF-SAT. Let
γ(x1, . . . , xn) be an instance of CNF-SAT. Introduce a new
variable z and construct the SOP formula φ = z ∨ (z ∧ ¬γ).
Set j so that tj is the term z in this SOP.

We claim that γ is satisfiable iff z is essential (i.e., φ �≡
φ′ ≡ (z ∧ ¬γ)). If γ is satisfiable, then there exists some
(a1, . . . , an) for which γ(a1, . . . , an) = 1; this implies that
(z ∧ ¬γ) does not cover the extension of this point that sets
z = 1, while z clearly does cover it. This means that z is
essential. In the other direction, if γ is not satisfiable, then
(z ∧ ¬γ) is equivalent to z, and so z is not essential. �

Another basic operation is that of detecting prime implicants.

PRIME IMPLICANT

INSTANCE: An SOP formula φ and a term t.
QUESTION: Is t a prime implicant of φ?

Theorem 6.7: PRIME IMPLICANT is DP -complete.
Proof: It is in DP because t is a prime implicant iff t is

an implicant (a problem in coNP as noted above), and every
shortening of t by deleting one literal is not an implicant (a
problem in NP).

We show that it is DP -hard by reduction from SAT-UNSAT.
Let (φ, φ′) be an instance of SAT-UNSAT (both φ and φ′

are CNFs). We produce the following SOP (z is a fresh
variable): φ′′ ≡ (¬z ∧ ¬φ) ∨ (z ∧ ¬φ′). Our instance of PRIME

IMPLICANT is (φ′′, z).
We claim that z is a prime implicant of φ′′ iff φ is satisfiable

and φ′ is unsatisfiable. If φ′ is unsatisfiable, then it is clear that z
is an implicant of φ′′; at the same time, if φ is satisfiable, then z
must be prime, because 1 is not an implicant of φ′′. In the other
direction, if z is an implicant of φ′′, then φ′ must be unsatisfi-
able; and if z is also prime, then 1 cannot be an implicant of φ′′,
which implies that φ must be satisfiable. �

E. Complexity of Shortest Implicant

A relaxation of SHORTEST IMPLICANT CORE is to look for
a shortest implicant of SOP φ, not necessarily obtained by
expanding a term of φ.

SHORTEST IMPLICANT

INSTANCE: An SOP formula φ = ∨i∈Iti and an integer k.
QUESTION: Is there an implicant t′j of φ of length at

most k?

One might expect that this problem is ΣP
2 -complete too since

it is in ΣP
2 , like the others. However, it turns out that it is

likely easier than ΣP
2 -complete by exploiting the following

fact, proved by Umans [30], [31]: any shortest implicant of φ
may be obtained from some term ti of φ with at most log n
additions of literals and at most log n deletions of literals. As a
consequence to decide SHORTEST IMPLICANT, it requires only

1242 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

O(log2 n)-limited nondeterminism and a single coNP query.
Given an instance (φ = t1 ∧ t2 ∧ . . . ∧ tn, k), one guesses an
index i, a set I of log n literals to add, a set D of log n
literals to delete, and constructs a candidate conjunction C =
(ti ∪ I)\D. We answer “yes” if C is well formed, has length
of at most k, and a query to a coNP oracle indicates that it is
an implicant of φ.

Moreover, Umans showed [30], [31] that this problem
is in fact complete for a new complexity class including
the problems solvable by O(log2 n) limited nondeterminism
and a single interaction with a coNP oracle, denoted by
GC(log2 n, coNP) and lying between coNP and ΣP

2 . This
result indicates that while the problem is unlikely to be Σp

2-
complete, it is also unlikely to be any “easier” than the above
algorithm indicates; in particular, it is not likely to be in coNP .

Theorem 6.8: SHORTEST IMPLICANT is GC(log2 n,
coNP)-complete.

The formula and circuit versions of SHORTEST IMPLICANT

instead are ΣP
2 -complete (see again [30] and [31]).

F. Complexity of Complementation

In ESPRESSO, given an SOP cover of the offset and dcset,
an SOP cover of the offset is computed, because the maximal
expansion of a cube is obtained by checking that it does not
intersect any cube of the offset. Therefore, given an SOP φ,
it is important to compute a small SOP representation of the
complement of φ. This problem is captured as follows.
MIN SOP COMPLEMENT

INSTANCE: An SOP formula φ and an integer k in unary
(i.e., k is given in the input by a string of k ones).

QUESTION: Is there an SOP formula φ′ with at most k
occurrences of literals for which φ′ ≡ ¬φ?

Note that if k were represented in binary, then we would
not readily be able to show that the problem is even in ΣP

2

since there are SOP formulas φ whose complement requires
exponential size in |φ|. However, we avoid this difficulty if k
is represented in unary. In that case, the input has size of at
least k and then the problem lies in ΣP

2 since any potential φ′

has size of only polynomial in the size of the input.
In fact, Schaefer and Umans [23] show that this problem is

ΣP
2 -complete.
Theorem 6.9: MIN SOP COMPLEMENT is ΣP

2 -complete.
Proof: In [23], they show that a problem called SHORT

CNF is ΣP
2 -complete. In this problem, the input is an SOP

formula φ and an integer k represented in unary; the question is
whether there is a CNF formula φ′ with at most k occurrences
of literals for which φ′ ≡ φ. It is clear that this occurs iff there
is an SOP formula φ′′ with at most k occurrences of literals
for which φ′′ ≡ ¬φ, since the negation of an SOP formula φ′′

can be represented by a CNF formula of the same size, and
vice versa. �

G. Complexity of State Assignment

A finite state machine (or “finite state transducer”) is spec-
ified by a transition function δ : Q× {0, 1}s → Q× {0, 1}t,
where Q is a finite set of states, and {0, 1}s is the set of inputs

and {0, 1}t is the set of outputs. Equivalently, we may specify
the transition function with a function

f : Q× {0, 1}s ×Q× {0, 1}t → {0, 1}

with the property that f(q, i, q′, o) = 1 iff δ(q, i) = (q′, o). It is
desirable to express f as a small SOP. To do this, we need a
state encoding function e : Q → {0, 1}m. Then we may ask for
a minimum SOP φ representing the function fe defined by10

fe (e(q), i, e(q′), o) = 1 ⇔ f(q, i, q′, o) = 1.

The decision problem associated with this optimization is
as follows.

STATE ASSIGNMENT

INSTANCE: An SOP φ representation of a function fe

specifying a finite state machine with states Q, and an
integer k.

QUESTION: Is there an integer m′ and an encoding function
e′ : Q → {0, 1}m′

for which fe′ has an SOP represen-
tation φ′ with at most k terms11?

It had been shown by Keutzer and Richards [14] that STATE

ASSIGNMENT is coNP -hard (lower bound) and contained in
Σp

2 (upper bound). A complete account of the early results
on the complexity of this problem is available in [32]. In the
degenerate case in which there is only a single state, STATE

ASSIGNMENT becomes MIN TERM SOP-2-SOP. We thus obtain
the new result.

Theorem 6.10: STATE ASSIGNMENT is ΣP
2 -complete.

The practitioner may protest that lumping together two-level
minimization and state assignment in the same complexity
classes is highly unsatisfactory since the latter problem is much
harder than the former in practice. This is but one example
where the coarse classification afforded by the classes of the PH
would benefit from some refinement that captures the observed
difference in the difficulty of problems within the same class.
The classification of NP -complete problems according to their
approximability is an example of such a refinement; however,
here, it seems that approximability would not separate, e.g.,
MIN SOP-2-SOP from STATE ASSIGNMENT, as MIN SOP-2-SOP

is already extremely hard to approximate [29], [30].

VII. CONCLUSION

Two-level logic minimization is the quintessential problem
in digital design automation. In this paper, we have presented a
consistent account of the computational complexity of decision
problems capturing two-level logic minimization. We hope that
this provides a coherent picture of results scattered in many
sources and fills a few gaps in the older literature.

10This is the relational representation of a finite state machine; alternatively,
one may use a functional representation by means of a multiple-output function
whose outputs correspond to all the encoded next state and external output
variables.

11We can also consider the variant in which φ′ must have at most k literals.

UMANS et al.: COMPLEXITY OF TWO-LEVEL LOGIC MINIMIZATION 1243

Fig. 9. AND/OR gadget with essential terms in cover.

The major points to take away are the following.

• When the function is explicitly described by its onset and
offset (or even just its onset), the problem of finding a
minimum SOP representation is NP -complete. This
problem is essentially a covering problem, and NP -
completeness follows by either the Gimpel reduction in
Section IV or the more involved Masek reduction in
Section V.

• When the function is implicitly described by an SOP
form, the complexity of finding a minimum SOP rep-
resentation is ΣP

2 -complete. This means that (subject to
accepted assumptions from computational complexity) no
polynomial-time algorithm can solve this problem even
when charging only a single time step for every call to a
TAUTOLOGY subroutine.

• When the function is implicitly described by an SOP form,
many of the subproblems used in the major logic mini-
mization suites (i.e., ESPRESSO) turn out to lie between
NP and ΣP

2 , and several are Σp
2-complete.

In closing, we mention two very natural problems whose
complexity remains open.

MIN CIRCUIT-2-CIRCUIT

INSTANCE: A Boolean circuit C and an integer k.
QUESTION: Is there a Boolean circuit C ′ of size at most k

that computes the same function as C?

This problem is in ΣP
2 and conjectured to be ΣP

2 -complete.
In fact, even when C and C ′ are required to be circuits of
depth 3 (i.e., sum-of-products-of-sums or product-of-sums-of-
products), no proof of ΣP

2 -completeness is known.
The “explicit” version of this problem is as follows.

FULL TRUTH TABLE MIN CIRCUIT

INSTANCE: Onset and offset of a completely specified
function f and an integer k.

QUESTION: Is there a Boolean circuit C of size at most k
that computes f?

This problem is in NP , and it is not known whether it is NP -
complete or not. This problem has some interesting connections
to other questions in computational complexity that have been
outlined in [12].

Fig. 10. GENERATOR gadget with essential terms in cover.

The complexity of minimization problems represented with
decision diagrams falls beyond the scope of this paper. We refer
the interested reader to [11] and [25] as starting points.

APPENDIX

CASE ANALYSES

Proof of Lemma 5.1: We refer to Fig. 9. The seven terms
that are essential in any cover are pictured, and the possible
other terms are labeled a, b, c, d, e, f , g. The following table
describes an optimal cover for each possible truth assignment
to the four I/O nodes i1, i2, o1, and o2, i.e.,

i1 i2 o1 o2 7 essential, plus total

false false false false {f, c, a, g} 11

false false false true {f, c, a, g} 11.5

false false true false {f, c, b, g} 11.5

false false true true {f, c, b, e} 12

false true false false {c, a, g, e} 11.5

false true false true {c, a, e} 11

false true true false {c, g, b, e} 12

false true true true {c, b, e} 11.5

true false false false {f, a, g, c} 11.5

true false false true {f, a, d} 11

true false true false {f, g, b, c} 12

true false true true {f, b, e} 11.5

true true false false {a, g, c, f} 12

true true false true {a, b, e} 11.5

true true true false {g, b, e} 11.5

true true true true {b, e} 11

�
Proof of Lemma 5.2: We refer to Fig. 10. The two terms that

are essential in any cover are pictured, and the possible other
terms are labeled a, b, c, d, e, f , g, h. The following table

1244 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

describes an optimal cover for each possible truth assignment
to the four I/O nodes i1, o1, o2, and o3. The following table
describes an optimal cover for each possible truth assignment
to the four I/O nodes, i.e.,

i1 o1 o2 o3 2 essential, plus total

false false false false {a, c, f, h, d} 7

false false false true {a, c, h, d, f} 7.5

false false true false {a, c, f, d, g} 7.5

false false true true {a, c, e, d, g} 8

false true false false {c, f, h, d, b} 7.5

false true false true {c, h, d, b, e} 8

false true true false {c, f, g, b, e} 8

false true true true {c, g, b, e} 7.5

true false false false {a, f, h, d, c} 7.5

true false false true {a, h, e, b, d} 8

true false true false {a, f, g, c, d} 8

true false true true {a, g, b, e} 7.5

true true false false {h, f, b, c, d} 8

true true false true {h, b, d, e} 7.5

true true true false {f, b, e, g} 7.5

true true true true {g, b, e} 7

�
Proof of Lemma 5.4: By construction, every pair of adjacent

points in the adjacency diagram is embedded as a pair of ad-
jacent hypercube nodes. Now consider two nonadjacent points
in the adjacency diagram. We argue that they are embedded as
nonadjacent hypercube nodes. There are several cases, enumer-
ated below. It will be helpful to refer to the three segments of a
wire, where segment s consists of the point numbered s in the
list just before Lemma 5.4 and all of the points on a shortest
path to the point numbered s + 1, except point s + 1 itself.

1) The two points belong to different AND/OR or
GENERATOR gadgets. The fact that the gadget IDs are
even parity ensures that these two points are embedded
at vectors that differ in at least two positions in the
first field.

2) One point belongs to an AND/OR or GENERATOR gad-
get, and the other point belongs to a wire attached to that
gadget. If the wire point is not adjacent to one of the wire
endpoints, then it is embedded at a vector that has weight
at least two in the third field, and so it differs from all
of the vectors at which gadget points are embedded in at
least two positions. If the wire point is one of the two wire
points adjacent to a wire endpoint, then it is embedded at
a vector that has weight one in the third field. This vector
is adjacent to exactly one vector at which a gadget point
is embedded (since that vector must match exactly in the
first two fields), and this vector is the wire endpoint.

3) One point belongs to an AND/OR or GENERATOR gad-
get, and the other belongs to a wire not attached to that
gadget. If the wire point lies in segment 1 or 3, then these
two points are embedded at vectors that differ by at least
two positions in the first field. If the wire point lies in
segment 2, then these two points are embedded at vectors
that differ in at least two positions in the third field.

4) The two points belong to the same wire (with ID id(k))
connecting (id(i), x,(0) to (id(j), y,(0). If they lie in the
same wire segment, then our choice of a shortest path
between the segment endpoints ensures that the two
points are embedded at vectors that differ in at least two
positions. If the two points are from different segments,
then we consider three subcases.
a) One point lies in segment 1 and the other lies in

segment 2. Then the first point is embedded at a vector
that differs from (id(i), x, id(k)) in at least one posi-
tion in the third field and the second point is embedded
at a vector that differs from (id(i), x, id(k)) in at least
one position in the first two fields. Altogether, the two
points are embedded at vectors that differ in at least
two positions.

b) One point lies in segment 2 and the other lies in
segment 3. Then the first point is embedded at a
vector that differs from (id(j), y, id(k)) in at least one
position in the first two fields, and the second point is
embedded at a vector that differs from (id(j), y, id(k))
in at least one position in the third field. Altogether,
the two points are embedded at vectors that differ in at
least two positions.

c) One point lies in segment 1 and the other lies in seg-
ment 3. Then the two points are embedded at vectors
that differ by at least two positions in the first field.

5) The two points belong to different wires; the first wire
(with ID id(k)) connects (id(i), x,(0) to (id(j), y,(0), and
the second wire (with ID id(k′)) connects (id(i′), x′,(0) to
(id(j′), y′,(0). There are several subcases, depending on
the segment in which each of the two wire points lies.
a) The first point lies in segment 1 and the second point

lies in segment 1. Then either the two points are em-
bedded at vectors that differ in at least two positions in
the first field, or else i = i′ and then x and x′ differ in
at least two positions since I/O nodes within a gadget
differ in at least two positions.

b) The first point lies in segment 2 and the second point
lies in segment 2. Then the two points are embedded at
vectors that differ in at least two positions in the third
field (since k �= k′).

c) The first point lies in segment 3 and the second point
lies in segment 3. Then either the two points are em-
bedded at vectors that differ in at least two positions in
the first field, or else j = j′ and then y and y′ differ in
at least two positions since I/O nodes within a gadget
differ in at least two positions.

d) The first point lies in segment 1 and the second point
lies in segment 3. Then either the two points are em-
bedded at vectors that differ in at least two positions in
the first field, or else i = j′ and then x and y′ differ in

UMANS et al.: COMPLEXITY OF TWO-LEVEL LOGIC MINIMIZATION 1245

at least two positions since I/O nodes within a gadget
differ in at least two positions.

e) The first point lies in segment 3 and the second point
lies in segment 1. Then either the two points are
embedded at vectors that differ in at least two posi-
tions in the first field, or else j = i′ and then y and x′

differ in at least two positions since I/O nodes within
a gadget differ in at least two positions.

f) The first point lies in segment 1 and the second point
lies in segment 2. Then the point in segment 1 is
embedded at a vector whose third field either has
weight < 2"− 1 or else it differs from id(k) in only
one position. In the latter case, its third field must
differ from id(k′) in at least three positions since id(k)
and id(k′) differ in at least four positions.

g) The first point lies in segment 2 and the second point
lies in segment 1. This case is the same as the previous
with the roles of k and k′ interchanged.

h) The first point lies in segment 2 and the second point
lies in segment 3. Then the point in segment 3 is
embedded at a vector whose third field either has
weight < 2"− 1 or else it differs from id(k′) in only
one position. In the latter case, its third field must
differ from id(k) in at least three positions since id(k)
and id(k′) differ in at least four positions.

i) The first point lies in segment 3 and the second point
lies in segment 2. This case is the same as the previous
with the roles of k and k′ interchanged.

This establishes that the adjacency diagram is properly realized
with the embedding we have described, and in particular, no
unintended adjacencies have been introduced. �

Note Added in Proof: Feldman [33] has recently obtained
an alternative proof of Masek’s result, together with inap-
proximability results. Also, some results on the complexity
of implicant finding have been obtained independently by
Goldsmith et al. [34].

ACKNOWLEDGMENT

The authors thank D. S. Johnson for kindly providing a hard-
copy of Masek’s technical report. T. Villa thanks R. Brayton,
K. Keutzer, and A. Oliveira for related discussions.

REFERENCES

[1] E. Allender, L. Hellerstein, P. M. McCabe, T. Pitassi, and M. Saks,
“Minimizing DNF formulas and AC0 circuits given a truth table,” ECCC
Tech. Rep. TR05-126, 2005.

[2] D. Bovet and P. Crescenzi, Introduction to the Theory of Complexity.
Englewood Cliffs, NJ: Prentice-Hall, 1994.

[3] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli,
Logic Minimization Algorithms for VLSI Synthesis. Boston, MA:
Kluwer, 1984.

[4] R. Brayton, A. Sangiovanni-Vincentelli, and G. Hachtel, “Multi-level
logic synthesis,” Proc. IEEE, vol. 78, no. 2, pp. 264–300, Feb. 1990.

[5] V. Ciriani, “Synthesis of SPP three-level logic networks using affine
spaces,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 22,
no. 10, pp. 1310–1323, Oct. 2003.

[6] O. Coudert, “Two-level logic minimization: An overview,” Integration,
vol. 17, no. 2, pp. 97–140, Oct. 1994.

[7] S. L. A. Czort, “The complexity of minimizing disjunctive normal form
formulas,” M.S. thesis, Dept. Comput. Sci., Univ. Aarhus, Aarhus, Den-
mark, 1999.

[8] M. Gao, J.-H. Jiang, Y. Jiang, Y. Li, A. Mishchenko, S. Sinha, T. Villa,
and R. Brayton, “Optimization of multi-valued multi-level networks,”
in Proc. Int. Symp. Multiple-Valued Logic, Sendai, Japan, May 2002,
pp. 168–177.

[9] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. San Francisco, CA: Freeman, 1979.

[10] J. Gimpel, “A method of producing a Boolean function having an arbi-
trarily prescribed prime implicant table,” IRE Trans. Electron. Comput.,
vol. EC-14, no. 6, pp. 485–488, Jun. 1965.

[11] K. Hayase and H. Imai, “OBDDs of a monotone function and of its prime
implicants,” in Proc. 7th Int. Symp. Algorithms and Computation (ISAAC),
Osaka, Japan, 1178, Lecture Notes in Computer Science. New York:
Springer-Verlag, 1996, pp. 136–145.

[12] V. Kabanets and J.-Y. Cai, “Circuit minimization problem,” in Proc.
32nd Annu. ACM Symp. Theory Computing (STOC), Portland, OR, 2000,
pp. 73–79.

[13] R. Karp, “Reducibility among combinatorial problems,” in Complexity
of Computer Computations, R. E. Miller and J. W. Thatcher, Eds. New
York: Plenum, 1972, pp. 85–103.

[14] K. Keutzer and D. Richards, “Computational complexity of logic synthe-
sis and optimization,” presented at the Int. Workshop Logic Synthesis,
Research Triangle Park, NC, May 1989.

[15] W. J. Masek, “Some NP-complete set covering problems,” M.S. thesis,
MIT Lab. Comput. Sci., Massachusetts Inst. Technol., Cambridge,
May 1978.

[16] E. McCluskey, “Minimization of Boolean functions,” Bell Lab. Tech. J.,
vol. 35, no. 6, pp. 1417–1444, Nov. 1956.

[17] P. McGeer, J. Sanghavi, R. Brayton, and A. Sangiovanni-Vincentelli,
“ESPRESSO-SIGNATURE: A new exact minimizer for logic functions,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 1, no. 4, pp. 432–
440, Dec. 1993.

[18] F. Mo and R. Brayton, “PLA-based regular structures and their synthesis,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 22, no. 6,
pp. 723–729, Jun. 2003.

[19] C. Papadimitriou, Computational Complexity. Reading, MA: Addison-
Wesley, 1994.

[20] W. Paul, “Boolean minimum polynomials and covering problems,”
(in German) Acta Inform., vol. 4, no. 4, pp. 321–336, 1975, Transl.:
Boolesche Minimalpolynome and Ueberdeckungsprobleme.

[21] R. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued minimization
for PLA optimization,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. CAD-6, no. 5, pp. 727–750, Sep. 1987.

[22] S. Sapra, M. Theobald, and E. M. Clarke, “Sat-based algorithms for logic
minimization,” in Proc. Int. Conf. Computer Design, San Jose, CA, Oct.
2003, p. 510.

[23] M. Schaefer and C. Umans, “Completeness in the polynomial-time hi-
erarchy: A compendium,” SIGACT News, vol. 33, no. 3, pp. 32–49,
Sep. 2002.

[24] ——, “Completeness in the polynomial-time hierarchy: Part II,”
SIGACT News, vol. 33, no. 4, pp. 22–36, Dec. 2002

[25] D. Sieling, “The complexity of minimizing and learning OBDDs
and FBDDs,” Discrete Appl. Math., vol. 122, no. 1–3, pp. 263–282,
Oct. 2002.

[26] L. J. Stockmeyer, “The polynomial-time hierarchy,” Theor. Comput. Sci.,
vol. 3, no. 1, pp. 1–22, Oct. 1976.

[27] T. Strzemecki, “Polynomial-time algorithms for the generation of prime
implicants,” J. Complex., vol. 8, no. 1, pp. 37–63, Mar. 1992.

[28] M. Theobald and S. Nowick, “Fast heuristic and exact algorithms for
two-level hazard-free logic minimization,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 17, no. 11, pp. 1130–1147, Nov. 1998.

[29] C. Umans, “Hardness of approximating ΣP
2 minimization problems,” in

Proc. 40th Annu. IEEE Symp. Foundations Computer Science (FOCS),
New York, 1999, pp. 465–474.

[30] ——, “Approximability and completeness in the polynomial hierarchy,”
Ph.D. dissertation, Dept. Elect., Eng. Comput. Sci., Univ. California,
Berkeley, 2000.

[31] ——, “The minimum equivalent DNF problem and shortest implicants,”
J. Comput. Syst. Sci., vol. 63, no. 4, pp. 597–611, Dec. 2001.

[32] T. Villa, T. Kam, R. Brayton, and A. Sangiovanni-Vincentelli, Synthesis
of FSMs: Logic Optimization. Norwell, MA: Kluwer, 1997.

[33] V. Feldman, “Hardness of approximate two-level logic minimization and
PAC learning with membership queries,” ECCC, Potsdam-Babelsberg,
Germany, Tech. Rep. TR05-127, 2005.

[34] J. Goldsmith, M. Hagen, and M. Mundhenk, “Complexity of DNF and
isomorphism of monotone formulas,” in Proc. 30th Int. Symp. Mathemat-
ical Foundations Computer Science (MFCS), Gdansk, Poland, Aug. 2005,
pp. 410–421.

1246 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

Christopher Umans received the undergraduate
degree in computer science and mathematics from
Williams College, Williamstown, MA, in 1996 and
the Ph.D. degree in computer science from the
University of California, Berkeley, in 2000.

From 2000 to 2002, he was a Post-Doc in the
theory group at Microsoft Research, Redmond, WA.
Since 2002, he has been an Assistant Professor of
Computer Science at the California Institute of Tech-
nology, Pasadena. His research interests lie in the-
oretical computer science, especially computational

complexity theory. He has worked on problems in complexity, derandom-
ization, explicit combinatorial constructions, hardness of approximation, and
algorithms.

Tiziano Villa received the B.S. degree in mathemat-
ics from the University of Milan, Milan, Italy, in
1977, took the Mathematical Tripos, Part III, at the
University of Cambridge, Cambridge, U.K., in 1982,
and received the M.S. degree in computer science
and the Ph.D. degree in electrical engineering from
the University of California, Berkeley, in 1987 and
1995, respectively.

From 1980 to 1985, he was a Computer-Aided
Design Specialist at the Integrated Circuits Division,
CSELT Labs, Torino, Italy, and then from 1986

to 1996 was a Research Assistant at the Electronics Research Laboratory,
University of California, Berkeley. In 1997, he was a Research Scientist at
the PARADES Labs, Rome, Italy. Since 2002, he has been an Associate Pro-
fessor at the Department of Electrical, Industrial and Mechanical Engineering
(DIEGM), Universita’ di Udine, Italy. He coauthored the books Synthesis of
FSMs: Functional Optimization (Kluwer, 1997) and Synthesis of FSMs: Logic
Optimization (Kluwer, 1997). His research interests include logic synthesis,
formal verification, combinatorial optimization, automata theory, and hybrid
systems. His contributions are mainly in the areas of combinational and
sequential logic synthesis.

Dr. Villa was awarded the Tong Leong Lim Pre-Doctoral Prize by the EECS
Department, University of California, Berkeley, in May 1991.

Alberto L. Sangiovanni-Vincentelli (M’74–
SM’81–F’83) received the “Dottore in Ingegneria”
degree (summa cum laude) in electrical engineering
and computer science from the Politecnico di
Milano, Milan Italy, in 1971.

Since 1976, he has been on the Faculty of the
University of California, Berkeley, and currently
holds the Edgar L. and Harold H. Buttner Chair
of Electrical Engineering and Computer Sciences.
From 1980 to 1981, he was a Visiting Scientist at
the Mathematical Sciences Department, IBM T. J.

Watson Research Center. In 1987, he was Visiting Professor at Massachusette
Institute of Technology. He has held a number of Visiting Professor posi-
tions at Italian Universities, including Politecnico di Torino, Universitá di
Roma, La Sapienza, Universitá di Roma, Tor Vergata, Universitá di Pavia,
Universitá di Pisa, Scuola di Sant’ Ann. He was a Co-Founder of Cadence
and Synopsys, the two leading companies in the area of electronic design
automation. He is the Chief Technology Adviser of Cadence. He is a member
of the Board of Directors of Cadence, UPEK, Sonics, Gradient and Accent,
an ST Microelectronics-Cadence joint venture he helped founding. He is a
member of the HP Strategic Technology Advisory Board and of the Science
and Technology Advisory Board of General Motors. He is the Founder and
Scientific Director of PARADES, a European Group of Economic Interest
supported by Cadence, Magneti-Marelli, and ST Microelectronics. He is a
member of the High-Level Group of the EU Artemis Platform. He is the author
of over 650 papers and 15 books in the area of design tools and methodologies,
large-scale systems, embedded controllers, hybrid systems, and innovation.

Dr. Sangiovanni-Vincentelli is a member of the National Academy of Engi-
neering since 1998. In 1981, he received the Distinguished Teaching Award
of the University of California. He has received numerous research awards
including the Guillemin–Cauer Award (1982–1983), the Darlington Award
(1987–1988) of the IEEE for the best paper bridging theory and applications,
two awards for the best paper published in the Transactions on CAS and
CAD, and three best paper awards and one best presentation award at the
Design Automation Conference. He received the worldwide 1995 Graduate
Teaching Award of the IEEE (a technical field award for inspirational teaching
of graduate students). In 2002, he was the recipient of the Aristotle Award of
the Semiconductor Research Corporation. In 2001, he was given the prestigious
Kaufman Award of the Electronic Design Automation Council for pioneering
contributions to EDA.

