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ABSTRACT 

The complexity of a class of vehicle routing and scheduling problems is 

investigated. We review known NP-hardness results and compile the results 

on the worst-case performance of approximation algorithms. Some directions 

for future research are suggested. The presentation is based on two discus­

sion sessions during the Workshop to Investigate Future Directions in Routing 

and Scheduling of Vehicles and Crews, held at the University of Maryland 

at College Park from June 4 to June 6, 1979. 
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1. INTRODUCTION · 

In this paper the computational complexity of a class of vehicle routing and 

scheduling problems is investigated. The problem class is defined in 

Section 2. We review known NP-hardness results for the problems in this 

class in Section 3-, and we compile the results on the worst-case performance 
' 

of approximation algorithms designed for their solution in Section 4. Some 

directions for future research are suggested in Section 5. 

The results presented in this paper were the subject of two discussion 

sessions during the Workshop to Investigate Future Directions in Routing 

and Scheduling of Vehicles and Crews, held at the University of Maryland 

at College Park from June 4 to June 6, 1979. 

2. A CLASS OF PROBLEMS 

The general single vehiale routing problem (VRP) [26] is defined as follows: 

given a strongly connected mixed graph G consisting of a set V of 

v vertices, a set E of e lundirected) edges and a set A of a (directed) 

arcs, with specified subsets V' ~ V, E' ~ E and A'~ A, and given 

nonnegative weights on the edges and the arcs, find a tour containing V', 

E' and A' which is of minimum total weight. Various well-known routing 

problems emerge for specific restrictions on E, A, V', E1 and A1 ; they 

are defined in Table 1. 

The m-vehiale routing problem (mVRP) is a natural extension of the VRP. 

The purpose is to.find m tours, each containing a common distinguished 

vertex (the depot) and collectively containing the sets V', E' and A1 , 

such that the maximum of the total weights of the tours is minimized. The 

resulting special cases are referred to as the mTSP, the mDTSP, etc. 
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Table 1. Single vehicle routing problems 

name code E A v· E' A' 

traveling salesman problem TSP - 0 V 0 fl) 

directed t:"t'aveling salesman problem DTSP 0 - V fl) 0 

Chinese postman problem CPP - 0 0 E 0 

directed Chinese postman problem DCPP fl) - 0 0 A 

mixed Chinese postman problem MCPP - - 0 E A 

rural post~an problem RPP - 0 0 - 9) 

directed rural postman problem DRPP 0 - 0 y) -

stacker-crane problem SCP - - 0 0 A 

- arbitrary 

The generic single depot vehicle scheduling problem (VSP) is the following: 

given a depot d and n trips j from bj to cj, which have to be 

completed within specified time intervals [tj ,uj] (j = 1, ... ,n), and 

given the traveling times between all pairs (d,bj), (bj,cj), (cj,bk) and 

(cj,d), find a feasible schedule which requires a minimum number of vehicles. 

Special cases to be considered correspond to restrictions such as tj = uj 

or tj = 0, uj = u for j = l, ... ,n. 

The 9..-depot vehicle scheduling problem (9..VSP) is a generalization in 

which there are 9., depots di, where mi vehicles are located {i = 1, ... ,9..); 

each vehicle has to return to its depot. 

3. NP-HARDNESS RESULTS 

The basic results on the computational complexity of vehicle routing and 

scheduling problems are listed in Table 2. For the easy problems, which are 
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solvable in polynomial time, the running time of the most efficient known 

algorithm for their solution is given. The NP-hard problems are not solvable 

in polynomial time, unless fYJ=,J//fJ'. We refer to [13;19;23] for introductions 

to the theory of NP-completeness and to [13,Al.3,A2.3] for additional details. 

The NP-hardness results for routing problems still apply if G is 

planar; seei, e.g., [14;27]. We also note that even the geometric TSP, 

which is defined by points and distances in the Euclidean plane, is NP-hard 

[11 ;28]. 

All NP-hardness results mentioned are 11 strong 11 in the sense that they 

hold even with respect to a unary encoding of the problem data [12]. How­

ever, for ainy fixed m ~ 2, the mCPP and the mDCPP are only known to be 

binary NP-hard. 

In summary, almost all vehicle routing and scheduling problems are 

NP-hard and hence unlikely to be solvable in polynomial time. As a means 

to further differentiate within the class of NP-hard problems, we will 

consider the worst-case performance of fast approximation algorithms in the 

next section. A less formal indication of the complexity of routing 

problems is the number of disconnected components in the graph induced by 

V', E' and A'. For example, when there are c of such components, the 

RPP can be solved recursively in O(v2c+l/c!) time [9]. 
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Table 2. Complexity of vehicle routing and scheduling problems 

problem complexity reference 

Pouting 

VRP NP-hard 

TSP NP-hard [18] 

DTSP NP-hard [18] 

CPP O(v3) [7] 

mCPP NP-hard [10] 

DCPP O(v3 loge) [8] 

· mDCPP NP-hard [10] 

MCPP NP-hard [27] 

RPP NP-hard [21] 

DRPP NP-hard [21] 

SCP NP-hard [10] 

saheduUng 

VSP (all tj = uj) Oln3) [6] 

VSP (all tj=O, all u. = u) 
J 

NP-hard [22] 

R.VSP (all tj = uj) open 

4. WORST-CASE PERFORMANCE OF APPROXIMATION ALGORITHMS 

All results on the worst-case performance of specific approximation algorithms 

for vehicle routfng problems that we are aware of are listed in Table 3. 

The performance is usually measured by the maximum ratio p of the approxi­

mate solution value to the optimum value,over all instances of the problem 

in question. The table gives global upper bounds on p, as well as lower 

bounds on p that can (asymptotically) be achieved for a class of "bad" 
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Table 3. Worst-case performance of vehicle routing approximation algorithms 

problem 

TSP 

DTSP 

MCPP 

planar 
MCPP 
RPP 

SCP 

mTSP 

mCPP 

mSCP 

algorithm 

nearest neighbor 

sequential Clarke-Wright 

insertion 

nearest insertion 

cheapest insertion 

nearest addition 

nearest merger 

k-optimal for all k ~ f 
double spanning tree 

spanning tree+ matching 

repeated assignment 

Edmonds-Johnson 

upper bound 

tfiog v] +½ 

f1og v] + l 

2 

2 

2 

2 

2 

3 
2 
fiog v] 

2 

reversed Edmonds-Johnson 2 

mixed strategy 

mixed strategy 

spanning tree+ matching 

mixed strategy 

nearest neighbor 

nearest insertion 

tour splitting 

tour splitting 

tour splitting 

5 
3 
3 
2 
3 
2 
9 
5 
i log v + m 

2m 
5 l 
2-m 
2-! 

m 
14 l r- m 

lower bound complexity 

} log(v+l) +½ O(v£:) 
2 5 2 
7 log v +21 0{v ) 

4 0(v2) 

2 

2 

2 

2 

2 

2 
3 
2 

2 

2 
3 
2 
3 
2 
3 
2 

flog v 

2m 
5 1 
2-m 

o(v2) 

O{v2 log v) 

ocv2> 

0(v2 log v) 

o(v2) 

0lv3) 

0(v3) 

0(v3+e2a+a3) 

0(v3+e2a+a3) 

0(v3+e2a+a3) 

0(v3+e2a+a3} 

0(v3+e) 

0{v3+a3) 

o(v2) 

o(v2) 

0(v3) 

0(v3) 

0(v3+a3) 

reference 

[32] 

[15] 

[32] 

[32] 

[32] 

[32] 

[32] 

[32] 

[32] 

[3;5] 

[25] 

[9] 

[9] 

[9] 

[9] 

[9] 

[10] 

[10] 

[10] 

[10] 

[10] 

[10] 
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instances. All terms that tend to zero when v increases have been 

deleted; log denotes the logarithm to the base 2. 

The theory of NP-completeness has been applied to show that, for some 

NP-hard optimization problems, certain approximation algorithms which 

guarantee a fixed maximum performance ratio p do not exist, unless fi'=Jlt~ 

Results of this type for vehicle routing problems are listed in Table 4. 

These problems require some comments. 

The aapaaitated mTSP (mCPP) is a modification of the mTSP (mCPP), in 

which each vertex (edge) has a given demand and the total demand in each 

tour should not exceed a given limit. The objective in this case is to 

· minimize the sum of the total tour weights rather than their maximum. 

The general TSP is usually defined as the problem of finding a tour of 

minimum total weight which visits each vertex exactly once. The TSP in our 

definition allows multiple visits, but can be seen as a special case of the 

general TSP in which the weights satisfy the triangle inequality. 

Table 4. Nonexisting vehicle routing approximation algorithms (unless fi'=.A-9') 

problem algorithm p reference 

any unary NP-hard problem algorithm polynomial in problem l+e: [12] 

size and l for all e: > O e: 

general TSP polynomial-time algorithm < 00 [33] 

local search with polynomial time < 00 [29] 

per iteration 

capacitated mTSP on a tree polynomial-time algorithm <l 2 [16] 

capacitated mCPP on a tree polynomial-time algorithm < 3 
2 [16] 
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Conversely, the TSP with arbitrary weights can be transformed into the TSP 

for which the triangle inequality holds by adding a suitably large constant 

to all weights. The distinction between both problem types, however, is 

justified by the results in Tables 3 and 4. 

Additional results for the general TSP are the following. Local search 
' 

over polynomial-size neighborhoods will never guarantee optimality [34], and 

instances have been constructed for_ which local search would be particularly 

ineffective [30]. 

Altogether, there appear to be considerable differences in complexity 

within the class of NP-hard problems. Many of the polynomial transformations 

between these problems that preserve optimality, clearly do not preserve the 

performance of approximation algorithms. The transformation of the general 

TSP to the TSP provides a striking example of this phenomenon. Transforma­

tions that preserve the problem structure to a greater extent are the subject 

of ongoing research [1;24;31]. 

5. CONCLUDING REMARKS 

The survey presented in Sections 3 and 4 bears witness to an impressive 

research effort in analyzing the inherent complexity of vehicle routing and 

scheduling problems. It is also clear that more work needs to be done. 

The complexity status of the iVSP is still open. The worst-case analysis 

of some of the standard approximation algorithms is nonexistent or incomplete. 

And for the· DTSP,- no polynomial-time algorithm is known to guarantee a 

constant maximum performance ratio. 

It should be pointed out that the worst-case approach is pessimistic 

in the sense that approximation algorithms rarely attain their maximum 

performance ratio in practice. For example, the TSP algorithm from [3], 
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in which a spanning tree is combined with a matching on its odd-degree 

vertices, yields a solution value that tends to be much closer to the optimum 

than the guaranteed fifty percent deviation. In a clever implementation of 

this algorithm [4], a spanning tree is found using v subgradient iterationi 

as in [17]; by then, the number of odd-degree vertices is often so small 

that a matching is found quickly by complete enumeration. This produces 

both a lower bound and an upper bound on the optimum, which usually differ 

by no more than a few percent. 

Probabilistic analyses of the average-case or almost-everywhere perfor­

mance of approximation algorithms have to provide a theoretical explanation 

of these phenomena. For the geometric TSP, such an approach has led to some 

remarkable results [20]. 

Finally, we note that there are several developments on the interface 

of mathematical progra1T111ing and complexity theory that might ultimately 

influence the area of routing and scheduling as well. Suffice it to mention 

the efforts to relate the existence of polynomial-time algorithms to the 

existence of good characterizations of the polytope of feasible solutions~ 

and the recent development of a polynomial-time algorithm for linear 

progralTITling [2]. It seems that .complexity theory interpreted in a broad 

sense will continue to have a direct impact on the study of vehicle routing 

and scheduling problems. 
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