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Complexity-Reduced Model Adaptation for Digital

Predistortion of RF Power Amplifiers With

Pretraining-Based Feature Extraction
Yue Li, Member, IEEE, Xiaoyu Wang, Graduate Student Member, IEEE, and Anding Zhu, Senior Member, IEEE

Abstract—In this article, we present a new method to reduce
the model adaptation complexity for digital predistortion (DPD)
of radio frequency (RF) power amplifiers (PAs) under varying
operating conditions, using pretrained transformation of model
coefficients. Experimental studies show that the PA behavior
variations can be effectively tracked using a small number
of “transformed” coefficients, even with large deviations in its
output characteristics. Based on this discovery, to avoid re-
extracting all the original coefficients every time when the
operating condition changes, we propose to conduct a one-time
offline pretraining stage to extract the common features of PA
behaviors under different operating conditions first. The online
model adaptation process will then only need to identify a small
number of transformed coefficients, which can result in a drastic
reduction in the computational complexity of model adaptation
process. The proposed solution is validated by experimental
results considering varying signal bandwidth and output power
levels on a high-efficiency Gallium Nitride Doherty PA, where the
computational complexity is significantly reduced and the system
performance is not compromised.

Index Terms—Digital predistortion, model adaptation, power
amplifier, principal component analysis, transfer learning,
Volterra series

I. INTRODUCTION

W ITH the development of modern wireless technolo-

gies, digital predistortion (DPD) is widely deployed to

mitigate the nonlinear distortions induced by the transmitters,

especially the radio frequency (RF) power amplifiers (PAs) [1],

[2]. Today, driven by the endless pursuit of higher spectral and

energy efficiency, the evolution towards the next generation

cellular communication technologies, 5G, is demanding a

more heterogeneous and more efficient network to fulfill the

speed and coverage requirements [3]. Thus, to comply with

the different linearity and efficiency specifications, DPD is

expected to deliver better linearization performance with lower

complexity in diverse application scenarios.

A modern DPD system [4] usually consists of three key

parts: the predistorter, the data acquisition receiver and the
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model extraction/adaptation unit. The predistorter is imple-

mented in the transmitter path with a DPD model that produces

the predistorted signal in real time. The data acquisition

receiver captures the signals from the PA output, which are

used by the model adaptation unit to extract the model

coefficients. Since model adaptation is only activated when

the PA characteristics change and the DPD coefficients need

to be updated, the power consumption of model extraction has

not been a big concern.

When DPDs are deployed to linearize 5G transmitters,

several issues arise. Firstly, the introduction of small-cell base

stations requires DPD with low hardware complexity and

low power consumption, which makes high-complexity model

adaptation algorithms unfavorable [5]. Secondly, new frame

structures in 5G allow more flexible resource allocation [3],

leading to rapid system reconfiguration and fast varying PA

behavior. To cope with this challenge, faster adaptation is

essential. Thirdly, the use of beamforming techniques further

complicates the existing problems, because we need to deal

with more complex nonlinearities and rapidly changing beam

directions [6]. Therefore, model adaptation is expected to be

an important concern in future system design.

To date, the majority of DPD models are linear in param-

eters and thus linear system identification methods, e.g., the

least squares (LS) algorithm, can be deployed for extracting

the model coefficients [7]. Despite the theoretical simplicity,

the high algorithmic complexity of LS makes it an expensive

solution for DPD model adaptation. While several techniques

[8]–[13] have been proposed to reduce the complexity of LS,

it still grows rapidly with the number of coefficients. Since

future DPD models will inevitably involve a large number of

coefficients to address the complex PA nonlinearities [14], the

complexity of the LS-based methods is expected to increase

further. Some alternatives to the LS solution, e.g., least mean

squares (LMS) [15], [16] and stochastic optimization [17],

[18], can achieve lower complexity per iteration, but they

suffer from slow convergence speed and potential stability

issues. Therefore, in applications targeting low hardware com-

plexity, like small-cell base stations, applying existing model

adaptation algorithms faces many challenges.

To alleviate the complexity issue, some adaptation strategies

have been proposed to reduce the updating frequency of DPD.

One method is to record the previously extracted coefficients.

When the same or similar operating condition occurs again,

they can be retrieved and copied to DPD [19] or used as

initial states for further adaptations [20]. Another method is
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to explicitly express the DPD coefficients as a function of

physical parameters [21]–[23]. Thus, once we observe changes

on the parameters, the DPD coefficients can be updated

without new feedback data. Yet, these methods all require

knowing the current PA state, so the estimation accuracy may

degrade if such information cannot be acquired accurately or if

the PA behavior is changed significantly by other unobserved

effects.

After carefully investigating the variations of PA behavior

under different operating conditions, we find that these varia-

tions are usually highly correlated and they can be accurately

modeled with a small number of common features. Based

on this discovery, in this work, we propose a new method

to reduce the complexity of DPD model adaptation based on

the concept of “transfer learning” [24] that utilizes pretrained

transformation of model coefficients. The method is split

into two phases: the first phase is called “pretraining” that

is conducted offline and used to determine a compact basis

function set based on singular value decomposition (SVD)

of the ideal output of the DPD; the second phase is the

normal model extraction that can be conducted with online

adaptation of the transformed coefficients of the model. These

transformed coefficients are then transformed back to the

original coefficients of the full model basis and are applied to

the DPD model. By pretraining the DPD model under various

representative operating conditions, we can effectively extract

common features to model PA characteristics under varying

operating conditions with a small number of coefficients. In

real time operation, we therefore only need to update the

transformed coefficients instead of the original model coeffi-

cients, which significantly reduces the number of coefficients

to be estimated in DPD model adaptation. That can lead to

a significant reduction in the computational complexity in

the model adaptation process. The dramatic decrease of the

number of coefficients to be estimated also allows significant

reduction of the number of training samples needed to identify

the coefficients, which can further reduce the computational

complexity of model adaptation.

The rest of the paper is organized as follows: Section

II presents a review of DPD model adaptation and feature

extraction techniques, as well as an experimental analysis of

PA characteristics under varying operating conditions. Section

III develops the novel pretraining framework. We discuss

both offline feature extraction algorithms and online model

adaptation methods in detail. In Section IV, we present the

experimental results and complexity analysis. Finally, a con-

clusion is drawn in Section V.

II. DPD MODEL ADAPTATION

DPD compensates for PA nonlinear effects by applying an

inverted model of the PA to the input signal at digital baseband

before amplification. In the past years, a wide range of DPD

models have been developed. If the model is linear in its

parameters, it can be expressed in matrix format as below,

u = Xc, (1)

where u is the predistorted signal vector consisting of N data

samples,

u = [ũ(N), ũ(N − 1), · · · , ]
T
, (2)

c is a vector including all Q model coefficients,

c = [c(1), c(2), · · · , c(Q)]
T
, (3)

and X is an N -by-Q regression matrix containing all basis

functions constructed with the input signal samples x̃(n). For

example, if the memory polynomials (MP) model [25] is used,

the basis functions have the form of |x̃(n−m)|k−1x̃(n−m),
where k is the nonlinearity order and m is the delay number,

and X can be constructed as

X =






x̃(N) x̃(N − 1) · · · |x̃(N)|x̃(N) · · ·
x̃(N − 1) x̃(N − 2) · · · |x̃(N − 1)|x̃(N − 1) · · ·

...
...

. . .
...

. . .







(4)

A. Conventional Model Adaptation

To obtain the values of the DPD coefficients, a small fraction

of the transmit signal is usually transferred back to baseband

via a feedback loop and a model extraction/adaptation algo-

rithm can be applied. For instance, if the LS is used, the value

of the model coefficients can be found via

ĉ =
(

XHX
)−1

XH û, (5)

where û is the target model output and ĉ is the estimated

model coefficients.

In practical wireless systems, the PA needs to operate at

different conditions to cope with the varying environment and

meet different transmission requirements. The characteristics

of the PA can change with different factors, such as signal

bandwidth, modulation schemes and power levels. To maintain

the linearity, the DPD model must be frequently updated to

track these variations. Updating the model coefficients usually

requires matrix operations, as shown in (5). The computational

complexity of these operations depends on the number of

DPD coefficients and the number of data samples used. If

a large number of coefficients or data samples are involved,

the computational complexity can be very high.

B. Model Adaptation Based on Feature Extraction Under

Fixed Condition

To reduce computational complexity, one solution is to

conduct model order reduction by using a feature extraction

scheme. The aim of feature extraction is to compress the

information of the original basis functions into a new feature

matrix. For example, in principal component analysis (PCA)-

based methods [10], [11], it is achieved by using the SVD of

X, or equivalently the eigendecomposition of XHX,

X = UXΣXVX
H , (6)

where UX and VX are orthonormal matrices and ΣX is a

diagonal matrix. UX includes the principal components of X,

whose importance is measured by the corresponding diagonal
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elements of ΣX. By keeping the P most important principal

components and discarding the rest, we obtain a new N -by-

P feature matrix U
(P)
X

which is the first P columns of UX.

By using the feature matrix U
(P)
X

, instead of X, to calculate

the LS solution, the computational complexity can be reduced,

because of its smaller dimension N -by-P , as compared to N -

by-Q of X.

Nevertheless, the existing solutions [10]–[12] mainly focus

on deriving the feature transformation under one specific oper-

ating condition, so the effectiveness of the extracted features

may be limited when the operating condition changes. For

example, the PCA transformation matrix [10], [11] can only be

reused for signals with similar properties, and the partial least

squares (PLS) transformation in [12] needs to be recalculated

whenever the optimization target changes. To take into account

the various operating conditions, it is desirable to seek better

feature extraction methods.

C. Feature Extraction Under Varying Conditions

From the previous studies [21]–[23], [26], we can see that,

though there are differences, the nonlinear behaviors of the PA

under different operating conditions are strongly correlated.

For instance, in [21], the static characteristics of the PA and

the dynamic changes under different power levels are modeled

using two sets of coefficients sharing the same basis functions.

To systematically evaluate the correlation, we present an

experimental study by varying the PA output power as an

example. To help readers reproduce the results, we use a

publicly available platform, RF WebLab [27], [28], to conduct

the test. A standard Gallium Nitride (GaN) PA was used and

the output power of the PA was changed from 25 dBm to

33 dBm with a 1 dB step size. For comparison, we also set

another smaller sweeping range, 31 dBm to 33 dBm with a

0.25 dB step size. The two sweeping ranges were set to have

the same number of test points. The test signal was a 20

MHz Long-Term Evolution (LTE) signal with 6.5 dB peak-

to-average power ratio (PAPR). Two representative AM-AM

and AM-PM curves from the test are shown in Fig. 1, where

we can see that the PA behaves differently at different power

levels with the same input signal. It is worth mentioning that

the simple results shown in Fig. 1 are for illustration only

and they facilitate interested readers to reproduce the results

since RF WebLab is publicly available. More complex tests

are given in Section IV.

To extract the correlated components between the different

PA output signals, we employ the PCA technique. Different

from [10], [11] where PCA is applied on the basis function

matrix X, here the captured signals are collected into a matrix

Y0 where each column represents the PA output captured at

one power level and the SVD-based PCA is performed on Y0,

Y0 = UYΣYVY
H , (7)

where UY and VY are orthonormal matrices and ΣY is a

diagonal matrix. UY contains the principal components of Y0,

and the diagonal entries of ΣY, Σi’s, measure the magnitude

of each principal component. As the analysis is conducted

on the PA output data, it exhibits fundamental differences

(a)

(b)

Fig. 1. AM-AM and AM-PM characteristics at (a) 25 dBm and (b) 33 dBm.

(a) (b)

Fig. 2. Importance of principal components in (a) PA output without DPD
and (b) “ideal” DPD output obtained by ILC.

with the prior arts. In [10], [11], Σi is used to evaluate the

relative importance of each basis function, but in this work, Σi

indicates the significance of different dynamic effects caused

by the changing operating conditions. To better illustrate the

results, Σi’s are normalized by the total sum of squares to

show the relative importance,

Impi =
|Σi|

2

‖ΣY‖2
, (8)

where ‖ · ‖ represents the Frobenius norm.

The relative importance of all principal components of

both sweeps are depicted in decibel in Fig. 2(a). It can be
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clearly seen that, most components are unimportant and thus

contribute little to describing the changes in Y0. If we set -50

dB as the threshold and discard all components below it, we

will end up with only 2 components for the 2 dB sweep, and

3 components for the 8 dB sweep.

Using the same methodology, we further examine if the

DPD response, the inverse of PA behavior, has the similar

property. To obtain the “ideal” DPD output, the iterative

learning control (ILC) technique [29] was employed in every

operating condition. After performing PCA on the predistorted

signal, the results are shown in Fig. 2(b). It can be easily

seen that the distribution of principal component importance

is almost identical to that in Fig. 2(a).

From the tests, we can conclude that, for a given PA,

there exists a small set of principal components whose linear

combination can accurately model the PA output or ideal

predistorted signals at varying conditions. Therefore, for both

PA and the inverse characteristics, the variation caused by

changes of operating conditions can be characterized by just

a few principal components, despite the numerous possible

conditions in the sweep range.

III. PRETRAINING-BASED DPD

The previous findings suggest that the desired DPD output

signals under different operating conditions are composed of

only a small number of common components. Nevertheless,

this property is difficult to exploit in existing model adaptation

methods, due to their inherent inability to cope with varying

operating conditions. In this work, we develop a pretraining-

based DPD scheme to take full advantage of the similarity

between DPD responses under different operating conditions

and significantly reduce the computational complexity in DPD

model adaptation.

A. The Proposed Framework

To incorporate the different dynamic effects, we propose

to employ a feature extraction approach and use the different

features to represent the various dynamics. The DPD function

can be expressed as

u = Xc = XAw, (9)

where A is a feature transformation matrix and w represents

the transformed coefficients. The original DPD model can thus

be transformed into a new structure, as depicted in Fig. 3.

In this structure, if we let the same transformation matrix

A be shared by all operating conditions and allow individual

condition to have its own w, we only need to update w when

the system operating condition changes.

The basic procedures to realize this idea is shown in Fig. 4,

which consist of two stages. In this framework, the pretraining

stage is performed only once in an offline setting and the

adaptation stage is implemented in the actual DPD system to

update the DPD model. The system architecture is depicted in

Fig. 5, which highlights the different setups of the two stages.

In the pretraining stage, we capture the target data, i.e., the

ideal DPD output signals, by sweeping over different operating

conditions. In each case, the PA circuit and the training signals

Fig. 3. New model structure under varying operating conditions.

Fig. 4. Procedures of the proposed pretraining-based DPD model adaptation.

Fig. 5. Pretraining-assisted model adaptation architecture.

can change to set up a proper operating condition, and the

DPD model may be updated iteratively to find the optimum

predistorted signal for this specific condition. To match the

situation in practical applications, the sweeping is expected

to include all factors of interest. With the sweeping data,

we implement offline training algorithms, as will be detailed

shortly, to extract the important features. If most representative

cases are covered and the learned feature transformation can

perform well in most cases, the model can also be generalized

to cover untested cases.

With the assistance of pretraining, the original regression

matrix X can be transformed to Z,

Z = XA. (10)

The DPD model can then be expressed as

u = Zw. (11)
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In the model adaptation stage, we only need to train the

transformed coefficients vector w, which is expected to have a

much smaller size than that of the original model coefficients

vector c. After extracting the new coefficients w, we can

conveniently transform them back to c and apply to the

predistorter.

B. The Pretraining Algorithms

In the proposed architecture, the key issue is to optimize the

feature transformation matrix A which should minimize the

difference between the model output and the desired output

under all pretraining cases. Additionally, it is also helpful to

develop a concrete guideline to choose the value of P , the

number of transformed features. In this part, we propose novel

pretraining algorithms to fulfill the aforementioned two goals.

1) Pretraining Using Fixed Training Signals: If the same

input signals are employed during pretraining, the optimization

of A can be translated into solving

min
A

‖XAW −Y‖2, (12)

where Y contains the target data under all pretraining con-

ditions, and W includes the new coefficients under all cases.

Perform QR decomposition on X,

X = QR, (13)

where Q is an orthonormal matrix and R is an upper triangular

matrix. Then we can express Y as

Y = QD+E (14)

where D collects the transformed coefficients under all con-

ditions and E is the modeling residue orthogonal to Q. Thus,

the minimization objective can be rewritten as

min
A

‖QRAW −QD−E‖2. (15)

Because of the orthogonality, it can be further simplified to

min
A

‖RAW −D‖2. (16)

Thus, it can be solved by performing SVD on matrix D

D = UDΣDVD
H , (17)

and make the following assignment

RA′ = UD (18)

W′ = ΣDVD
H . (19)

The importance of principal features can be measured by the

diagonal elements of ΣD and P can be chosen by setting an

error threshold for them. One reasonable choice is to set the

threshold 10 dB below the desired NMSE value. It is also

possible to include a few more features for potentially better

generalization performance in untested cases.

Finally, by keeping the P most significant principal com-

ponents, we have

A = R−1U
(P)
D

, (20)

where U
(P)
D

is the first P columns of UD.

The procedures are summarized in Algorithm 1.

Algorithm 1 QR-SVD Pretraining Algorithm

Input: X, Y

Output: A

1: Perform QR decomposition on X: X = QR

2: D = QHY

3: Perform SVD on D: D = UDΣDVD
H

4: Determine the number of required principal components

P by checking the diagonal elements of ΣD

5: Form U
(P)
D

using the first P columns of UD

6: A = R−1U
(P)
D

2) Pretraining Using Varying Training Signals: In real sys-

tem operations, the input signal characteristics, e.g., bandwidth

or PAPR, may change with the system configurations. Thus,

it is necessary to train A using input signals of different

characteristics. To accommodate different input signals, we

generalize the objective function to

min
A

∑

t

‖XtAWt −Yt‖
2, (21)

where the subscript t is the index of different input signals.

Note that each norm has separate regression matrices, model

coefficients and target data, but the same feature transforma-

tion matrix.

Following a similar derivation in (12) to (16), we have

min
A

∑

t

‖RtAWt −Dt‖
2. (22)

Based on the property of QR decomposition, we have

Dt = RtCt. (23)

So equivalently we optimize

min
A

∑

t

‖RtAWt −RtCt‖
2, (24)

where Ct is the coefficients of the original model before

feature extraction. Due to the complex structure, it cannot be

directly optimized using SVD. To simplify the optimization,

we approximately treat all Rt’s as equal. Though the Rt’s

are in general different because of the different signal char-

acteristics, using an approximated R has little influence on

performance [30]. Thus, we assume

Rt ≈ R̄, (25)

where R̄ can be computed by performing QR decomposition

on the combined regression matrix X̄,

X̄ = Q̄R̄, (26)

where

X̄ =
[

X1
T ,X2

T , · · ·
]T

. (27)

Replacing Rt with R̄, the objective function can be rearranged

as

min
A

∑

t

‖R̄AWt − R̄Ct‖
2 = min

A

‖R̄AW − R̄C‖2, (28)



6

Algorithm 2 Generalized QR-SVD Pretraining Algorithm

Input: all Xt’s, all Yt’s

Output: A

1: X̄ =
[

X1
T ,X2

T , · · ·
]T

2: Perform QR decomposition on X̄: X̄ = Q̄R̄

3: for all t do

4: Ct =
(

Xt
HXt

)

−1

Xt
HYt

5: end for

6: C = [C1,C2, · · · ]
7: D = R̄C

8: Perform SVD on D: D = UDΣDVD
H

9: Determine the number of required principal components

P by checking the diagonal elements of ΣD

10: Form U
(P)
D

using the first P columns of UD

11: A = R̄−1U
(P)
D

where W and C are the concatenation of all Wt’s and Ct’s.

By setting

D = R̄C, (29)

SVD, as in (17), can then be used to calculate UD and ΣD.

Finally, we can choose a proper value of P by examining ΣD

and solve A by

A = R̄−1U
(P)
D

. (30)

The full procedures are summarized in Algorithm 2.

C. Adaptation of Transformed Features

After developing procedures to extract effective features

for DPD, model adaptation can be greatly simplified. The

pretrained DPD model is expressed as that in (11), so we can

extract the coefficients simply by LS,

ŵ =
(

ZHZ
)−1

ZHu, (31)

and obtain the coefficients of the original model by

ĉ = Aŵ. (32)

As pretraining directly simplifies the LS method, it can be

applied to both indirect learning and closed-loop estimation

methods.

Due to the reduction in the number of coefficients, the

computational complexity can be reduced. Moreover, in linear

system identification algorithms, the required number of data

samples is proportional to the number of parameters to be

estimated [31]. Thus, with pretraining-assisted adaptation, we

can use fewer samples for LS extraction without affecting

estimation accuracy, which simultaneously reduces the com-

putational complexity of adaptation algorithm and the power

consumption of the analog/mixed-signal components in the

DPD data acquisition receiver.

In addition, by examining the derivation of Z, we have

Z = XA = QRR̄−1U
(P)
D

≈ QU
(P)
D

. (33)

As both Q and U
(P)
D

are near orthonormal, Z is approxi-

mately orthonormal as well. Thus, the transformation can also

improve the conditioning of the model identification.

We also wish to point out that the proposed scheme is

independent of existing model adaptation methods [8], [9],

[11]–[13] in that the reduced number of updated coefficients

is achieved by extracting prior knowledge of the PA under

test. As will be shown in Section III-D, it is also possible to

combine the pretraining framework with these techniques to

achieve further complexity reduction.

D. Co-design With Other Complexity Reduction Methods

If the closed-loop adaptation method is employed, we do

not need to accurately calculate the matrix inversion in the LS

solution because of its iterative nature [32]. Thus, the com-

putational complexity can be further reduced by combining

pretraining with other existing methods, e.g., [9], [12].

As a brief illustration, we take the CM-iDLA method [9]

as an example. In [9], the covariance matrix in LS is pre-

calculated using a large amount of data in advance. To apply

this method, we can collect a large number of input samples

and calculate

H =
(

Z′HZ′

)

−1

, (34)

where Z′ is obtained in the same way as Z but using a large

training data size L0.

The target for LS is the difference between the actual PA

output and the desired output, e = y − x, so we have

w(m+1) = w(m) − λ∆w
(m)
LS , (35)

where

∆w
(m)
LS =

L0

L
HZHe =

L0

L
HAHXHe, (36)

L is the size of training data and λ is the learning rate. The

original model coefficients can be calculated by (32).

It is worth mentioning that though the final update equation

is similar to the original version in [9], by employing the

pretraining method, the amount of training data can be reduced

significantly, which can be directly translated to the reduction

of computational complexity.

E. Co-design With LMS Estimators

The principle of pretraining can also be applied to LMS-type

adaptation algorithms. The update equation for conventional

LMS algorithm is

c(m+1) = c(m) − µ∆c
(m)
LMS, (37)

where

∆c
(m)
LMS = X(m)He(m), (38)

X(m) includes all basis functions for the mth sample, e(m)
is the mth error sample between the PA output and desired

signal, and µ is a learning rate.

With the feature transformation learned via pretraining, we

can calculate ∆w with the LMS algorithm and then trans-

form the coefficients back to ∆c. Thus, the LMS adaptation

becomes

w(m+1) = w(m) − µ∆w
(m)
LMS, (39)
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Fig. 6. The photograph of the DPD test bench.

where

∆w
(m)
LMS = AHX(m)He(m), (40)

and µ is the learning rate. The back-substitution can be done

with (32).

The pretraining-assisted LMS algorithm can converge much

faster than the conventional version, because fewer coefficients

are updated and the original regression matrix X is made

approximately orthogonal by A. Nevertheless, due to the addi-

tional transformation operations, the per-iteration complexity

is increased from Q to (2P + 1)Q. To offset the undesired

effect, in each iteration, we can choose PLMS < P coefficients

from w and only update the selected coefficients. Because of

the orthogonality in Z, fast convergence is still guaranteed. In

this way, we can balance the per-iteration complexity and the

convergence speed according to the specific application sce-

narios. The overall effect should be similar to the independent

partial identification technique in [11].

IV. RESULTS

A. Experimental Setup

To validate the proposed method, a test platform was set

up as shown in Fig. 6, which included PC, signal generator,

driver amplifier, PA, attenuator and spectrum analyzer. The PA

under test was an in-house designed broadband GaN Doherty

PA operating at 3.2 GHz with the maximum output power at 44

dBm. The sampling rate of baseband signals were set to 300

MSPS. The excitation input signals were carrier-aggregated

LTE signals with 8 dB PAPR. 20,000 data samples were used

in all tests. The generalized memory polynomial (GMP) model

[33] was employed in DPD. Recorded I/Q input and output

samples were time aligned and normalized before training the

model. The time-alignment and model extraction were both

performed in MATLAB.

In the experiments, the variations of power level and signal

bandwidth were considered. The two quantities are chosen

to best demonstrate the usefulness of our approach under

the constraint of our instruments. While the power level can

be continuously tuned, the signal bandwidth typically has

limited choices and every change can potentially lead to large

variations in PA behavior. Thus, the two quantities represent

Fig. 7. Illustration of the pretraining and validation set.

two different types of system factors. In addition, the change

of signal bandwidth naturally involves different excitation

signals, which helps verify the proposed generalized QR-SVD

algorithm.

As a proof of concept, the average output power of PA could

vary from 32 to 36 dBm with 1 dB step size and the available

signal bandwidths were 20, 40 and 60 MHz. Thus, there were

in total 5×3 = 15 possible configurations when we considered

all combinations of bandwidth and power level.

To extract effective features, we conducted pretraining on

10 randomly selected cases and validated the performance on

the rest 5 of them. We refer to the two sets as “pretraining set”

and “validation set” thereafter. The selection was illustrated in

Fig. 7. Note that in practical scenarios, the pretraining set can

also be manually specified to include all representative cases.

ILC algorithm [29] was performed on the selected cases to

obtain the “ideal” DPD output signals required in pretraining.

B. Experimental Results With LS Adaptation

In the experimental tests, we used a GMP model with 64

coefficients. The model structure was selected such that good

performance could be achieved under the most challenging

case, i.e. 60 MHz signal bandwidth and 36 dBm output power.

The selection was based on a sweep of model parameters in

forward PA modeling, as is shown in Fig. 8. The same model

structure was used by all cases throughout the experimental

measurement section. It is worth mentioning that other Volterra

series models or piecewise models may replace the GMP

model trivially.

The first step of the proposed methodology was feature

extraction which was performed offline. As more than one

input signals were used, the generalized QR-SVD pretraining

algorithm was used.

After performing pretraining, we obtained the relative im-

portance of all principal components in Fig. 9. From the

results of individually trained models, the baseline NMSE

is approximately -43 dB. Thus, we set the threshold of

principal component importance to be -53 dB, i.e., 10 dB

below the performance baseline. According to Fig. 9, P was

set to 6, which means the proposed method only identified 6

coefficients during DPD adaptation.
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Fig. 8. Demonstration of DPD model selection.

Fig. 9. Relative importance of principal components.

To verify the pretraining approach, a DPD test was per-

formed. The DPD coefficients were iteratively updated using

a closed-loop estimator. To draw a comparison, conventional

adaptation method and the proposed pretraining-based adapta-

tion were tested on all cases. The linearization performance of

the two training methods under all test conditions is reported

in Fig. 10, 11 and 12. From the measurement, the performance

deviation is within 1 dB in all cases. It suggests the proposed

adaptation procedure achieves comparable performance with

the conventional method using a significantly lower number

of effective coefficients. In addition, both pretraining and

validation sets are well modeled, showing that the proposed

pretraining method generalizes well to unseen configurations

and can successfully extract effective features to model the

varying PA behavior.

To better illustrate the DPD performance, we present more

detailed results for selected operating conditions. Fig. 13

shows the spectral results for linearizing the PA driven at 36

dBm output power with a 60 MHz signal. It shows that the

performance for the two DPD methods is very close. The AM-

AM and AM-PM characteristics for the proposed pretraining

method is depicted in Fig. 14.

To show the worst-case performance of the proposed

method, we examine the case with the maximum performance

deviation, i.e., 34 dBm output power with 60 MHz signal.

Fig. 10. DPD performance of individually trained and pretrained GMP models
with 20 MHz signals.

Fig. 11. DPD performance of individually trained and pretrained GMP models
with 40 MHz signals.

Fig. 12. DPD performance of individually trained and pretrained GMP models
with 60 MHz signals.

From the spectral plot in Fig. 15, we can see that the

performance of the two methods is still comparable. The AM-

AM and AM-PM results of the proposed method are shown

in Fig. 16.

Moreover, the proposed method also has the potential to

reduce the required number of data samples for extraction.

To validate this feature, we performed model adaptation using

fewer data samples. The training samples were a continuous

data segment which was randomly selected from the original

training sequence. The sample size for training signals, N ,
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Fig. 13. Spectra of individually trained and pretrained DPD with 60 MHz
signals and 36 dBm output power.

Fig. 14. AM-AM and AM-PM characteristics of pretrained DPD with 60
MHz signals and 36 dBm output power.

Fig. 15. Spectra of individually trained and pretrained DPD with 60 MHz
signals and 34 dBm output power.

were changed in a set of measurements to quantify the

effect. In the results shown in Fig. 17, the pretraining-assisted

adaptation achieves robust performance even with as few as

50 training samples, while the same level of linearization

performance requires more than 2000 samples in conventional

adaptation solutions. Note that the conventional method would

completely fail when the sample size is smaller than the

Fig. 16. AM-AM and AM-PM characteristics of pretrained DPD with 60
MHz signals and 34 dBm output power.

Fig. 17. DPD performance of pretrained models with varying training sample
size.

number of model coefficients, and that is why the conventional

method was not tested with sample sizes below 100.

We also experimentally verified the combination of the

proposed pretraining method and CM-iDLA method in [9].

The DPD performance is depicted in Fig. 18. While the

performance of the original CM-iDLA method is significantly

degraded with a training sample size of 1000, its combina-

tion with the pretraining methodology can achieve reasonable

performance with only 500 samples.

C. Simulation Results With LMS Adaptation

To run LMS based model extraction, a closed-loop real-

time hardware implementation would be preferred because

a large number of iterations is required in LMS adaptation.

However, in our lab, we don’t have such real-time hardware

and thus it is difficult to run LMS in the experimental test.

Instead, a simulation setup was used to verify the convergence

performance in LMS algorithm. We extracted a PA model

using the input and output data captured in the ILC test and

used LMS algorithm to update the DPD coefficients. The PA

model was a decomposed vector rotation (DVR) model [7]

with 39 coefficients. The DPD model and the transformation

matrix A were both the same as those used in the previous

experimental tests.
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(a) (b)

Fig. 18. DPD performance with CM-iDLA using different training sample
size N : (a) conventional and (b) pretrained.

Fig. 19. DPD performance with LMS using different learning rate µ.

In the simulation, 40,000 data samples were used, which

corresponds to 40,000 LMS iterations. For fair comparison,

basis functions in the DPD model were all normalized with

respect to their rooted mean square (RMS) value. Different

learning rates were used during the simulation. While the

pretrained LMS algorithm could converge with up to µ =
10−3, the conventional version diverged when learning rate

was larger than µ = 10−4. It clearly shows that the proposed

modification significantly improves the conditioning and ro-

bustness. The simulated NMSE performance was depicted in

Fig. 19, showing dramatic improvement in convergence speed.

D. Complexity Analysis

In this section, we analyze the computational complexity

of the proposed adaptation algorithms. We assume there are

Q basis functions in the original DPD model and P features

after pretraining. Nc training samples are used in conventional

method and Np samples in the proposed solution. Thus, in

the GMP model tested in this work, we have Q = 64, P =
6, Nc = 2000, Np = 50. The computational complexity is

measured by the number of complex multiplications and the

results are shown in Table I. The comparison shows significant

reduction in computational complexity, as the number of

multiplication is reduced to 0.47%, which is more than 200x

TABLE I
COMPLEXITY COMPARISON OF LS ADAPTATION

Conventional Proposed

XA 0 PQNp (19,200)

XHX Q2Nc (4,160,000) P 2Np (1,050)

(XHX)−1 Q3 (262,144) P 3 (216)

XHy QNc (128,000) PNp (300)

(XHX)−1XHy Q2 (4,096) P 2 (36)

Aw 0 PQ (384)

Total 4,554,240 (100%) 21,186 (0.47%)

Note: The numbers are based on Q = 64, P = 6, Nc = 2000, Np = 50

reduction. Based on the analytical derivation, most reduction is

due to the shortened training sequence (40x), and the reduced

number of updated coefficients contribute to a further 5x

reduction.

V. CONCLUSION

In this paper, we have presented a novel pretraining-assisted

adaptation strategy to address the complexity issue in DPD

model adaptation. When the PA nonlinearity is known to

change within a certain range, we extract features that can

model PA behaviors under all representative operating condi-

tions using the proposed pretraining algorithms in an offline

setup. After pretraining, the online model adaptation process

only needs to update the transformed features, so the com-

putational complexity can be greatly reduced. When applied

to LMS-type algorithms, we demonstrate that the proposed

method can significantly boost the convergence speed with

moderate increase of complexity. Thus, the proposed pretrain-

ing framework is versatile and has the potential to generalize

to different types of DPD models and adaptation algorithms,

which helps overcome the new challenges in diverse DPD

applications for future wireless communications.
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