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Abstract

MAP is the problem of finding a most probable instantiation of a set of variables given
evidence. MAP has always been perceived to be significantly harder than the related
problems of computing the probability of a variable instantiation (Pr), or the problem of
computing the most probable explanation (MPE). This paper investigates the complexity
of MAP in Bayesian networks. Specifically, we show that MAP is complete for NPPP and
provide further negative complexity results for algorithms based on variable elimination.
We also show that MAP remains hard even when MPE and Pr become easy. For example,
we show that MAP is NP-complete when the networks are restricted to polytrees, and even
then can not be effectively approximated.

Given the difficulty of computing MAP exactly, and the difficulty of approximating
MAP while providing useful guarantees on the resulting approximation, we investigate
best effort approximations. We introduce a generic MAP approximation framework. We
provide two instantiations of the framework; one for networks which are amenable to exact
inference (Pr), and one for networks for which even exact inference is too hard. This
allows MAP approximation on networks that are too complex to even exactly solve the
easier problems, Pr and MPE. Experimental results indicate that using these approximation
algorithms provides much better solutions than standard techniques, and provide accurate
MAP estimates in many cases.

1. Introduction

The task of computing the Maximum a Posteriori Hypothesis (MAP) is to find the most
likely configuration of a set of variables given partial evidence about the complement of that
set. The focus of this paper is on the complexity of computing MAP in Bayesian networks,
and on a class of best effort methods for approximating MAP.

One specialization of MAP which has received a lot of attention is the Most Probable
Explanation (MPE). MPE is the problem of finding the most likely configuration of a set of
variables given complete evidence about the complement of that set. The primary reason for
this attention is that MPE seems to be a much simpler problem than its MAP generalization.
Unfortunately, MPE is not always suitable for the task of providing explanations. Consider
for example the problem of system diagnosis, where each component has an associated
variable representing its health. Given some evidence about the system behavior, one is
usually interested in computing the most probable configuration of health variables. This
is a MAP problem since the available evidence does not usually specify the value of each
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non–health variable. It is common to approximate this problem using MPE, in which case
one is finding the most likely configuration of every unknown variable, including health
variables and some other variables of no particular interest, such as the inputs and outputs
of system components. However, the projection of an MPE solution on health variables is
usually not a most likely configuration. Neither is the configuration obtained by choosing
the most likely state of each health variable separately.

MAP turns out to be a very difficult problem, even when compared to the MPE problem,
or to the Pr problem for computing the probability of evidence. Specifically, we provide
in Section 2 some complexity results which indicate that neither exact nor approximate
solutions can be guaranteed for MAP, even under very restricted circumstances. Yet, MAP
remains an important problem for which we would like to generate solutions. Therefore, we
propose in Section 3 a general framework based on local search for best–effort approximation
of MAP. We also provide two specific instances of the proposed framework, one is applicable
to networks that are amenable to exact computation of Pr and is given in Section 3, while the
other is applicable to networks that are not even amenable to Pr and is given in Section 4.
We report on experimental results for each method using real–world and randomly generated
Bayesian networks, which illustrate the effectiveness of our proposed framework on a wide
range of networks. We close our paper by some concluding remarks in Section 5.

2. MAP Complexity

We begin this section by reviewing some complexity theory classes and terminology that per-
tain to the complexity of MAP. We then examine the complexity of MAP in the general case,
followed by examining the complexity when the number of MAP variables is constrained.
We then consider the complexity of MAP algorithms based on variable elimination. We
conclude the complexity section by examining the complexity of MAP on polytrees.

2.1 Complexity Review

We assume that the reader is familiar with the basic notions of complexity theory like the
hardness and completeness of languages, as well as the complexity class NP.

In addition to NP, we will also be interested in the class PP and a derivative of it.
Informally, PP is the class which contains the languages for which there exists a nondeter-
ministic Turing machine where the majority of the nondeterministic computations accept
if and only if the string is in the language. PP can be thought of as the decision version of
the functional class #P. As such, PP is a powerful language. In fact NP ⊆ PP, and the
inequality is strict unless the polynomial hierarchy collapses to the second level.1

Another idea we will need is the concept of an oracle. Sometimes it is useful to ask
questions about what could be done if an operation were free. In complexity theory this is
modeled as a Turing machine with an oracle. An oracle Turing machine is a Turing machine
with the additional capability of being able to obtain answers to certain queries in a single
time step. For example, we may want to designate the class of languages that could be

1. This is a direct result of Toda’s theorem (Toda, 1991). From Toda’s theorem PPP contains the entire
polynomial hierarchy (PH), so if NP = PP, then PH ⊆ PPP = PNP.
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recognized in nondeterministic polynomial time if any PP query could be answered for free.
The class of languages would be NP with a PP oracle, which is denoted NPPP.

Consider now a Boolean expression φ over variables X1, . . . , Xn. The following three
classical problems are complete for the above complexity classes:

SAT: Is there a truth assignment (world) that satisfies φ? This problem is NP–complete.

MAJSAT: Do the majority of worlds satisfy φ? This problem is PP–complete.

E-MAJSAT: Is there an instantiation of variables X1,. . . ,Xk, 1 ≤ k ≤ n, under which the
majority of worlds satisfy φ? This problem is NPPP–complete.

Intuitively, to solve an NP–complete problem we have to search for a solution among an
exponential number of candidates, where it is easy to decide whether a given candidate
constitutes a solution. For example, in SAT, we are searching for a world that satisfies
a sentence (testing whether a world satisfies a sentence can be done in time linear in the
sentence size). To solve a PP–complete problem, we have to add up the weights of solutions,
where it is easy to decide whether a particular candidate constitutes a solution and it is
also easy to compute the weight of a solution. For example, in MAJSAT, a solution is
a world that satisfies the sentence and the weight of a solution is 1. Finally, to solve an
NPPP–complete problem, we have to search for a solution among an exponential number of
candidates, but we also need to solve a PP–complete problem in order to decide whether a
particular candidate constitutes a solution. For example, in E-MAJSAT, we are searching
for an instantiation x1, . . . , xk, but to test whether an instantiation satisfies the condition
we want, we must solve a MAJSAT problem.

2.2 Decision Problems

We will be dealing with the decision versions of Bayesian network problems in this paper,
which we define formally in this section.

A Bayesian network is a pair (G,Θ), where G is a directed acyclic graph (DAG) over
variables X, and Θ defines a conditional probability table (CPT) ΘX|U for each variable
X and its parents U in the DAG G. That is, for each value x of variable X and each
instantiation u of parents U, the CPT ΘX|U assigns a number in [0, 1], denoted by θx|u,
to represent the probability of x given u.2 The probability distribution Pr induced by a
Bayesian network (G,Θ) is given as follows. For a complete instantiation x of the network
variables X, the probability of x is given by

Pr(x)
def
=

∏

xu∼x

θx|u,

where xu is the instantiation of a family (a variable and its parents) and ∼ represents
the compatibility relation among instantiations. That is, the probability assigned to a
complete variable instantiation x is the product of all parameters that are consistent with
that instantiation.

The following decision problems assume that we are given a Bayesian network (G,Θ)
that has rational parameters and induces the probability distribution Pr. Moreover, by
evidence e, we mean an instantiation of variables E.

2. Hence, we must have
∑

x
θx|u = 1.
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D-MPE: Given a rational number p, evidence e, and the set of network variables X, is
there an instantiation x such that Pr(x, e) > p?

D-PR: Given a rational number p and evidence e, is Pr(e) > p?

D-MAP: Given a rational number p, evidence e, and some set of variables Q, is there an
instantiation q such that Pr(q, e) > p? Variables Q are called the MAP variables in
this case.

While decision problems are useful for examining the complexity of finding an exact solu-
tion, what we are really interested in is the functional problem of actually computing the
solution. When we can’t solve the problem exactly, we would also like to know how close
we can get efficiently. For that we consider approximation algorithms. We now define the
notion of an approximation factor which we will use when discussing the complexity of ap-
proximation algorithms. Specifically, we will say that an approximate solution M ′ is within
the approximation factor ε > 1 of the true solution M in case M

ε ≤ M ′ ≤ εM . Moreover, we
will say that an algorithm provides an f(n)–factor approximation in case for all problems of
size n, the approximate solutions returned by the algorithm are within the approximation
factor f(n).

2.3 MAP Complexity for the General Case

Computing MPE, Pr, and MAP are all NP–Hard, but there still appears to be significant
differences in their complexity. MPE is basically a combinatorial optimization problem.
Computing the probability of a complete instantiation is trivial, so the only real difficulty is
determining which instantiation to choose. D-MPE is NP-complete (Shimony, 1994). Pr is
a completely different type of problem, characterized by counting instead of optimization,
as we need to add up the probability of network instantiations. D-PR is PP-complete
(Litmman, Majercik, & Pitassi, 2001)—notice that this is the complexity of the decision
version, not the functional version which is #P-complete (Roth, 1996). MAP combines
both the counting and optimization paradigms. In order to compute the probability of a
particular instantiation, a Pr query is needed. Optimization is also required, in order to be
able to decide between the many possible instantiations. This is reflected in the complexity
of MAP.

Theorem 1 D-MAP is NPPP-complete.3

Proof: Membership in NPPP is immediate. Given any instantiation q of the MAP variables,
we can verify if it is a solution by querying the PP oracle if Pr(q, e) > k.

To show hardness, we reduce E-MAJSAT (Littman, Goldsmith, & Mundhenk, 1998)
to D-MAP by first creating a Bayesian network that models a Boolean formula φ. For each
variable Xi in the formula φ, we create an analogous variable in the network with values
{T, F} and a uniform prior probability. Then, for each logical operator, we create a variable
with values {T, F} whose parents are the variables corresponding to its operands, and whose
CPT encodes the truth table for that operator (see Figure 1 for a simple example). Let Vφ

be the network variable corresponding to the top level operand.

3. This result was stated without proof by Littman (1999).
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X1 X2 X3

Figure 1: The Bayesian network produced using the reduction in Theorem 1 for Boolean
formula ¬(x1 ∨ x2) ∧ ¬x3.

For a complete instantiation x of all of the variables X appearing in the Boolean ex-
pression φ, with evidence Vφ = T , we have:

Pr(x, Vφ = T ) =

{

1
2n x satisfies φ
0 otherwise

For a particular instantiation q of MAP variables X1, ..., Xk , and evidence Vφ = T , we have:

Pr(q, Vφ = T ) =
∑

xk+1,...,xn

Pr(q, xk+1, ..xn)

=
#q

2n

where #q is the number of complete variable instantiations compatible with q that satisfies
φ. Since there are 2n−k possible instantiations of Xk+1, ..., Xn, the fraction fq satisfied is
#q/2n−k, so

Pr(q, Vφ = T ) =
fq

2k

Thus, an instantiation q of the MAP variables is compatible with more than half of the
complete, satisfying instantiations if Pr(q, Vφ = T ) > 1/2k+1. So the MAP query over
variables X1, ..., Xk with evidence Vφ = T and threshold 1/2k+1 is true if and only if the
E-MAJSAT query is also true. 2

In fact, the above theorem can be strengthened.

Theorem 2 D-MAP remains complete for NPPP even when (1) the network has depth 2,
(2) there is no evidence, (3) all variables are Boolean, and (4) all network parameters lie
in the interval [ 12 − ε, 1

2 + ε] for any fixed ε > 0.

The proof appears in Appendix A. Unlike computing probabilities, which becomes easy
when the number of evidence nodes is bounded by a constant and the parameters are
bounded away from 0 (it falls into RP as described by Dagum & Luby, 1997), MAP retains
its NPPP complexity even under these restrictive circumstances.4

4. This is not altogether surprising since when evaluating the score of a possible solution, the MAP variables
act as evidence variables.
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NPPP is a powerful class, even compared to NP and PP. NPPP contains other important
AI problems, such as probabilistic planning problems (Littman et al., 1998). The three
classes are related by NP ⊆ PP ⊆ NPPP, where the equalities are considered very unlikely.
In fact, NPPP contains the entire polynomial hierarchy (Toda, 1991). Additionally, because
MAP generalized Pr, MAP inherits the wild non–approximability of Pr. From the “Bayesian
network simulates SAT” reduction we get:

Corollary 3 Approximating MAP within any approximation factor f(n) is NP–hard.

Proof: Using the evidence Vφ = T , the exact MAP solution is the number of satisfying
instantiations divided by 2n, which is 0 if it is unsatisfiable, and positive if it is satisfiable.
If the formula is unsatisfiable, then the approximate solution must be 0 because 0/ε = 0 ≤
M ′ ≤ ε0 = 0, where ε = f(n). If the formula is satisfiable, then the approximate solution
must be positive since M/ε > 0. Thus we can test satisfiability by testing if the approximate
MAP solution is zero or not.2

2.4 Complexity Parameterized by the Number of Maximization Variables

We now examine the complexity when we restrict the number of maximization variables.
Let n be the number of non–evidence variables, and k be the number of maximization
variables. In the extreme case of k = 0, this is simply D-PR, so it is PP–complete. At
the other extreme, when k = n, it becomes D-MPE, and is NP–complete. So constraining
the number of maximization variables can have a dramatic impact on the complexity. We
now examine this issue in detail. Let D-MAPm be the subset of D-MAP problems where
k = O(m), and let D-MAPm be the subset of D-MAP problems where n−k = O(m). We
can then consider the complexity of these parameterized classes of problems. The primary
results are the following:

Theorem 4 D-MAPlog n is in PPP, and D-MAPlog n is in NP. However, for any ε > 0,
both D-MAPnε and D-MAPnε

remain NPPP–complete.

Proof: First, if k = O(log n), then the number of possible instantiations of the maximization
variables is bounded by a polynomial. Thus, given a PP oracle, it is possible to decide
the problem in polynomial time by asking for each instantiation q of the maximization
variables whether Pr(q, e) exceeds the threshold. Similarly, if n − k = O(log n), then for
any instantiation q of the maximization variables, we can test to see if Pr(q, e) exceeds the
threshold by summing over the polynomial number of compatible instantiations.

For k = O(nε) we can provide a simple reduction to solve any D-MAP problem by
creating a polynomially larger one satisfying the constraint on the number of maximization
variables. From the unconstrained problem, we simply create a new problem by adding a
polynomial number of irrelevant variables, with no parents or children. Similarly, we can
provide a reduction of the general D-MAP problem to one constrained to have n − k =
O(nε), by adding a polynomial number of maximization variables with no parents, no
children, and deterministic priors. 2
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2.5 Results for Elimination Algorithms

Solution to the general MAP problem seems out of reach, but what about for “easier” net-
works? State–of–the–art exact inference algorithms (variable elimination (Dechter, 1996),
join trees (Lauritzen & Spiegelhalter, 1988; Shenoy & Shafer, 1986; Jensen, Lauritzen, &
Olesen, 1990), recursive conditioning (Darwiche, 2001)) can compute Pr and MPE in space
and time complexity that is exponential only in the width of a given elimination order.
This allows many networks to be solved using reasonable resources even though the general
problems are very difficult. Similarly, state–of–the–art MAP algorithms can also solve MAP
with time and space complexity that is exponential only in width of used elimination order
but, for MAP, not all orders can be used. In this section, we investigate the complexity of
variable elimination for MAP.

Before analyzing the complexity of variable elimination for MAP, we review variable
elimination. First, we need the concept of a potential. A potential is simply a function over
some subset of the variables, which maps each instantiation of its variables to a real number.
The size of a potential is parameterized by the number of instantiations of its variables,
and so is exponential in the number of variables. Notice that CPTs are potentials. In
order to use variable elimination for Pr, MPE and MAP, we need three simple operations:
multiplication, summing–out, and maximization. Multiplication of two potentials φ1 and
φ2 with variables XY and YZ respectively (where Y is the set of variables they have in
common), is defined as (φ1φ2)(xyz) = φ1(xy)φ2(yz). Notice that if both X and Z are
nonempty, then the size of φ1φ2 is greater than the size of either φ1 or φ2. SumOut(φ,Y)
where φ is over variables XY is defined as

SumOut(φ,Y)(x) =
∑

y

φ(xy),

where y ranges over the instantiations of Y. Maximization is similar to summing out but
maximizes out the unwanted variables:

Maximize(φ,Y)(x) = max
y

φ(xy).

In order to handle evidence, we need the concept of an evidence indicator. The evidence
indicator λE associated with evidence E = e is a potential over variable E where λE(e) = 1,
and is zero for all other values.

Given a variable ordering π, variable elimination can be used to compute the probability
of evidence e as follows:

1. Initialize P to contain the evidence indicators for e and all of the conditional proba-
bility tables.

2. For each variable X, according to order π,

(a) Remove from P all potentials mentioning X.

(b) Let MX be the product of all of those potentials.

(c) add SumOut(MX , X) to P .

3. Return the product of all potentials in P .
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In each iteration, a variable X is eliminated which leads to removing all mention of X from
P . By step 3, all variables have been removed, so the potentials remaining are just constants
and the resulting product is a single number representing the probability of evidence e. MPE
is computed in the same way, except the projection in step 2c is replaced by maximization.
The complexity of variable elimination is linear in the number of variables and linear in the
size of the largest potential MX produced in step 2b. The size of the largest potential varies
significantly based on the elimination order. The width of an elimination order is simply
log2(size(MX))−1 where MX is the largest potential produced using that elimination order.5

The treewidth of a Bayesian network is the minimum width of all elimination orders. For
Pr and MPE, any elimination order can be used, so the complexity is linear in the number
of variables and exponential in the treewidth. The same is not true for MAP. Variable
elimination for MAP is similar to the other methods, but with an extra constraint. In
step 2c, if X is a MAP variable the projection is replaced with maximization. If it is not
a MAP variable projection is used. The extra constraint is that not all orders are valid.
Maximization and projection do not commute, and maximization must be performed last.
This means that for an elimination order to be valid for performing MAP, when X is a MAP
variable, the potential in step 2b must not mention any non-MAP variables. In practice
this is ensured by requiring that the elimination order eliminate all of the MAP variables
last. This tends to produce elimination orders with widths much larger than those available
for Pr and MPE, often placing exact MAP solutions out of reach.

In order to assess the magnitude of increase in width caused by restricting the elimina-
tion order, we randomly generated 100 Bayesian networks, each containing 100 variables,
according to the first method in Appendix B. For each network, we computed the width
using the min–fill heuristic (Kjaerulff, 1990; Huang & Darwiche, 1996). Then, we repeat-
edly added a single variable to the set of MAP variables, and computed the constrained
width, again using min–fill, but eliminating the MAP variables last. This process was re-
peated until all variables were in the MAP variable set. Figure 2 contains statistics on
these experiments. The X–axis corresponds to the number of MAP variables (thus X = 0
corresponds to the unconstrained width). The Y –axis corresponds to the width found. The
graph details the minimum, maximum, mean, and weighted mean for each of the 100 net-
works. The weighted mean takes into account that the complexity is exponential in the
width, and so provides a better representation of the average complexity. It was computed
as log2(

1
n

∑n
i=1 2wi). Notice that the unconstrained widths range from 11 to 18, and that

as the number of MAP variables increases, the width increases dramatically. For example,
even when only a quarter of the variables are MAP variables (X = 25) the widths range
between 22 and 34, (which corresponds roughly from difficult but doable to well beyond
what today’s inference algorithms can handle on today’s computers) with a weighted aver-
age above 30. Notice also, that as we would expect from our complexity analysis, problems
with very few or very many MAP variables are significantly easier than those in the middle
range.

We now consider the question of whether there are less stringent conditions for valid
elimination orders, that may allow for orders with smaller widths.

5. The -1 in the definition is to preserve compatibility with the previously defined notion of treewidth in
graph theory.
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Figure 2: Statistics on the constrained width for different numbers of MAP variables. The
X–axis is the number of MAP variables, and the Y –axis is the width. Notice that
the widths required for the general MAP problem are significantly larger than for
Pr or MPE, which correspond to X = 0 and X = 100 respectively.

As described earlier, given an ordering, elimination algorithms work by stepping through
the ordering, collecting the potentials mentioning the current variable, multiplying them,
then replacing them with the potential formed by summing out (or maximizing) the current
variable from the product. This process can be thought to induce an evaluation tree; see
Figure 3. The evaluation tree for an elimination order π is described as follows. The leaves
correspond to the CPTs of given Bayesian network, and the internal nodes correspond to
potentials created during the elimination process. The children of a potential φ represent
other potentials that had to be multiplied together when constructing φ. Note that each
internal node in the elimination tree corresponds to variable in the order π, whose elimi-
nation leads to constructing the node; Figure 3(b). Therefore, an evaluation tree can be
viewed as inducing a partial elimination order; see Figure 3(c).

The standard way of constructing a valid elimination order for MAP is to eliminate the
MAP variables Q last. Two questions present themselves. First, are there valid orderings
in which variables Q are not eliminated last? And second, if so, can they produce widths
smaller than those generated by eliminating variables Q last?

The answer to the first question is yes, there are other valid elimination orders in which
variables Q are not eliminated last. To see that, suppose we have a variable order π
which induces a particular evaluation tree T , and let σ be the partial elimination order
corresponding to T . Any variable order π ′ which is consistent with the partial order σ will
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Figure 3: (a) A Bayesian network, (b) an evaluation tree for the elimination order
A,E,B,D,E, and (c) a partial elimination order induced by the evaluation tree.

also induce the tree T . Hence, if order π was valid, then order π ′ will also be valid. Figure 3
shows the evaluation tree induced by using the order A,E,B,D,C for computing MAP
over variables Q = C,D. The order A,B,D,E,C is consistent with this evaluation tree
and, hence, is also valid for computing MAP over variables C,D. Yet, variables C,D do
not appear last in the order.

Unfortunately, orders in which variables Q are not eliminated last do not help.

Theorem 5 For any elimination order π which is valid for computing MAP over variables
Q, there is an ordering of the same width in which variables Q are eliminated last.

Proof: Consider the evaluation tree induced by any valid elimination order, and the cor-
responding partial order it induces. No variable in Q is the parent of any variable in Q.
To prove this, suppose that X is a parent of Y in the evaluation tree, where X ∈ Q and
Y ∈ Q. This means that the potential which results from eliminating variable Y includes
variable X, which also means that X must have appeared in some of the potentials we
multiplied when elimination variable Y . But this is a contradiction since the evaluation
tree and its underlying order are valid. Since no variable in Q is a parent of a variable in
Q, all variables in Q can be eliminated first in any order consistent with the partial order
defined by the evaluation tree. Then, all variables in Q can be eliminated, again obeying
the partial ordering defined by the evaluation tree. Because the produced order has the
same elimination tree as the original order, they have the same width. 2

2.6 MAP on Polytrees

Theorem 5 has significant complexity implications for elimination algorithms even on poly-
trees.

Theorem 6 Elimination algorithms require exponential resources to perform MAP, even
on some polytrees.

Proof: Consider computing MAP over variables X1, . . . , Xn given evidence Sn = T for
the network shown in Figure 4. By Theorem 5, there is no order whose width is smaller
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than that of an order π in which we eliminate variables S0, . . . , Sn first, and then variables
X1, . . . , Xn last. It is easy to show though that any such order π will have width n. Hence,
variable elimination will require exponential resources using such an order. 2

The set of MAP variables makes a crucial difference in the complexity of MAP com-
putations. For example, if the MAP variables were X1, . . . , Xn/2, S0, . . . , Sn/2 instead of
X1, . . . , Xn can be solved in linear time.

The above negative findings are specific to variable elimination algorithms. The question
then is whether this difficulty is an idiosyncrasy of variable elimination which can be avoided
if we were to use some other method for computing MAP. The following result, however,
shows that finding a good general algorithm for MAP on polytrees is unlikely.

Theorem 7 MAP is NP–complete when restricted to polytrees.

Proof: Membership is immediate. Given a purported solution instantiation q, we can
compute Pr(q, e) in linear time and test it against the bound. To show hardness, we reduce
MAXSAT to MAP on a polytree.6 Similar reductions were used by Papadimitriou and
Tsitsiklis (1987) and Littman et al. (1998) relating to partially observable Markov decision
problems, and probabilistic planning respectively. The MAXSAT problem is defined as
follows:

Given a set of clauses C1, ..., Cm over variables Y1, ..., Yn and an integer bound
k, is there an assignment of the variables, such that more than k clauses are
satisfied.

The idea behind the reduction is to model the random selection of a clause, and then
successively checking whether the instantiation of each variable satisfies the selected clause.
The clause selector variable S0 with possible values 1, 2, ...,m has a uniform prior. Each
propositional variable Yi induces two network variables Xi and Si, where Xi represents the
value of Yi, and has a uniform prior, and Si represents whether any of Y1, ..., Yi satisfy the
selected clause. Si = 0 indicates that the selected clause was satisfied by one of Y1, ..., Yi.
Si = c > 0 indicates that the selected clause Cc was not satisfied by Y1, ..., Yi. The parents
of Si are Xi and Si−1 (the topology is shown in Figure 4). The CPT for Si, for i ≥ 1 is
defined as

Pr(si|xi, si−1) =



































1 if si = si−1 = 0
1 if si = 0 and si−1 = j, and

xi satisfies cj

1 if si = si−1 = j and xi does
not satisfy cj

0 otherwise

In words, if the selected clause was not satisfied by the first i − 1 variables (si−1 6= 0), and
xi satisfies it, then Si becomes satisfied (si = 0). Otherwise, we have si = si−1. Now, for a
particular instantiation s0 of S0, and instantiation x of variables X1, ..., Xn,

Pr(s0,x, Sn = 0) =

{

1/(m2n) if x satisfies clause Cs0
;

0 otherwise.

6. Actually, we only need to reduce it to SAT, but the MAXSAT result will be used in Theorem 8.
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X1

S1

X2

S2
. . . 

Xn

SnS0

Figure 4: The network used in the reduction of Theorem 7.

Summing over S0 yields Pr(x, Sn = 0) = #C/(m2n) where #C is the number of clauses
that x satisfies. Thus MAP over X1, ..., Xn with evidence Sn = 0 and bound k/(m2n) solves
the MAXSAT problem as well. 2

Since MAXSAT has no polynomial time approximation scheme (unless P = NP), no
polynomial time approximation scheme exists for MAP on polytrees. In fact, approximating
MAP on polytrees appears to be much harder than approximating MAXSAT.

Theorem 8 Approximating MAP on polytrees within a factor of 2nε

is NP-hard for any
fixed ε, 0 ≤ ε < 1, where n is the size of the problem.

The proof appears in Appendix A. So, not only is it hard to approximate within a constant
factor, it is hard to approximate within a polynomial factor, or even a subexponential factor.

We close this section by a summary of the complexity results in this section:

• MAP is NPPP–complete for arbitrary Bayesian networks, even if we have no evidence,
every variable is binary, and the parameters are arbitrarily close to 1/2.

• It is NP–hard to approximate MAP within any factor f(n).

• Variable elimination for MAP requires exponential time, even on some polytrees.

• MAP is NP–complete for networks with polytree structure.

• Approximating MAP on polytrees within a factor of 2nε

is NP–hard for any fixed
ε ∈ [0, 1).

3. Approximating MAP when Inference is Easy

Since exact MAP computation is often intractable, approximation techniques are needed.
Unfortunately, in spite of MAP’s utility, relatively little work has been done in approxi-
mating it. In fact, there are only two previous methods for approximating MAP which
we are aware of. The first (Dechter & Rish, 1998) uses the mini–bucket technique. The
other (de Campos, Gamez, & Moral, 1999), uses genetic algorithms to approximate the
best k configurations of the MAP variables (this problem is known as partial abduction).
Practitioners typically resort to one of two simple approximation methods. One common
approximation technique is to compute an MPE instantiation and then project the result
on the MAP variables. That is, if we want to compute MAP for variables S given evidence
e, and if S′ is the complement of variables S ∪ E, we compute an instantiation s, s′ that
maximizes Pr(s, s′ | e) and then return s. The other method computes posterior marginals
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for the MAP variables, Pr(S | e), S ∈ S, and then choose the most likely state s of each
variable given e.

We propose a general framework for approximating MAP. MAP consists of two problems
that are hard in general—optimization and inference. A MAP approximation algorithm can
be produced by substituting approximate versions of either the optimization or inference
component (or both). The optimization problem is defined over the MAP variables, and
the score for each solution candidate instantiation s of the MAP variables is the (possibly
approximate) probability Pr(s, e) produced by the inference method. This allows solutions
tailored to the specific problem. For networks whose treewidth is manageable, but contains
a hard optimization component (e.g. the polytree examples discussed previously), exact
structural inference can be used, coupled with an approximate optimization algorithm.
Alternatively, if the optimization problem is easy (e.g. there are few MAP variables) but
the network isn’t amenable to exact inference, an exact optimization method could be
coupled with an approximate inference routine. If both components are hard, both the
optimization and inference components need to be approximated.

We investigate in this section a family of approximation algorithms based on local search.
We first consider the case when inference is tractable, then develop an extension to handle
the case when inference is infeasible. The local search algorithms work basically as follows:

1. Start from an initial guess s at the solution.

2. Iteratively try to improve the solution by moving to a better neighbor s′: Pr(s′ | e) >
Pr(s | e), or equivalently Pr(s′, e) > Pr(s, e).

A neighbor of instantiation s is defined as an instantiation which results from changing the
value of a single variable X in s. If the new value of X is x, we will denote the resulting
neighbor by s − X,x. In order to perform local search efficiently, we need to compute the
scores for all of the neighbors s−X,x efficiently. That is, we need to compute Pr(s−X,x, e)
for each X ∈ S and each of its values x not in s. If variables have binary values, we will
have | S | neighbors in this case.

Local search has been proposed as a method for approximating MPE (Kask & Dechter,
1999; Mengshoel, Roth, & Wilkins, 2000). For MPE, the MAP variables S contain all
variables which are not in E (the evidence variables). Therefore, the score of a neighbor,
Pr(s−X,x, e), can be computed easily since s−X,x, e is a complete instantiation. In fact,
given that we have computed Pr(s, e), the score Pr(s−X,x, e) can be computed in constant
time.7

Unlike MPE, computing the score of a neighbor, Pr(s − X,x, e), in MAP requires a
global computation since s−X,x, e may not be a complete instantiation. One of the main
observations underlying our approach, however, is that the score Pr(s − X,x, e) can be
computed in O(n exp(w)) time and space, where n is the number of network variables and

7. This assumes that none of entries in the CPTs are 0. If there are 0 entries in the CPTs, it may take
time linear in the number of network variables to compute the score. Pr(s, e) is the product of the single
entry of each CPT that is compatible with s, e. When changing the state of variable X from x to x′, the
only values in the product that change are those from the CPTs of X and its children. If none of the
CPT entries are 0, Pr(s− X, x′, e) can be computed by dividing Pr(s, e) by the old and multiplying by
the new entry for the CPTs for X and its children. This can be done in constant time if the number of
children is bounded by a constant.
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w is the width of an arbitrary elimination order, i.e., we can use any elimination order
for this purpose, no need for any constraints. In fact, we can even do better than this by
computing the scores of all neighbors, Pr(s − X,x, e) for all X ∈ S and every value x of
X, in O(n exp(w)) time and space. Thus, if we have an elimination order of width w for
the given Bayesian network, then we can perform each search step in O(n exp(w)) time
and space. As we shall see later, it takes a small number of search steps to obtain a good
MAP solution. Hence, the overall runtime is often O(n exp(w)) too. Therefore, we can
produce good quality MAP approximations in time and space which are exponential in the
unconstrained width instead of the constrained one, which is typically much larger.

The local search method proposed in this section differs from the local search methods
used for MPE in that the unconstrained width must be small enough so that a search step
can be performed relatively efficiently. It is pointless to use this method to approximate
MPE since in the time to take one step, the MPE could be computed exactly. This method
is applicable when the unconstrained width is reasonable but the constrained width is not
(see Figure 2).

3.1 Computing Neighbor Scores Efficiently

The key to computing the neighbor scores efficiently is to express the inference problem
as a function over the evidence indicators. For each state x of variable X, the evidence
indicator λx is one if it is compatible with the evidence, and zero otherwise. This is a
common technique that is typically used to allow the modeling of a wider range of evidence
assertions. For example, this allows evidence assertions such as X 6= x by setting λx = 0,
and the remaining indicators for X to one. We will use them for a different purpose however.
When the inference problem is cast as a function f of the evidence indicators (f(λe) = Pr(e),
where λe consists of all of the evidence indicators, set so that they are compatible with e),
then ∂f

∂λx
(λe) = Pr(e − X,x). When our we add the current state to the evidence, this

partial derivative yields Pr(s−X,x, e), which is precisely the score for one of the neighbors.

We can use the jointree algorithm (Park & Darwiche, 2003), or the differential inference
approach (Darwiche, 2003) to compute all of the partial derivatives efficiently. In the differ-
ential approach, these values are immediate, as the entire approach is based on evaluating
and differentiating the expression f above. It can also be computed using jointrees by using
the Shenoy–Shafer propagation scheme. Specifically, an evidence indicator table is added
for each variable, and evidence about that variable is entered by setting the appropriate
indicator entries. The partial derivatives of all of the indicators associated with a variable
are obtained by multiplying all other tables assigned to the same cluster, and all messages
into the cluster, then projecting that product onto the variable. In either case, the par-
tial derivatives for all indicators, and thus the score for all neighbors, can be computed
in O(n exp(w)) time, which is the same complexity as simply computing the score for the
current state.

3.2 Search Methods

We tested two common local search methods, stochastic hill climbing and taboo search.
Stochastic hill climbing proceeds by repeatedly either changing the the state of the variable
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Given: Probability distribution Pr, evidence e, MAP variables S,
the probability of taking a random flip Pf , and initial state s0.
Compute: An instantiation s which (approximately) maximizes Pr(s | e).

Initialize current state s to s0.
sbest

= s

Repeat manytimes:
With probability Pf do

s = s′, where s′ is a randomly selected neighbor of s.
Otherwise

Compute the score Pr(s − X, x, e) for each neighbor s− X, x.
If no neighbor has a higher score that the score for s then

s = s′, where s′ is a randomly selected neighbor of s.
Else

s = s′ where s′ is the neighbor with the highest score.
If Pr(s, e) > Pr(sbest

, e) then
sbest

= s

Return sbest

Figure 5: Stochastic hill climbing algorithm.

that creates the maximum probability change, or changing a variable at random. Figure 5
gives the algorithm explicitly.

Taboo search is similar to hill climbing except that the next state is chosen as the
best state that hasn’t been visited recently. Because the number of iterations is relatively
small we save all of the previous states so that at each iteration a unique point is chosen.
Pseudocode for taboo search appears in Figure 6.

3.3 Initialization

The quality of the solution returned by a local search routine depends to a large extent on
which part of the search space it is given to explore. We implemented several algorithms
to compare the solution quality with different initialization schemes. Suppose that n is the
number of network variables, w is the width of a given elimination order, and m is the
number of MAP variables.

1. Random initialization (Rand). For each MAP variable, we select a value uniformly
from its set of states. This method takes O(m) time.

2. MPE based initialization (MPE). We compute the MPE solution given the evidence.
Then, for each MAP variable, we set its value to the value that the variable takes on
in the MPE solution. This method takes O(n exp(w)) time.

3. Maximum likelihood initialization (ML). For each MAP variable X, we set its value
to the instance x that maximizes Pr(x | e). This method takes O(n exp(w)) time.

4. Sequential initialization (Seq). This method considers the MAP variables X1, . . . , Xm,
choosing each time a variable Xi that has the highest probability Pr(xi | e,y) for one
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Given: Probability distribution Pr, evidence e, MAP variables S.
Compute: An instantiation s which (approximately) maximizes Pr(s | e).

Initialize current state s.
sbest

= s

Repeat many times
Add s to visited
Compute the score Pr(s − X, x, e) for each neighbor s− X, x.
s = s′ where s′ is a neighbor with the highest score not in visited .
If no such neighbor exists (this rarely occurs)

Repeat for several times
s = s′ where s′ is a randomly selected neighbor of s.

If Pr(s, e) > Pr(sbest
, e) then

sbest
= s

Return sbest

Figure 6: Taboo search. Notice that the action taken is to choose the best neighbor that
hasn’t been visited. This leads to moves that decrease the score after a peak is
discovered.

of its values xi, where y is the instantiation of MAP variables considered so far. This
method takes O(mn exp(w)) time.

3.4 Experimental Results

Two search methods (Hill and Taboo) and four initialization methods (Rand, MPE, ML,
Seq) lead to 8 possible algorithms. Each of the initialization methods can also be viewed as
an approximation algorithm since one can simply return the computed initialization. This
leads to a total of 12 different algorithms. We experimentally evaluated and compared 11
of these algorithms, leaving out the algorithm corresponding to random initialization.

We tested the algorithms on various synthetically generated data sets as well as real
world networks. For the synthetic networks, we generated random network structures using
two generation methods (see Appendix B). For each structure, we quantified the CPTs
for different bias coefficients from 0 (deterministic except the roots), to .5 (values chosen
uniformly) so we could evaluate the influence of CPT quantification on the solution quality.
Each network consisted of 100 variables, with some of the root variables chosen as the MAP
variables. If there were more than 25 root variables, we randomly selected 25 of them for
the MAP variables. Otherwise we used all of the root variables. We chose root nodes for
MAP variables because typically some subset of the root nodes are the variables of interest
in diagnostic applications. Evidence was set by instantiating leaf nodes. Care was taken to
insure that the instantiation had a non zero probability. Each algorithm was allowed 150
network evaluations.8 We computed the true MAP and compared it to the solutions found
by each algorithm. Additionally, we measured the number of network evaluations needed to
find the solution each algorithm subsequently returned, and the number of peaks discovered

8. An evaluation takes O(n exp(w)) time and space, where n is the number of network variables and w is
the width of given elimination order.
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Data Set 1 Solution Quality
0 .125 .250 .375 .5

Rand-Hill 147 805 917 946 966
Rand-Taboo 181 969 985 993 995

ML 526 497 676 766 817
ML-Hill 920 947 989 993 997

ML-Taboo 942 988 999 999 1000

MPE 999 333 160 127 100
MPE-Hill 999 875 923 952 973

MPE-Taboo 1000 986 992 990 998

Seq 930 965 990 999 997
Seq-Hill 941 971 992 999 997

Seq-Taboo 962 998 1000 1000 1000

Table 1: The solution quality of each method for the first data set. The number associated
with each method and bias is the number of instances solved correctly out of 1000.
The best scores for each bias are shown in bold.

Data Set 2 Solution Quality
0 .125 .250 .375 .5

Rand-Hill 20 634 713 799 845
Rand-Taboo 20 851 907 943 965

ML 749 453 495 519 514
ML-Hill 966 922 947 963 962

ML-Taboo 973 960 986 987 990

MPE 858 505 365 275 206
MPE-Hill 961 853 850 874 891

MPE-Taboo 978 952 962 977 980

Seq 988 955 964 985 972
Seq-Hill 988 960 966 986 976

Seq-Taboo 994 977 990 994 994

Table 2: The solution quality of each method for the second data set. The number associ-
ated with each method and bias is the number of instances solved correctly out of
1000. The best scores for each bias are shown in bold.

before that solution was discovered. The hill climbing method used in these data sets is
pure hill climbing with random walk restart. That is, it hill climbs until it reaches a peak,
then randomly flips some of the values to move to a new location.

We generated 1000 random network structures for each of the two structural genera-
tion methods. For each random structure generated, and each quantification method, we
quantified the network, computed the exact MAP, and applied each of the approximation
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algorithms. Tables 1 and 2 show the solution quality of each of the methods by reporting
the fraction of networks that were solved correctly; that is, the approximate answer had the
same value as the exact answer.

One can draw a number of observations based on these experiments:

• In each case, taboo search performed slightly better than hill climbing with random
restarts.

• The search methods were typically able to perform much better than the initialization
alone.

• Even from a random start, the search methods were able to find the optimal solution
in the majority of the cases.

• Overall, taboo search with sequential initialization performed the best, but required
the most network evaluations.

Table 3 contains some statistics on the number of network evaluations (including those
used for initialization) needed to achieve the value that the method finally returned. The
mean number of evaluations is quite small for all of the methods. Surprisingly, for the hill
climbing methods, the maximum is also quite small. In fact, after analyzing the results we
discovered that the hill climbing methods never improved over the first peak they discov-
ered.9 This suggests that one viable method for quick approximation is to simply climb to
the first peak and return the result. Taboo search on the other hand was able to improve
on the first peak in some cases.

We ran ten MAP queries for each real world network we tested. For each query we
randomly selected one fourth of the nodes to be the variables of interest, and selected
one fourth of the nodes to be evidence nodes. The evidence values were chosen uniformly
among the nonzero configurations. As our previous experiments demonstrated that a large
number of iterations rarely helps, we reduced the number of iterations to 30. Also, we
moved away from hill climbing with random restart to stochastic hill climbing (performing
a random move with probability .35) since in our previous experiments the random restart
never helped. Also, we ran a mini–bucket approximation algorithm (the only other MAP
approximation algorithm we are aware of that is not subsumed by our technique) to compare
its performance to our algorithms. Since exact MAP computations on these networks is
too hard for current algorithms to handle, we compare the algorithms based on relative
performance only.

Table 4 shows the number of times (out of ten) that each algorithm was able to produce
the highest probability configuration discovered. The search based methods again performed
much better than the other algorithms. Note that each of them outperformed the mini–
bucket approximations on each network. Table 5 provides more specific details about the
relative performance for each network. Each block contains the count of the number of
times that each method produced solutions within some range of the best found solution.

9. It appears that the random walk used in restarting does not make eventually selecting a better region
very likely when using so few search steps. Often, when a sub optimal hill was encountered, the optimal
hill was just 2 or 3 moves away. In those cases, the taboo search was usually able to find it (because its
search was more guided), while random walking was not.
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Evaluations Required
Method Mean Stdev Max

Rand Hill 12.5 2.5 21
Rand Taboo 14.3 11.0 144

MPE 1 0 1
MPE Hill 2.6 1.3 8

MPE Taboo 4.0 8.3 137

ML 1 0 1
ML Hill 1.6 .74 4

ML Taboo 1.9 3.3 62

Seq 25 0 25
Seq Hill 25.0 .04 26

Seq Taboo 25.0 .9 45

Table 3: Statistics on the number of evaluations each method required before achieving the
value it eventually returned. These are based on the random method 2, bias .5
data set. The statistics for the other data sets are similar.

MPE ML Seq MB

I H T I H T I H T 14 16 18

Barley 3 9 8 3 10 9 7 10 10 1 3 5

Mildew 6 10 10 8 10 10 8 10 10 4 4 7

Munin2 6 10 10 10 10 10 10 10 10 4 5 7

Munin3 9 10 10 10 10 10 10 10 10 4 6 2

Pigs 0 0 0 5 9 9 8 8 8 3 1 6

Water 9 10 10 8 10 10 10 10 10 6 6 9

Table 4: Number of times out of ten that each algorithm found the instantiation that yielded
the highest score. I, H, and T refer to initialization only, hill climbing, and taboo
search respectively.

So for example, in the Barley group, in the MPE row, for the column labeled “> .5” there
is a 3, indicating that in 3 of the 10 cases the solution found was between .5 and .9 times
the best solution found for that query.

Qualitatively, these results are very similar to those obtained for the random networks.
Again the search methods outperformed the static initialization methods. Note that for
different networks, different initializations perform better. Notice also, that the search
methods significantly outperformed the mini–bucket approximations in every network.
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Barley network results

Method Best > .9 > .5 > .01 ≤ .01
MPE 3 2 3 2 0

Hill 9 0 0 1 0
Taboo 8 0 1 1 0

ML 3 2 2 0 3
Hill 10 0 0 0 0

Taboo 9 0 1 0 0
Seq 7 3 0 0 0
Hill 10 0 0 0 0

Taboo 10 0 0 0 0
MB 14 1 2 1 3 3
MB 16 3 3 1 2 1
MB 18 5 2 0 3 0

Mildew network results

Method Best > .9 > .5 > .01 ≤ .01
MPE 6 1 3 0 0

Hill 10 0 0 0 0
Taboo 10 0 0 0 0

ML 8 1 1 0 0
Hill 10 0 0 0 0

Taboo 10 0 0 0 0
Seq 9 1 0 0 0
Hill 10 0 0 0 0

Taboo 10 0 0 0 0
MB 14 4 1 0 1 4
MB 16 4 0 0 1 5
MB 18 7 0 1 0 2

Munin2 network results

Method Best > .9 > .5 > .01 ≤ .01
MPE 6 0 4 0 0

Hill 10 0 0 0 0
Taboo 10 0 0 0 0

ML 10 0 0 0 0
Hill 10 0 0 0 0

Taboo 10 0 0 0 0
Seq 10 0 0 0 0
Hill 10 0 0 0 0

Taboo 10 0 0 0 0
MB 14 4 0 1 2 3
MB 16 5 0 1 2 2
MB 18 7 0 0 1 2

Munin3 network results

Method Best > .9 > .5 > .01 ≤ .01
MPE 9 0 0 1 0

Hill 10 0 0 0 0
Taboo 10 0 0 0 0

ML 10 0 0 0 0
Hill 10 0 0 0 0

Taboo 10 0 0 0 0
Seq 10 0 0 0 0
Hill 10 0 0 0 0

Taboo 10 0 0 0 0
MB 14 4 0 2 0 4
MB 16 6 0 1 0 3
MB 18 2 0 1 0 7

Pigs network results

Method Best > .9 > .5 > .01 ≤ .01
MPE 0 0 0 0 10

Hill 0 0 0 0 10
Taboo 0 0 2 3 5

ML 5 1 3 1 0
Hill 9 0 1 0 0

Taboo 9 0 1 0 0
Seq 8 0 2 0 0
Hill 8 0 2 0 0

Taboo 8 0 2 0 0
MB 14 3 0 3 4 0
MB 16 1 1 4 3 1
MB 18 6 0 2 2 0

Water network results

Method Best > .9 > .5 > .01 ≤ .01
MPE 9 0 1 0 0

Hill 10 0 0 0 0
Taboo 10 0 0 0 0

ML 8 1 1 0 0
Hill 10 0 0 0 0

Taboo 10 0 0 0 0
Seq 10 0 0 0 0
Hill 10 0 0 0 0

Taboo 10 0 0 0 0
MB 14 6 1 2 0 1
MB 16 6 1 2 1 0
MB 18 9 0 0 1 0

Table 5: Detailed performance measures on the real world networks. Each column contains
the number of times out of 10 that each algorithm was able to achieve the given
performance relative to the best solution found.
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4. Approximating MAP when Inference is Hard

The techniques developed thus far depend on the ability to perform exact inference. For
many networks, even inference is intractable. In these cases, approximate inference can be
substituted in order to produce MAP approximations.

We investigate using belief propagation as the approximate inference scheme, and local
search for the optimization scheme. Iterative belief propagation is a useful approximate
inference algorithm for approximating MAP for a number of reasons and has proven to be
a very effective and efficient approximation method for a variety of domains. It has the
ability to approximate MPE, posterior marginals, and probability of evidence, allowing for
the same initialization schemes as we used for exact inference. Additionally, as we will
show in section 4.2, after a single inference call, the scores of neighbors in the search space
can be computed locally, allowing us to obtain the same linear speed up that we obtained
using a similar approach in the exact inference case. Thus belief propagation allows all
of the techniques for approximating MAP for inference tractable networks to be applied
approximately when inference is not tractable.

4.1 Belief Propagation Review

Belief propagation was introduced as an exact inference method on polytrees (Pearl, 1988).
It is a message passing algorithm in which each node in the network sends a message to its
neighbors. These messages, along with the CPTs and the evidence can be used to compute
posterior marginals for all of the variables. In networks with loops, belief propagation is no
longer guaranteed to be exact, and successive iterations generally produce different results,
so belief propagation is typically run until the message values converge. This has been
shown to provide very good approximations for a variety of networks (McEliece, Rodemich,
& Cheng, 1995; Murphy, Weiss, & Jordan, 1999), and has recently received a theoretical
explanation (Yedidia, Freeman, & Weiss, 2000).

Belief propagation works as follows. Each node X, has an evidence indicator λX where
evidence can be entered. If the evidence sets X = x, then λX(x) = 1, and is 0 otherwise. If
no evidence is set for X, then λX(x) = 1 for all x. After evidence is entered, each node X
sends a message to each of its neighbors. The message a node X with parents U sends to
child Y is computed as

MXY = α
∑

U

λX Pr(X|U)
∏

Z 6=Y

MZX

where Z ranges over the neighbors of X and α is a normalizing constant.10 Similarly, the
message X sends to a parent U is

MXU = α
∑

XU−{U}

λX Pr(X|U)
∏

Z 6=U

MZX .

10. We use potential notation more common to join trees than the standard descriptions of belief propagation
because we believe the many indices required in standard presentations mask the simplicity of the
algorithm.
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Figure 7: A scatter plot of the exact versus approximate retracted values of 30 variables
of the Barley network. The x-axis is the true probability, and the y-axis the
approximate probability.

Message passing continues until the message values converge. The posterior of X is then
approximated as

Pr′(X|e) = α
∑

U

λX Pr(X|U)
∏

Z

MZX .

The messages are all initialized to 1. There are two main schemes for ordering the
messages. In the first scheme, all of the messages are computed simultaneously, based on
the previous set of messages. In the other scheme, messages are updated incrementally, and
in two phases, consistent with some ordering of the variables. In the first phase, in reverse
order, each variable sends a message to its neighbors that precede it in the order. In the
second phase, in order, each variable sends a message to its neighbors that come after it in
the order. We implemented the second scheme since empirically it seems to converge faster
than the first scheme (Murphy et al., 1999).

4.2 Approximating Neighbors’ Scores

Belief propagation allows us to approximate the scores of neighbors in the local search space
efficiently, similar to what we have done in the case of exact inference. The key as we shall
show next is to be able to compute the quantity Pr(x|e−X) for each variable X efficiently,
as we can use this quantity to rank the neighbors according to the desired score.

Specifically, in polytrees, the incoming messages are independent of the value of the
local CPT or any evidence entered. Hence, leaving the evidence out of the product yields

Pr(X|e − X) = α
∑

U

Pr(X|U)
∏

Z

MZX .

Therefore, we can compute the above quantity for each variable after a single belief prop-
agation. In networks that are not polytrees, the incoming messages are not necessarily
independent of the evidence or the local CPT, but as is done with other BP methods, we
ignore that and hope that it is nearly independent. Empirically, the approximation seems to
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be quite accurate. Figure 7 shows a representative example, comparing the correspondence
between the approximate and exact retracted probabilities for 30 variables in the Barley
network. The x axis corresponds to the true retracted probability, and the y axis to the
approximation produced using belief propagation.

Still, Pr(x|e−X) is not quite what we want to score neighbors in the local search space.
But this quantity can be used to compute the ratio of the neighboring score to the current
score which allows such comparisons. Specifically, simple algebra shows that:

Pr(x, s − X, e)

Pr(s, e)
=

Pr(x|s − X, e)

Pr(xs|s − X, e)

where xs is the value that X takes on in the current instantiation s. Thus, we can find the
neighbor with the best score after a single belief propagation.

4.3 Experimental Results

For the first experiment, we consider the improvement possible over what is typically done
(MPE or ML) using it as a starting point and hill climbing from there. For the first
experiment, we generated 100 synthetic networks with 100 variables each using the first
method described in Appendix B with bias parameter 0.25 and width parameter of 13. We
generated the networks to be small enough that we could often compute the exact MAP
value, but large enough to make the problem challenging. We chose the MAP variables as the
roots (typically between 20 and 25 variables), and the evidence values were chosen randomly
from 10 of the leaves. We computed the true MAP for the ones which memory constraints
(512 MB of RAM) allowed. We computed the true probability of the instantiations produced
by the two standard methods. For both initialization methods we also computed the true
probability of the instantiations returned by pure hill climbing11 (i.e. only greedy steps
were taken), and stochastic hill climbing with 100 steps, where random moves were taken
with probability pf = .3. Of the 100 networks, we were able to compute the exact MAP in
59 of them. Table 6 shows the number exactly solved for each method, as well as the worst
instantiation produced, measured as the ratio of the probabilities of the found instantiation
to the true MAP instantiation. All of the hill climbing methods improved significantly over
their initializations in general, although for 2 of the networks, the hill climbing versions
were slightly worse than the initial value (the worst was a ratio of .835), because of a slight
mismatch in the true vs. approximate probabilities. Over all, the stochastic hill climbing
routines outperformed the other methods.

In the second experiment, we generated 25 random MAP problems for the Barley net-
work, each with 25 randomly chosen MAP variables, and 10 randomly chosen evidence
assignments. We use the same parameters as in the previous experiment. The problems
were too hard to compute the exact MAP, so we report only on the relative improvements
over the initialization methods. Table 7 summarizes the results. Again, the stochastic
hill climbing methods were able to significantly improve the quality of the instantiations
created.

11. We compare pure and stochastic hill climbing to evaluate what can be gained by stochastic methods.
The initial hill climb usually requires very few evaluations, so if stochastic methods make little difference,
efficiency considerations would dictate that pure hill climbing be used.
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# solved exactly worst
MPE 9 .015
MPE-Hill 41 .06
MPE-SHill 43 .21
ML 31 .34
ML-Hill 38 .46
ML-SHill 42 .72

Table 6: Solution quality for the random networks. Shows the number solved exactly of
the 59 for which we could compute the true MAP value. Worst is the ratio of the
probabilities of the found instantiation to the true MAP instantiation. Each hill
climbing method improved significantly over the initializations.

min median mean max
MPE-Hill 1.0 8.4 1.3x1011 3.1x1012

MPE-SHill 1.0 8.4 1.3x1011 3.1x1012

ML-Hill 1.0x104 3.6x107 3.4x1015 8.4x1016

ML-SHill 7.7x103 3.6x107 3.4x1015 8.4x1016

Table 7: The statistics on the improvement over just the initialization method for each
search method on the data set generated from the Barley network. Improvement is
measured as the ratio of the found probability to the probability of the initialization
instantiation.

In the third experiment, we performed the same type of experiment on the Pigs network.
None of the search methods were able to improve on ML initialization. We concluded that
the problem was too easy. Pigs has over 400 variables, and it seemed that the evidence didn’t
force enough dependence among the variables. We ran another experiment with Pigs, this
time using 200 MAP variables and 20 evidence values to make it more difficult. Table 8
summarizes the results. Again, the stochastic methods were able to improve significantly
over the initialization methods.

min median mean max
MPE-Hill 1.0 1.7x105 1.5x107 3.3x108

MPE-SHill 1.0 2.5x105 4.5x1011 1.1x1013

ML-Hill 13.0 2.0x103 3.3x105 4.5x106

ML-SHill 13.0 1.2x104 8.2x105 8.2x106

Table 8: The statistics on the improvement over just the initialization method alone for each
search method on the data set generated from the Pigs network. Improvement is
measured as the ratio of the found probability to the initialization probability.
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MPE ML Seq MB

I H T I H T I H T 14 16 18

Barley 2 6 7 2 7 7 7 9 9 1 3 5

Mildew 5 1 10 5 0 10 9 0 10 4 4 7

Munin2 5 0 9 5 0 9 10 0 10 4 5 7

Munin3 8 0 1 8 0 1 10 0 1 4 6 2

Pigs 0 0 1 0 0 1 8 0 8 3 1 6

Water 9 0 0 9 0 0 10 0 0 6 6 9

Table 9: Number of times out of ten that each algorithm found the instantiation that yielded
the highest score. The I, H and T entries stand for initial, hill climbing, and taboo
respectively. MB stands for mini–buckets, and 14, 16, and 18 are the width bounds.

We also ran these algorithms on the same queries on the real world networks that were
used in Section 3.4 to be able to compare performance between the methods. Table 9
shows how they performed and compares their performance to the mini–bucket algorithms.
Table 10 gives a more detailed exposition of their performance. There are a couple of
interesting items about this data set. One is the surprising performance of simple sequential
initialization. Over all, it performed the best of the approximate algorithms. Another
interesting thing to note is that hill climbing often negatively impacted performance. This
suggests that marginal computations are often more accurate than probability of evidence
computations. This problem is especially acute in networks with significant determinism.
While belief propagation believes a configuration has significant probability, it may actually
have 0 probability because one of its constraints is violated. These experiments suggest
that it is possible to improve on the standard approaches used when inference is intractable
(approximating MPE, or ML or using a mini–bucket scheme) by using belief propagation
to estimate the joint, and successively moving to states with higher approximate scores.

5. Conclusion

MAP is a computationally very hard problem which is not in general amenable to exact
solution even for very restricted classes (ex. polytrees). Even approximation is difficult.
Still, we can produce approximations that are much better than those currently used by
practitioners (MPE, ML) through using approximate optimization and inference methods.
We showed one method based on belief propagation and stochastic hill climbing that pro-
duced significant improvements over those methods, extending the realm for which MAP
can be approximated to networks that work well with belief propagation.
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Barley network results

Method Best > .9 > .5 > .01 ≤ .01
MPE 2 3 1 3 1

Hill 6 1 1 2 0
Taboo 7 0 1 2 0

ML 2 3 1 3 1
Hill 7 1 1 1 0

Taboo 7 0 1 2 0
SEQ 7 1 1 1 0
Hill 9 0 1 0 0

Taboo 9 0 1 0 0
MB 14 1 2 1 3 3
MB 16 3 3 1 2 1
MB 18 5 2 0 3 0

Mildew network results

Method Best > .9 > .5 > .01 ≤ .01
MPE 5 2 3 0 0

Hill 1 0 0 0 9
Taboo 10 0 0 0 0

ML 5 2 3 0 0
Hill 0 0 0 0 10

Taboo 10 0 0 0 0
Seq 9 1 0 0 0
Hill 0 0 0 0 10

Taboo 10 0 0 0 0
MB 14 4 1 0 1 4
MB 16 4 0 0 1 5
MB 18 7 0 1 0 2

Munin2 network results

Method Best > .9 > .5 > .01 ≤ .01
MPE 5 0 3 1 1

Hill 0 0 0 0 10
Taboo 9 0 0 0 1

ML 5 0 3 1 1
Hill 0 0 0 0 10

Taboo 9 0 0 0 1
Seq 10 0 0 0 0
Hill 0 0 0 0 10

Taboo 10 0 0 0 0
MB 14 4 0 1 2 3
MB 16 5 0 1 2 2
MB 18 7 0 0 1 2

Munin3 network results

Method Best > .9 > .5 > .01 ≤ .01
MPE 8 0 0 1 1

Hill 0 0 0 0 10
Taboo 1 0 0 0 9

ML 8 0 0 1 1
Hill 0 0 0 0 10

Taboo 1 0 0 0 9
Seq 10 0 0 0 0
Hill 0 0 0 0 10

Taboo 1 0 0 0 9
MB 14 4 0 2 0 4
MB 16 6 0 1 0 3
MB 18 2 0 1 0 7

Pigs network results

Method Best > .9 > .5 > .01 ≤ .01
MPE 0 0 0 0 10

Hill 0 0 0 0 10
Taboo 1 0 0 4 5

ML 0 0 0 0 10
Hill 0 0 0 0 10

Taboo 1 0 0 4 5
Seq 8 0 2 0 0
Hill 0 0 0 0 10

Taboo 8 0 2 0 0
MB 14 3 0 3 4 0
MB 16 1 1 4 3 1
MB 18 6 0 2 2 0

Water network results

Method Best > .9 > .5 > .01 ≤ .01
MPE 9 0 1 0 0

Hill 0 0 0 0 10
Taboo 0 0 0 0 10

ML 9 0 1 0 0
Hill 0 0 0 0 10

Taboo 0 0 0 0 10
Seq 10 0 0 0 0
Hill 0 0 0 0 10

Taboo 0 0 0 0 10
MB 14 6 1 2 0 1
MB 16 6 1 2 1 0
MB 18 9 0 0 1 0

Table 10: Detailed performance measures on the real world networks using Belief propaga-
tion approximation methods. Each column contains the number of times out of
10 that each algorithm was able to achieve the given performance relative to the
best solution found.
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X1 X2 X3∧∧∨∨

W11 W1r
… W21 W2r

…

W1 Wr
…

Figure 8: The network produced using the construction in the proof of Theorem 2 for the
formula (x1 ∧ x2) ∨ x3.

Appendix A. Proofs of Theorems

Proof of Theorem 2

We want to show that MAP remains NPPP-complete even when restricted to networks of
depth 2, with no evidence, only binary variables, and parameters that are arbitrarily close
to 1/2. Membership in NPPP was established in Theorem 1. We show hardness by providing
a reduction from E-MAJSAT.

The flow of the proof is as follows. First, we construct a depth 2 Bayesian network
from the E-MAJSAT problem. Then, we show that by asserting some evidence, we can
overcome the constraint that all of the parameters lie within [1/2 − ε, 1/2 + ε], and use
MAP to obtain the E-MAJSAT solution. Finally, we show that by including the evidence
variables as MAP variables instead, no evidence is needed.

The network is constructed as follows. Each logical variable xi induces a network variable
Xi with uniform prior. Each operand yi induces a network variable Yi with a uniform prior.
Notice that they are not connected, so unlike the reduction in Theorem 1, the CPT entries
do not enforce that an operator variable take on a value that is consistent its operands with
respect to the to the logic of the formula. For example, the network will assign positive
probability to an “and” node being true, and both of its operand variables being false. We
say that a variable Yi is consistent with the variables Pi associated with its operands, if the
logical function of operator yi yields the value of Yi on input pi. Consistency, instead of
being enforced rigidly, is weighted by introducing r weight variables Wi1...Wir (the actual
value of r will be discussed subsequently) associated with each Yi. The parents of Wij are
the operator variable Yi and the variables corresponding to its operands. The CPT of Wij

is defined as

Pr(Wij = T |Yi,Pi) =

{

1
2 + ε Yi is consistent with Pi
1
2 otherwise

where Pi are the variables associated with the operands of yi. Finally, as children of Ym

(which corresponds to the top level operator) we add r additional binary variables W1...Wr,
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where

Pr(Wj = T |Ym) =

{

1
2 + ε if Ym = T
1
2 otherwise

for the purpose of weighting states in which the formula is satisfied. See Figure 8 for an
example network construction.

Now, consider the probability of a complete instantiation of the variables, where all
of the weight variables (which includes both the consistency weighting variables Wij, and
satisfiability weighting variables Wi) are set to true, which we denote as W = T.

Pr(x,y,W = T) =

(

1

2

)m+n (1

2
+ ε

)kr (1

2

)(m−k)r (1

2
+ ε

)sr (1

2

)(1−s)r

where x is an instantiation of X1...Xn, y is an instantiation of Y1...Ym, k is the number
of operator variables that are consistent with their operands variables and s=1 if Ym = T ,
0 otherwise. For a consistent satisfying assignment xy,

Pr(x,y,W = T) =

(

1

2

)m+n (1

2
+ ε

)(m+1)r

while for an inconsistent, or unsatisfying assignment xy,

Pr(x,y,W = T) ≤

(

1

2

)m+n+r

(
1

2
+ ε)mr.

We want to choose r such that the probability of a single consistent satisfying instance is
greater than twice the sum of all of the probabilities of inconsistent or unsatisfying instances.
The number of inconsistent or unsatisfying instances is bounded by 2n+m, so we want an r
where

(

1

2

)m+n (1

2
+ ε

)(m+1)r

> 2n+m+1
(

1

2

)m+n+r

(
1

2
+ ε)mr.

Solving for r yields

r >
(m + n + 1)

1 + log2

(

1
2 + ε

)

which is linear in the size of the formula, so the size of the reduction remains polynomially
bounded.

Let C = Pr(x,y,W = T) =
(

1
2

)m+n (
1
2 + ε

)(m+1)r
where xy is a consistent satisfying

instance. Then, for a particular instantiation q of X1...Xk,

Pr(q,W = T) =
∑

xk+1,...,xn,y1,...,ym

Pr(q, xk+1, ...xn, y1, ...ym,W = T)

= #qC +
∑

xy

Pr(xy,W = T)

where #q is the number of complete variable instantiations compatible with q that satis-
fies φ and xy ranges over the inconsistent and unsatisfying assignments compatible with
x1...xk. Since for any instantiation of x there is only one compatible instantiation, #q
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Figure 9: The network used in the reduction of Theorem 8.

also corresponds to the number of satisfiable instantiations of φ consistent with q. The
choice of r ensures that the sum of the unsatisfying or inconsistent instantiations is less
than C/2, and is always greater than 0 assuming there is at least one operator (since
there is some instantiation where the operator and its operands are not consistent). Thus
#qC < Pr(q,W = T) < (#q +1/2)C. There are 2n−k possible instantiations of Xk+1...Xn,
so if half or less are satisfied then Pr(q,W = T ) < (2n−k−1 +1/2)C, while if more than half
are satisfied then Pr(q,W = T ) > (2n−k−1 + 1)C. Thus the D-MAP query, using MAP
variables X1...Xk, evidence W = T, and threshold (2n−k−1 + 1)C is true if and only if the
E-MAJSAT query is also true.

Now, notice that in every table that contains a weight variable, the value of the config-
uration where it takes on true is greater or equal to the value when it takes on false. Thus
Pr(q,W = T) ≥ Pr(q,W = w), for all q and w. It then follows that MAP(X1...Xk,W =
T)=MAP(X1...XkW, ∅). Therefore, the D-MAP query, using MAP variables X1...Xk,W
and no evidence, with threshold (2n−k−1 +1)C is true if and only if the E-MAJSAT query
is also true. 2

Proof of Theorem 8

As part of the proof of the theorem, we will use the following lemma.

Lemma 9 For all x ≥ 1, 4x + 1
2 > 1

ln(1+ 1

4x
)
.

Proof: First, we show that f(x) = ln(1+ 1
4x)− 1

4x+ 1

2

is monotonically decreasing for x ≥ 1.

df

dx
=

−1

4x2 + x
+

4

(4x + 1
2)2
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=
16x2 + 4x − (4x + 1

2)2

(4x + 1
2)2(4x2 + x)

=
−1

4(4x + 1
2 )2(4x2 + x)

which is always negative for x ≥ 1, and hence f(x) is monotonically decreasing.
Now, since f(x) is monotonically decreasing, and lim

x→∞
f(x) = 0, f(x) must be strictly

positive. Thus, for all x ≥ 1, ln(1 + 1
4x) > 1

4x+ 1

2

which implies 4x + 1
2 > 1

ln(1+ 1

4x
)
. 2

The basic idea of the proof is to show by repeating the construction of Theorem 7 a
polynomial number of times, that if we can approximate MAP on polytrees within relative
error 2sizeε

for any ε ∈ [0, 1), where the size of the network is parameterized by the number
of conditional probability parameters, then we can solve SAT in polynomial time.

Given a SAT problem instance with n variables, and m clauses, we create a Bayesian
network by replicating the construction from Theorem 7 q times, and connecting them to
form a polytree. Specifically, to each copy i of the construction, we add a variable B i (we
use superscripts to denote variables associated with a particular copy of the construction),
with parents Si

n, and if i > 1, parent Bi−1 (see Figure 9). The conditional probability of

Bi is uniform for all parent instantiations. We choose q to satisfy (1 + 1
4m )q > 2size

ε

. We
now show that q can be chosen so that the network size remains polynomial in the size of
the logical formula. The resulting network has q(2n + 2) variables, and each conditional
probability table has at most 2(m + 1)2 parameters, so the total size of the reduction is
bounded by q(m + 1)2(4n + 4). Replacing size with the size bound places the constraint

(

1 +
1

4m

)q

> 2(q(m+1)2(4n+4))
ε

on q. Since 0 ≤ ε < 1, solving for q yields
(

1 +
1

4m

)q

> 2(q(m+1)2(4n+4))
ε

q ln

(

1 +
1

4m

)

> qε(m + 1)2ε(4n + 4)ε ln 2

q1−ε >
(m + 1)2ε(4n + 4)ε ln 2

ln
(

1 + 1
4m

)

q >





(m + 1)2ε(4n + 4)ε ln 2

ln
(

1 + 1
4m

)





1

1−ε

Now, from Lemma 9, 4m + 1/2 > 1/ ln(1 + 1/4m), so substitution yields a stronger bound,

q >

((

4m +
1

4

)

(m + 1)2ε(4n + 4)ε ln 2

) 1

1−ε

which is polynomially bounded. Thus the network can be constructed in time polynomial
in the size of the formula.
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Then, for a particular instantiation x of all X variables X 1
1 ...Xq

n, and evidence s asserting
Si

n = 0 for each i, the probability is

Pr(x, s) =
∏

i

Pr(xi, Si
n = 0)

=
∏

i

# clauses satisfied by xi

m2n

because each subnetwork is independent. Thus the solution M to MAP over X 1
1 ...Xq

n with

evidence S1
n = .... = Sq

n = 0 is
(

k
m2n

)q
where k is the maximum number of clauses that can

be simultaneously satisfied in the original SAT problem. If the problem is satisfiable then
k = m, and so the approximate solution M ′ obeys

M ′ ≥
M

2size
ε >

(

4m

4m + 1

)q ( m

m2n

)q

>

(

m − 1
4

m

)q (
1

2n

)q

=

(

m − 1
4

m2n

)q

On the other hand, if it isn’t satisfiable, then k ≤ m − 1, so

M ′ ≤ 2size
ε

M <

(

4m + 1

4m

)q (m − 1

m2n

)q

=

(

(4m + 1)(m − 1)

4m

)q ( 1

m2n

)q

<

(

m − 3
4

m2n

)q

The upper bound of M ′ if the SAT problem is unsatisfiable is bounded below the lower
bound of M ′ if it is satisfiable. Because the network construction and the bound tests can
be accomplished in polynomial time, if the MAP problem itself can be approximated within
a factor of 2sizeε

in polynomial time then SAT can be decided in polynomial time.

Appendix B. Generating Random Networks

We generated several types of networks to perform our experiments. We used two methods
for generating the structure, and a single parametric method for generating the quantifica-
tion.

B.1 Generating the Network Structure

The first method is parameterized by the number of variables N and the connectivity c.
This method tends to produce structures with widths that are close to c. Darwiche (2001)
provides an algorithmic description.

The second method is parameterized by the number of variables N , and the probability
p of an edge being present. We generate an ordered list of N variables, and add an edge
between variables X and Y with probability p. The edges added are directed toward the
variable that appears later in the order.

B.2 Quantifying the Dependencies

The quantification method is parameterized by a bias parameter b. The values of the CPTs
for the roots were chosen uniformly. The values for the rest of the nodes were based on a
bias, where one of the values v was chosen uniformly in [0, b), and the other as 1 − v. For
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example, for b = .1, each non root variable given its parents has one value in [0, .1), and
the other in (.9, 1]. Special cases b = 0, and b = .5 produce deterministic, and uniformly
random quantifications respectively.
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