
ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 1, 2003, PP 19-36 19

Complexity Results for Agent Design
Problems

Paul E. Dunne Michael Laurence Michael Wooldridge
Department of Computer Science

University of Liverpool
Liverpool L69 7ZF, UK

{ped,mikel,mjw }@csc.liv.ac.uk

Abstract— The Agent Design problem involves deter-
mining whether or not it is possible to construct an agent
capable of accomplishing a given task in a given environ-
ment. The simplest examples of such tasks are where an
agent is required to bring about some goal (achievement
tasks) or where an agent is required to maintain some
invariant condition (maintenance tasks). Previous work
has considered the complexity of achievement and mainte-
nance agent design problems for a range of environmental
properties. In this paper, we investigate the computational
complexity of the agent design problem in three further
settings. First, we investigate the issue of tasks that are
specified as Boolean combinationsof achievement and
maintenance tasks. Second, we investigate the extent to
which an agent’s information about the history of the
environment in which it operates affects the complexity of
the problem: in the bounded agent design problem, an agent
is constrained to have a0, 1, or k > 1 bound on what it is
permitted to “remember” about the history of the system.
Finally, we investigate the complexity ofstochasticagent
design problems, where we ask whether there is an agent
that has a probability of success at leastp.

Index Terms— multiagent systems, computational com-
plexity.

I. I NTRODUCTION

I N this paper, we are concerned with the computa-
tional complexity of one particular issue that arises

in agent-based systems [15]: theagent design problem.
This problem can be informally understood as follows:

Given (representations of) an environment and
a task to be carried out, does there exist an
agent that can be guaranteed to carry out the
task in the environment?

Although related to Markov decision problems and
problems inAI planning, agent design is in fact quite
distinct, being more akin to a game against nature,
in which both nature and agent are assumed to be
computational entities; we comment on the relationships
to other work in sectionVI .

Wooldridge and Dunne investigated the computa-
tional complexity of the agent design problem in a
range of different settings, and for a range of different
types of tasks [14], [16]–[18]. The two most important
types of tasks they considered wereachievement tasks
(where an agent is required to bring about some goal
state), andmaintenance tasks(where an agent is re-
quired to maintain some invariant in an environment).
The complexity of these problems was shown to vary
from NL-complete (and hence tractable) in the simplest
case, to non-recursive (and hence undecidable) in the
worst, depending upon the assumptions made about the
environment. The main issues investigated to date relate
to whether or not the environment is:

• deterministicor non-deterministic(i.e., whether or
not the next state of the environment is uniquely
determined, or whether multiple successors are
possible);

• history dependentor history independent(i.e.,
whether or not the environment is allowed to
observe the entire history of the environment in
order to “choose” possible successors, or whether
just the final state in the history is available); and

• unbounded, bounded, or polynomially bounded
(i.e., whether any given “run” of an agent is
guaranteed to terminate, and, if so, whether it will
be guaranteed to terminate after only polynomially
many actions).

Intuitively, non-deterministic environments are “harder”
than deterministic environments, history dependent en-
vironments are harder than history independent envi-
ronments, while unbounded environments are harder
than bounded environments, which are in turn harder
than polynomially bounded environments. The com-
plexity results obtained previously bear out these in-
tuitions fairly accurately. At worst, the agent design
problem was shown to be undecidable – perhaps not
surprisingly, the extent to which an environment was

ISSN 1109-9305c© 2003 AMCT/TEI Larissa

20 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 1, 2003, PP 19-36

bounded was the major factor in determining unde-
cidability. Under “reasonable” assumptions, (a non-
deterministic, polynomially-bounded, history depen-
dent environment) the agent design problem for both
achievement and maintenance tasks was shown to be
PSPACE-complete [14]. The easiest case considered
was for deterministic, history dependent, polynomially-
bounded environments, for which the achievement and
maintenance design problems were shown to be decid-
able in polynomial-time.

In this paper we extend these previous studies in three
ways:
• First, we consider richer task specifications. The

idea is to specify tasks asarbitrary Boolean com-
binations of achievement and maintenance tasks.
In such settings, a task is specified as a formula
of propositional logic: atomic propositions denote
sets of environment states, positive literals are in-
terpreted as achievement tasks (“bring about one of
these states”), and negative literals are interpreted
as maintenance tasks (“avoid all these states”).
Thus, for example,p∨q̄ is a task in which an agent
must either bring about one of the states denoted
by p, or elseavoid all the states denoted byq.

• Second, we consider restrictions on the “power”
of agents. That is, we ask whether there exist
“weak”, or boundedagents to accomplish a given
task (cf. [12]). The specific notion of boundedness
that we consider involves whether or not there exist
agents capable of successfully accomplishing the
task with givenmemory bounds, i.e., bounds on
the length of history they are permitted to recall
in order to make their decision. As an extremal
case, we consider agents that are not permitted to
observe the history at all, and are thus required to
make a decision with no knowledge of the way in
which the system has evolved.

• Third, we consider variants of thestochasticagent
design problem. Previous work only considered
agents that were eitherguaranteedto succeed with
the task, orhad at least some chanceof success. In
a stochastic agent design problem, we are given a
rational probabilityp, and are asked whether there
is an agent that succeeds with at least probability
p.

We begin by introducing the formal model of agents,
environments, and tasks upon which our results are
established. We then summarize the results of [14],
[16], [17], and examine the computational complexity
of the agent design problem when Boolean task spec-
ifications are permitted. We consider bounded agent
design problems in sectionIV, and in sectionV, we
turn our attention to stochastic agent design problems.
In Appendix , we provide a summary of the problems

studied and the results obtained.
Throughout the paper, we assume familiarity with the

theory of computational complexity [5], [8], [11].

II. A GENTS, ENVIRONMENTS, AND TASKS

In this section, we present an abstract formal model of
agents and the environments they occupy; we then use
this model to frame the decision problems we study. The
systems of interest to us consist of an agent situated in
some particular environment; the agent interacts with
the environment by performing actions upon it, and the
environment responds to these actions with changes in
state. It is assumed that the environment may be in any
of a finite setE = {e0, e1, . . . , en} of instantaneous
states. Agents are assumed to have a repertoire of possi-
ble actions available to them, which transform the state
of the environment. LetAc = {α0, α1, . . . , αk} be the
(finite) set of actions. The behaviour of an environment
is defined by astate transformer function, τ . In our case
τ is not simply a function from environment states and
actions to sets of environment states, but fromrunsand
actions to sets of environment states. This allows for
the behaviour of the environment to be dependent on
the history of the system – the previous states of the
environment and previous actions of the agent can play
a part in determining how the environment behaves.

Definition 1: An environmentis a quadrupleEnv =
〈E, e0, Ac, τ〉, where E is a finite set ofenvironment
stateswith e0 distinguished as theinitial state; andAc
is a finite set ofavailable actions. Let SEnv denote all
sequences of the form:

e0 · α0 · e1 · α1 · e2 · · ·
where e0 is the initial state, and for eachi, ei ∈ E,
αi ∈ Ac.

Let SE be the subset of such sequences that end
with a state. Thestate transformer functionτ of the
environment is a total mapping

τ : SE × Ac→ ℘(E)

We focus on the the set ofruns in the environment.
This is the setREnv = ∪∞k=0R(k), where

R(0) = {e0} and

R(k+1) =
⋃

r∈R(k)

⋃

{α∈Ac|τ(r,α) 6=∅}
{r · α · e | e∈ τ(r, α)}

An environment isboundedif R(k) = ∅ for some k
and unboundedotherwise. We denote byRAc the set
{r · α | r ∈ REnv} so that we subsequently interpretτ
as a total mapping,τ : RAc → ℘(E), i.e., as describing
the (possibly empty) set of states which may result by
performing the actionα ∈ Ac after a runr ∈ REnv.

P. E. DUNNE, M. LAURENCE AND M. WOOLDRIDGE “COMPLEXITY RESULTS FOR AGENT DESIGN PROBLEMS” 21

A run, r, has terminatedif ∀α ∈ Ac, τ(r · α) = ∅.
The subset ofREnv comprising all terminated runs is
denotedTEnv. In bounded environments, every run is a
prefix of some (set of) terminated runs.

The length of a run, r ∈ REnv is the total number of
actions and states occurring inr and is denoted by| r |.

Unless otherwise stated it is assumed that environ-
ments are bounded.

The state transformer function,τ , is encoded in
an input instance by a deterministic Turing machine
descriptionTτ with the following characteristics: the
input has the formr#e, wherer ∈ RAc, e ∈ E, and#
is a separator symbol. The programTτ acceptsr#e if
and only if e ∈ τ(r). The number of moves made by
Tτ is bounded by a polynomial,p(|r|). Using Tτ , the
set of statesτ(r) can be constructed in|E|p(|r|) steps.

We view agents as performing actions upon the
environment, thus causing the state of the environment
to change. In general, an agent will be attempting to
“control” the environment in some way, in order to carry
out some task. However, the agent has at best partial
control over the environment.

Definition 2: An agent, Ag, in an environmentEnv=
〈E, e0, Ac, τ〉 is a mapping

Ag : REnv→ Ac∪ {⊗}
The symbol⊗ is used to indicate that the agent has
finished its operation: an agent invokes this only on
terminated runs,r ∈ TEnv, an event that is referred to as
the agent havingno allowable actions. A system, Sys,
is a pair〈Env, Ag〉 comprising an environment and an
agent operating in that environment. A sequences ∈
REnv∪ RAc is called apossible run of the agent Ag in
the environment Envif

s = e0 · α0 · e1 · α1 · · ·
satisfies

1) e0 is the initial state ofE, andα0 = Ag(e0);
2) ∀k > 0,

ek ∈ τ(e0 · α0 · e1 · α1 · · ·αk−1) where
αk = Ag(e0 · α0 · e1 · α1 · · · ek)

It should be noted that, in general, the state
transformer functionτ (with domain RAc) is non-
deterministic, whereas agents aredeterministic.

An agent may have a number of different possible
runs in any given environment. We will denote by
R(Ag, Env) the set of possible runs of agentAg in
environmentEnv and byT(Ag, Env) the subset of these
that are terminated, i.e., belong toTEnv. An agent,Ag,
must define some allowable action inAc, for every run
in R(Ag, Env) \TEnv, i.e., agents may not choose to halt
arbitrarily.

We concentrate on the behaviour of agents which
have some bound placed on the number of actions
performed. More precisely, givent : N → N, the set
of t(n)-critical runs of an agentAg in the environment
Env is the setCt(n)(Ag, Env) defined by those runs of the
agent in which exactlyt(n) actions have been performed
or which have terminated after at mostt(n)−1 actions.
Unless otherwise stated the bounding functiont(n) = n
(with n = |E× Ac|) is used.

III. B OOLEAN TASK SPECIFICATIONS

We build agents in order to carry outtasks for us.
The task to be carried out must bespecifiedby us.
An obvious question is how to specify these tasks.
In this paper, we will be concerned withpredicate
task specifications. Such specifications take the form
of a predicate over runs, i.e., a condition that runs
either satisfy or fail to satisfy. We useΨ to denote
a predicate specification, and writeΨ(r) to indicate
that runr ∈ R satisfiesΨ. Intuitively, Ψ(r) means that
the task specified byΨ is successfully accomplished
on run r. We are concerned in this paper with the
representationof Ψ as a logical formula.

A task environmentis a pair〈Env, Ψ〉, whereEnv is
an environment, andΨ : R→ {0, 1} is a predicate over
runs. A task environment thus specifies the properties of
the system the agent will inhabit (i.e., the environment
Env), and also the criteria by which an agent will
be judged to have either failed or succeeded (i.e., the
specificationΨ).

One final consideration may, informally, be phrased
as “what limits (if any) do we wish to place on how
long an agent may take to succeed?” In this context we
consider two basic decision problem formulations:

a) Is there an agent thateventuallysucceeds in its
task?

b) Is there an agent the succeeds afterat mostsome
number of actions?

We now define our Boolean task specification language
and formulate the decision problems studied. LetXn =
{x1, . . . , xn} be a set ofn Boolean variables. A propo-
sitional formulaΨ(Xn) over Xn is inductively defined
by the following rules:

a) Ψ(Xn) consists of single literal (x or x̄ wherex ∈
Xn).

b) Ψ(Xn) = Φ1(Xn)θΦ2(Xn), whereθ ∈ {∨,∧} and
Φ1, Φ2 are propositional formulae.

Let |Ψ(Xn)| denote the total number of occurrences of
literals in Ψ, and fΨ the Boolean logic function (ofn
variables) represented byΨ. We say thatΨ(Xn) is non-
trivial if fΨ is not equivalent to a (Boolean) constant.

Definition 3: Let Env = 〈E, e0, Ac, τ〉 be an envi-
ronment with state setE and actionsAc. Let S =

22 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 1, 2003, PP 19-36

〈E1, E2, . . . , En〉 be an ordered collection ofpairwise
disjoint subsets ofE (note thatS doesnot have to be a
partition of E) andΨ(Xn) be a non-trivial formula.

If r ∈ REnv is a run, then the instantiation,β(r) =
〈b1, b2, . . . , bn〉 of Boolean values toXn induced by r
is defined by:

bi =
{

1 if r contains some statee∈ Ei

0 if r does not contain any statee∈ Ei .

A run, r, succeeds with respect toΨ if fΨ(β(r)) = 1.
A task specificationfor an agent in an environment,

〈E, e0, Ac, τ〉 consists of a pair〈S, Ψ〉 where S is an
ordered collection ofn pairwise disjoint subsets ofE
andΨ is a non-trivial formula ofn variables.

An agent,Ag, satisfies the task specification〈S, Ψ〉 if
and only if

∀r ∈ T(Ag, Env) fΨ(β(r)) = 1
Example 1:Consider the environment whose state

transformer function is illustrated by the graph in
Figure 1. In this environment, an agent has just four
available actions (α1 to α4 respectively), and the en-
vironment can be in any of six states (e0 to e5).
History dependence in this environment arises because
the agent is not allowed to execute the same action
twice. Arcs between states in Figure1 are labelled
with the actions that cause the state transitions – note
that the environment is non-deterministic. Suppose that
we allow three primitive proposition letters to be used:
p1, p2, p3, wherep1 corresponds to environment states
{e2}, p2 corresponds to{e3}, and p3 corresponds to
{e1}. Now consider the following task specifications:
• p1

This is an achievement task with goal states{e2}.
Sincep1 corresponds to{e2}, an agent can reliably
achievep1 by performingα1, the result of which
will be eithere1, e2, or e3. If e1 results, the agent
can performα0 to take it toe5 and thenα2 to take
it to e2. If e3 results, it can simply performα0.

• p̄1

This is essentially a maintenance task with bad
states{e2}. Since the agent must perform either
α0 or α1, no agent can guarantee to avoide2.

• p1 ∨ p2

Since there is an agent that can be guaranteed to
succeed with taskp1, there is also an agent that
can be guaranteed to succeed with taskp1 ∨ p2.

• p1 ∧ p2

This task involves achievingboth e2 ande3. There
is no agent that can be guaranteed to succeed with
this task.

• p1 ∧ (p2 ∨ p3)
This task involves achievinge2 and eithere3 or e1.
There exists an agent that can successfully achieve
this task.

• (p1 ∧ p̄2) ∨ (p2 ∧ p̄3)
This task involves either achievinge2 and note3 or
else achievinge3 and note1. Since there exists an
agent that can achievee2 and note3, there exists
an agent that can succeed with this task.

We consider two decision classes of agent design
problem: design tasks withimplicit specification and
design tasks withexplicit specification.

Definition 4: Let Ψ be a non-trivial propositional
formula of n variables. The decision problemfinite Ψ-
Design (Ψ-FD) takes as an instance: an environment
Env, andS, an ordered collection ofn pairwise-disjoint
subsets ofE. Ψ-FD(〈Env, S〉) returns “true” if and only
if

∃Ag ∀r ∈ C|E×Ac|(Ag, Env) fΨ(β(r)) = 1
It is important to note thatΨ is not part of the instance:
each specificΨ defines a design task for agents inEnv.
In contrast, we have the following decision problem.

Definition 5: The decision problemFinite Agent De-
sign with Explicit Task Specification(FED) takes as
an instance: anon-trivial propositional formulaΨ(Xn),
an environmentEnv, andS, an ordered collection ofn
pairwise-disjoint subsets ofE. FED(〈Ψ, Env, S〉) returns
“true” if and only if

∃Ag ∀r ∈ C|E×Ac|(Ag, Env) fΨ(β(r)) = 1.
We employ the following shorthand in order to

simplify subsequent notation. ForQ ∈ {Ψ-FD, FED}
and X ∈ {det, non-det} we denote byQX the decision
problem Q with τ having the propertyX when given
as an instance. For example,FEDdet denotes the de-
cision problemFinite Agent Design with Explicit Task
Specification for deterministicτ .

A. Computational Complexity Results

Wooldridge and Dunne [14], [16], [17] considered
the special casesΨ(x) = x and Ψ(x) = x̄. In [17]
the setting in which no restriction is placed on the
number of actions that a successful agent is allowed,
was also considered, i.e., the problemΨ(x)-Design
whose instances are pairs〈Env, S〉 with S a subset ofE
concerned with the question of whether an agent exists
that is guaranteed to reach at least one (respectively,
avoid all) of the states inS. Theorem 1 summarises the
results proved in [14], [16], [17] for these special cases.

Theorem 1:Let Ψ(x)-Design∞ (resp.,
Ψ(x)-Design<∞) denote the cases in which unbounded
environments may (resp., may not) occur as instances:

a) x-Design∞ is recursively enumerable but not re-
cursive.

b) x̄-Design∞ is not recursively enumerable.
c) Ψ(x)-Design<∞ is recursive.

P. E. DUNNE, M. LAURENCE AND M. WOOLDRIDGE “COMPLEXITY RESULTS FOR AGENT DESIGN PROBLEMS” 23

e0

e1

e2

e3

e4

e5

α2

α2

α0

α2

α4

α0

α0, α1

α0, α1

α1
α2

Fig. 1. The state transitions of an example environment: Arcs between environment states are labelled with the sets of actions corresponding
to transitions. Note that this environment ishistory dependent, because agents are not allowed to perform the same action twice. So, for
example, if the agent reached statee2 by performingα0 thenα2, it would not be able to performα2 again in order to reache3.

d) For any total recursive functiong : N → N
and any deterministic Turing machine programM
decidingΨ(x)-Design<∞: M exceedsg(n) moves
for infinitely many n, where n is the number of
bits encoding an instance.

For the case offinite design problems.

e) ∀X ∈ {det, non-det} x-FDX ≡log x̄-FDX.
f) Ψ(x)-FDnon-det is PSPACE-complete.
g) Ψ(x)-FDdet is NP-complete.

Finally, if τ is history independent, i.e., the next
environment state is dependent on the current state and
chosen action only (not on the sequence of states and
actions by which it was reached).

h) Ψ(x)-FDnon-det is NL-complete.
i) Ψ(x)-FDdet is P-complete.
Our principal concern in this section is to generalize

Theorem 1 to arbitraryn variable propositional func-
tions. To begin, we note the following generalisation
of Theorem 1 (a,b), in the case when the definition of
Ψ-Design is modified to apply in unbounded environ-
ments with no restriction on the number of actions an
agent can perform.

Theorem 2:Let Ψ-Design∞ denote the decision
problemΨ-Designwith instances ofunboundedenvi-
ronments allowed.

a) Ψ-Design∞ is recursive if and only ifΨ is trivial.
b) Ψ-Design∞ is recursively enumerable if and only

if fΨ is monotone.
We now show that the decision problemsΨ-FDX and
FEDX are polynomial-time equivalent to the decision
problemsx-FDX and x̄-FDX, irrespective of the specific
non-trivial Ψ concerned.

Theorem 3:∀X ∈ {det, non-det}, If Ψ is any non-
trivial formula,

Ψ-FDX ≡p x-FDX ; FEDX ≡p x-FDX

Proof: We omit the full technical details and
simply outline the construction establishingΨ-FDX ≤p

x-FDX, i.e., thatΨ-FDX is “no harder” thanx-FDX for

any non-trivialΨ. Given an instance〈Env, S〉 of Ψ-FDX,
form an instance〈EnvA, G〉 of x-FDX by adding a new
state{accept} and action{test}. The setG contains
the single state{accept}. We then modify the transition
function for the instance ofΨ-FDX so that if a runr has
fΨ(β(r)) = 1 then τA(r · test) = {accept}. In this way
any instance ofΨ-FDX would have true returned if and
only if the constructed instance also has true returned.

Corollary 1: For any non-trivial formulaΨ,

a) Ψ-FDnon-det is PSPACE-complete.
b) Ψ-FDdet is NP-complete.

Proof: Immediate from Theorem 1(f,g) and The-
orem 3.

Theorems 2 and 3 extend the results of Theorem
1 (a,b,f,g) as regards environments in which the state
transition function ishistory-dependent. For the remain-
der of this paper we deal with the remaining cases in-
volving history independentτ . In a history-independent
environment, the transition function,τ , acts upon the
current state and action to determine the next state of
the environment. In such environmentsτ presented as a
directed graph,H(V, A), whose vertices,V, are labelled
with environment states and in which there is an edge
labelledα ∈ Ac from ei to ej if ej ∈ τ(ei , α). In re-
taining the assumption that environments are bounded,
it follows that H(V, A) is anacyclic directed graph.

For the case of arbitrary non-trivial formulae,Ψ, we
have:

Theorem 4:If τ is history-independent, then:FEDdet

is NP-complete1.
Proof: We first show that any instance

〈Ψ(Xn), Env, S〉 of FEDdet having a history independent
transition function can be decided inNP. An NP al-
gorithm simply guesses which actionα ∈ Ac (if any)
to perform in each state. In the graphH(V, A) these

1To be strictly accurate, we define〈Ψn〉n≥1, a sequence of non-
trivial n-variable propositional formulaeΨn, such that the decision
problemFEDdet(Ψn, Env, Sn) is NP-complete.

24 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 1, 2003, PP 19-36

choices determine a single path (sinceτ is determinis-
tic). EvaluatingfΨ(Xn) for this path is easily done in
polynomially many steps in|Ψ|+ |Env|.

To show thatFEDdet for history independentτ is
NP-hard we use a reduction fromPaths with Forbidden
Pairs restricted to directed acyclic graphs –PFP-DAG.
An instance ofPFP-DAG consists of a directed acyclic
graph G(V, A), two specified verticess, t ∈ V, and a
collection

C = {〈a1, b1〉, 〈a2, b2〉, . . . , 〈an, bn〉}
of pairs of vertices inV. An instance is accepted if there
is a path froms to t in G(V, A) that containsat most
onevertex from each pair inC.

Given an instance〈G(V, A), s, t, C〉 of PFP-DAG we
construct, in time polynomial in|A|+ |C|, an instance

〈Ψ(Xn)G,C, Env, S〉
of FEDdet for which τ is history independent and there
is an agent satisfyingΨ(Xn) in Env if and only if there
is a path froms to t in G(V, A) that contains at most
one vertex from each pair inC.

We setEnv = 〈E, e0, Ac, τ〉 where E = V ∪ {et};
Ac = {α1, . . . , αd, αd+1}, whered is the maximum out-
degree ofG(V, A). For v with out-degreek in G(V, A)
and eachvi such that〈v, vi〉 is an edge ofG(V, A) we
set τ(v, αi) to be vi . An additional action influences
only the vertext: for this we have a single action,αd+1

entering the final stateet. Finally the initial state,e0 ∈ E
is set to the state corresponding to vertexs of G(V, A).
The graph,H(V∪{et}, A) defined is identical toG(V, A)
(with the addition of the〈t, et〉 edge), and has at most
one out-going edge from any vertex labelled with a
given action.

The formula Ψ constructed for the instance uses
| ∪n

i=1 {ai , bi}|+ 1 variables, wheren is the number of
pairs inC Let 〈An, Bn, z〉 denote the resulting variables
(where it may be the case that|An|, |Bn| < n or An∩Bn 6=
∅). With these,

Ψ(An, Bn, z) = z ∧
n∧

i=1

(āi ∨ b̄i)

The final stage of the construction is to define the set
of (at most)2n + 1 pairwise disjoint subsets ofE that
form S. Let m be the total number of distinct vertices
referred to inC (so thatΨ depends on exactlym+ 1
variables). Then:Si = {ai} (if i is odd and the vertexai

does not occur in any pairCj ∈ C with j < i); Si = {bi}
(if i is even and the vertexbi does not occur in any pair
Cj ∈ C with j < i); andSm+1 = {et}. The construction
ensures that any state (i.e., vertex) occurs in at most one
Si set.

We claim that an agent satisfying the specification
Ψ(Xm+1) in the environment just defined if and only

if there is a directed path froms to t containing at
most one vertex from each pair inC for the instance of
PFP-DAG.

Suppose such an agent exists. Its actions define a
directed path from the initial state (s) to some final
state. This path must contain the state corresponding
to et (since this is them + 1’st variable, z, used in
definingΨ). Consider the corresponding path froms in
G(V, A). This path must contain the vertext since the
stateet reached by the agent can only be accessed from
the state corresponding tot in the environment. Thus
the agent describes some path froms to t in G(V, A).
This path cannot contains both vertices from some pair
〈ai , bi〉: for if xi , xj were the propositional variables
associated with these, thenΨ(Xm+1) would be false
under the instantiation induced by the agent due to the
presence of a clause equivalent tox̄i ∨ x̄j . It follows that
from an agent satisfying the specification we can find a
path froms to t in G(V, A) meeting the forbidden pair
requirements.

On the other hand, supposeG(V, A) contains a path
from s to t containing at most one vertex from each
pair in C. From this path we can construct a sequence
of actions for each state, (the action corresponding to
the out-going edge from each vertex on the path). The
agent thereby defined reaches the statet and carrying
out the actionαd+1 completes the transition into the
required final stateet.

We now consider theΨ-FDnon-det problem for
history-independent environments. First, some technical
definitions are required.

Definition 6: Let E be a set, letS= 〈E1, . . . , En〉 be
an ordered collection of pairwise disjoint subsets ofE,
let e∈ E and letΨ be a Boolean formula over the set
{x1, . . . xn, x̄1, . . . , x̄n}. We define the Boolean formula
Ψ(S, e) as follows. ExpressΨ in DNF as

Ψ = Ψ1 ∨ . . . ∨Ψk,

where each Ψi is a conjunction of elements of
{x1, . . . xn, x̄1, . . . , x̄n}. We defineΨ(S, e) = Ψ′1 ∨ . . .∨
Ψ′k, where eachΨ′i is defined as follows. Ife ∈ El for
any literalx̄l occurring inΨi , then we defineΨ′i = false.
If not, and e ∈ Em for any literal xm occurring inΨi ,
thenΨ′i is obtained fromΨi by deletingxm. If neither
of these cases occurs, then simply defineΨ′i = Ψi .

Definition 7: Let Env be an environment with state
set E and let e ∈ E. Then Env(e) is the environment
identical to Env except thate is the initial state of
Env(e).
The motivation for these definitions is the following,
easily proved result.

Lemma 1:Let Env = 〈E, e0, Ac, τ〉 be a history-
independent bounded environment with statee ∈ E
and let α ∈ Ac. Let S = 〈E1, . . . , En〉 be an ordered

P. E. DUNNE, M. LAURENCE AND M. WOOLDRIDGE “COMPLEXITY RESULTS FOR AGENT DESIGN PROBLEMS” 25

collection of pairwise disjoint subsets ofE and letΨ be
a Boolean formula over the set{x1, . . . xn, x̄1, . . . , x̄n}.
Then there is an agentAg solving the problem
Ψ-FDnon-det for the instance〈Env(e), S〉 and satisfying
Ag(e) = α if and only if there is an agent solving
the problemΨ-FDnon-det for the instance〈Env(f), S〉 for
every statef ∈ τ(e, α).
This result then allows us to establish the following.

Theorem 5:The Ψ-FDnon-det problem for history-
independent environments is inP.

Proof: Given a history-independent bounded envi-
ronmentEnv= 〈E, e0, Ac, τ〉 and an ordered collection
S= 〈E1, . . . , En〉 of pairwise disjoint subsets ofE, the
algorithm below defines a predicate

eval(e, Ψ) ∈ {true, false}
for every statee ∈ E and boolean formulaΨ over the
set {x1, . . . xn, x̄1, . . . , x̄n}, such thateval(e, Ψ) = true
if and only if there is an agent solving the problem
Ψ-FDnon-det for the instance〈Env(e), S〉.

1) For every pair(e, Ψ) such thate is a sink in the
acyclic directed graph defined byEnv, and define
eval(e,Ψ) = true if and only if the pathe satisfies
Ψ.

2) Let the setX ⊆ E; initially set X to be the set of
sinks in the acyclic directed graph defined byEnv.

3) Choose a statee∈ E−X such that every statef for
which there is an edgee→α f for someα ∈ Ac,
lies in X.

4) For every Boolean formulaΨ, defineeval(e, Ψ) =
true if and only if there existsα ∈ Ac such that
eval(f ,Ψ(S, e)) = true for every statef for which
there is an edgee→α f .

5) Add e to X.
6) Go to (3).

By Lemma 1, the algorithm computes the function
eval correctly. The loop in steps 3 to 6 cannot be
executed more that|E| times, thus the algorithm requires
only polynomial time.

IV. B OUNDED AGENT DESIGN

Thus far, we have said nothing about how agents
might actually be implemented– instead, we have
viewed them as simply abstract mathematical structures.
Ideally, we would be able to say something precise
about how hard it wasin practiceto actually implement
an agent for a given task in a given environment. But,
just as the theory of computational complexity does not
really have anything to say about how hard it is to
implement programs for specific problems in general,
so we cannot really address this problem with the
mathematical tools available to us. However, we can do
something fairly close. We now study the complexity

of the agent design problem assuming some precise
bounds on the complexity of the agents to be designed.
That is, we ask whether there is aboundedagent to
accomplish a given task, where the notion of a bound
is given a precise meaning.

The idea of considering bounded agents arises from
the literature on autonomous agents, where there is a
well-known distinction between what are often called
deliberative or cognitive agents [6], andbehavioural
or reactiveagents [2]. Deliberative agents are typically
assumed to employ explicit symbolic representations of
their environments, and generally make decisions about
what action to perform by manipulating these represen-
tations, typically by means of symbolic reasoning. It is
now widely accepted that both approaches have merits
and drawbacks: deliberative, logic-based approaches
benefit from a clear theoretical underpinning, and have
an associated engineering methodology, but are com-
putationally costly; in contrast, reactive agents tend to
be economical in their use of computational resources,
and are frequently very robust, but often suffer from the
lack of an engineering methodology. Little research has
addressed the relative merits of the two approaches from
the standpoint of computational complexity, although
Russell and Subramanian made important steps in this
direction [12].

More formally, rather than considering “perfect re-
call” agents, which prescribe an action for every pos-
sible run, we considerreactive agentsthat prescribe
actions predicated on someconstant lengthsection of
its current run: thus ak-reactiveagent’s action follow-
ing r is determined solely by the final sequence of
k state/action pairs inr rather than its entirety. The
primary virtue ofk-reactive agents is that their programs
can always be implemented (at worst) by a look-up table
of length O(nk) wheren is the number of state/action
pairs. (For a serious proposal to implement agents in
this way, see [13], and for a critique of this proposal,
see [7].)

A. Reactive Agent Design

The first bound we introduce requires agents to make
a decision about what action to perform basedonly on
the current state of the environment. Following the use
of the term in the literature on autonomous agents, we
refer to such agents asreactive[19].

Example 2:To better understand our notion of re-
active agent, recall the environment whose state trans-
former function was illustrated in Figure1. Now, con-
sider the achievement task with goal states{e2}. There
is clearly a reactive agent to accomplish this task,
defined by the following rules:

26 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 1, 2003, PP 19-36

e0 −→ α1

e1 −→ α0

e3 −→ α0

e5 −→ α2

Formally, we have the following.
Definition 8: An agent,Ag, is reactiveif for all pairs

r, r ′ ∈ R(Ag, Env) such thatlast(r) = last(r ′) it holds
that Ag(r) = Ag(r ′).
Thus, a reactive agent, considers only its current state
in choosing which action to perform, not the history
leading to this.

It is important to note that there are environments
and tasks for which there exists a successful agent
(in the general sense), but for which no successful
reactive agent exists. Moreover, the requirement that
an environment is history independent is not sufficient
to guarantee the existence of a successful reactive agent
for any given task. That is, there are history independent
environments and tasks for which there is no successful
reactive agent, but there is a successful non-reactive
agent – Example4, below, illustrates this.

While limiting our attention to reactive agents has the
disadvantage that potentially successful (non-reactive)
agents may be overlooked, a significant gain is that the
“program” for such agents requires (at most)|E| log |Ac|
bits: the single action associated with each state ofE.

Assumingτ to be history-dependent, we denote by
Q

(1)
X the decision problemQX when solution agents are

required to bereactive.
We recall that the complexity classΣp

2 comprises
those languages,L, membership in which is decidable
by an NP program having (unit-cost) access to a co-NP

oracle. Alternatively,L is defined via a ternary relation
RL ⊆ W×X×Y for which 〈w, x, y〉 ∈ RL can be decided
in deterministic polynomial-time andRL satisfies,

w ∈ L ⇔ (∃x ∈ X ∀y ∈ Y 〈w, x, y〉 ∈ RL)

Theorem 6:x-FD
(1)
non-det is Σp

2-complete.

Proof: To show thatx-FD
(1)
non-det ∈ Σp

2 it suffices to
observe that an instance〈〈E, e0, Ac, τ〉, G〉 is accepted
if and only if there exists a reactive agentAg all of
whose |E × Ac|-critical runs pass through an element
of G. A reactive agent,Ag is defined by a mapping
µAg : E→ Ac. Let S be the ternary relation

(〈Env, G〉, µAg, r) ∈ S
⇔

r ∈ C|E×Ac|(Ag, Env) includes someg ∈ G

whereAg is the reactive agent defined by the mapping
µAg. It is certainly the case that(〈Env, G〉, µAg, r) ∈ S

can be decided inP. Moreover,〈Env, G〉 is a positive
instance ofx-FD

(1)
non-det if and only if

∃µAg:E → Ac ∀r ∈ Cn(Ag, Env) (〈Env, G〉, µAg, r) ∈ S

and hence decidable by aΣp
2 program.

To show that the problem isΣp
2-hard, we give a

reduction from theΣp
2-complete problemQSAT2. An

instance of this is a Boolean formulaϕ(X, Y) over
disjoint variable setsX, Y with |X| = |Y| which is
accepted if∃αX∀βYϕ(αX, βY) holds, i.e., there is some
instantiation (αX) of X under which all instantiations
(βY) of Y renderϕ(X, Y) true. TheΣp

2-completeness of
QSAT2 was demonstrated by Wrathall [20].

Given an instance, ϕ(x1, . . . , xn, y1, . . . , yn) of
QSAT2, we construct an instance〈Envϕ, Gϕ〉 of
x-FD

(1)
non-det as follows. ForEnvϕ = 〈E, e0, Ac, τ〉 we

set,

E = {x1, . . . , xn, y>1 , . . . , y>n , y⊥1 , . . . , y⊥n ,>,⊥}
Ac = {>,⊥,→, eval}
e0 = x1

Gϕ = {>}
The transition functionτ(r · α) is




{y>i , y⊥i } if last(r) = xi andα ∈ {>,⊥}
{xi+1} if last(r) = y>i , i < n andα =→
{xi+1} if last(r) = y⊥i , i < n andα =→
> if last(r) ∈ {y>n , y⊥n }, α = eval andϕ(π(r))
⊥ if last(r) ∈ {y>n , y⊥n }, α = eval and¬ϕ(π(r))
∅ otherwise,

whereπ(r) is the instantiation of〈X, Y〉 defined from

x1 ·α1 · yβ1
1 · → ·x2 ·α2 · · · yβk

k · → ·xk+1 · · ·αn · yβn
n ·eval

throughxi = αi , yi = βi for each1 ≤ i ≤ n.
Suppose 〈Envϕ, {>}〉 is a positive instance of

x-FD
(1)
non-det, i.e., there is a reactive agent,Ag, whose

every critical run reaches the state>. Consider the
mapping µAg : E → Ac defining this agent. It is
certainly the case that,µAg(xi) ∈ {>,⊥} for each
xi ∈ E. Furthermore,µAg(y>i) = µAg(y⊥i) =→ for each
1 ≤ i < n, andµAg(y>n) = µAg(y⊥n) = eval, being the
only allowable actions in these states. If we consider any
critical run, r, of this agent then it ends in the state>,
and hence the instantiation of〈X, Y〉 induced byπ(r)
satisfiesϕ(X, Y). Thus settingxi = µAg(xi) yields an
instantiation ofαX of X for which ∀βYϕ(αX, βY) holds.
On the other hand ifϕ(X, Y) is a positive instance of
QSAT2, witnessed by a settingαX = 〈α1, . . . , αn〉 ∈
〈>,⊥〉n of X, then the reactive agent defined by

µAg(e) =





αi if e∈ {x1, . . . , xn}
→ if e∈ {y>1 , y⊥1 , . . . , y>n−1, y⊥n−1}
eval if e∈ {y>n , y⊥n }

always achieves the state> and hence witnesses a
positive instance ofx-FD

(1)
non-det.

P. E. DUNNE, M. LAURENCE AND M. WOOLDRIDGE “COMPLEXITY RESULTS FOR AGENT DESIGN PROBLEMS” 27

Theorem6 indicates that deciding if a reactive agent
exists is, under the usual complexity-theoretic as-
sumptions, significantly “easier” (Σp

2-complete) in non-
deterministic cases than deciding if an agent given the
freedom to determine actions by its entire history can
be used (PSPACE-complete). In contrast, our next result
shows that fordeterministicenvironments, there is no
difference in complexity for these cases.

Theorem 7:x-FD
(1)
det is NP-complete.

Proof: Membership inNP is obvious: given an in-
stance〈Env, G〉 of x-FD

(1)
det simply non-deterministically

guess an action for each state ofEnv, to define a reactive
agent. SinceEnv is deterministic, this agent determines
a unique run so it suffices to check whether this contains
a state inG.

To proveNP-hardness, we give a reduction fromSAT.
Let ψ(x1, . . . , xn) be an instance ofSAT. We define
an instance〈Envψ, G〉 of x-FD

(1)
det with Envψ having

state set{x1, . . . , xn,>,⊥}, initial statex1, and actions
{>,⊥}. The transition function is given byτ(r · α) =
xi+1 if last(r) = xi and i < n; if last(r) = xn then

τ(x1 · α1 · x2α2 · · · xn · αn) = ψ(α1, . . . , αn)

It is easy to see that〈Envψ, {>}〉 is a positive instance
of x-FD

(1)
det if and only if the formulaψ(x1, . . . , xn) is

satisfiable, proving the theorem.
We note the following easy corollaries of Theorems6, 7.

Corollary 2:

a) Ψ-FD
(1)
non-det is Σp

2-complete.
b) Ψ-FD

(1)
det is NP-complete.

Proof: The proof derives from the constructions
in [4]: we omit the details.

B. k-Reactive Agent Design

By requiring agents to specify a single (re)action for
each state, we gain a guaranteed “short program” if
an appropriate agent exists, but at a potential cost of
missing alternative solutions when no reactive agent is
possible. It might be the case, however, that while an
agent reacting to its current state only cannot be found,
there are agents solving a specified design problem
that, need only specify actions predicated on the last
k action/state pairs in a run, without having to examine
their whole history. Such “k-reactive” agents can be
described by programs of sizeO(|E×Ac|k log |Ac|) bits,
and thus are realistic for “small” values ofk. We now
consider this generalisation of the concept of reactivity
to encompassk-reactive agents.

Definition 9: Given an environmentEnv and a pos-
itive integer k, an agentAg is k-reactive if for all r,
r ′ ∈ R(Ag, Env) with

r = s· · · el · αl · · · el+k−1

r ′ = s′ · · · el · αl · · · el+k−1

it holds thatAg(r) = Ag(r ′).
We denote byQ

(k)
X the agent design problemQX in

which solution agents are required to bek-reactive.
Theorem 8:For eachk ≥ 1, andX ∈ {non-det, det},

x-FD
(1)
X ≡log FD

(k)
X .

Proof: We first show thatx-FD
(1)
X ≤log x-FD

(k)
X .

An instance of the former consists of an environment
Env and subsetG of E. We define a new environment
Env′ as follows. The basic idea is that every state in
Env corresponds to a sequence ofk states inEnv′. For
every statee of Env, the new environmentEnv′ has
statese(1), . . . , e(k). The initial state ofEnv′ is e0(1),
wheree0, as usual, is the initial state ofEnv. Env′ has
an actionµ in addition to all the actions ofEnv, and
its set of legal runs is defined as follows. Suppose that
Env has a rune0 · α0 · e1 · · ·αn−1 · en, then Env′ has
a rune0(1) · µ · e0(2) · · ·µ · e0(k) · α0 · e1(1) · · ·αn−1 ·
en(1) · · · en(k). Observe thatEnv′ is deterministic if and
only if Env is. It is easy to see that a reactive agent for
Env exists whose runs pass contain a state inG if and
only if a k-reactive agent forEnv′ exists whose runs
contain a state in{g(1) . . . g(k)|g ∈ G}.

To show thatx-FD
(k)
X ≤log x-FD

(1)
X , given an instance

〈Env, G〉 of the former, we can create an instance
〈Env′, G′〉 of the latter in which each state ofEnv′

corresponds to each distinct seqeunce of at mostk− 1
actions andk states inEnv. We omit the details of the
straightforward simulation establishing that ak-reactive
agent solves〈Env, G〉 if and only if a reactive agent
solves〈Env′, G′〉.
We thus obtain the following.

Corollary 3:

a) Ψ-FD
(k)
non-det is Σp

2-complete.
b) Ψ-FD

(k)
det is NP-complete.

Proof: Immediate from Theorems6–8 above.

C. Oblivious Agent Design

The concept ofk-reactive (k ≥ 1) agent offers
one mechanism by which “concise” solutions to agent
design tasks may be described in history-dependent
environments. We can also, however, consider a superfi-
cially similar idea – that of anobliviousagent solution.
Informally, an oblivious agent is one which takes no
account of its current state in choosing an action, only
of the numberof actions its has performed so far. Thus
one might regard an oblivious agent (with respect to our
concept of reactivity) as being “0-reactive”.

Example 3:Recall again the example presented ear-
lier. In this environment, there is an oblivious agent
to accomplish the achievement task with goal states
{e1, e2}, by simply performingα0.
More formally, we have the following.

28 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 1, 2003, PP 19-36

Definition 10: An agent,Ag, is oblivious if for all
pairs r, r ′ ∈ R(Ag, Env) if |r| = |r ′| then Ag(r) =
Ag(r ′).
Thus, in settings where agents must cease their op-
erations after some (maximum) number of actions,
m say, an oblivious agent is specified by a mapping
ω : {1, 2, . . . , m} → Ac describing what action is to
performed at each stagei from the initial state (i = 1)
onwards. For the design problemx-FDX on which we
have focused we can introduce an oblivious variant as
follows.

Definition 11: An instance of theoblivious achieve-
ment designproblem (x-FD

(0)
X) consists of an environ-

ment Env = 〈E, e0, Ac, τ〉, a subsetG of E, and a
positive integer,m. An instance is accepted if there is
a mappingω : {1, 2, . . . , t} → Ac such thatt ≤ m and
for Agω the agent defined by

Agω(r) =
{

ω((|r|+ 1)/2) if |r| ≤ 2t − 1
⊗ if |r| ≥ 2t

then every runr ∈ R(Agω, Env) contains some state of
G.
An oblivious agent can be specified using at most
mlog2 |Ac| bits, and thus ifm¿ |E×Ac| may represent
a significant saving over even1-reactive agents.

From our earlier results, however, it turns out that
deciding if oblivious agents exist is “no easier” than
deciding if reactive ones do.

Theorem 9:

a) x-FD
(0)
non-det is Σp

2-complete.
b) x-FD

(0)
det is NP-complete.

Proof: For (a) the reduction of Theorem6 is used
to construct a instance ofx-FD

(0)
non-det in which m = 2n.

It then suffices to observe thatxi actions are determined
on odd indexed moves and the only applicable actions
on even indexed moves are→ and (finally)eval. Thus
an oblivious agent can be specified if and only if the
instance ofQSAT2 from which 〈Envϕ, Gϕ, 2n〉 results
would be accepted. The proof of (b) is similar.
So far we have considered only agents that must realise
their specified task (whether achievement or mainte-
nance) within some limited number of actions, i.e., with
respect to the critical runs of length|E×Ac|. Of course,
within deterministic environments even using oblivi-
ous agents, determining whether there exists an agent
that “eventually” realises an achievement task is easily
shown to be undecidable. This situation changes when
we consider agents operating in history-independenten-
vironments, i.e., where the change in environment state
specified byτ depends only on its current state and the
action chosen. We conclude this section by presenting
some results concerning oblivious agent design tasks in
history-independentnon-deterministicenvironments.

Any environment of this form is naturally modeled
by adirected graph H(E, A) whose vertices correspond
to the possible states and in which there is an edge
〈ei , ej〉 labelled α ∈ Ac whenever ej ∈ τ(ei , α).
Oblivious agents in this setting may be regarded simply
as mappingsAg : N → Ac∪ {⊗}. Of course, in non-
deterministic environments, it could happen that such an
agent reaches different statesei and ej after k actions
are performed, but these are such that

τ(ei , Ag(k + 1)) 6= ∅ ; τ(ej , Ag(k + 1)) = ∅
It is convenient to pre-empt this possibility by adding a
“special” deadstate,e∅ to the environment such that for
each pair〈e, α〉 ∈ E×Ac, shouldτ(e, α) = ∅, then the
directed graphH(E, A) contains an edge〈e, e∅〉 labelled
α; additionally there are edges〈e∅, e∅〉 labelledα for
eachα ∈ Ac. It is noted that we neither require nor
assumeH(E, A) to beacyclic.

The most “general” form of the oblivious agent
design problem that we consider in this context of
history-independent, non-deterministic environments is
that defined below.

Definition 12: Let Ψ(x1, . . . , xt) be a (non-constant)
propositional logic function oft variables. An instance
of the Ψ-Oblivious Agent Designproblem (Ψ-OAD)
consists of: an edge-labelled directed graphH(E, A) as
arising from a history-independent, non-deterministic
environment〈E, e0, Ac, τ〉; and a partial mappingΠ :
E → {x1, . . . , xt} associating each state with (at most)
one variablexi of Ψ. An instance is accepted if there is a
valuen ∈ N and an oblivious agentAg : N→ Ac∪{⊗}
for which

Ag(m) ∈ Ac if m< n
Ag(m) = ⊗ if m≥ n

and if r = e0 · s1 · s2 · · · sm is any sequence ofm+ 1
states traversed byAg in H(E, A) then Ψ(π(r)) = >,
whereΨ(r) is the instantiation of〈x1, . . . , xt〉 defined
through:xk = > if any state,e with Π(e) = xk occurs
in r; xk = ⊥ if no such state does.
For reasons of limited space the following results are
merely stated without proof.

Theorem 10:For all propositional functions
Ψ(x1, . . . , xk), the problemΨ-OAD is decidable.

Theorem 11:(x1 ∧ x̄2)-OAD is PSPACE-hard.
Some remarks regarding the relationship between The-
orem 11 and Theorem9 may seem in order: the
former appearing to claim that the history-independent
version of a problem is rather more difficult that its
history-dependent counterpart. The important difference
between these two cases is that, in contrast toΨ-OAD,
an instance ofx-FD

(0)
non-det include a stated bound on

the number of actions an oblivious agent is allowed to
perform: inΨ-OAD whether any such boundexistshas

P. E. DUNNE, M. LAURENCE AND M. WOOLDRIDGE “COMPLEXITY RESULTS FOR AGENT DESIGN PROBLEMS” 29

to be decided. As we noted earlier, the “exact” analgoue
of Ψ-OAD for history-dependent environments is, in
fact, undecidable, hence the relevance of Theorem10.

D. History-Independent Environments and Reactive
agents

We writeFC to refer to thefinite conjunctionproblem:
in such a problem, we are given a set of “good” states,
and a set of “bad” states, and asked whether there
exists an agent that can bring about a good state while
avoiding all bad states. ClearlyFC is a special case of
Ψ-FDnon-det in which the formulaΨ is of the formx∧ ȳ.

Definition 13: Given an environment Env =
〈E, e0, Ac, τ〉 and setsG, B ⊆ E, we say that an
agentAg solves the Conjunction problem for the tuple
〈Env, G, B〉 if every run of 〈Env, Ag〉 passes throughG
and none passes throughB.
In this subsection we consider theFC problem under the
restriction that the agent is reactive, and the environment
is history independent. In one sense, this captures the
idea that the agent and environment have the “same
power”. Our first result is as follows.

Lemma 2:Let Env = 〈E, e0, Ac, τ〉 be a history-
independent bounded environment and letG, B ⊆ E.
If there exists an agentAg solving FCnon-det for the
instance〈Env, G, B〉, then there exists areactiveagent
solving this problem for the same instance.

Proof: It suffices to prove the following; given
an agentAg such that every run throughEnv permitted
by Ag ending at a sink in the directed graphH(V, A)
defined byEnv passes throughG but not throughB,
there is a reactive agentA satisfying this condition. We
defineA as follows; lete ∈ E. If no run permitted by
Ag ends ate then define the actionA(e) arbitrarily. If
there does exist a run permitted byAg and ending ate,
but all such runs pass throughG at some point, letr be
any such run and defineA(e) = Ag(r). Lastly, if there
is a runs permitted byAg and ending ate, which does
not pass throughG, defineA(e) = Ag(r).

Given a runr permitted byA which passes through
the statese0, . . . , en in succession, the following is
easily proved by induction onn; there is a run permitted
by Agpassing throughen, and if none of the statesei lies
in G, then there exists a run permitted byAg and ending
at en, which does not pass throughG. From the first
assertion, it follows that no run permitted byA passes
throughB. To show that every run permitted byA passes
throughG, assume that this is false. Thus sinceEnv is
bounded, there is a runr permitted byA which passes
through the statese0, . . . , en in succession, and such that
the last stateen is a sink in the directed graphH(V, A)
defined byEnv. From the second assertion above, there
is a run permitted byAg which ends at the sinken and

does not pass throughG, contradicting the hypotheses.

We can now prove the following.
Theorem 12:If the state transformer function is

history-independent, then:

a) FCdet with respect to reactive agents isNL-
complete.

b) FCnon-det with respect to reactive agents isP-
complete.
Proof:

a) Given an instance〈Env, G, B〉 of this problem, let
H be the acyclic directed graph defined byEnv
with all states inB and incident edges deleted. We
prove that problem is solvable inNL-space first.
Assume first thatG = {g}. Then the problem is
solvable for the instance〈Env, {g}, B〉 if and only
if there is a directed path inH from the initial
state ofEnv to g and there is a directed path in
H from {g} to a sink inEnv. Both problems are
decidable inNL-space [11, p398], and thus the
general problem for arbitraryG lies in this class.
To show that the problem isNL-space hard, ob-
serve that the graph reachablity problem for fi-
nite directed graphs, which isNL-space hard [11,
p398], can easily be reduced to an instance of our
problem for whichB = ∅.

b) By Lemma 2, the restriction that the agent be
reactive may be ignored. Thus membership inP

follows from Theorem5. The proof ofP-hardness
follows a reduction from the monotone circuit
reduction problem.

Lemma2 does not generalise to arbitrary formulae.
We now give an example to show that the requirement
for an agent to be reactive is a real restriction for
Ψ-FDnon-det.

Example 4:Let Envbe the (history-independent) en-
vironment with state set{e0, . . . , e5}, of whiche0 is the
initial state. Env has action set{α, β} and transition
function τ given by τ(e0, α) = {e1, e2}, τ(e1, α) =
τ(e2, α) = {e3}, τ(e3, α) = {e4}, τ(e3, β) = {e5}
andτ returns the empty set in all other cases. Consider
the problem(x ∧ y)-FDnon-det. This is solvable for the
instance 〈Env, {e1, e4}, {e2, e5}〉, but the only agent
solving it is the non-reactive agentAg defined by
Ag(e0, α, e1, α, e3) = β andAg(e0, α, e2, α, e3) = α.
However we do get a partial result.

Definition 14: Let Ψ = x1∧. . . xn∧x̄n+1 be a formula
for somen ≥ 1. The restrictedΨ-FDnon-det problem is
defined as the normalΨ-FDnon-det problem, but subject
to the additional constraint that for eachi ∈ {2, . . . , n},
the set of states defined by the atomic propositionxi in
the particular environment must be a singleton.

30 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 1, 2003, PP 19-36

Lemma 3:Let Env= 〈E, e0, Ac, τ〉 be a history-free
bounded environment and letΨ = x1 ∧ . . . xn ∧ x̄n+1

be a formula. LetS = 〈E1, . . . , En+1〉 be an ordered
collection of pairwise disjoint subsets ofE satisfying
|Ei | = 1 for each i ∈ {2, . . . , n}. If there exists an
agentAg solving Ψ-FDnon-det for the instance〈Env, S〉,
then there exists areactiveagent solving this problem
for the same instance.

Proof: Given a statef ∈ E, let us call an agent for
Env f-reactive if it has the same image for every runr
with last(r) = f . SinceEnv is history-free and bounded,
its underlying graph is acyclic, and so if the agentAg
is not already reactive, then there is a stateg such that
Ag is not g-reactive, but isf -reactive for every statef
reachable fromg in the underlying graph ofEnv. We
will construct an agentAg′ also solvingΨ-FDnon-det for
the instance〈Env, S〉, and which isg-reactive and differs
from Ag only on runs whose last state isg. By repeating
this process we eventually construct a reactive agent.

Let r andsbe two runs permitted byAgand ending at
g and leti ∈ {2, . . . , n}. Suppose thatr passes through
the singletonEi but s does not. Thuss can be extended
to a runss′ permitted byAg such thats′ passes through
Ei . Since Ag is f -reactive for every statef reachable
from g in the underlying graph ofEnv, the runrs′ is also
permitted byAg and passes twice through the singleton
Ei , giving a contradiction since the underlying graph of
Env is acyclic. Thus we have shown that all runs or no
runs ending atg and permitted byAg pass throughEi .

We define the new agentAg′ as follows. LetAg′(g) =
Ag(r), wherer is a run permitted byAgwith last(r) = g
chosen as follows. If there is a runs with last(s) = g,
such that all runsss′′ permitted byAg pass through
an element ofE1 after g (that is, s′ passes through
an element ofE1) then let r = s; otherwise letr be
arbitrary. In the former case, every run permitted byAg′

and passing throughg will pass through an element of
E1 afterg; in the latter case, by the choice ofAg, every
run passing throughg will pass through an element
of E1 before g (or g ∈ E1). If i ∈ {2, . . . , n}, and
r passes throughEi , then by the observation above,
all runs passing throughg and permitted byAg′ pass
throughEi beforeg; otherwise every maximal extension
of r permitted by Ag must pass thoughEi after g,
and hence all maximal runs passing throughg and and
permitted byAg′ pass throughEi before g. Similarly,
runs permitted byAg′ can be shown not to pass through
En+1. Lastly, if a run permitted byAg′ does not pass
through g, then it is also permitted byAg. Hence we
have shown thatAg′ solvesΨ-FDnon-det for the instance
〈Env, S〉, as required.

Theorem 13:Let Ψ = x1∧. . . xn∧x̄n+1 be a formula.
Then therestrictedΨ-FDnon-det problem for history-free
environments and reactive agents lies inP.

Proof: This follows immediately from Lemma3
and Theorem5.

V. STOCHASTIC AGENT DESIGN

So far, we have been considering a rather pessimistic
notion of success with respect to tasks: an agent must be
guaranteed to satisfy its task onall runs, otherwise it is
deemed to be no good. At the other extreme, a rather too
optimisticnotion of success was studied in [16], where
an agent was considered acceptable if it succeeded to
accomplish its designated task onat least onerun. It
was shown in [16] that the optimistic agent design
problem was “easier” than pessimistic agent design:
versions of the agent design problem that arePSPACE-
complete are when considering pessimistic agent design
are “merely” NP-complete in the optimistic case.

Whereas the strict, pessimistic notion of success that
we have discussed so far in this paper is perhaps too
strong, the optimistic agent design problem is too weak.
In practice, we would probably want to know whether
the agent could beexpectedto succeed – that is, given
a rational numberp ∈ [0, 1], whether this agent will
succeed with probablity greater thanp. We refer to
this problem asstochastic agent design. The critical
assumption that we must make in order to study this
problem is that all (immediate) outcomes of an action
are equiprobable.

Definition 15: TheΨ-Stochastic Agent Designprob-
lem (Ψ-SAD) takes as an instance an environment
Env = 〈E, e0, τ〉, state setsE1, . . . , En ⊆ E (where the
formula Ψ is over the atomic propositionsx1, . . . , xn)
and rationalp ∈ [0, 1], and returns “true” if and only
if there is an agent that succeeds with this task (in the
sense of Definition3) with probability greater thanp,
“no” otherwise.
It should be noted that not all runs through an envi-
ronment have the same probability of occurring and so
an agent having a probability of success greater thanp
is not equivalentto an agent succeeding on proportion
p of its runs. To see this, we give an example for
p = 1/2. Consider an environment in which there is a
single actionα which leads to 2 states from the initial
state; one of these has no available actions; the other
(for some valuek) leads to a binary computation tree of
heightk in which all but one of the states at the leaves
is a state inS: the unique agent in this environment
has2k +1 runs of which the majority (2k− 2) succeed.
The probability of success, however, is less than1/2:
the state with further available actions is chosen with
probability 1/2, but with non-zero probability a run
from this state does not succeed.

Definition 16: Let Ψ be a Boolean formula over a set
{x1, . . . xm, x̄1, . . . , x̄m}. TheΨ-Stochastic Agent Design
problem (Ψ-SAD) takes as instance a tuple〈Env, S, p〉,

P. E. DUNNE, M. LAURENCE AND M. WOOLDRIDGE “COMPLEXITY RESULTS FOR AGENT DESIGN PROBLEMS” 31

whereEnv is a bounded environment,S= 〈E1, . . . , Em〉
is an ordered collection of pairwise disjoint subsets of
the state set ofEnv and p is a rational number lying
in [0, 1]. The problem has answer “yes” if and only if
there is an agentAg such that the pair〈Env, Ag〉 satisfies
Ψ with respect to the set sequenceS with probability
greater thanp. If Ψ = x1, then we refer toΨ-SAD

as the Achievement Stochastic Agent Design Problem
(ASAD); if Ψ = x̄1, then we refer toΨ-SAD as the
Maintenence Stochastic Agent Design Problem (MSAD).

Lemma 4:Ψ-SAD lies in PSPACE for all Boolean
formulaeΨ.

Proof: Let 〈Env, S, q〉 be an instance ofΨ-SAD

and let n = |E × Ac|. To show that Ψ-SAD ∈
PSPACE, for each Boolean formulaθ over the set
{x1, . . . xm, x̄1, . . . , x̄m} we consider a function –Extθ
– that maps possible runs (ending in a state) fromEnvθ
to rational values,p, in the range[0, 1]. This function
Extθ(r ·e) has value0 if the length ofr ·e exceedsn. If
not, and ifτ(r ·e·α = ∅ for all actionsα, thenExtθ(r ·e)
is 1 if the set{e} satisfiesθ with respect toS, and0
otherwise. In all other cases,Extθ(r · e) is:

max
α:τ(r·e·α)6=∅

1
|τ(r · e · α)|

∑

d∈τ(r·e·α)

Extθ(S,e)(r · e · α · d)

The functionExtθ(r · e) is the (maximum) probability
that an agent continuing a runr ·e attains one of the goal
states. It follows that〈Env, S, q〉 is a positive instance
of Ψ-SAD if and only if Ext(e0) > q and so it suffices
to show that the valueExtΨ(e0) can be computed in
PSPACE. In order to simplify the algorithm presentation
we use anon-deterministicmachine to “guess” the
maximising action for its input run: certainly there is (at
least) one pattern of such guesses which will correctly
computeExtΨ(e0). The algorithm is recursive and given
a run r · e and a Boolean formulaΨ over the set
{x1, . . . xm, x̄1, . . . , x̄m} proceeds as follows:

1. If |r · e| > n return0 else
• if ∀α, τ(r ·e·α) = ∅ return1 if the set{e} satisfies

Ψ with respect toS, and0 otherwise, else
2. Non-determininistically choose an available action

α.
2.1 count:= 0.
2.2 for eachd ∈ τ(r · e · α),

count:= count+
ExtΨ(S,e)(r · e · α · d)

|τ(r · e · α)|
2.3 returncount

It remains to observe that this computation can be car-
ried out in NPSPACE: only rational values are involved,
and using representation of these by two integer values
(i.e., numerator and denominator), the value of the
denominator never exceedsnn and so can be stored in

O(n log n) bits. The depth of the recursion isO(n) and
the computation ofΨ(S, e) requires only polynomial
space, so the entire procedure can be realised using only
polynomial (inn) space. SinceNPSPACE= PSPACEthe
membership proof is completed.

Lemma 5:The MSAD and ASAD problems are
PSPACE-hard.

Proof: We first give the proof for theASAD

problem, and then give the slight modification needed
for the proof forMSAD.

We show how the problem ofstochastic satisfiability
(SSAT) can be reduced toASAD. The instance ofASAD

that we will construct will have probabilityp = 1/2. An
instance ofSSAT is given by a formula with the form:

∃x1.Rx2.∃x3.Rx4 · · ·Qxn. ϕ(x1, . . . , xn) (1)

where:
• eachxi is a Boolean variable (it doesnot need to

be a collection of variables);
• R is a “random” quantifier, with the intended in-

terpretation “with some randomly selected value”;
and

• Q is ∃ if n is odd, andR otherwise.
The goal of SSAT is to determine whether there is a
strategy for assigning values to existentially quantified
variables that makes (1) true with probability great than
1
2 , i.e., if

∃x1.Rx2.∃x3.Rx4 · · ·Qxn. prob[ϕ(x1, . . . , xn) = >] >
1
2

We give an outline of the reduction first. To reduce an
instance (1) to ASAD, we proceed as follows. The idea
is to create an environment which forces the agent and
environment to take it in turns, starting with the agent,
to assign values (truth or falsity) to the variables in (1)
– the agent assigns values to∃-quantified variables, the
environment assigns values toR-quantified variables.
The environment is non-deterministic, with the actual
assignment of values done at random. After all variables
have been assigned values, the environment returns the
goal state,e>, if the formula ϕ(x1, x2, x3, . . . , xn) is
made true by the valuation traced out by agent and
environment, and a dummy, “fail” state,e⊥, otherwise.
Each run thus corresponds to a possible valuation for
the variables, and all possible valuations will be runs.
Recall that the goal of theSSAT problem is to determine
whether there is a strategy for assigning values to∃-
variables that makes the formula true in the majority of
runs: this will clearly be the case just in case there is an
agent that can succeed with the task (make the formula
true) with probability greater than1/2.

The details are as follows. For each∃-quantified
variable xi , we create two actions,α>i and α⊥i , cor-
responding to the assignment of truth or falsity toxi ,

32 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 1, 2003, PP 19-36

respectively. For eachR-quantified variablexj , we create
two environment states,e>j ande⊥j , again corresponding
to an assignment of truth or falsity toxj . We also create
three additional environment states,e0, e> and e⊥, let
the initial state bee0, and let the set of goal states
S be a singleton containinge>. The state transformer
function of the environment behaves as follows. The
agent and environment alternate to give valuations to the
quantified variables, with the agent going first, working
from outermost variable to innermost. The agent is first
allowed to pick a value forx1 by performingα>1 or
α⊥1 , to which the environment responds with eithere>2
or e⊥2 , to which the agent must respond with either
α>3 or α⊥3 , and so on. When all variables have been
given values, the environment responds with eithere>

if ϕ(x1, x2, x3, . . . , xn) is true under the valuation traced
out, ande⊥ otherwise. For example, the following run

e0
α>1−→ e>2

α⊥3−→ e>

is a run in which the variablesx1, . . . , x3 are assigned
the values true, true, and false respectively; the environ-
ment indicates that the formula under question is true
under this valuation. To ensure that the environment can
always respond with a final valuation, we can “pad”
runs by allowing an additional dummy action by the
agent.

In the MSAD case, the environment constructed is
identical and the “bad” state set is defined to be{e⊥}.

Lemma 6:Let Ψ be a Boolean formula over a set
{x1, . . . xm, x̄1, . . . , x̄m}. If Ψ is not constant (that is,
Ψ is neither a tautology nor unsatisfiable) then for
some i ∈ {1, . . . , m}, there is an interpretationxj →
Tj ∈ {true, false} for eachj 6= i such that the Boolean
formula Ψ[xj → Tj ; j 6= i] is equivalent to eitherxi or
x̄i .

Proof: This follows by induction onm. If the
lemma is false fori = 1, then for every interpretation
xj → Tj ∈ {true, false}|j > 1 the formula Ψ[xj →
Tj ∈ {true, false}|j > 1] over {x1, x̄1} is equivalent
to either true or false, and henceΨ is equivalent to
a non-constant formulaΨ which does not containx1 or
x̄1. Thus the lemma follows by the inductive hypothesis
applied toΨ.

Theorem 14:Ψ-SAD is PSPACE-complete for all
Boolean formulasΨ.

Proof: Membership in PSPACE is given by
Lemma 4. To show PSPACE-hardness, we first show
that for every Boolean formulaΨ, there is a problem
Q ∈ {ASAD, MSAD} such that any instance ofQ
can be regarded as an instance ofΨ-SAD. For this
we use Lemma6. We assume thatΨ is over the
set {x1, . . . xm, x̄1, . . . , x̄m} of atoms. Thus for some
i ∈ {1, . . . , m}, there is an interpretationxj → Tj ∈

{true, false} for each j 6= i such that the Boolean
formula Ψ[xj → Tj ; j 6= i] is equivalent to eitherxi

or x̄i . We will assume the former; the latter case is
similar. An instance〈Env, 〈Si〉, p〉 of xi-SAD (that is,
of ASAD) defines the same answer toASAD as the
instance〈Env, 〈S1, . . . , Sm〉, p〉 does toΨ-SAD provided
that for eachj 6= i, the setSj = E if Tj = true and
Sj = ∅ otherwise, whereE is the state set ofEnv. Since
the instance〈Env, 〈S1, . . . , Sm〉, p〉 can be constructed
in polynomial time from〈Env, 〈Si〉, p〉, and ASAD is
PSPACE-hard by Lemma6, we have shown thatΨ-SAD

is PSPACE-hard.
You might now expect us to consider theΨ-SADdet

problem, i.e., the stochastic finite agent design problem
for deterministic environments. For deterministic envi-
ronments, however, the stochastic agent design problem
is not meaningful: an agent will only ever have one run
in a deterministic environment, and it thus makes no
sense to ask whether the agent succeeds with probability
exceeding1/2 – its probability of success is either0 or
1.

However, we can ask a closely related question,
namely, do mostagents satisfy the task in a deter-
ministic environment. That is, given a deterministic
environment and a particular (achievement) task, do the
majority of agents satisfy this task in the environment?
Another way of looking at this problem is to say that if
we selected an agent at random, are the chances better
than even that this agent would succeed with the task in
the environment? We call this problemmajority agent
design(MAJD):

Definition 17: The Majority agent design(MAJD)
problem takes as an instance an achievement agent
design task with environmentEnv= 〈E, e0, τ〉 and goal
statesS⊆ E. It returns “true” if and only ifthe majority
of agents achieve the task, “no” otherwise.
We can immediately show:

Theorem 15:MAJDdet is PP-complete.
Proof: We must first show the problem is inPP.

The following PP algorithm decides the problem (see
[11, pp.256–257] for the definition of the classPP):

1) a computation non-deterministically “guesses” a
run consistent with the state transformer function
τ of the environment;

2) a computation “accepts” if the task is accom-
plished on this run, otherwise it “rejects”.

The PP machine accepts if the majority of its compu-
tations accept. Each different run corresponds to a dif-
ferent agent. Since we are considering finite runs, each
run is guaranteed to have length at most polynomial in
|E× Ac|, the machine decides the problem.

To show that the problem isPP-hard, we reduce the
MAJSAT problem [11, p.256]. An instance ofMAJSAT

is simply a propositional logic formulaϕ over Boolean

P. E. DUNNE, M. LAURENCE AND M. WOOLDRIDGE “COMPLEXITY RESULTS FOR AGENT DESIGN PROBLEMS” 33

variables x1, . . . , xn. The goal is to answer “yes” if
the formula is true under most valuations of these
variables, “no” otherwise. We create an instance of
MAJDdet as follows. The idea is that any given agent
simply traces out a valuation for the variables: every
different agent thus corresponds to a different valuation.
Formally, the environment we create has four states:
{e0, e>, e⊥}, with the initial state beinge0, and the
statese> ande⊥ respectively used to indicate whether
or not the valuation traced out makes the formula true
or false respectively; the set of goals states is a singleton
containinge>. Until the agent has completed assigning
values to variables, the environment responds to all
assignments withe0. When all Boolean variables have
been assigned values, the environment responds with
e> (if the formula is true under the assignment traced
out), or e⊥ otherwise; the run then ends.
The MAJD problem gives us a (somewhat crude) mea-
sure of the inherent hardness or easiness of a task: if
there is a better than evens chance that an agent selected
at random will succeed with the task, then the task itself
must be easy to solve.

VI. RELATED WORK

A. Relationship to AI Planning

In the AI literature, the most closely related work
to our own is on the complexity of the planning
problem: Bylander was probably the first to undertake
a systematic study of the complexity of the planning
problem; he showed that the (propositional)STRIPS

planning problem isPSPACE-complete [3]. Building on
his work, many other variants of the planning problem
have been studied – recent examples include [1], [10].
The main differences between our work and the work
on AI planning is as follows:

• The notion of an agent in our work (as a function
that maps runs to selected actions) is more general
than the notion of a plan as it commonly appears
in the planning literature. Our agents are more
akin to the notion of astrategy in game theory.
The obvious advantage of our approach is that
our results are not bound to a particular plan
representation. The obvious disadvantage is that
having a positive answer to one of our agent design
problems does not imply that an agent to carry out
the task will beimplementable(cf. [12]).

• Most complexity results in the planning literature
are bound to particularrepresentationsof goals
and actions. TheSTRIPS notation in Bylander’s
work is one example [3]; Baralet al. use the
action description languageA [1]; in the work of
Littman et al, the representation chosen is ST [10].
In some cases, it is not clear whether results

reflect the complexity of the decision problem, or
whether they are at least in part an artifact of the
representation. We have adopted the most general
representations possible, for example representing
achievement and maintenance tasks through sets
of states, rather than through a particular (e.g.,
logical) formalism, and consider several possible
representations of the environment.

• Most complexity results in planning assume simple
(deterministic, history independent) environments.

• The focus in the planning literature has been
almost exclusively on achievement tasks. We have
also considered maintenance tasks, and elsewhere,
have considered richer task specifications [16].

B. Relationship to Game and Decision Theory

In the computational complexity literature, the most
relevant problems are those of determining whether
or not a given player has a winning strategy in a
particular two-player game.PSPACE-completeness ap-
pears to be the characteristic complexity result for such
problems [11, pp459–480].

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper we have extended the results of [14],
[16], [17] in three ways.

First, we considered the specification of task via
arbitrary Boolean combinations of achievement and
maintenance problems. It was shown that with history-
dependent environments the the decision problem with
arbitrary non-trivial formulae is “no harder” than that
for single variable formula specifications. In contrast,
one setting of these problems in history-independent
environments gives rise toNP-complete decision prob-
lems.

Second, we consideredboundedagent design prob-
lems, where a successful agent is constrained to have
some “memory bound”. We showed that, for non-
deterministic history-dependent environments, the agent
design problem for such bounded agents was easier
(under standard complexity-theoretic assumptions) than
its more general counterpart. For deterministic environ-
ments, the complexity of the problems coincided.

We also considered stochastic variants of agent de-
sign problems, where we ask whether there is an agent
that succeeds with probability greater thanp, for some
rationalp in the interval[0, 1].

There are many issues that demand attention in future
work. One is the relationship of our work to that of
solving Markov decision problems [9]. Another key
problem is that of determining the extent to which our
positive (polynomial time) results can be exploited in

34 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 1, 2003, PP 19-36

practice. Yet another is on extending our task speci-
fication framework to allow richer and more complex
tasks.

ACKNOWLEDGEMENTS

This research was supported by theEPSRC under
grant GR/R60836/01(“Algorithmics for agent design
and verification”).

APPENDIX

For convenience, we provide a summary of the prob-
lems that we have studied in this paper and the results
obtained. Recall that ifXn = {x1, . . . , xn} is a set of
Boolean variables, then the notationΨ(Xn) is used to
denote a propositional logic formula over variablesXn.
Note that:

• We assumeboundedenvironments unless explic-
itly stated otherwise.

• We frequently make reference toachievementand
maintenancetask – recall that an achievement task
is specified by a set of “good” or “goal” states,
and an agent succeeds with such a problem in a
given environment if, for every possible run of the
agent in the environment, at least one of the good
states occurs (it does not need to be the same state
on every run); in contrast, a maintenance task is
specified by a set of “bad” states, the idea being
that an agent succeeds with such a task if, on every
possible run of the agent in the environment, no
bad state occurs.

• We also distinguish betweennon-deterministicand
deterministicenvironment. A non-deterministic en-
vironment is one in which there are potentially
more than one possible successor states, whereas
in a deterministic environment, there is always at
most one possible successor state. Given a particu-
lar problemP, we use the notationPdet andPnon-det

to distinguish between the variants of this problem
corresponding to the assumption of deterministic
and non-deterministic environments, respectively.

• We also distinguish between environments that are
history dependentand history independent: a his-
tory dependent environment is one that is permitted
to make its “decision” about the next possible
states of the environment based on the entire run
so far, while a history independent environment
is one that must make its “decision” based only
on the final state of the environment and action
performed.

For completeness, we begin by summarising results
obtained in previous work:

x-Design∞

The achievement design problem for un-
bounded environments. Recursively enumer-
able but not recursive. (Theorem 1.)

x̄-Design∞

The maintenance design problem for un-
bounded environments. Not recursively enu-
merable. (Theorem 1.)

Ψ(x)-Design<∞

The achievement or maintenance design prob-
lem for finite environments (observe thatΨ(x)
is a propositional logic formula of one vari-
able). Recursive but non-elementary in gen-
eral. (Theorem 1.)

x-FDX for X ∈ {det, non-det}
The achievement design problem for
deterministic/non-deterministic bounded
environments.PSPACE-complete for history-
dependent non-deterministic environments,
NP-complete for history-dependent
deterministic environments, NL-complete
for history independent non-deterministic
environments, andP-complete for history-
independent deterministic environments.
(Theorem 1.)

x̄-FDX for X ∈ {det, non-det}
The maintenance design problem for
deterministic/non-deterministic bounded
environments: equivalent via logspace
reductions to the corresponding achievement
design problem (see preceding entry), and
hencePSPACE-complete for history-dependent
non-deterministic environments, NP-
complete for history dependent deterministic
environments, NL-complete for history
independent non-deterministic environments,
and P-complete for history-independent
deterministic environments. (Theorem 1.)

The following results were obtained in the present
paper:

Ψ-Design∞

The agent design problem for unbounded en-
vironments, where a task is specified as an ar-
bitrary propositional logic formula, but where
this formula is fixed, anddoes not form part of
a problem instance. Recursive if, and only if,
Ψ is trivial (logically equivalent to a Boolean
constant), and recursively enumerable if, and
only if, the Boolean functionfΨ corresponding
to Ψ is monotone. (Theorem 2.)

Ψ-FDX for X ∈ {det, non-det}
The agent design problem where a task
is specified as an arbitrary propositional
logic formula, but where this formula is

P. E. DUNNE, M. LAURENCE AND M. WOOLDRIDGE “COMPLEXITY RESULTS FOR AGENT DESIGN PROBLEMS” 35

fixed, and does not form part of a prob-
lem instance. Equivalent via polynomial time
reductions to x-FDX for history-dependent
environments, and hencePSPACE-complete
for history-dependent non-deterministic en-
vironments, and NP-complete for history-
dependent deterministic environments. (Theo-
rem 3.) For history-independent environments,
Ψ-FDX is in P even if the environment is non-
deterministic, i.e.,X = non-det (Theorem 5.)

Ψ-FEDX for X ∈ {det, non-det}
The agent design problem where a task
is specified as an arbitrary propositional
logic formula which forms part of a prob-
lem instance, i.e., is given “explicitly”.
For history-dependent environments, equiv-
alent via polynomial time reductions to
x-FDX, and hencePSPACE-complete for non-
deterministic history-dependent environments,
and NP-complete for non-deterministic his-
tory dependent environments. (Theorem 3.)
For history-independent environments, how-
everFEDdet i.e., the problem for deterministic
environments, isNP-complete (and hence ap-
parently harder than in the case where the task
specification is implicit). (Theorem 4.)

Ψ-FD
(k)
X for X ∈ {det, non-det}

The agent design problem for non-
deterministic environments andk-bounded
agents, where tasks are implicitly specified
via the propositional formulaΨ – i.e., the
problem of determining whether an agent
exists that will accomplish the task even when
that agent is only allowed to “remember”
the final k states of the environment. For
achievement and maintenance tasks (i.e.,
Ψ = x and Ψ = x̄), Σp

2 for non-deterministic
history-dependent environments (Theorems 6
and 9), and NP-complete for deterministic
history-dependent environments (Theorems 7
and 9).

Ψ-OAD

The oblivious agent design problem for
history-independent non-deterministic envi-
ronments, with tasks specified by a proposi-
tional logic formulaΨ, where the taskΨ is
implicit (i.e., does not form part of the input).
Recall that an agent is oblivious if it is0-
bounded, i.e., if it is permitted no information
about the way the system has evolved at all.
The problem is decidable for all propositional
formulae Ψ, and PSPACE-complete forΨ of
the formx∧ ȳ.

FC

The finite conjunction problem: where we ask
whether there is an agent that can bring about
some “good” state while avoiding some “bad”
state (and hence a special case ofΨ-FD where
Ψ is of the formx∧ȳ). For history-independent
environments, considering reactive agents, the
problem is P-complete for non-deterministic
environments, andNL-complete for determin-
istic environments. (Theorem 12.)

Ψ-SAD

The stochastic agent design problem, where
the task is specified by both propositional
logic formula, (which is assumed to be im-
plicit, i.e., not given as part of the instance),
and a rational numberp in the range[0, 1].
We are asked whether there exists an agent
that succeeds with the task with probability
greater thanp. For non-deterministic environ-
ments, the problem isPSPACE-complete, for
all Ψ. (Theorem 14.) The two special cases of
Ψ-SAD corresponding toΨ = x (achievement)
and Ψ = x̄ (maintenance) are denoted by
ASAD and MSAD respectively.

MAJDdet

The problem of determining whether a major-
ity of agents accomplish an achievement task
in a deterministic environment. The problem
is PP-complete. (Theorem 15.)

REFERENCES

[1] C. Baral, V. Kreinovich, and R. Trejo. Computational com-
plexity of planning and approximate planning in presence of
incompleteness. InProceedings of the Sixteenth International
Joint Conference on Artificial Intelligence (IJCAI-99), Stock-
holm, Sweden, 1999.

[2] R. A. Brooks. Cambrian Intelligence. The MIT Press: Cam-
bridge, MA, 1999.

[3] T. Bylander. The computational complexity of propositional
STRIPS planning. Artificial Intelligence, 69(1-2):165–204,
1994.

[4] P. E. Dunne, M. Wooldridge, and M. Laurence. The com-
putational complexity of boolean and stochastic agent design
problems. In Proceedings of the First International Joint
Conference on Autonomous Agents and Multiagent Systems
(AAMAS-2002), pages 976–983, Bologna, Italy, 2002.

[5] M. R. Garey and D. S. Johnson.Computers and Intractability:
A Guide to the Theory ofNP-Completeness. W. H. Freeman:
New York, 1979.

[6] M. R. Genesereth and N. Nilsson.Logical Foundations of Ar-
tificial Intelligence. Morgan Kaufmann Publishers: San Mateo,
CA, 1987.

[7] M. L. Ginsberg. Universal planning: An (almost) universally
bad idea.AI Magazine, 10(4):40–44, 1989.

[8] D. S. Johnson. A catalog of complexity classes. In J. van
Leeuwen, editor,Handbook of Theoretical Computer Science
Volume A: Algorithms and Complexity, pages 67–161. Elsevier
Science Publishers B.V.: Amsterdam, The Netherlands, 1990.

[9] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning
and acting in partially observable stochastic domains.Artificial
Intelligence, 101:99–134, 1998.

36 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 1, 2003, PP 19-36

[10] M. L. Littman, J. Goldsmith, and M. Mundhenk. The com-
putational complexity of probabilistic planning.Journal of AI
Research, 9:1–36, 1998.

[11] C. H. Papadimitriou. Computational Complexity. Addison-
Wesley: Reading, MA, 1994.

[12] S. Russell and D. Subramanian. Provably bounded-optimal
agents.Journal of AI Research, 2:575–609, 1995.

[13] M. J. Schoppers. Universal plans for reactive robots in unpre-
dictable environments. InProceedings of the Tenth International
Joint Conference on Artificial Intelligence (IJCAI-87), pages
1039–1046, Milan, Italy, 1987.

[14] M. Wooldridge. The computational complexity of agent design
problems. InProceedings of the Fourth International Confer-
ence on Multi-Agent Systems (ICMAS-2000), pages 341–348,
Boston, MA, 2000.

[15] M. Wooldridge. An Introduction to Multiagent Systems. John
Wiley & Sons, 2002.

[16] M. Wooldridge and P. E. Dunne. Optimistic and disjunctive
agent design problems. In C. Castelfranchi and Y. Lespérance,
editors,Intelligent Agents VII: Proceedings of the Seventh Inter-
national Workshop on Agent Theories, Architectures, and Lan-
guages, ATAL-2000 (LNAI Volume 1986), pages 1–14. Springer-
Verlag: Berlin, Germany, 2000.

[17] M. Wooldridge and P. E. Dunne. The complexity of agent design
problems: determinism and history dependence. Technical Re-
port ULCS-01-010, University of Liverpool, Dept of Computer
Science, 2001.

[18] M. Wooldridge and P. E. Dunne. The computational complexity
of agent verification. In J.-J. Ch. Meyer and M. Tambe, editors,
Intelligent Agents VIII: Proceedings of the Eigth International
Workshop on Agent Theories, Architectures, and Languages,
ATAL-2001 (LNAI Volume 2333), pages 115–127. Springer-
Verlag: Berlin, Germany, 2002.

[19] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory
and practice.The Knowledge Engineering Review, 10(2):115–
152, 1995.

[20] C. Wrathall. Complete sets and the polynomial-time hierarchy.
Theoretical Computer Science, 3:23–33, 1976.

