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Abstract—The Agent Design problem involves deter- Wooldridge and Dunne investigated the computa-
mining whether or not it is possible to construct an agent tjonal complexity of the agent design problem in a
capable of accomplishing a given task in a given environ- 546 of different settings, and for a range of different
ment. The simplest examples of such tasks are where an ! .
agent is required to bring about some goal (achievement types of tasks [14], [16]__[18]' The tWO_ most important
tasks) or where an agent is required to maintain some types of tasks they considered weaehievement tasks
invariant condition (maintenance tasks). Previous work (where an agent is required to bring about some goal
has considered the complexity of achievement and mainte- state), andmaintenance taskéwhere an agent is re-
nance agent design problems for a range of environmental 4 ired to maintain some invariant in an environment).

properties. In this paper, we investigate the computational .
complexity of the agent design problem in three further The complexity of these problems was shown to vary

settings. First, we investigate the issue of tasks that are from NL-complete (and hence tractable) in the simplest
specified asBoolean combinationsof achievement and case, to non-recursive (and hence undecidable) in the

maintenance tasks. Second, we investigate the extent toworst, depending upon the assumptions made about the

which an agents information about the history of the  opyironment. The main issues investigated to date relate
environment in which it operates affects the complexity of . LS
to whether or not the environment is:

the problem: in the bounded agent design probleran agent
is constrained to have &), 1, or k > 1 bound on what it is « deterministicor non-deterministidi.e., whether or

permitted to “remember” about the history of the system. not the next state of the environment is uniquely
Finally, we investigate the complexity ofstochasticagent det ined heth ltiol
design problems, where we ask whether there is an agent elermined, or whether multiple successors are

that has a probability of success at leasp. possible);
« history dependentor history independenti.e.,

whether or not the environment is allowed to
observe the entire history of the environment in
order to “choose” possible successors, or whether
. INTRODUCTION just the final state in the history is available); and

N this paper, we are concerned with the computa- « unbounded bounded or polynomially bounded

tional complexity of one particular issue that arises  (i.e., whether any given “run” of an agent is
in agent-based systems [15]: tagent design problem guaranteed to terminate, and, if so, whether it will
This problem can be informally understood as follows:  be guaranteed to terminate after only polynomially
many actions).

Given (representations of) an environmentand  |ntuitively, non-deterministic environments are “harder”
a task to be carried out, does there exist an than deterministic environments, history dependent en-
agent that can be guaranteed to carry out the vironments are harder than history independent envi-
task in the environment? ronments, while unbounded environments are harder
Although related to Markov decision problems andhan bounded environments, which are in turn harder
problems inAl planning, agent design is in fact quitethan polynomially bounded environments. The com-
distinct, being more akin to a game against naturplexity results obtained previously bear out these in-
in which both nature and agent are assumed to hdtions fairly accurately. At worst, the agent design
computational entities; we comment on the relationshipsoblem was shown to be undecidable — perhaps not
to other work in sectioiV/I. surprisingly, the extent to which an environment was
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Index Terms— multiagent systems, computational com-
plexity.



20 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 1, 2003, PP 19-36

bounded was the major factor in determining undestudied and the results obtained.

cidability. Under “reasonable” assumptions, (a non- Throughout the paper, we assume familiarity with the

deterministic, polynomially-bounded, history depentheory of computational complexity [5], [8], [11].

dent environment) the agent design problem for both

achievement and maintenance tasks was shown to be ||, AGeENTS, ENVIRONMENTS, AND TASKS

PSPACEcomplete [14]. The easiest case considerq% this section. we
, present an abstract formal model of

was for deterministic, history dependent, polynom|allyé&ents and the environments they occupy: we then use

bounded environments, for which the achievement a'{'gls model to frame the decision problems we study. The

maintenance design problems were shown to be decid- ; . : )
X o systems of interest to us consist of an agent situated in
able in polynomial-time.

: . L some particular environment; the agent interacts with
In this paper we extend these previous studies in thr ee environment by performing actions upon it, and the
Wayslé. ider rich K ificati Thenvironment responds to these actions with changes in
« First, we consider richer task specifications. Thge 1t js assumed that the environment may be in any
|d_ea 1S to specn‘y tasks agbitrary Bpolean COM- 4 a finite setE = {ep,€1,...,6,} Of instantaneous
::)lnatlorr:s of.ach|evemeknt. and m.]:'?‘"ge”ancf t""Sl‘gkates. Agents are assumed to have a repertoire of possi-
N suc s_e_ttmgs, a_tgs IS Specilied as a 10rMUge 4ctions available to them, which transform the state
of propositional logic: atomic propositions denot f the environment. Lef\c — {ay, a1, ..., ax} be the

sets of 3nvwonment states, pk03|E|t\)/g Ilterte)lls are "g%pite) set of actions. The behaviour of an environment
terpreted as achievement tasks (*bring about one @ yefine by atate transformer functigrr. In our case
these states”), and negative literals are interprete

. . "rqs not simply a function from environment states and
as maintenance tasl@ (av0|d. all t.hese Statesactions to sets of environment states, but fnams and
Thus, fpr examplepvq is a task in which an agent 5 -tions to sets of environment states. This allows for
must either bnng about one of the states denot? e behaviour of the environment to be dependent on
by p, or elseavoid all the states denoted y the history of the system — the previous states of the

» Second, we consider restrictions on the “powers,i-onment and previous actions of the agent can play

of agents. That is, we ask whether there exigyf part in determining how the environment behaves.

“Wekak"f- oigou_rll_gedager?:_s to ?CCOT%"Sh 3 %iven Definition 1: An environmentis a quadrupleEnv =
task (cf. [12]). The specific notion of boundednesge o 'Ac ;) whereE is a finite set ofenvironment

that we consider involves whether or not there exi fateswith & distinguished as thnitial state and Ac

agents. Cap?‘b le of successfully _accompllshmg ﬂ?g a finite set ofavailable actions Let S, denote all
task with givenmemory boundsi.e., bounds on ']sequences of the form:

the length of history they are permitted to recal
in order to ma_lke their decision. As an extremal € Qo € a8y

case, we consider agents that are not permitted to ) o

observe the history at all, and are thus required ¥here & is the initial state, and for each & < E,

make a decision with no knowledge of the way i € AC.
which the system has evolved. Let S be the subset of such sequences that end

Third' we consider variants of tl’mOchastiwgent with a state. Thestate transformer functiom of the

design problem. Previous work only considere@nvironment is a total mapping
agents that were eithguaranteedo succeed with &
the task, ohad at least some chanoé success. In 7S xAC— o(B)
a stochastic agent design problem, we are givenge focus on the the set afins in the environment.
rational probabilityp, and are asked whether thererhis is the seReg,, = UﬁioR(k)- where
is an agent that succeeds with at least probability
P , . R {&} and
We begin by introducing the formal model of agents, ., U U
environments, and tasks upon which our results are
established. We then summarize the results of [14],
[16], [17], and examine the computational complexityA\n environment isboundedif R® = ) for somek
of the agent design problem when Boolean task spemnd unboundedotherwise. We denote bRA° the set
ifications are permitted. We consider bounded agefit- « | r € Ren} SO that we subsequently interpret
design problems in sectidh/, and in sectiorlV, we as a total mappings : R*® — ©(E), i.e., as describing
turn our attention to stochastic agent design problenthe (possibly empty) set of states which may result by
In Appendix, we provide a summary of the problemgerforming the actiorx € Ac after a runr € Rep,.

{r-a-eleer(r,a)}
reR®) {a€AcT(r,a)#0}
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A run, r, hasterminatedif Va € Ac, 7(r - a) = 0. We concentrate on the behaviour of agents which
The subset ofRg,, comprising all terminated runs ishave some bound placed on the number of actions
denotedTgy,. In bounded environments, every run is gerformed. More precisely, given: N — N, the set
prefix of some (set of) terminated runs. of t(n)-critical runs of an agentAg in the environment

Thelengthof a run,r € Reny is the total number of Envis the seC'" (Ag, Env) defined by those runs of the
actions and states occurringiirand is denoted byr |. agent in which exactly(n) actions have been performed

Unless otherwise stated it is assumed that envirogr which have terminated after at magh) — 1 actions.
ments are bounded. Unless otherwise stated the bounding functiom = n

The state transformer function;, is encoded in (with n= |E x Ad) is used.
an input instance by a deterministic Turing machine
description T, with the following characteristics: the I1l. BOOLEAN TASK SPECIFICATIONS

input has the fornt#-e, wherer € R, e € E, and# \yg pyild agents in order to carry oasks for us.

is a separator symbol. The program accepts#€ if  he task to be carried out must pecifiedby us.

and only ife € 7(r). The number of moves made bya, gpyious question is how to specify these tasks.

T is bounded by a polynomiaf(|r|). Using T,, the |, tis paper, we will be concermed withredicate

set of st.ateg(r) can be construpted |E\p(|r\) Steps.  ask specificationsSuch specifications take the form
We view agents as performing actions upon theus 5 predicate over runs, i.e., a condition that runs

environment, thus causing the state of the environmegther satisfy or fail to satisfy. We us& to denote

to change. In general, an agent will be attempting 19 yregicate specification, and writ(r) to indicate

“control” the environment in some way, in order to CarMyfhat runr € R satisfies®. Intuitively, ¥(r) means that

out some task. However, the agent has at best parjgh task specified by is successfully accomplished

control over the environment. . on runr. We are concerned in this paper with the
Definition 2: An agent Ag, in an environmenEnv = representatiorof ¥ as a logical formula.

(E, &, Ac ) is @ mapping A task environmenis a pair (Env, ¥), whereEnv is
an environment, an@ : R — {0, 1} is a predicate over
Ag: Renv — AcU {®} runs. A task environment thus specifies the properties of

The symbol® is used to indicate that the agent ha hf? systnedmatlr;e a}[%ent \r/}/tlllr:nhabltv\(llhie.hthenenvgﬁ?n\:ve"?t
finished its operation: an agent invokes this only o ev')ildaed o ﬁaveeei('ihei fzile)(; or sicciedae?j e the
terminated runs;, € Tgny, an event that is referred to as Juag (e,

. . specification¥).
the agent havingio allowable actionsA system Sys . . . .
is a pair (Env, Ag) comprising an environment and an One final consideration may, informally, be phrased

agent operating in that environment. A sequesce as “what limits (if any) do we W'Sh,)fo pIape on how
Reny U RAC is called apossible run of the agent Ag inIong an agent may take to succeed?” In this context we
thevenvironment Enif consider two basic decision problem formulations:

a) Is there an agent thaventuallysucceeds in its

S=€y-qp-€ -+ task?
o b) Is there an agent the succeeds affemostsome
satisfies number of actions?
1) e is the initial state off, anday = Ag(&); We now define our Boolean task specification language
2) Vk >0, and formulate the decision problems studied. Xgt=
{X1,...,%} be a set oinh Boolean variables. A propo-

Z‘k i ;(ge(oeo (.Igéo ?161 ?4(;1 . '?é;:)l) where sitional formgla\I}(Xn) over X, is inductively defined

It should be noted that, in general, the statBY the following rules:
transformer functiont (with domain R*®) is non- @) ¥(Xs) consists of single literalx(or X wherex €
deterministic whereas agents adeterministic Xn)-

An agent may have a number of different possibleb) ¥(Xn) = ®1(Xn)0®2(Xn), whered € {Vv,A} and
runs in any given environment. We will denote by @1, 2 are propositional formulae.
R(Ag,Env) the set of possible runs of ageA in Let|¥(X,)| denote the total number of occurrences of
environmentEnvand byT (Ag, Env) the subset of these literals in ¥, andfy the Boolean logic function (of
that are terminated, i.e., belong Ten. An agent,Ag, variables) represented hly. We say thatl(X) is non-
must define some allowable action A, for every run trivial if fg is not equivalent to a (Boolean) constant.
in R(Ag, Env) \ Teny, 1.€., agents may not choose to halt Definition 3: Let Env = (E, ey, Ac,7) be an envi-
arbitrarily. ronment with state seE and actionsAc. Let S =
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(E1,Es,...,Ey) be an ordered collection gfairwise o (py Ap2)V (P2 A P3)

disjoint subsets of (note thatS doesnot have to be a This task involves either achievirgg and note; or
partition of E) and ¥(X,) be a non-trivial formula. else achieving; and note;. Since there exists an
If r € Renv is a run, then the instantiatiori(r) = agent that can achiews and note;s, there exists
(by,bs, ..., by) of Boolean values toX, induced by r an agent that can succeed with this task.
is defined by: We consider two decision classes of agent design
1 if r contains some staec E; problem: design tasks witimplicit specification and
bi = { 0 if r does not contain any stagec E;. design tasks withexplicit specification.

Definition 4: Let ¥ be a non-trivial propositional
formula of n variables. The decision problefimite W-
'Design (U-FD) takes as an instance: an environment
Eny, andS, an ordered collection af pairwise-disjoint
subsets oE. U-FD((Env, S)) returns “true” if and only
if

A run, r, succeeds with respect ® if fy(5(r)) = 1.
A task specificatiorfor an agent in an environment
(E, ey, Ac,7) consists of a paifS ¥) whereS is an
ordered collection oh pairwise disjoint subsets df
and ¥ is a non-trivial formula o variables.
An agent,Ag, satisfies the task specificatid8, ¥) if
and only if JAgVr € CIBXAY(Ag ENY)  fy(B(r) =1
vr € T(Ag,Env) fo(B(r)) = 1 It is import'a'nt to note thatr is'not part of the instance:
Example 1:Consider the environment whose stat§ach specificl defines a design task for agentsHnv.
transformer function is illustrated by the graph idn contrast, we have the following decision problem.
Figurel. In this environment, an agent has just four Definition 5: The decision problerfinite Agent De-
available actionsd; to a4 respectively), and the en-Sign with Explicit Task SpecificatiofFED) takes as
vironment can be in any of six Statego(to e5)‘ an instance: aon-trivial prOpOSitional fOfmUl&I/(xn),
History dependence in this environment arises becau@@ environmen€ny, andS, an ordered collection af
the agent is not allowed to execute the same actiirwise-disjoint subsets & FED((V, Env, §)) returns
twice. Arcs between states in Figuté are labelled ‘true” if and only if
with the actions that cause the state transitions — note
that the environment is non-deterministic. Suppose that A9V € CEXAd(Ag.Eny)  fy(A(r)) = 1.
we allow three primitive proposition letters to be used: We employ the following shorthand in order to
p1, P2, Ps, Wherep; corresponds to environment state§iMplify subsequent notation. F& < {V¥-FD, FED}
{ex}, po corresponds to{e;}, and ps corresponds to andX e {del;_ nondet}_we denote byQx the deC|_S|on
{e;}. Now consider the following task specifications: ProblemQ with 7 having the propertyX when given
. D1 as an mstance.. For exampIEEI_:)det d_enotes .the de-
This is an achievement task with goal stafes}. cision 'prolblemFlmte Aggqt DeS|gn with Explicit Task
Sincep, corresponds tde; }, an agent can reliably SPecification for deterministic.
achievep; by performinga;, the result of which
will be eitherey, e, or &;. If e; results, the agent A. Computational Complexity Results
can performuy to take it toes and thenos to take ] )
it to e,. If e, results, it can simply perform. WooIdr.ldge and Dunne [14], [16], [17] considered
. D the special case¥(x) = x and ¥(x) = X. In [17]
This is essentially a maintenance task with bail® Setting in which no restriction is placed on the
states{e,}. Since the agent must perform eithepumber of acthns that_a successful agent is a_llowed,
ap OF aj, NO agent can guarantee to aveid was al_so considered, i.e., the proble\ﬁ(x)—Deagn
« PV Do whose instances are paifEnv, S) with Sa subset oE

Since there is an agent that can be guaranteed%ﬂcemed with the question of whether an agent exists
succeed with tasky, there is also an agent thatthat is guaranteed to reach at least one (respectively,

can be guaranteed to succeed with task/ ps. avoid all) of the states is. Theorem 1 summarises the
« PLAP: results proved in [14], [16], [17] for these special cases.
This task involves achievingoth & ande;. There ~ Theorem 1l:Let U(x)-Desigre  (resp.,
is no agent that can be guaranteed to succeed witiiX)-Desigrr=°) denote the cases in which unbounded
this task. environments may (resp., may not) occur as instances:
o PLA(P2VPs3) a) x-Desigr® is recursively enumerable but not re-
This task involves achieving, and eithere; or e;. cursive.

There exists an agent that can successfully achievb) x-Desigri© is not recursively enumerable.
this task. c) ¥(x)-Desigr~*° is recursive.
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Fig. 1. The state transitions of an example environment: Arcs between environment states are labelled with the sets of actions correspondi
to transitions. Note that this environmenthgstory dependentbecause agents are not allowed to perform the same action twice. So, for
example, if the agent reached stateby performingag thenas, it would not be able to perform again in order to reachs.

d) For any total recursive functiog : N — N any non-trivial¥. Given an instancéEny, S) of ¥-FDx,
and any deterministic Turing machine progrdin form an instanc€Enva, G) of x-FDx by adding a new
deciding ¥ (x)-Desigr>: M exceedgy(n) moves state {accept and action{test. The setG contains
for infinitely many n, wheren is the number of the single statéaccep}. We then modify the transition

bits encoding an instance. function for the instance o¥-FDx so that if a rurr has
For the case ofinite design problems. fu(B(r)) = 1 then7a(r - tesh = {accept. In this way
e) ¥X € {det nondet} x-FDy =, x-FD any instance off-FDx would have true returned if and
f) W(x)-FD is PSPACEé(;r‘;]Oéete X only if the constructed instance also has true returned.
non-det . -

g) ¥ (X)-FDget is NP-complete.
Finally, if 7 is history independenti.e., the next ,
environment state is dependent on the current state arfd ¥ ~FDnondet iS PSPACECOMPlete.

chosen action only (not on the sequence of states an® ¥-FDet is NP-complete.
actions by which it was reached). Proof: Immediate from Theorem 1(f,g) and The-

orem 3. n
Theorems 2 and 3 extend the results of Theorem
1 (a,b,f,g) as regards environments in which the state

Our principal concern in th|s section is to generallzferansition function idhistory-dependentor the remain-
Theorem 1 to arbitraryn variable propositional func- der of this paper we deal with the remaining cases in-

tions. To begin, we 'note the following genergl!s'anor\} Iving history independent. In ahistory-independent
of Theorem 1 (a,b), in the case when the definition of . - .
o i . . environment, the transition functiom, acts upon the
U-Designis modified to apply in unbounded environ- . .
. - . current state and action to determine the next state of
ments with no restriction on the number of actions

agent can perform 61trP1e environment. In such environmentpresented as a
' : .. directed graphH(V, A), whose verticesy, are labelled
Theorem 2:Let W-Desigr® denote the decision graphti (V, A) v

problem ¥-Designwith instances ofunboundedenvi- ggglﬁar;vgogrgin;rgﬁtzs tgn(;j :? (\;vhécr;(t;\es |s| na:]e_edge
ronments allowed. o : : e
) _ o S taining the assumption that environments are bounded,
a) W-Desigr* is recursive if and only ifl is trivial. it follows that H(V, A) is anacyclic directed graph.
b) W-Desigr is recursively enumerable if and only  For the case of arbitrary non-trivial formulag, we
if fy is monotone. have:

We now show that.the' deusmq problenisFDx an.d. Theorem 4:1f 7 is history-independent, theREDget
FEDx are polynomial-time equivalent to the decisiong NP-completd.
problemsx-FDx andx-FDy, irrespective of the specific
non-trivial ¥ concerned.

Theorem 3:VX € {det nondet}, If ¥ is any non-
trivial formula,

Corollary 1: For any non-trivial formulal,

h) W(X)-FDnorrdet iS NL-complete.
i) W(X)-FDget Is P-complete.

Proof: We first show that any instance
(¥(Xn), Env, S) of FEDget having a history independent
transition function can be decided mpP. An NP al-
gorithm simply guesses which actian € Ac (if any)
U-FDy =, x-FDx : FEDy =, x-FDx to perform in each state. In the graph(V,A) these

Proof: We omit the full technical details and | , _
To be strictly accurate, we defingln),>1, a sequence of non-

simply outline the construction establishiSgFDx <p  tivial n-variable propositional formula’n, such that the decision
x-FDy, i.e., that¥-FDx is “no harder” tharx-FDy for  problemFEDge(¥n, Eny, S5) is NP-complete.
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choices determine a single path (sincés determinis- if there is a directed path frons to t containing at
tic). Evaluatingfy (X,) for this path is easily done in most one vertex from each pair @ for the instance of
polynomially many steps in®| + |[Eny. PFP-DAG.

To show thatFEDge; for history independent is Suppose such an agent exists. Its actions define a
NP-hard we use a reduction froPaths with Forbidden directed path from the initial states)(to some final
Pairs restricted to directed acyclic graphsPFP-DAG. state. This path must contain the state corresponding
An instance ofPFP-DAG consists of a directed acyclicto g (since this is them + 1'st variable, z, used in
graph G(V, A), two specified vertices,t € V, and a defining¥). Consider the corresponding path frain
collection G(V,A). This path must contain the vertéxsince the

stateg reached by the agent can only be accessed from
C={(ar, ), (2,b2), ..., (8, b} the state corresponding toin the en\):ironment. Thus
of pairs of vertices i'V. An instance is accepted if therethe agent describes some path frero t in G(V, A).
is a path froms to t in G(V,A) that containsat most This path cannot contains both vertices from some pair
onevertex from each pair irC. (&, by): for if x, x were the propositional variables

Given an instancéG(V,A),s,t,C) of PFRDAG we associated with these, theh(Xm.1) would be false

construct, in time polynomial ifA| + |C|, an instance under the instantiation induced by the agent due to the
presence of a clause equivalentte x;. It follows that
(¥(Xn)e.c, ENV. S from an agent satisfying the specifi():(Jation we can find a
of FEDge; for which 7 is history independent and therepath fromsto t in G(V, A) meeting the forbidden pair
is an agent satisfyin@ (X,) in Envif and only if there requirements.
is a path froms to t in G(V,A) that contains at most  On the other hand, suppo§V,A) contains a path

one vertex from each pair i@. from s to t containing at most one vertex from each
We setEnv = (E, ey, Ac,7) whereE = V U {a}; pair in C. From this path we can construct a sequence
Ac={ay,...,aq4,ad+1}, Wwhered is the maximum out- of actions for each state, (the action corresponding to

degree ofG(V, A). Forv with out-degreek in G(V,A) the out-going edge from each vertex on the path). The

and eachy; such that{v,v;) is an edge ofG(V,A) we agent thereby defined reaches the stadéed carrying

set 7(v, ;) to bev;. An additional action influences out the actionag.; completes the transition into the

only the vertext: for this we have a single actiong,; required final statey. |

entering the final statq. Finally the initial stateg; € E We now consider theW-FDporget problem for

is set to the state corresponding to versexf G(V, A). history-independent environments. First, some technical

The graphH(VU{&}, A) defined is identical t&(V,A)  definitions are required.

(with the addition of the(t, &) edge), and has at most Definition 6: Let E be a set, le6= (E;,...,E,) be

one out-going edge from any vertex labelled with an ordered collection of pairwise disjoint subsets$of

given action. let e € E and let¥ be a Boolean formula over the set
The formula ¥ constructed for the instance usegXxi,...X,,X,...,%}. We define the Boolean formula

| UL, {&,bi}| + 1 variables, where is the number of ¥ (S e) as follows. Expres® in DNF as

pairs inC Let (An, By, 2) denote the resulting variables

(where it may be the case that,|, |B,| < nor A,NB, # U="01v...V¥,

0). With these, where eachU; is a conjunction of elements of
n - {X1,. X0, X1, ..., % }. We define?(Se) =9, Vv...V
U(Ay,Bn2) = z A /\ (& Vv by) U}, where eachl] is defined as follows. I& € E for
i=1 any literalx occurring in¥;, then we definel{ = false

The final stage of the construction is to define the sHtnot, ande € E;, for any literal x, occurring in¥;,
of (at most)2n + 1 pairwise disjoint subsets d that then U] is obtained from¥; by deletingxy,. If neither
form S. Let m be the total number of distinct verticesof these cases occurs, then simply defirfe= ;.
referred to inC (so that¥ depends on exactlyn + 1 Definition 7: Let Env be an environment with state
variables). Then§ = {a} (if i is odd and the vertes; setE and lete € E. ThenEnvVe) is the environment
does not occur in any pal; € Cwithj <i); § = {bj} identical to Env except thate is the initial state of
(if i is even and the vertdy does not occur in any pair Enve).
G, € C with j <i); andSn1 = {&}. The construction The motivation for these definitions is the following,
ensures that any state (i.e., vertex) occurs in at most ozsily proved result.
S set. Lemma 1l:Let Env = (E, ey, Ac,7) be a history-
We claim that an agent satisfying the specificatiomdependent bounded environment with statec E
U (Xmt1) in the environment just defined if and onlyand leta € Ac. Let S = (E4,...,E,) be an ordered
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collection of pairwise disjoint subsets Bfand let¥ be of the agent design problem assuming some precise
a Boolean formula over the sék;,... %), %i,...,%}. bounds on the complexity of the agents to be designed.
Then there is an agenAg solving the problem That is, we ask whether there istmundedagent to
U-FDnorrdet fOr the instancelEnv(e), S) and satisfying accomplish a given task, where the notion of a bound
Ag(e) = « if and only if there is an agent solvingis given a precise meaning.
the problem¥-FDyon-det for the instancéEnu(f),S) for  The idea of considering bounded agents arises from
every statd € 7(e a). the literature on autonomous agents, where there is a
This result then allows us to establish the following. well-known distinction between what are often called
Theorem 5:The W-FDnonget problem for history- deliberative or cognitive agents [6], andbehavioural
independent environments is m or reactiveagents [2]. Deliberative agents are typically
Proof: Given a history-independent bounded enviassumed to employ explicit symbolic representations of
ronmentEnv= (E, &y, Ac, ) and an ordered collection their environments, and generally make decisions about
S= (Ei,...,En) of pairwise disjoint subsets &, the what action to perform by manipulating these represen-
algorithm below defines a predicate tations, typically by means of symbolic reasoning. It is
now widely accepted that both approaches have merits
and drawbacks: deliberative, logic-based approaches
for every statee € E and boolean formula over the benefit from a clear theoretical underpinning, and have

evale, ¥) € {true, false}

set{Xy,...%nXi,...,%}, such thatevale, ¥) = true an associated engineering methodology, but are com-
if and only if there is an agent solving the problenputationally costly; in contrast, reactive agents tend to
U-FDyon-det fOr the instancgEnv(e), S). be economical in their use of computational resources,

1) For every pair(e, ) such thate is a sink in the and are frequently very robust, but often suffer from the

acyclic directed graph defined tBny, and define lack of an engineering methodology. Little research has
evale, ¥) = true if and only if the pz;the satisfies addressed the relative merits of the two approaches from

0. the standpoint of computational complexity, although
2) Let the setx C E; initially set X to be the set of Russell and Subramanian made important steps in this

sinks in the acyclic directed graph defined gy, direction [12]. o

3) Choose a state € E— X such that every stafefor More formally, rather than considering “perfect re-
which there is an edge —, f for somea € Ac, Call” agents, which prescribe an action for every pos-
lies in X. sible run, we considereactive agentshat prescribe

4) For every Boolean formuld, defineevale, ) = actions predicated on sonwenstant lengttsection of
true if and only if there existsx € Ac such that its current run: thus &-reactiveagent’s action follow-

there is an edge —, f. k state/action pairs irr rather than its entirety. The
5) Add eto X. primary virtue ofk-reactive agents is that their programs
6) Go to (3). can always be implemented (at worst) by a look-up table

By Lemmall, the algorithm computes the functionOf length O(nX) wheren is the number of state/action

eval correctly. The loop in steps 3 to 6 cannot bgairs. (For a serious proposal to implement agents in

executed more thakE| times, thus the algorithm requires'[hIS way, see [13], and for a critique of this proposal,

only polynomial time. s seel7l)

IV. BOUNDED AGENT DESIGN . .
) ) A. Reactive Agent Design
Thus far, we have said nothing about how agents

might actually beimplemented— instead, we have The first bound we introduce requires agents to make
viewed them as simply abstract mathematical structurésdecision about what action to perform basedy on
Ideally, we would be able to say something precisé@e current state of the environment. Following the use
about how hard it wam practiceto actually implement of the term in the literature on autonomous agents, we
an agent for a given task in a given environment. Butefer to such agents asactive[19].

just as the theory of computational complexity does not Example 2:To better understand our notion of re-
really have anything to say about how hard it is tactive agent, recall the environment whose state trans-
implement programs for specific problems in generaiormer function was illustrated in Figui® Now, con-

so we cannot really address this problem with theider the achievement task with goal stafes}. There
mathematical tools available to us. However, we can de clearly a reactive agent to accomplish this task,
something fairly close. We now study the complexitylefined by the following rules:



26 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 1, 2003, PP 19-36

can be decided im. Moreover, (Env,G) is a positive
(1)

& — oy instance ofx-FD, ¢ if @and only if

& — o Juag:E — Ac Vr € C"(Ag,Env) ((Env,G), uiag,r) € S
& — .

& — and hence decidable by program.

To show that the problem i&b-hard, we give a
reduction from theXb-complete problemQsAT,. An
r, ' € R(Ag,Env) such thatlast(r) = last(r’) it holds instance of this is a Boolean formula(X,Y) over
that Ag(r) = Ag(r’). disjoint variable setsX,Y with |X| = |Y| which is
Thus, a reactive agent, considers only its current stgtgcepted iBaxViyp(ax, fy) holds, i.e., there is some
in choosing which action to perform, not the histor};nstantlatlon {x) of X under which all instantiations

Formally, we have the following.
Definition 8: An agent,Ag, is reactiveif for all pairs

leading to this.
It is important to note that there are environmen

and tasks for which there exists a successful agent®Ven an

(in the general sense), but for which no successf

(Bv) of Y renderp(X,Y) true. Thex)-completeness of

{QSAT, was demonstrated by Wrathall [20].

instance, p(X1,..., %, Y1,---,Yn) Of
ISAT,, we construct an instancgEny,,G,) of

8

. . . 1) —
reactive agent exists. Moreover, the requirement thatFPnonger @S follows. ForEnv, = (E ey, Ac,m) we
an environment is history independent is not sufficie®€t

to guarantee the existence of a successful reactive ag
for any given task. That is, there are history independe
environments and tasks for which there is no success

reactive agent, but there is a successful non-reactivgw

agent — Exampl&, below, illustrates this.
While limiting our attention to reactive agents has th

disadvantage that potentially successful (non-reactive
agents may be overlooked, a significant gain is that th

“program” for such agents requires (at mast)log |Ac|
bits: the single action associated with each stat&.of

Assumingr to be history-dependent, we denote by

Q&l) the decision problenpx when solution agents are
required to beeactive

We recall that the complexity clasg) comprises
those languaged,, membership in which is decidable
by anNP program having (unit-cost) access to an®-
oracle. AlternativelyL is defined via a ternary relation
R. C Wx XxY for which (w, x,y) € R_ can be decided
in deterministic polynomial-time anB_ satisfies,

welL & (IxeXVWyeY (wxy) eR)

-gpV)
Theorem 6:X-FD,-get

is ¥b-complete.
Proof: To show tha1><—FDf13Tdet e ¥f it suffices to
observe that an instandg¢E, ey, Ac, 7), G) is accepted

if and only if there exists a reactive ageAg all of

whose |E x Acl-critical runs pass through an elemenb

of G. A reactive agentAg is defined by a mapping
tag : E — Ac. Let S be the ternary relation

(<EnV7 G)a HAgs r) €S
&
r € CIExAd(Ag, Eny) includes somey € G

whereAg is the reactive agent defined by the mappin
tag- It is certainly the case thdtEnv, G), piag,r) € S

eEt = {X17"'7Xn)y1r’"'7er7yi_7"‘7er]_7T’J_}
MAc = {T,L,—,eval
b, = x
= {T}
ghe transition functiorr(r - a) is
{7y} if last(r) = x anda € {T, L}
{%i+1} if last(r) =y", i <nanda =—
{X+1} if last(r) =y, i <nanda =—
T if last(r) € {yJ ,yx}, o = evaland ((r))
1 if last(r) € {y, ,yx}, a = evaland —¢((r))
0 otherwise,

where(r) is the instantiation of X, Y) defined from

Xl'al'Yfl'_>'X2‘a2"'y5k'_>'xk+1"'04n' ﬁn.eva|

throughx = «j, ¥; = G; for eachl <i <n.

Suppose (Env,,{T}) is a positive instance of
x—FDf]fJ)n_det, i.e., there is a reactive agermhg, whose
every critical run reaches the state. Consider the
mapping nag : E — Ac defining this agent. It is
certainly the case thatuag(x) € {T,L} for each
X € E. Furthermoreyuag(y;') = pag(y;") =— for each
1 <i<n, andupg(yn) = pag(ys) = eval being the
only allowable actions in these states. If we consider any
critical run, r, of this agent then it ends in the state
and hence the instantiation ¢X,Y) induced by (r)
satisfiesp(X, Y). Thus setting = pag(X) yields an
instantiation ofax of X for which Vgy¢(ax, By) holds.
n the other hand ifp(X,Y) is a positive instance of
QSAT,, witnessed by a settingx = (a1,...,an) €
(T, L) of X, then the reactive agent defined by

o if ee{X,...,%}
pag®) =q — it ee{yl ¥, Va1, Yaa)
eval if ee{y .y}

glways achieves the staf€ and hence witnesses a

o (1)
positive instance 0k-FDp gy, e ]
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Theorem8 indicates that deciding if a reactive agenit holds thatAg(r) = Ag(r’).

exists is, under the usual complexity-theoretic asve denote byQl the agent design problemy in
sumptions, significantly “easier-complete) in non- which solution agents are required to beeactive.
deterministic cases than deciding if an agent given the Theorem 8:For eachk > 1, andX € {nondet det},
freedom to determine actions by its entire history Ca}@-FD§<1) =log FD)((k)_

be used #sPACEcomplete). In contrast, our next result Proof: We first show thalx—FD§<1) <log X_FD)((k).

shows that fordeterministicenvironments, there is N0 oy instance of the former consists of an environment
difference in comp(lle)x_lty for these cases. Env and subseG of E. We define a new environment
Theorem 7:x-FDge, IS NP-complete. _ _ Env as follows. The basic idea is that every state in
Proof: Membershlp)) INNP is obvious: given an in- gy, corresponds to a sequencelostates inEnv. For

1) . .
stance(Eny, G) of x-Fo, simply non-deterministically every statee of Eny, the new environmenEnv has

guess an action for each statemwiy, to define a reactive statese(1), ..., e(k). The initial state ofEnV is (1)
agent. Sinc&nvis deterministic, this agent determine§yeree,. as usual, is the initial state &nv. Env has
a unique run so it suffices to check whether this containg, actiony in addition to all the actions oEnv, and

a state inG. _ _ its set of legal runs is defined as follows. Suppose that
To proveNnp-hardness, we give a reduction fr®AT.  £qy has a runey - o - € - - an_1 - &, thenEnV has
Let ¥(x1,...,%) be an instance oBAT. We define 5 runey(1) - p-eo(2) - e(K) - ao - € (1) - an_r -
an instance(Eny,, G) of XFDc(jle{ with Env, having g (1)...e,(k). Observe thaEnV is deterministic if and
state sefx,..., %, T, L}, initial statex;, and actions gy if Envis. It is easy to see that a reactive agent for
{T,L}. The transition function is given by(r - a) = Eny exists whose runs pass contain a stat&iif and
i1 if last(r) = x andi < n; if last(r) = x, then only if a k-reactive agent folEnV exists whose runs
T(X1 - Q1 - Xoovz -+ Xn - an) = (v, . . ., an) contain a state ir{g(&) ...9(k)|g % G}.
] i o To show thalx-FD§< <log X-FDy ’, given an instance
It is eas%/ to see thaEnvy, {T}) is a positive instance (Env,G) of the former, we can create an instance
of ?"F.Déez if and only if the formulay(x, ..., %) IS (Env,G') of the latter in which each state d&nv
satisfiable, proving the theorem. B corresponds to each distinct seqeunce of at rkestl
We note the following easy corollaries of TheoreB)S.  4ctions andk states inEnv. We omit the details of the
Corollary 2: straightforward simulation establishing thak-aeactive
8) U-FD{L) 4ot IS h-complete. agent solvesEnv,G) if and only if a reactive agent
b) \I/-FD((,Q is NP-complete. solves(Env, G'). [
Proof: The proof derives from the constructionsie thus obtain the following.
in [4]: we omit the detalils. ] Corollary 3:

a) U-rDY . is SP-complete.

B. k—Reac_u_ve Agent Design _ _ _ b) \I/-FDéke)t is NP-complete.
By requiring agents to specify a single (re)action for  proof: Immediate from Theoren-8 above. m
each state, we gain a guaranteed “short program” if
an appropriate agent exists, but at a potential cost of o .
missing alternative solutions when no reactive agent & Oblivious Agent Design
possible. It might be the case, however, that while an e concept ofk-reactive k > 1) agent offers
agent reacting to its current state only cannot be founghe mechanism by which “concise” solutions to agent
there are agents solving a specified design problefasign tasks may be described in history-dependent
that, need only specify actions predicated on the laghyironments. We can also, however, consider a superfi-
k action/state pairs in a run, without having to examingia|ly similar idea — that of ambliviousagent solution.
their whole history. Such k-reactive 2gents can be |nformally, an oblivious agent is one which takes no
described by programs of “5|ﬂ(|E”><Ac| log|Ad]) bits,  account of its current state in choosing an action, only
and thus are realistic for “small” values &f We now o the numberof actions its has performed so far. Thus
consider this generqhsatmn of the concept of reactivity,e might regard an oblivious agent (with respect to our
to encompasé-reactive agents. concept of reactivity) as being)*reactive”.
_ Definition 9: Given an environmenEnv and a pos-  gyample 3:Recall again the example presented ear-
|t/|ve integerk, an agentAg is k-reactive if for allt, jier |y this environment, there is an oblivious agent
I € R(Ag, Env) with to accomplish the achievement task with goal states
r = S Q- @ikt {e1, e}, by simply performingay.
' = - q--8ik1 More formally, we have the following.
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Definition 10: An agent,Ag, is obliviousif for all Any environment of this form is naturally modeled
pairsr, r' € R(Ag,Env) if |r| = |r’| then Ag(r) = by adirected graph HE, A) whose vertices correspond
Ag(r’). to the possible states and in which there is an edge

Thus, in settings where agents must cease their ofgr, ) labelled « € Ac wheneverg € 7(g,c).

erations after some (maximum) number of action§)blivious agents in this setting may be regarded simply

m say, an oblivious agent is specified by a mappings mappingsAg : N — AcU {®}. Of course, in non-

w: {1,2,...,m} — Ac describing what action is to deterministic environments, it could happen that such an

performed at each stagerom the initial statei(= 1) agent reaches different statesand g after k actions

onwards. For the design problexarpx on which we are performed, but these are such that

have f w n intr n oblivi varian

foallloivso.cused e can introduce an oblivious variant as (6, Agk+ 1)) £0 : r(e,Agk+1)) 0
Definition 11: An instance of theoblivious achieve- |t is convenient to pre-empt this possibility by adding a

ment desigrproblem &Fpy”) consists of an environ- “special” deadstate g, to the environment such that for

ment Env = (E, &), Ac,7), a subsetG of E, and a each pair(e, o) € E x Ac, shouldr(e, o) = ), then the

positive integerm. An instance is accepted if there isdirected grapiH (E, A) contains an edgée, &) labelled

a mappingw : {1,2,...,t} — Acsuch thatt < mand «; additionally there are edge®;,e;) labelled o for

for Ag, the agent defined by eacha € Ac. It is noted that we neither require nor
: assumeH (E, A) to beacyclic
Ag,(r) :{ w((rl+1)/2) :]: m § g:_ 1 The most “general” form of the oblivious agent
® = design problem that we consider in this context of

then every rum € R(Ag,, Env) contains some state of history-independent, non-deterministic environments is
G. that defined below.
An oblivious agent can be specified using at most Definition 12:Let ¥(xi,...,x) be a (non-constant)
mlog, |Ac| bits, and thus ifn < |E x A/ may represent propositional _Io_glc function of v_arlables. An instance
a significant saving over evenreactive agents. of the W-Oblivious Agent Desigrproblem (¢'-0AD)

From our earlier results, however, it turns out thatOnSists of: an edge-labelled directed graplE, A) as
deciding if oblivious agents exist is “no easier’ tha''SIN9 from a hlstory-lndependent,. non-detgrmlnlstlc
deciding if reactive ones do. environment(E, ey, Ac, T_>;_and a partial mz_;\ppmgﬂ :

Theorem 9: E — {xi,...,%} associating each state with (at most)
0) op one variableg of . An instance is accepted if there is a

a) X'FD?g)rrdet is X3-complete. valuen € N and an oblivious agemtg: N — AcU{®}

b) X-FDye; is NP-complete. for which

Proof: For (a) the reduction of Theorefis used
to construct a instance ocﬁFDf]g)n_det in whichm= 2n.
It then suffices to observe thatactions are determined
on odd indexed moves and the only applicable actiorand ifr = e, s, - S, - - Sy iS any sequence ah+ 1
on even indexed moves are and (finally)eval Thus states traversed bgg in H(E,A) then U(x(r)) = T,
an oblivious agent can be specified if and only if thevhere ¥(r) is the instantiation ofxy, ..., x) defined
instance ofQsAT, from which (Env,, G, 2n) results through:x. = T if any state,e with II(e) = X occurs
would be accepted. The proof of (b) is similar. ® inr; x = L if no such state does.
So far we have considered only agents that must realiser reasons of limited space the following results are
their specified task (whether achievement or mainteserely stated without proof.
nance) within some limited number of actions, i.e., with Theorem 10:For all  propositional  functions
respect to the critical runs of lengtg x Ac|. Of course, ¥(Xi,...,X), the problem¥-0AD is decidable.
within deterministic environments even using oblivi- Theorem 11:(x; A X2)-OAD is PSPACEhard.
ous agents, determining whether there exists an ag&ume remarks regarding the relationship between The-
that “eventually” realises an achievement task is easiyem (11 and Theorem9 may seem in order: the
shown to be undecidable. This situation changes wh&rmer appearing to claim that the history-independent
we consider agents operating in histanglependenén- version of a problem is rather more difficult that its
vironments, i.e., where the change in environment statéstory-dependent counterpart. The important difference
specified byr depends only on its current state and thbetween these two cases is that, in contrasttoAD,
action chosen. We conclude this section by presentiag instance ok—FDﬁnget include a stated bound on
some results concerning oblivious agent design taskstire number of actions an oblivious agent is allowed to
history-independemnton-deterministienvironments. perform: in U-0AD whether any such bounekistshas

Agm)eAc if m<n
Agm=® if m>n
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to be decided. As we noted earlier, the “exact” analgowmes not pass throudB, contradicting the hypotheses.
of W-oAD for history-dependent environments is, in [ ]
fact, undecidable, hence the relevance of Theoit€m We can now prove the following.

Theorem 12:If the state transformer function is

D. History-Independent Environments and Reactiv@storyqndependent, then:

agents a) FCget With respect to reactive agents isL-

. - . _ complete.
We write FC to refer to thefinite conjunctiorproblem: | FCnondet With respect to reactive agents i

in such a problem, we are given a set of “good” states, complete.
and a set of “bad” states, and asked whether there
exists an agent that can bring about a good state while_ . . .
avoiding all bad states. Clearbc is a special case of 3) ﬁlv;:n ?]n mstarll_céljnv, G’? of tT]'S dp;pblzmﬁ, let
W-FDponget in Which the formulaV is of the formxAy. e the acyclic |re(_:te_ graph detined byw

Definition 13: Given an environment Env — — with all states inB and incident edges deleted. We
(E, &, AG, ) aﬁd setsG,B C E, we say that an prove that problem is solvable iRL-space first.
agentAg solves the Conjunction problem for the tuple Aslsurtr)}e Ilrsttr:th t: {g}. Then tBhe'fprogleml IS
(Env, G, B) if every run of (Env,Ag) passes througks solvable Tor the ins anceEnv,l{g}, ) if an only
and none passes through if there is a directed path _nh-l frqm the |n|t|al_
In this subsection we consider the problem under the s:aftgn(sznv :g g ;r:]dk t:qeéiV'SBitg'rerct;fgrg:tgrg]
restriction that the agent is reactive, and the environment decidabl{eg}inNL—s ace [11 ' 308] pand thus. the
is history independent. In one sense, this captures the b » P ’

idea that the agent and environment have the “same ?—gnsey:ﬁi,\,p;ﬁgltetrﬂeforrgg?let:ﬁrﬁL“.ess ;r::éhlhsafcliassﬁ-
power”. Our first result is as follows. P P '

Lemma 2:Let Env — (E, ey, Ac, ) be a history- serve that the graph reachablity problem for fi-

independent bounded environment and &B C E. nite directed gr.aphs, which ISL-space hard [11,
: : p398], can easily be reduced to an instance of our
If there exists an agerfg solving FCnonget fOr the

instance(Env, G, B), then there exists eeactiveagent problem for whichB [Z)'. .
: ; . b) By Lemma2, the restriction that the agent be
solving this problem for the same instance. . . -
, : . reactive may be ignored. Thus membershiprin
Proof: It suffices to prove the following; given

an agentAg such that every run throudginv permitted follows from Thegrens. The proof ofP-hardngss_
- S . follows a reduction from the monotone circuit

by Ag ending at a sink in the directed graph'V, A) reduction problem
defined byEnv passes througi® but not throughB, '
there is a reactive ageAtsatisfying this condition. We . . =
defineA as follows; lete € E. If no run permitted by Lemma? does not generalise to arbitrary formulae.
Ag ends ate then define the actiod(e) arbitrarily. If e now give an example to show that the requirement
there does exist a run permitted By and ending ag, for an agent to be reactive is a real restriction for
but all such runs pass throughat some point, let be W-FDnordet.
any such run and defin@(e) = Ag(r). Lastly, if there =~ Example 4:Let Envbe the (history-independent) en-
is a runs permitted byAg and ending ag, which does Vironment with state seftey, . .., &}, of whichey is the
not pass througi®, defineA(e) = Ag(r). initial state. Env has action sef«, 3} and transition

Given a runr permitted byA which passes through function = given by 7(ey, o) = {er, &}, 7(e1,a) =
the statesey,...,e, in succession, the following is 7(&,@) = {&s}, T(es, ) = {e&}, 7(es,0) = {&}
easily proved by induction on; there is a run permitted @nd 7 returns the empty set in a_II qther cases. Consider
by Ag passing through,, and if none of the stateslies the problem(x A y)-FDnorder. This is solvable for the
in G, then there exists a run permitted Ag and ending instance (Env, {1, &4}, {&;,&}), but the only agent
at e,, which does not pass through. From the first Solving it is the non-reactive agemig defined by
assertion, it follows that no run permitted Bypasses Ad(€v, @, €, a, &) = [ andAg(ey, a, &, @, €3) = a.
throughB. To show that every run permitted Bypasses However we do get a partial result.
throughG, assume that this is false. Thus sireevis Definition 14: Let ¥ = x; A. .. XaAXn41 be a formula
bounded, there is a runpermitted byA which passes for somen > 1. The restricted U-FDnor-get Problem is
through the states, . . . , e, in succession, and such thadefined as the normal-FDnor-qet problem, but subject
the last state, is a sink in the directed grapH(V,A) to the additional constraint that for eack {2,...,n},
defined byEnv. From the second assertion above, thet&€ set of states defined by the atomic proposikoim
is a run permitted byAg which ends at the sink, and the particular environment must be a singleton.

Proof:
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Lemma 3:Let Env= (E, ey, Ac, 7) be a history-free Proof: This follows immediately from Lemm3
bounded environment and ldt = x; A ...X; A X41  and Theoren®. [ |
be a formula. LetS = (E;,...,Ey+1) be an ordered
collection of pairwise disjoint subsets & satisfying V. STOCHASTICAGENT DESIGN

[E| = 1 for eachi € {2,...,n}. If there exists an gq far, we have been considering a rather pessimistic
agentAg solving W-FDnor-det for the instanceEnv, S),  npotion of success with respect to tasks: an agent must be
then there exists eseactiveagent solving this problem guaranteed to satisfy its task afi runs, otherwise it is
for the same instance. deemed to be no good. At the other extreme, a rather too
Proof: Given a staté € E, let us call an agent for gptimistic notion of success was studied in [16], where

Env f-reactive if it has the same image for every mun an agent was considered acceptable if it succeeded to
with last(r) = f. SinceEnvis history-free and bounded, accomplish its designated task ah least onerun. It
its underlying graph is acyclic, and so if the agéff was shown in [16] that the optimistic agent design
is not already reactive, then there is a s@such that problem was “easier” than pessimistic agent design:
Ag is not g-reactive, but isf-reactive for every staté versions of the agent design problem that RsPACE
reachable frong in the underlying graph oEnv. We complete are when considering pessimistic agent design
will construct an agendg' also solving¥-FDnondet fOr  are “merely” NP-complete in the optimistic case.
the instancéEnv, S), and which isg-reactive and differs  \whereas the strict, pessimistic notion of success that
from Agonly on runs whose last stategsBy repeating we have discussed so far in this paper is perhaps too
this process we eventually construct a reactive agentstrong, the optimistic agent design problem is too weak.

Letr ands be two runs permitted big and ending at |n practice, we would probably want to know whether
g and leti € {2,...,n}. Suppose that passes through the agent could bexpectedo succeed — that is, given
the singletorE; buts does not. Thus can be extended a rational numbep € [0,1], whether this agent will
to a runss permitted byAg such thats’ passes through succeed with probablity greater than We refer to
Ei. SinceAg is f-reactive for every staté reachable this problem asstochastic agent desigihe critical
from g in the underlying graph dEny, the runrs’ is also  assumption that we must make in order to study this
permitted byAg and passes twice through the singletoproblem is that all (immediate) outcomes of an action
Ei, giving a contradiction since the underlying graph oére equiprobable.
Envis acyclic. Thus we have shown that all runs or no Definition 15: The U-Stochastic Agent Desigorob-
runs ending ag and permitted byAg pass througlE;. lem (¥-sap) takes as an instance an environment

We define the new ageAd as follows. LetAg'(g) = Env= (E, &), 7), state set€,...,E, C E (where the
Ag(r), wherer is a run permitted byAg with last(r) =g formula ¥ is over the atomic propositions, . . ., X»)
chosen as follows. If there is a riawith last(s) = g, and rationalp € [0, 1], and returns “true” if and only
such that all runsss’ permitted byAg pass through if there is an agent that succeeds with this task (in the
an element ofE, after g (that is, s' passes through sense of Definitior8) with probability greater tham,
an element ofg,) then letr = s; otherwise letr be “no” otherwise.
arbitrary. In the former case, every run permitteddy It should be noted that not all runs through an envi-
and passing througb will pass through an element ofronment have the same probability of occurring and so
E; afterg; in the latter case, by the choice Afj, every an agent having a probability of success greater than
run passing throughly will pass through an elementis not equivalento an agent succeeding on proportion
of E; beforeg (or g € E;). If i € {2,...,n}, and p of its runs. To see this, we give an example for
r passes througlt;, then by the observation abovep = 1/2. Consider an environment in which there is a
all runs passing through and permitted byAg pass single actiona which leads to 2 states from the initial
throughE; beforeg; otherwise every maximal extensionstate; one of these has no available actions; the other
of r permitted by Ag must pass thouglE; after g, (for some value) leads to a binary computation tree of
and hence all maximal runs passing throggand and heightk in which all but one of the states at the leaves
permitted byAd pass througtE; beforeg. Similarly, is a state inS: the unique agent in this environment
runs permitted byAg' can be shown not to pass througthas2k + 1 runs of which the majority2¢ — 2) succeed.
Enr1. Lastly, if a run permitted byAg' does not pass The probability of success, however, is less thaa:
throughg, then it is also permitted byAg. Hence we the state with further available actions is chosen with
have shown thatg' solves¥-FDyonget fOr the instance probability 1/2, but with non-zero probability a run
(Env,S), as required. B from this state does not succeed.

Theorem 13:Let ¥ = x; A. .. XaAXny1 be a formula. Definition 16: Let ¥ be a Boolean formula over a set
Then therestricted¥-FDpon-det problem for history-free {xi,...Xm, X1, ..., %n}. The U-Stochastic Agent Design
environments and reactive agents liesin problem -sAD) takes as instance a tup{&nv, S p),
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whereEnvis a bounded environmer= (E;,...,E,) O(nlogn) bits. The depth of the recursion @&(n) and
is an ordered collection of pairwise disjoint subsets dhe computation of¥(S e) requires only polynomial
the state set oEnv and p is a rational number lying space, so the entire procedure can be realised using only
in [0,1]. The problem has answer “yes” if and only ifpolynomial (inn) space. Sinc&lPSPACE= PSPACEthe
there is an agerfg such that the paifEnv, Ag) satisfies membership proof is completed. |
¥ with respect to the set sequenBeawith probability Lemma 5:The MSAD and ASAD problems are
greater thamp. If ¥ = x;, then we refer tol-sAD PSPACEhard.
as the Achievement Stochastic Agent Design Problem Proof: We first give the proof for theAsaD
(AsAD); if ¥ = %, then we refer to?-sAD as the problem, and then give the slight modification needed
Maintenence Stochastic Agent Design Problem4Dp). for the proof forMsAD.

Lemma 4:¥-sAD lies in psPACE for all Boolean We show how the problem aftochastic satisfiability

formulae . (ssAT) can be reduced tasaD. The instance oASAD
Proof: Let (Env,S q) be an instance oft-sap that we will construct will have probabilitg = 1/2. An

and letn = |E x Ac. To show thatW¥-sap € instance ofssATis given by a formula with the form:

PSPACE for each Boolean formul& over the set

{X1,...%m, X1,...,%m} we consider a function Ext 3x1 . RX2.3xX3.RXy - - - QX% (X1, - ., Xn) 1)

— that maps possible runs (ending in a state) femy
to rational values,p, in the rangel0, 1]. This function
Exty(r - €) has valug) if the length ofr - e exceeds. If
not, and ifr(r-e-a = () for all actionsw, thenExty(r-e)
is 1 if the set{e} satisfiesd with respect toS, and0
otherwise. In all other caseExty(r - e) is:

where:

« eachy; is a Boolean variable (it doasot need to
be a collection of variables);

e Ris a “random” quantifier, with the intended in-
terpretation “with some randomly selected value”;
and

e Qis3dif nis odd, andR otherwise.

The goal ofSSAT is to determine whether there is a

strategy for assigning values to existentially quantified

The functionExt(r - €) is the (maximum) probability variables that maked)( true with probability great than

that an agent continuing a rure attains one of the goal % ie., if

states. It follows thatEnv, S g) is a positive instance 1

of U-saD if and only if Ext(ey) > g and so it suffices 3x;.RXe.3X3.RXy - - - QX%,. probp(X, ..., %) = T] > =
. 2

to show that the valu€xty () can be computed in . . N

PSPACE In order to simplify the algorithm presentationwe give an outline of the reduction first. To reduge an

we use anon-deterministicmachine to “guess’ the instancell) to ASAD, we proceed as follows. The idea

maximising action for its input run: certainly there is (afS to create an environment which forces the agent and

least) one pattern of such guesses which will correct vironment to take it in wrns, starting with the agent,

computeExty (). The algorithm is recursive and givent assign values (truth or falsity) to the variables/ly (

arunr - e and a Boolean formulal over the set —th_e agent assigns valuesiaquantifieq_variabl_es, the
(X1, Ym X1, - ¥m} proceeds as follows: envwonment assigns values quqar)tlfleq variables.
The environment is non-deterministic, with the actual
1 _If €[ >nreturn0 else _ L assignment of values done at random. After all variables
o if Vo, 7(r-e-a) = D returnl if the set{e} satisfies 1, e heen assigned values, the environment returns the
¥ with respect taS, and0 otherwise, else _goal state,e”, if the formula (X, X, X, .. ., %) IS
2. Non-determininistically choose an available actloa]ade true by the valuation traced out by agent and
. environment, and a dummy, “fail” state, otherwise.
2.1 count:= 0. Each run thus corresponds to a possible valuation for
2.2 for eachd € 7(r - e- a), the variables, and all possible valuations will be runs.
Eti(s,e)(r e a-d) Recall that the goal of thesaT problem ig to determine
I7(r-e-a) wh(_ather there is a strategy for assigning valut_ag_{o
variables that makes the formula true in the majority of
2.3 returncount runs: this will clearly be the case just in case there is an
It remains to observe that this computation can be cagent that can succeed with the task (make the formula
ried out inNPSPACE only rational values are involved, true) with probability greater thah/2.
and using representation of these by two integer valuesThe details are as follows. For eachquantified
(i.e., numerator and denominator), the value of theariable x;, we create two actionsy,” and o;*, cor-
denominator never exceed8 and so can be stored inresponding to the assignment of truth or falsityxo

1
Z Eth(S,e)(r ‘e d)

max T~ &
wr(rea)#d |7(r-€-a)l | 4=

count:= count+
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respectively. For eacR-quantified variable;, we create {true,false} for eachj # i such that the Boolean
two environment statex-ztj,T andqi, again corresponding formula U[x, — T;;j # i] is equivalent to eithex;

to an assignment of truth or falsity 9. We also create or x,. We will assume the former; the latter case is
three additional environment states, e’ ande', let similar. An instance(Env, (S),p) of x-SAD (that is,

the initial state beey, and let the set of goal statesof ASAD) defines the same answer sAD as the

S be a singleton containing”. The state transformer instance(Env, (S;, ..., Sy), p) does to¥-SAD provided
function of the environment behaves as follows. Thihat for eachj # i, the set§ = E if T; = true and
agent and environment alternate to give valuations to tle= () otherwise, wheré is the state set dEnv. Since
quantified variables, with the agent going first, workinghe instance(Env, (S;,...,Sy),p) can be constructed
from outermost variable to innermost. The agent is firgh polynomial time from(Env, (S),p), and ASAD is
allowed to pick a value fox; by performinga; or PsPAcehard by Lemméb, we have shown thab-sAD

ai, to which the environment responds with eitlegr is PSPACEhard. |

or ef, to which the agent must respond with either You might now expect us to consider thie-SADget

aj or ay, and so on. When all variables have beeproblem, i.e., the stochastic finite agent design problem
given values, the environment responds with either for deterministic environments. For deterministic envi-
if o(X1,X2,Xs,...,X%n) IS true under the valuation tracedronments, however, the stochastic agent design problem
out, ande’ otherwise. For example, the following runis not meaningful: an agent will only ever have one run
in a deterministic environment, and it thus makes no

& —e —e sense to ask whether the agent succeeds with probability
is a run in which the variables, , .. ., x; are assigned exceedingl /2 — its probability of success is eithéror

the values true, true, and false respectively; the enviroh- )
ment indicates that the formula under question is true owever, we can ask a closely related question,

under this valuation. To ensure that the environment c@gMely, do mostagentssatisfy the task in a deter-
always respond with a final valuation, we can “padm|n|st|c environment. That is, given a deterministic
runs by allowing an additional dummy action by th&nvironment and a particular (achievement) task, do the
agent. majority of agents satisfy this task in the environment?
In the MSAD case, the environment constructed i§nother way of looking at this problem is to say that if
identical and the “bad” state set is defined tofe}. W€ selected an agent at random, are the chances better
m than even that this agent would succeed with the task in

Lemma 6:Let ¥ be a Boolean formula over a setthe environment? We call this problemajority agent

{X1,.. . Xm, X1, ...,%n}. If ¥ is not constant (that is, design(MAJD): _ o _
¥ is neither a tautology nor unsatisfiable) then for Definition 17: The Majority agent design(MAJD)
somei € {1,...,m}, there is an interpretatiog, — problem takes as an instance an achievement agent

T; € {true, false} for eachj # i such that the Boolean design task with environmeiinv = (E, &, 7) and goal
formula W[x, — Tj; j # i] is equivalent to eithek or StatesSC E. It returns “true if and only ifthe majority
%. of agents achieve the task, “no” otherwise.

Proof: This follows by induction onm. If the We can immediately show:
lemma is false foii = 1, then for every interpretation ~ 1N€0r€M 15:MAJDget is PP-complete. o
x — T € {truefalsg}|j > 1 the formula [y — Proof:. We must f!rst show' the problem is P.
T, € {true false}|j > 1] over {x;,x} is equivalent The following PP algorithm d_e_c_ldes the problem (see
to eithertrue or false and hence¥ is equivalent to [11, PP.256-257] for the definition of the class):
a non-constant formul& which does not contair; or 1) a computation non-deterministically “guesses” a
;. Thus the lemma follows by the inductive hypothesis run consistent with the state transformer function

applied toW. ] 7 of the environment;
Theorem 14:¥-sAD is PSPACEcomplete for all ~ 2) a computation “accepts” if the task is accom-
Boolean formulasp. plished on this run, otherwise it “rejects”.

Proof: Membership in PSPACE is given by The PP machine accepts if the majority of its compu-
Lemmald. To show pspACEhardness, we first showtations accept. Each different run corresponds to a dif-
that for every Boolean formul&, there is a problem ferent agent. Since we are considering finite runs, each
Q € {AasaDp,MsAD} such that any instance o run is guaranteed to have length at most polynomial in
can be regarded as an instance WfsAD. For this |E x Ac|, the machine decides the problem.
we use Lemme6. We assume thaW is over the  To show that the problem iBr-hard, we reduce the
set {Xq,...%Xm,X1,...,Xn} Of atoms. Thus for some MAJSAT problem [11, p.256]. An instance oiAJSAT
i € {1,...,m}, there is an interpretatior, — T; € is simply a propositional logic formula over Boolean
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variablesxy,...,x,. The goal is to answer “yes” if reflect the complexity of the decision problem, or
the formula is true under most valuations of these whether they are at least in part an artifact of the
variables, “no” otherwise. We create an instance of representation. We have adopted the most general
MAJDget as follows. The idea is that any given agent representations possible, for example representing
simply traces out a valuation for the variables: every achievement and maintenance tasks through sets
different agent thus corresponds to a different valuation. of states, rather than through a particular (e.g.,
Formally, the environment we create has four states: logical) formalism, and consider several possible
{ey,e",e"}, with the initial state beingg,, and the representations of the environment.
statese” ande' respectively used to indicate whether « Most complexity results in planning assume simple
or not the valuation traced out makes the formula true (deterministic, history independent) environments.
or false respectively; the set of goals states is a singletons The focus in the planning literature has been
containinge’. Until the agent has completed assigning  almost exclusively on achievement tasks. We have
values to variables, the environment responds to all also considered maintenance tasks, and elsewhere,
assignments witle,. When all Boolean variables have have considered richer task specifications [16].
been assigned values, the environment responds with
e’ (if the formula is true under the assignment traced ) ) o
out), ore’ otherwise: the run then ends. m B- Relationship to Game and Decision Theory
The MAJD problem gives us a (somewhat crude) mea- In the computational complexity literature, the most
sure of the inherent hardness or easiness of a taskrdfevant problems are those of determining whether
there is a better than evens chance that an agent selectechot a given player has a winning strategy in a
at random will succeed with the task, then the task itsgttrticular two-player gamersPACEcompleteness ap-
must be easy to solve. pears to be the characteristic complexity result for such
problems [11, pp459-480].

VI. RELATED WORK
A. Relationship to Al Planning VIl. CONCLUSIONS ANDFUTURE WORK

In the Al literature, the most closely related work In this paper we have extended the results of [14],
to our own is on the complexity of the planning[16], [17] in three ways.
problem: Bylander was probably the first to undertake First, we considered the specification of task via
a systematic study of the complexity of the planningrbitrary Boolean combinations of achievement and
problem; he showed that the (propositionalJRIPS maintenance problems. It was shown that with history-
planning problem is»sspAcEcomplete [3]. Building on dependent environments the the decision problem with
his work, many other variants of the planning problerarbitrary non-trivial formulae is “no harder” than that
have been studied — recent examples include [1], [1@pr single variable formula specifications. In contrast,
The main differences between our work and the worsne setting of these problems in history-independent
on Al planning is as follows: environments gives rise teP-complete decision prob-
« The notion of an agent in our work (as a functiodems.
that maps runs to selected actions) is more generalSecond, we considerdabundedagent design prob-
than the notion of a plan as it commonly appealems, where a successful agent is constrained to have
in the planning literature. Our agents are morgome “memory bound”. We showed that, for non-
akin to the notion of astrategyin game theory. deterministic history-dependent environments, the agent
The obvious advantage of our approach is thalesign problem for such bounded agents was easier
our results are not bound to a particular plagunder standard complexity-theoretic assumptions) than
representation. The obvious disadvantage is thié more general counterpart. For deterministic environ-
having a positive answer to one of our agent designents, the complexity of the problems coincided.
problems does not imply that an agent to carry out We also considered stochastic variants of agent de-
the task will beimplementablgcf. [12]). sign problems, where we ask whether there is an agent
« Most complexity results in the planning literaturehat succeeds with probability greater thanfor some
are bound to particularepresentationsof goals rationalp in the interval[0, 1].
and actions. ThesTRIPS notation in Bylander's  There are many issues that demand attention in future
work is one example [3]; Barakt al. use the work. One is the relationship of our work to that of
action description languagd [1]; in the work of solving Markov decision problems [9]. Another key
Littman et al, the representation chosen is ST [10]problem is that of determining the extent to which our
In some cases, it is not clear whether resulisositive (polynomial time) results can be exploited in
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practice. Yet another is on extending our task speci- x-Desigr®

fication framework to allow richer and more complex The achievement design problem for un-
tasks. bounded environments. Recursively enumer-
able but not recursive. (Theorem 1.)
x-Desigri®
ACKNOWLEDGEMENTS The maintenance design problem for un-
This research was supported by tEesRrc under bounded environments. Not recursively enu-
grant GR/R60836/01 (*Algorithmics for agent design merable. (Theorem 1.)
and verification”). ¥(x)-Desigr>

The achievement or maintenance design prob-
lem for finite environments (observe th#gx)
APPENDIX is a propositional logic formula of one vari-

E . id fth b able). Recursive but non-elementary in gen-
or convenience, we provide a summary of the prob- eral. (Theorem 1.)

lems that we have studied in this paper and the resultsx ED. for X

: . ) - € {det non-det
obtained. Recall that iK, = {X;,...,%} is a set of xThe {det }
Boolean variables, then the notatidn(X,) is used to
denote a propositional logic formula over variabls

achievement design problem for
deterministic/non-deterministic bounded
environments.psPACEcomplete for history-

Note that: dependent non-deterministic environments,
« We assuméboundedenvironments unless explic- NP-complete for history-dependent
itly stated otherwise. deterministic  environments, NL-complete
« We frequently make reference smhievemenand for history independent non-deterministic
maintenanceask — recall that an achievement task environments, andr-complete for history-
is specified by a set of “good” or “goal” states, independent  deterministic  environments.

and an agent succeeds with such a problem in a (Theorem 1.)

given environment if, for every possible run of the x-FDy for X € {det nondet}

agent in the environment, at least one of the good The maintenance design problem for
states occurs (it does not need to be the same state deterministic/non-deterministic bounded
on every run); in contrast, a maintenance task is environments: equivalent via logspace
specified by a set of “bad” states, the idea being reductions to the corresponding achievement
that an agent succeeds with such a task if, on every design problem (see preceding entry), and
possible run of the agent in the environment, no hencepsPAacEcomplete for history-dependent
bad state occurs. non-deterministic environments, NP-

« We also distinguish betweeron-deterministiand complete for history dependent deterministic
deterministicenvironment. A non-deterministic en- environments, NL-complete for history
vironment is one in which there are potentially independent non-deterministic environments,
more than one possible successor states, whereas and P-complete for history-independent
in a deterministic environment, there is always at deterministic environments. (Theorem 1.)

most one possible successor state. Given a particthe following results were obtained in the present
lar problemp, we use the notatioRge; and Pron-get paper:

to distinguish between the variants of this problem U-Desigi®

corresponding to the assumption of deterministic The agent design problem for unbounded en-

and non-deterministic environments, respectively. vironments, where a task is specified as an ar-
« We also distinguish between environments that are bitrary propositional logic formula, but where

history dependenand history independenta his- this formula is fixed, andoes not form part of

tory dependent environment is one that is permitted a problem instanceRecursive if, and only if

to make its “decision” about the next possible ¥ is trivial (logically equivalent to a Boolean

states of the environment based on the entire run constant), and recursively enumerable if, and

so far, while a history independent environment only if, the Boolean functiory, corresponding

is one that must make its “decision” based only to ¥ is monotone. (Theorem 2.)

on the final state of the environment and action U-FDy for X € {det non-det}

performed.

The agent design problem where a task
For completeness, we begin by summarising results is specified as an arbitrary propositional
obtained in previous work: logic formula, but where this formula is
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fixed, and does not form part of a prob-
lem instance Equivalent via polynomial time
reductions tox-FDx for history-dependent
environments, and hencespACEcomplete
for history-dependent non-deterministic en-
vironments, andNP-complete for history-
dependent deterministic environments. (Theo-
rem 3.) For history-independent environments,
U-FDy is in P even if the environment is non-
deterministic, i.e.X = nondet (Theorem 5.)

U-FEDx for X € {det nondet}

The agent design problem where a task
is specified as an arbitrary propositional
logic formula which forms part of a prob-
lem instance i.e., is given “explicitly”.
For history-dependent environments, equiv-
alent via polynomial time reductions to
x-FDyx, and henceespAcEcomplete for non-
deterministic history-dependent environments,
and NpP-complete for non-deterministic his-
tory dependent environments. (Theorem 3.)
For history-independent environments, how-
everFEDyet i.€., the problem for deterministic
environments, isNP-complete (and hence ap-
parently harder than in the case where the task
specification is implicit). (Theorem 4.)

\I/-FDQ() for X € {det non-det}

The agent design problem for non-
deterministic environments and-bounded
agents, where tasks are implicitly specified
via the propositional formulall — i.e., the
problem of determining whether an agent|
exists that will accomplish the task even when
that agent is only allowed to “remember”
the final k states of the environment. For
achievement and maintenance tasks (i.el2]
¥ =xandV¥ = x), ZS for non-deterministic 3
history-dependent environments (Theorems é ]
and 9), andNp-complete for deterministic
history-dependent environments (Theorems %41
and 9).

U-0OAD

FC

The oblivious agent design problem for
history-independent non-deterministic envi-
ronments, with tasks specified by a proposi-
tional logic formula ¥, where the task¥ is [6]
implicit (i.e., does not form part of the input).
Recall that an agent is oblivious if it i8- [7]
bounded, i.e., if it is permitted no information
about the way the system has evolved at alll®
The problem is decidable for all propositional
formulae ¥, and psPACEcOomplete for¥ of

the formx A Y. 9]

] D. S. Johnson.

The finite conjunction problem: where we ask
whether there is an agent that can bring about
some “good” state while avoiding some “bad”
state (and hence a special casalefD where

U is of the formxAYy). For history-independent
environments, considering reactive agents, the
problem is p-complete for non-deterministic
environments, andiL-complete for determin-
istic environments. (Theorem 12.)

W-SAD

The stochastic agent design problem, where
the task is specified by both propositional
logic formula, (which is assumed to be im-
plicit, i.e., not given as part of the instance),
and a rational numbep in the range|0, 1].
We are asked whether there exists an agent
that succeeds with the task with probability
greater thamp. For non-deterministic environ-
ments, the problem i®sPACEcomplete, for
all . (Theorem 14.) The two special cases of
W-SAD corresponding ta&r = x (achievement)
and ¥ = X (maintenance) are denoted by
ASAD and MSAD respectively.

MAJD et

The problem of determining whether a major-
ity of agents accomplish an achievement task
in a deterministic environment. The problem
is prcomplete. (Theorem 15.)
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