
SIAM J. APPL. MATH.
Vol. 34, No. 3, May 1978
Copyright () 1978 Society for Industrial and Applied Mathematics

COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION*

M. R. GAREY,f R. L. GRAHAM,? D. S. JOHNSONf AND D. E. KNUTHt

Abstract. We present a linear-time algorithm for sparse symmetric matrices which converts a
matrix into pentadiagonal form ("bandwidth 2"), whenever it is possible to do so using simultaneous
row and column permutations. On the other hand when an arbitrary integer k and graph G are given,
we show that it is NP-complete to determine whether or not there exists an ordering of the vertices
such that the adjacency matrix has bandwidth -<k, even when G is restircted to the class of free trees
with all vertices of degree -<3. Related problems for acyclic directed graphs (upper triangular matrices)
are also discussed.

Key words, bandwidth, directed bandwidth, linear algorithm, NP-complete problems, optimum
permutations, siphonophora

1. Introduction. Let G be a graph on the set of vertices V, where vll- n.
We shall writeuv if vertex u is adjacent to vertex v in G, and u--+-v if they
are not adjacent. A layout of G is a one-to-one mapping f that takes V into the
positive integers; equivalently, a layout can be regarded as a string of vertices and
"blanks", with each vertex of V appearing exactly once, for instance b_c__da.
The correspondence between these two definitions is simply that f(v)= k if and
only if v is the kth element of the string; thus b_c__da corresponds to f(a)= 7,
f(b)= 1, f(c)= 3, f(d)= 6, where V {a, b, c, d}.

The bandwidth of a layout f is defined to be

bandwidth(f)= max {If(u)-f(v)l: uv},
the greatest distance between G-adjacent vertices in the string corresponding to f.
The bandwidth of graph G is then

Bandwidth(G)= min {bandwidth(f): f is layout of G}.

It is clear that

Bandwidth(G)= max {Bandwidth(G’): G’ is a connected component of G},

for iff is any layout there is another layout f’, having the same bandwidth, in which
the connected components of G appear "unmixed" as substrings. (We can let
f’(v)=f(v)+Nc(v), for example, where c(v) is the number of the component
containing v, and where N is sufficiently large.)

Perhaps the most important application of the bandwidth notion arises in
connection with sparse matrices. Given a sparse n n matrix A (ai), let G be
the graph on vertices {v v,} where /)i V] for :/" if and only if aij 0 or
a]i 0. Then Bandwidth (G) <= k if and only if there is a permutation matrixP such
that all elements of PrAP lie on the diagonal or on one of the first k superdiagon-
als or the first k subdiagonals. This is easily proved by observing that blanks may
be removed from a layout without increasing the bandwidth.

* Received by the editors February 22, 1977.
t Bell Laboratories, Murray Hill, New Jersey 07974.
t Computer Science Department, Stanford University, Stanford, California 94305. The research

of this author was supported by National Science Foundation under GrantMCS 72-03752 A03 and by
the Office of Naval Research under Contract N00014-76-C-0330.

477

478 M. R. GAREY, R. L. GRAHAM, D. S. JOHNSON AND D. E. KNUTH

When G has no edges, its bandwidth is trivially -oo. Otherwise the band-
width will be as low as 1 if and only if each component of G is an isolated point
or a path, namely a subgraph of the form vlv2... v,, where vi---vj
iff li-fl- 1. It is easy to determine whether or not Bandwidth(G)= 1, even when
G is not known to be connected, in linear time; in other words, there is an
algorithm which decides in O(n)steps whether or not a sparse matrix can be
converted to tridiagonal form by simultaneous row and column permutations.
(See [13].) The simplicity of this algorithm suggests naturally that the next harder
case might not be too difficult, and indeed we shall see below that the condition
Bandwidth(G) 2 can be tested in linear time. However, the algorithm which
achieves this is quite intricate, and there appears to be no elegant way to
characterize graphs of bandwidth 2.

The authors have been unable to construct a polynomial-time algorithm that
decides whether or not Bandwidth (G)= 3. The bandwidth 2 case indicates some
of the difficulties which must be surmounted. Section 8 below shows that the
general problem of deciding whether or not Bandwidth(G)<=k, given k, is
NP-complete, even if G is a free tree with all vertices of degree <=3. This
restriction to trees is of special interest because the analogous problem of
minimizing Y If(u)-f(v)l instead of max If(u)-f(v)l over all layouts can be done
in polynomial time when the graph is a free tree [31], yet it is NP-complete for
general graphs [17].

Section 9 considers the analogous problems which arise when acyclic directed
graphs replace undirected graphs. Several open problems conclude the paper.

2. Preliminaries for the algorithm. In this section we shall begin to develop
an algorithm that tests whether or not Bandwidth(G)= 2. We shall assume that G
is connected and that it has at least one vertex of degree ->-3. (If all vertices are of
degree -<-2, it is easy to see that Bandwidth(G)<=2, since such a graph is a
collection of isolated points, paths, and cycles.) The connectedness assumption
implies that G has at least n 1 edges, and on the other hand we may assume that
G has at most 2n- 3 edges since a graph of bandwidth k cannot have more than
(n 1)+ (n 2)+... + (n k) pairs of adjacent vertices. Therefore our algorithm
will take O(n)steps if its running time is bounded by a constant times the number
of edges in G.

In order to get into the right frame of mind for this problem, the reader is
urged to try his or her hand at finding a bandwidth-2 layout for the graph in Fig. 1.
Like all graphs of bandwidth 2, this one is rather "skinny"; a breadth-first search
will not involve many unexplored nodes at any time. The puzzle which the reader
is now asked to try is simply this" Arrange the 27 vertices of Fig. 1 into a straight
line so that all pairs of vertices which are directly linked in that graph are separated
by at most one other vertex in the line. (This puzzle is not quite so easy as it looks.
The algorithm we shall develop is supposed to work in linear time, essentially
without backing up, but no such restriction is being imposed on the reader.)

Perhaps the most important notion which arises in connection with graphs of
bandwidth 2 is the concept of chains within G. We say that v begins a chain of
length k if there are vertices v v l,..., v such that

COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION 479

A---B G---H N Q T--U--V--W

C-- E---F I M P S X--Y

D J--K--L--O--R Z

FIG. 1. Example of a graph which the reader is urged to arrange into a bandwidth-2 layout before
proceeding further.

in G, and each of Vl, Vk-1 has degree 2; furthermore vk must be of degree 1,
an endpoint.

Let us define/(v)= 1 if deg (v)= 1, and/(v)= k + 1 if deg (v)= 2 andvw
where l(w)=k; otherwise /()=c. This function is well-defined since
Bandwidth(G)> 1; and it is clearly possible to compute l(v), for all v, in O(n)
steps. Therefore our algorithm will assume that this precomputation has been
carried out. The values of for the example graph in Fig. 1-are shown in Fig. 2.
Note that vertex v is part of a chain if and only if l(v)<.

We shall say that a layout f is chain-stretched if If(vi)-f(v,+)l 2 whenever
vi and vi/l are consecutive vertices of a chain. This terminology is justified
because of the following observation.

LEMMA. Every graph of bandwidth 2 has a chain-stretched layout of
bandwidth <=2.

Proof. Let f be a layout for the graph G, where Bandwidth(G) <- 2; we may
assume that G is connected. Furthermore we shall choose f to have the maximum
"range span" over all bandwidth-2 layouts for G; i.e., maxovf(v)-minovf(v)
is to be maximum over all f with bandwidth (f)=< 2. (The maximum range span is
finite, at most 2n-2, since G is connected.) We shall prove that f is chain-
stretched.

If not, the string q corresponding to f contains the substring uv, where u and v
are consecutive vertices of a chain. By definition, deg (u)and deg (v)are at most 2,
and uv, hence u and v are each adjacent to at most one other vertex. By
maximality of f’s range span, the strings obtained from by replacing uv by u_v

and v_u are not layouts of bandwidth _---_2. It follows that contains the substri.ng
uvab or abuv, where auv--b; by left-right symmetry we may assume
that q contains abuv. Then v must be the rightmost nonblank element of 0. If
/(u)>/(v)= k, graph G contains the chain l)k--t)k-l--,,,--/31 where v Vk
and b Vk-1; but then q must end with vlu2... Uk-Vk-UkVk and it can be
lengthened by replacing this substring by -u2 uk_._uk_v_vk_x vx. On
the other hand if /(v)>/(u)= k, a similar argument shows that q ends with

FG. 2. The function for the example graph in Fig. 1; there are three chains oflength 2.

480 M. R. GAREY, R. L. GRAHAM, D. S. JOHNSON AND D. E. KNUTH

Ul/.)lU2... Uk-lVk-lUkl)k where u Uk and a Uk-1, and this substring can be
replaced by -Vl Vk-Uk-Uk-I Ul. In both cases the maximality of range
span has been contradicted.

The algorithm we shall develop below is based on a subalgorithm which
solves the following problem: "Given a connected graph G and two vertices a and
b, decide whether or not there exists a layout f of bandwidth -<2 such that f(a) 1
and f(b)= 2." If such a layout beginning with ab exists, the algorithm will
construct one; and in all cases the algorithm will terminate after O(n)steps. The
idea is to build the layout step by step, working with partial layouts, namely with
one-to-one functions f that are defined only on a subset of the vertices. All partial
layouts we shall deal with will satisfy the bandwidth 2 condition, in the sense that
If(u)-f(v)] -< 2 whenever f(u), f(v) are both defined anduv. Furthermore we
know by the lemma that it suffices to restrict attention to chain-stretched partial
layouts.

If f is a partial layout defined on the set of vertices U, the active vertices of f
are those elements u U such that u v for some v U. If]’1 is a partial layout
defined on V1 and f2 is a partial layout defined on V2

V1, we say that f2 is an

extension of fl if f2(v) fl(v) for all v e V1. We also say that f2 is a complete layout
if V2 V and bandwidth (fz) <= 2. Thus the task of our subalgorithm will be to
decide whether or not the partial layout f defined by the string ab (i.e., f(a)= 1
and f(b)= 2) can be extended to a complete layout.

The subalgorithm actually does more, since its initial task leads to a family of
similar subtasks of three types"

Type A. Given a partial layout defined by the string aab, where at most a
and b are active, can it be extended to a complete layout?

Type B. Giventwo partial layouts defined by the strings aa,,,b,,.., albl and
ab,,a,,.., bxal, for some m -> 1, where at most al and bl are active,
can at least one of these be extended to a complete layout?

Type C. Given a partial layout defined by the string o a_a,, al for
some m >-1, where at most a is active, can it be extended to a
complete layout?

In each case a is a (possibly empty) initial string which has no important influence
on the algorithm, since it represents inactive vertices and blanks that have already
been permanently placed. The string a in tasks of Type C will have length ->2, and
its final two elements will be nonblank. The two strings in tasks of Type B will be
denoted by p t(a,b,)... (albx).

The idea of the subalgorithm is quite simple, namely to "keep doing
something useful." Let f be a partial layout of one of the three types, defined on
the vertices U. (Actually f represents two partial layouts if it is of Type B, but it
will be convenient to ignore this fine distinction in our informal discussion.) By
looking at how the active vertices off interact with vertices U, it may be obvious
that f cannot be completed. Otherwise the subalgorithm will find a sufficiently
general extension of f, namely an extension layout f’ which can be completed
whenever f can be; and f’ will have one of the three basic types. If any suitable
extension is found, the string p corresponding to f will be replaced by the string
corresponding to f’, and the process will continue until either reaching an impasse
or a complete layout. The running time for each extension step will be bounded,

COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION 481

except in one case where the running time can be "charged" to subsequent
extension steps; hence the total time will be O(n).

In 7 we shall show how the subalgorithm can be used to construct an
algorithm that solves the general bandwidth 2 problem (without any given partial
layout), in linear time.

3. The subalgorithm for Types A and B. We shall present the subalgorithm
informally, with proofs of the validity of each extension intermixed with specifica-
tions of the actual operations to be carried out. The actions will be of three kinds:
(a) Terminate successfully because q is complete; (b) terminate unsuccessfully
because q cannot be completed; (c) set q’ to a sufficiently general extension of q.
It is hoped that this manner of presenting the procedure will make it easy to
understand and reasonably enjoyable to read. Examples of the subalgorithm in
operation appear in 6 below.

The following notation will be used for convenience:
U set of vertices appearing in q domain of current partial layout f;

S(u)={vluv and v= U}= "successors" of vertex u;
n(u)= IIS(u)l] number of "successors" of u;
!(u) chain level of u (defined earlier).
It is clearly possible to build and maintain data structures so that references to

$(u), n(u), l(u) take a bounded amount of time. The subalgorithm consists of a
long but exhaustive list of cases covering which actions are appropriate under
various circumstances that can arise.

First let us consider Type A, recalling that tasks of this type are specified by
the string q aab, where at most a and b are active.

Case A1. n (a)> 1 or n (b)> 2. Failure.
Case A2. n(a)= 1. Set o’=aabc where $(a)={c}.
Case A3. n(a)= 0, n(b)= 2. Set 0’= aab(cd) where $(b)= {c, d}.
Case A4. n(a)= 0, n(b)= 1. Set o’= aab_c where S(b)= {c}.
Case A5. n (a) 0, n (b) 0. Success.

Note that Cases A2, A3, A4 lead to new problems of Type A, B, C respectively;
the proofs of validity in each case are trivial.

Recall that tasks of Type B are specified by the string q a(a,,,b,,,)... (albl),
for some m >_-1, where at most a and bl are active. Actually q represents a
potential choice between two partial layouts, aa,,b,,.., axbx and ab,,,a,,,.., bxax.
For convenience we shall write a ax, b bl; we may assume by symmetry that
n(a)<-n(b).

Case B 1. [IS(a) U S (b)[I > 2 or n (a) n (b) 2. Failure.
Case B2. n(a)= 1, n(b)= 2. Set q’= aa,,,b,,.., axbacd where S(a)= {c} and

S(b)={c,d}.
Case B3. n(a)=0, n(b)=2. Set qv’=aa,,,b,,,...albl(cd} where S(b)=

{c,d}.
Case B4. n(a)= 1, n(b)= 1, S(a)=S(b). Set q’=aa,,,b,,,.., alblC where

S(a)={c}.
Case B5. n(a)=l, n(b)= 1, S(a)#S(b). Set qg’=a(a,,,b,,)...(a,bl)(Cd)

where S(a)= {c}, S(b)= {d}.
Case B6. n(a)= 0, n(b)= 1, Set q’= aa,,b,,,.., axbl-C where S(a)= {c}.
Case BT. n(a)= 0, n(b)= 0. Success.

482 M. R. GAREY, R. L. GRAHAM, D. S. JOHNSON AND D. E. KNUTH

Again the proofs in each case are trivial; we shall discuss only Case B6 here: Any
completion of must be of the forms oab.., ablXCtO (where x is a vertex or a
blank), aa,,,b,,,.., abcto, or ob,,,am.., bacto. The first of these is an extension
of q’; and the second or third imply that aa,,b.., alb_cto is also a complete
extension.

4. The subalgorithm lot Type C. Recall that tasks of Type C are specified by
the string q =a_a,, al, for some m >-1, where at most a is active and a
contains no usable blanks. This type of partial layout allows considerably more
flexibility than Types A and B do, since it may be possible to make good use of the
m blanks. Let us write a as a shorthand for a. Furthermore we shall write
U’ U $(a), with S’(u) and n’(u) defined correspondingly.

Case C1. n(a)> 3. Failure.
Case C2. $(a)= {b, c, d}.

In this case the final neighborhood of a in a complete extension must be bacd,
badc, cabd, cadb, dabc, or dacb; the possibilities can be narrowed down by
considering various subcases. Symmetry between b, c, d is used in order to reduce
the number of possibilities; in other words, there is always a way to rename the
elements of S(a) so that some subcase applies. We shall say that a vertex u in S(a)
is feasible if it can conceivably fit to the left of aa; thus u is feasible if S’(u) {v}
where/(v)< m, or if n’(u) 0. In the former case we say that u is/(v)-feasible; in
the latter case we say that u is 0-feasible.

Case C2.1. b c, b d, c d. Failure.
Case C2.2. b ---t- c, b d, cd.

In this case we must decide between badc and cadb.
Case C2.2.1. Neither b nor c is feasible. Failure.
Case C2.2.2. b is feasible but not c. Set q’= o[ba]dc.

Here and in the sequel we shall use the following notation: [ba]=
_a,,, ak+2bkak+l.., boa1 if b =bo is k-feasible and bl...bk is the
corresponding chain of length k. In other words, [ba] stands for the string
_a,,, al with b and its successors inserted into the appropriate blank spaces.

Case C2.2.3. b is k-feasible and c is/-feasible where k _>- I. Set tp’= a [ba]dc.
To justify this step, we shall prove that

a [ba]dc _>= a [ca]db,
where we say that partial layout 1 dominates o2 (written 01 (2) if every
completion of o implies the existence of a completion of q. In our case any
chain-stretched completion of p which is not an extension of o’ must be an
extension of a[ca]db, so it must have the form o" a[ca]dobodbx.., dbo. Let
CoC...c be the chain adjacent to c Co and let ci be blank if </" .-<_- k.
Then we may interchange Co c with b0,..., b in q", obtaining a valid
completion of o which extends q’.

It is important that the reader understand the justification of step C2.2.3 at
this point before proceeding further. Although the argument i very simple, we
shall be using it repeatedly in the sequel, with various refinements and extensions
as the cases get more complex.

Case C2.3. bc, b-+-d, c-+-d.
In this case we must decide between bacd, cabd, dabc, and dacb.

COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION 483

Case C2.3.1. Neither b nor c is feasible. Failure, unless d is feasible. In the
latter case, set 0’= a[da](bc).

Case C2.3.2. b is feasible but not c; say b is k-feasible. If d is/-feasible
where -> k, set ’ a[da]bc, otherwise set q’= a[ba]cd.

To justify this step, note that o[ba]cd is forced unless d is feasible. In the latter
case a[da]cb cannot be better than a[da]bc, since b b0 must be followed by
bl,..., bk, with bi/l following two positions after bi; it is easy to see that any
completion of a [da]cb can be converted into one which extends a [da]bc. Thus we
must simply distinguish between bacd and dabc, and the argument is similar to
Case C2.2.3.

Case C2.3.3. b is k-feasible and c is /-feasible, where k >=l. Set ’=
a[ba]cd.

The argument is like Case C2.2.3 again; if d is feasible too, we will soon be
successful, regardless of which alternative is chosen.

Case C2.4. b---4-c, b-t--d, c----d.
All six possibilities of Case C2 still remain, but we can make use of the symmetry.

Case C2.4.1. None of b, c, d is feasible. Failure.
Case C2.4.2. b is feasible but c and d are not. Set ’= a[ba](cd).
Case C2.4.3. b is k-feasible and c is /-feasible, where l=<k, but d is

infeasible. Set q’ a [ba]cd.
In this case a[ba]cd >=a[ba]dc and a[ca]bd >=a[ca]db as in Case C2.3.2, while
o[ba]cd >=a[ca]bd as in Case C2.2.3.

Case C2.4.4. All of b, c, d are feasible. Set ’= a[ba]cd.
Success is imminent.

Case C3. S(a)= {b, c}. See 5.
This is by far the hardest case to handle, and we shall postpone it for a moment
since the remaining cases are very simple.

Case C4. $(a)= {b}. Set ’= a_a,, a_b.
This clearly dominates a_a,, a2ba and o_a,, ab.

Case C5. n (a) 0. Success.

5. The subalgorithm for Type C, Case C3. Now we must face up to Case C3;
as above we have q=a_a a and a=a and S(a)={b,c}. We should
replace the substring _a at the right of p by either _abc, _acb, bac, ba_c, cab, or
ca_b, where the dashes may or may not get filled in later. Fortunately we can rule
out two of these possibilities immediately, since bac is never better than _abc and
cab is (similarly) never better than _acb: The complete layout ot[ba]co which
extends bac can always be converted to a complete layout o[ba]bco which
extends _abc.

Case C3.1. bc.
In this case we have to distinguish between _abc and _acb. Let us say that b is
k-lucky if S’(b) contains a vertex bl with l(b.)= k and k -< m. (If there are two or
more such vertices b, choose one with maximum k.) Similarly c might be lucky;
we can use the blanks left of a for one of the successors of a lucky vertex.

Case C3.1.1. Neither b nor c is lucky. Set q’ a_a,, a(bc).
Case C3.1.2. b is k-lucky and c is either (i) unlucky or (ii)/-lucky where

I< k, or (iii) k-lucky and n’(b)<= n’(c). Set p’= a[ba]bc.

484 M. R. GAREY, R. L. GRAHAM, D. S. JOHNSON AND D. E. KNUTH

To justify this step, we first argue (as in Case C2.2.3) that the layout
a_a", albcbl has no advantage over q’. Therefore the only competing
possibility is a_a,,, alCb. By considering the two ways to place bl in the latter
string, we have two possible types of completion to consider, say "=
a[cla]cbxlbl... Xkbkto and "’=a[cla]cbblxl... xk-bkto, since bl has degree
-<2 and is part of a stretched chain. (Here Cl is blank if c is unlucky or if we do not
choose to make use of c’s luckiness.) We can always replace q" by
a[bla]bCXlC XkCkto, an extension of ’; similarly, ’" can always be replaced
by a[bla]bcXlCl Xk-lCk-xto unless c is k-lucky. But in the latter case we have
n’(b)<-n’(c) 1 by hypothesis, so the xi are all blank and to is empty; "’ can
therefore be replaced by a[bla]bC_Cl Ck.

Case C3.2. b-q-- c and n’(b)> 3. Failure.
Case C3.3. b--h-c and n’(b) 3. If S’(b) f) S’(c) {d} and either S’(c) {d}

or $’(c)={Cl, d} where l(c)<m, set q’=a[ca]db. If $’(b)f’)
S’(c)= and either $’(c)= or S’(c)={Cl} where l(cl)<m,
set ’ a [ca]_b. Otherwise failure.

Case C3.4. b c and max (n’(b), n’(c))= 2.
Case C3.4.1. S’(b)= S’(c). Failure.
Case C3.4.2. S’(b)fqS’(c)={d}. If n’(b)= 2, let S’(b)={b, d}; if n’(c)= 2

let $’(c) {c 1, d}.
In this case we say that b is k-lucky if/(bl) k and k -< m; b is 0-lucky if n’(b) 1;
otherwise b is unlucky. Similarly c can be lucky or unlucky. There are four viable
alternatives to decide between, namely a[ba]dc, a[bla]bcd, a[ca]db, and
a[cla]cbd.

Case C3.4.2.1. Neither b nor c is lucky. Failure.
Case C3.4.2.2. b is k-lucky and c is unlucky. If k m, set q’= a[ba]bcd.

Otherwise set q’ a_a,, ak +2(bkak +1) (ba 1)(dc).
This is the neatest part of the entire algorithm, since the two viable alternatives
a[ba]dc and a[bla]bcd turn out to be essentially a Type B situation. (On the
other hand it may also be considered the sloppiest part of the algorithm, since an
abuse of notation is involved here" If the Type B specification is ultimately
completed to a string of the form a_a", ak+2ak+bk. axbcdto, a blank should
actually be inserted just before

Case C3.4.2.3. b is k-lucky and c is/-lucky, where k _-> 1. Set o’= a[bxa]bcd.
It is easy to check that q’ dominates the other three alternatives, using arguments
like those in 4.

Case C3.4.3. S’(b)fq S’(c) and n’(b) n’(c) 2. Let S’(b)- {b, b} and
$’(c) {c1, c}, where/(bx)-< l(b) and l(c) <- l(C’l).

The only possibilities are a[ba]b’lCCxC’l and a[ca]c’bbab’x, perhaps interchanging
bl with b and/or c1 with c.

Case C3.4.3.1. l(bx)>-m. If l(cx)>=m, failure; otherwise if l(c’x)>-m, set
p’= a [ca]c’lb; otherwise set p’= ot[c’a]Clb, where "[c’a]"
means that the blanks are to be filled by c and the chain
containing c

These actions are forced unless l(cx) I(C) 1, for if c and c both have finite
level we must have l(ca)= 1 or failure will be imminent.

Case C3.4.3.2. /(bl)< m -< l(b’x), 1(C1)< m <--/(c), and n’(b’)< n’(c’). If
S’(b’) {c}, failure; otherwise set o’= a[ba]b’xc.

COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION 485

In this case it is impossible to complete 0 with a[ba]b’CClC’, since l(b)> 1; the
only viable alternatives are a[ba]b’lCC’lCa and a [ca]c bb ba, and we must have
b’lC’. Now if S’(c’x) {b}, the stated value of o’ is forced, otherwise success is
imminent.

Case C3.4.3.3. l(bl)<m <-l(b’x) and l(c’l)<m. Set o’=a[c’a]Clb.
This is essentially forced, since a[ba]b’lC(CaC’x) implies/(b)= 1 when cl and c
have finite level.

Case C3.4.3.4. /(b)< m, l(c’)<m, and/(bl)=</(Cl). Set o’=a[b’a]blC.
As in Case C3.4.3.1 we see that failure will occur unless/(bl) 1.

Case C3.4.4. $’(b)fqS’(c)=, n’(b) 2, and n’(c) <- 1. Let S’(b)={bl, b’l},
where l(ba)<-_/(b); and if n’(c)- 1, let $’(c)= {ca}, otherwise
let ca be blank and l(a) 0.

There are many possible arrangements to choose from, and the subcases require
careful analysis.

Case C3.4.4.1. /(bl)> m. If I(Cl)> m, set o’= a_a,, a2cacab. If/(Cl)
m, set q’= a[caa]cb. Otherwise set p’= a[ca]_b.

Case C3.4.4.2. l(ba)<-m, l(ca)<=m. If l(Cl)=m or /(b)<o, set q’=
a[caa]cb.. Otherwise if l(ca)<l(ba)-2, set o’=a[baa]bc;
otherwise set q’ a [ca]blb.

If l(b)<, success is imminent, so we may assume that /(b)=. Then
a[bla]bcb’ >-_a[ba]b’lC; and a[ca]_b >=a[caa]cb >-a_a,, a2caclb, unless
/(ca) m when a[ca]_b is inapplicable. If/(ca) m, it is clear that a[cxa]cb >-

a[baa]bcb’; otherwise we need to compare a[bxa]bcb’x with a[ca]_b, and the best
place for ba in the latter string is a[ca]blb_b’x. The stretched chains in these two
alternatives now fill respectively l(Cl) and/(bx)- 2 positions to the right of b[, and
it is best to minimize this quantity.

Case C3.4.4.3. l(bx) <- rn and l(Cl)> m. If l(ba) m, set q’= ot[bla]bcb’lCx.
Otherwise if/(b)= m, set q’= a[b’xa]bcbxca. Otherwise if
l(b’)<m, set p’=a[b’a]bac. Otherwise let k=l(bl); set
q’ a_a,,, a+2(bu.a+l) (bla2)(bax)(b’lC).

As in Case C3.4.2.2, this is a slight abuse of notation.
Case C3.4.5. S’(b)$’(c)= Q, max (n’(b), n’(c))- 1. If n’(b)= 1, let

S’(b) {bx}; otherwise let ba be blank and set/(ba) 0. Define
ca similarly.

Case C3.4.5.1. l(ba) <- m and/(c1)=< m. Set o’ obc.
Success is imminent.

Case C3.4.5.2. l(ba)<=m and l(cx)>m. If l(bx)=m, set qg’=a[bxa]bc,
otherwise set o’ a [ba]_c.

Case C3.4.5.3. /(ba)> m and/(C1)> m.
In this final case we must "look ahead" before deciding what to do.

For k _-> 1 if b has degree 2, let b+x be the vertex adjacent
to b which has not yet been given a name; continue until
having found the sequencebbx...b, where deg
(b) 2. Similarly, find the sequence CCx...Cl
where deg (ct)# 2.

(This process must terminate, since G is not a cycle.)
Case C3.4.5.3.1. b= Cl a or deg (b)- deg (c) 1. Set p’ pbc.

Success is imminent.

486 M. R. GAREY, R. L. GRAHAM, D. S. JOHNSON AND D. E. KNUTH

Case C3.4.5.3.2. deg (b)= 1 and deg (ct)> 2. Set 0’ a_a,, a2babc.
Case C3.4.5.3.3. deg (b)> 2, deg (c)> 2, and k <- I.

In this case we must decide among four alternatives _abcblCl... bk-lCk-lbk,
_aCbClbl Ck-bk-lCk, bablcbzcl bkCk-1, and caclbczbx Ckbk-x; by
acquiring a little more information about b, ct, k, and it will become clear which
of these dominates:

Case C3.4.5.3.3.1. b ct. If k l, set q’ obcbaCl; otherwise set q’
o-am azca c b.

Case C3.4.5.3.3.2. bkcg. If k =/, set o’ o(bc)(bxcl); otherwise set o’=
a_a,,, aa(ac)(bcl).

Case C3.4.5.3.3.3. b c, b-+-c. Failure.
Note that the "lookahead time" required to find k and in Case C3.4.5.3 is
O(k+l), not O(1); but Case C3.4.5.3 cannot occur again until
b,... ,b_, c cg_ have all been included in the string o. Thus the
lookahead time can be distributed among the subsequent steps, and the subal-
gorithm runs in linear time.

We have now exhausted all possible cases, and the subalgorithm is complete.

6. Examples. Here is how the subalgorithm would proceed to search for a
layout for the graph of Fig. 1, beginning with DC"

Case
DC

A3
B2 DC(AE)

DCAEBF
A3
B1 DCAEBF(GJ)

Failure.

On the other hand, if we begin with DA, the algorithm succeeds"

DA
DAC

A2 DACB
A2 DACBE
A4 DACBE_F
C3.4.4.1(i) DACBEGFHJ
A2 DACBEGFHJI
A2 DACBEGFHJIK
A4
C3 4.4 l(ii)

DACBEGFHJIK_L
DACBEGFHJIKNLMO

A3
B5
B6
C4
C2.3.1(ii)
B2
A5

DACBEGFHJIKNLMO(PR)
DACBEGFHJIKNLMO(PR)(QS)
DACBEGFHJIKNLMOPRQS_T
DACBEGFHJIKNLMOPRQS_T_U
DACBEGFHJIKNLMOPRQSWTVU(XY)
DACBEGFHJIKNLMOPRQSWTVUYX&Z
Success.

COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION 487

Here is how the algorithm would construct the same solution "backwards",
starting with Z&"

Z&
Z&XA2 Z&XY

A2 Z&XYU
A3
B5 Z&XYU(TV)

B6 Z&XYU(TV)(SW)
Z&XYUVTWS_R

C4
C3.4.4.2(iii)

Z&XYUVTWS_R_O
Z&XYUVTWSQRPOML

A2
A2
A4
C3.4.4. l(i)
A2
A2
A3
B2
A5

Z&XYUVTWSQRPOMLN
Z&XYUVTWSQRPOMLNK
Z&XYUVYWSQRPOMLNK_J
Z&XYUVTWSQRPOMLNKIJHF
Z&XYUVTWSQRPOMLNKIJHFG
Z&XYUVTWSQRPOMLNKIJHFGE
Z&XYUVTWSQRPOMLNKIJHFGE(BC)
Z&XYUVTWSQRPOMLNKIJHFGEBCAD
Success.

If the algorithm had chosen the somewhat tempting alternative
Z&XYUVTWSNRMOLPK at step C3.4.4.2 in this example, failure would have
followed soon after.

Suppose Fig. 1 were changed so thatFJ becameF*J. Then the
algorithm would invoke further cases"

C3.4.5.3.3.1(ii)
A2
A2
A4
C3.4.2.3

Z&XYUVTWSQRPOMLNK_J
Z&XYUVTWSQRPOMLNKIJH*
Z&XYUVTWSQRPOMLNKIJH*G
Z&XYUVTWSQRPOMLNKIJH*GF
Z&XYUVTWSQRPOMLNKIJH*GF_E
Z&XYUVTWSQRPOMLNKIJH*GFDECBAA5 Success.

7. Applications of the subalgorithm. The subalgorithm determines in O(n)
steps whether or not G has a bandwidth-2 layout beginning with ab; by trying all
possible a and b we have an O(n 3) algorithm for deciding whether or not
Bandwidth(G)<=2. This can be improved to an O(n 2) algorithm, by using the
subalgorithm to decide whether or not G has a complete layout that extends xy_a,
for some vertex a and some (nonexistent) dummy vertices x and y. However, we
really want an O(n) algorithm, so it is necessary to be a little more careful.

We observed at the beginning of 2 that G may be assumed to contain a
vertex v of degree _->3; suppose v ---a, vb, and vc. Then any layout for G
must contain one of the six substrings

vab, vba, vac, vca, vbc, vcb,

488 M. R. GAREY, R. L. GRAHAM, D. S. JOHNSON AND D. E. KNUTH

or their left-right reflections, since two of {a, b, c} must appear on the same side of
v. To test Bandwidth(G)>=2 in linear time, it therefore suffices to have a
linear-time algorithm that determines whether or not a complete layout exists
containing a given substring of three vertices. (Recall that a "complete layout"
always has bandwidth 2 according to the definition in 2.)

Let us first develop an algorithm which decides in O(n) steps whether or not
there is a complete layout for a given connected graph G, containing a given
substring abcd of length 4:

Step 1. Stop with failure ifad.
Step 2. Let Go be the graph obtained from G by deleting all edges among

{a, b, c, d}. If there is a path in Go from a or b to c or d, stop with
failure. (This path cannot possibly be incorporated into a complete
layout containing abcd, since it cannot get to the right of b.)

Step 3. Let the vertices of V{a, b, c, d} be partitioned into two subsets

V1 {via path exists in Go from v to a or b},

V2- {via path exists in Go from v to c or d}.

(By Step 2, V1 and V2 are disjoint. Furthermore V {a, b, c, d} LI
V1 U V2, since G was connected.) Let Ga be Go restricted to V U
{a, b}, and let G2 be Go restricted to V2U{c, d}. Use the subal-
gorithm to find a layout (01 forG beginning with ba, and also to find a
layout 02 for G2 beginning with cd. If either attempt fails, stop with
failure; otherwise stop with success, since q02 is a complete layout
for G as required, f-I

Now to solve the similar problem given a substring abc of length 3, we
consider two cases:

(i) There is at least one vertex d a, c such thatbd. Then the complete
layout must contain either abcd or dabc, and we use the previous
algorithm to try both cases.

(ii) There is no vertex da, c such that bd. Then we can use an
algorithm analogous to the one above: Let Go be G minus all edges
among {a, b, c} and stop if there is a path from a to c in Go. Otherwise
partition V{a, b, c} into disjoint sets V and V2, where V1 contains the
vertices reachable from a and V2 those reachable from c. Any complete
layout containing the substring abc must be composed of a complete
layout forG ending with ab and a complete layout for G2 beginning with
bc.

It is also possible to construct a linear-time algorithm that decides whether or
not a complete layout exists containing a given substring ab of length 2; details are
left to the reader.

$. Tree bandwidth is NP-eomplete. In this section we shall prove that the
general problem of determining the bandwidth of a graph is NP-complete; that is,
any problem in the large class NP can be transformed into the problem of
determining whether or not the bandwidth of some graph is less than some integer
k, with at most a polynomial increase in the size of the problem specification. (See
[25] and [2, Chap. 10] for surveys of NP-complete problems.) This particular

COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION 489

result was first obtained by C. H. Papadimitriou [28]; we shall prove it in a sharper
form, by severely restricting the form of G.

THEOREM. The following problem is NP-complete" Given an integer k, and
given a graph G which is a free tree with no vertices of degree >3, is
Bandwidth G =< k ?

Proof. The problem of determining whether or not Bandwidth(G)-< k, given
k and an arbitrary graph G, is clearly in NP. We shall complete the proof by
showing that the "3-partition problem," which is known to be NP-complete 16,
p. 120], can be polynomially transformed into the restricted bandwidth problem
stated in the theorem.

Given a sequence of 3n integers (al, a2, a3n), where al + a2 +... + a3n
nA and A/4 < ai < A/2 for each i, the 3-partition problem asks whether or not
there is a way to partition the integers {1,2,...,3n} into disjoint triples
Ta,..., T, so that 7". {ai]] T} A for 1-<iN n. In other words it is a special
bin-packing problem, where we are to take 3n objects of integer sizes
a, a2 a3n and pack them into n boxes of size A whenever possible. The
condition A/4 < ai < A/2 means that each box in any such packing must contain
exactly three objects.

Given the specification of a 3-partition problem, our job is to construct an
integer k and a free tree G whose vertices all have degree =<3, such that there is a
3-partition if and only if Bandwidth (G) -< k. From the proof in 14] it suffices to do
this with a tree whose size is at most a polynomial in n and A, since the 3-partition
problem is NP-complete even when the magnitudes of all 3n numbers are
bounded above by a (suitably large)polynomial function of n. (See [15] for a
discussion of this "strong NP-completeness" property.)

The free trees we shall construct bear more resemblance to pelagic hydrozoa
of the order Siphonophora than to actual trees, so we shall find it convenient to use
terms from marine biology rather than botany. Our construction involves param-
eters ml m3n, d, and k which we shall specify later after the properties we
need for the proof have been explained.

The graphs of interest to us all have the general structure shown in Fig. 3.
There is a long stem, a path in which every dth vertex has a special name; the

FIRST HEAD THIRD HEAD

F Fn b2n+ 2 3

b
H 3 b2n + 3

ECOND HEAD
BEGINNING OF STEM POLYPS

TENTACLES
FIG. 3. $iphonophore graph crrepging 3-drlii1.

490 M. R. GAREY, R. L. GRAHAM, D. S. JOHNSON AND D. E. KNUTH

respective names of these special stem vertices are

bo h b p b 1 b3 p2 b4 f2...Pn b2n fn b2n+l h2 b2n+2 h3 b2n+3
from left to right. It follows that the stem contains 4dn +6d + 1 vertices in all.
There are also 3n long tentacles attached to special vertices tl,..., t3n; the ith
tentacle consists of a long filament followed by 2mi nematocysts as shown in Fig. 4.
If we break off each tentacle just below the node ti, and if we remove the boundary
nodes b0, bl,..., b2n+3, the remaining graph consists of 2n + 3 connected pieces
called polyps, named respectively

H1 P1 F1 P2 F2...Pn Fn H H
from left to right. Note that the vertices tl,..., t3n all belong to the polyp called
H2, the animal’s "second head".

We have noted that the special vertices bo, h 1, bl,..., b2n+3 are separated by
distance d; our construction will also have the property that every node of a polyp
/-/, Pi, or F is distance -<d from its "central" node hi, pi, or/.

Now we shall impose further constraints on the construction, so that it will not
be easy to make layouts of bandwidth k. In the first place, we will require each of
the heads to contain exactly 2dk 1 vertices. This means that there are exactly
2dk vertices # hi at distance ->d from hi (since each head touches two boundary
nodes bj), so it is necessary to lay these vertices out in such a way that the dk
nearest locations on each side of hi are occupied by precisely those elements at
distance d or less in the graph. In particular, consider the layout of H1, and assume
without loss of generality that vertex bl occurs to the right of hi; then all of the
other polyps must appear to the right ofH in the layout, since there is no way for
any of their vertices to get to the left of hi without making the bandwidth > k. A
similar argument applies to the third head H3, which therefore must appear
(together somehow with b2n+3) at the extreme right of the layout. All of the other
polyps, and all of the tentacles, must appear betweenH and H3.

We shall arrange things so that the total number of vertices in the graph is
exactly (2n + 3)(2dk)+ 1. This means that the situation will be very "tight": There
are (2n + 1)(2dk)-1 vertices which must appear in the layout between bl and
b2n+2, but vertices bl and b2n+2 are at distance (2n + 1)(2d) from each other in the
graph, so we must conclude that the stem between bl and bzn+2 is stretched tightly.
In other words, two adjacent nodes in this portion of the stem must be placed k
positions apart. (It does not follow that the stem from b0 to h or from h3 to bzn+3 is
stretched; b0 might even appear to the right of hi. But all we are using H1 and H3

2m VERTICES

4dn VERTICES

FILAMENT NEMATOCYSTS

FIG. 4. Generalform ofthe ith tentacle.

COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION 491

for is to confine the other nodes and therefore to assign a rigid structure to the
interior parts of the layout.)

Since the stem is stretched tightly, and since the polyps contain no nodes at
distance >d from their central node, the layout must now appear as a sequence of
regions which we may represent as follows:

H b P b2 F’I b3 P ’2 b4 F’2 1:", b2 F’,, b2n+l H b2n+2 H.
HereH is a layout ofH1U {bo},H is a layout of H2,H is a layout of H3 U {b2n+3}
and (PI, F) are respectively layouts of (Pi, F) plus portions of the tentacles which
just manage to fit. Each of the regions P], F includes exactly 2dk- 1 vertices of
the layout. The reader should stop at this point to review the construction before
going on.

If we choose the sizes of .Pi, F carefully it will be difficult to place the
tentacles. Let us say that

so that

and

F contains exactly 2dk- 1-6di vertices,

contains exactly 2dk- 1-c- 18di + 12d vertices,

F/ contains exactly 6di tentacle vertices,

P[contains exactly c + 18di- 12d tentacle vertices,

where c is a constant to be determined later. Note that the tentacles are all
connected to H2, so they have to emanate from near the right end of the layout,
passing throughF before coming to P. If P] P together contain portions of
at least r different tentacles then F must contain at least 2dr vertices of these
tentacles, since a path cannot cross FI without using up at least 2d positions; hence
2dri <= 6di, i.e.,

ri <=3i.

Furthermore if r 3i each tentacle must use exactly 2d positions of F’, so there
can be no nematocysts in F in this case.

By choosing the values of c, rnl m3n we will be able to guarantee that
exactly 3i tentacles come through F. Consider first P, which must contain c + 6d
tentacle vertices; these must come from at most three different tentacles because
of the constraint on rl. If we choose each m as a function of the given numbers a
so that the number of nodes in two tentacles is always less than c + 6d, then P]
must contain vertices from exactly three different tentacles, and it must include all
of their nematocysts too because of the constraint on F]. Furthermore we will be
able to argue in the same way that P& must now include all the nematocysts of
three other tentacles because of the constraint on F, and so on.

In order to make this argument go through properly we will want to define
things so that the three tentacles whose nematocysts appear in P have their
filaments "pulled completely through" the succeeding regions, with exactly 2d
vertices of their filaments appearing in each of F, Pi+l, P,,, F,,. It turns out

492 M. R. GAREY, R. L. GRAHAM, D. S. JOHNSON AND D. E. KNUTH

that we can do this by making each mi a multiple of 6dn, and requiring that
a; + a. + at A if and only if 2(mi + m- + mr)= c. Let us set

mi 6dnai, c 12dnA

we shall prove that a layout of bandwidth k implies the existence of a 3-partition:
LraMMA. For 1 <= <-- n, region PI contains all of the nematocysts from exactly

three tentacles, namely the tentacles connected to tj where j is in some triple T, and
{ailj Ti} A. FurthermoreP also contains as much as possible of the filaments

from these tentacles, i.e., each tentacle in Ti has only 2d vertices in each
Vl, PI+I, P’,,, F’,,.

Proof. By induction on i, we know that F and P’i each contain 3(i- 1)(2d)
filament nodes from tentacles whose nematocysts appear in P PI-1. That
leaves 6d empty positions in F’i and 12dnA + 12di-6d in P’i. Now P’i must
contain vertices from at least three tentacles, since two tentacles have at most
8dn + 2(m. +m)= 8dn + 12dn(aj + a)<= 8dn + 12dn(A 1)= 12dnA -4dn ver-
tices altogether. Hence P has vertices from exactly three tentacles, defined by
some triple T

_
{1, 2,..., 3 n}, and it includes all of their nematocysts becauseF

has room for only 6d more vertices from all three tentacles. Let
then the 12dnA + 12di 6d available positions in P are taken up by 12dna
nematocysts and somewhere between 0 and 3(4dn-(2n-2i+1)(2d))=
12di 6d filament nodes. It follows that c A and exactly 12di 6d filament
nodes are present.

The lemma proves that a bandwidth-k layout for a graph of this kind
necessarily leads to a valid 3-partition. To complete the proof of the theorem, we
must define the graphs so that existence of a 3-partition is sufficient to imply the
existence of a layout with bandwidth k. This means in particular that we will have
to choose d and k appropriately. Furthermore the graphs must be constructible by
an algorithm whose running time is bounded by a polynomial in n and A.

In the first place we want to choose k large enough that P, contains at least
2d- 1 vertices, hence we require

k >-6nA +9n-5.

For convenience we let k be the smallest power of 2 satisfying this condition, and
we write

k=2.
Finally we choose

d lk.

From these parameters k and d we can construct G by explaining how to
construct each polyp. The head polyps Hi are formed by the bandwidth-2 layout
indicated in Fig. 5 for 3 (although will never be this small). A periodic pattern
begins to repeat after the/th stem node to the right of hi: the/’th node preceding a
stem node branches to the (2])th and (2 + 1)st nodes preceding the next stem
nodes, for 0<=/’<2-1. Before this pattern is established, we have
(1, 2, 4,..., 2-2) as the respective limits on/’. An additional "thread branch" goes

COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION 493

FIG. 5. Layout ofa headpolyp in the immediate vicinity ofits centernode hi.

out of hi to fill up the remaining

(2t- 1)+ (2t-2)+... + (2’- 2t-1) lk-2t’+ 1 d-k + 1

holes near the center. To the left of hi we use essentially the same idea in mirror
image; thus it is clear that no vertex is at distance greater than d from the center
node. The special nodes tl,..., t3n in H2 are taken to be the leftmost 3n nodes in
its layout.

A similar procedure is used to construct the other polyps Pi and F. In each
case we wish to remove 2dx nodes from a full head polyp, for some integer x, and
we do this by removing x nodes between each pair of adjacent stem nodes. The x
nodes immediately to the right of each stem node in Fig. 5 are simply deleted from
the graph, together with all edges touching them, and the "thread branch" is
reconnected for the remaining nodes; again the mirror image of this pattern is
used to the left of the center vertex, and we clearly have a tree. It is easy to see that
the resulting polyp has a layout of length 2dk- 1 in which the x positions just to
the left of each stem node are empty. (Simply shift all nonstem vertices which lie to
the right of the center vertex exactly x places to the left.) These x slots form x
parallel "channels" through which filaments can pass.

Now it is not difficult to see how to embed the tentacles into these polyp
layouts whenever a 3-partition is given. For example, we can place filaments for
the three tentacles specified by T1 into the rightmost three channels of
F1, P2, F2 P,, F,. Now it is easy to make the remaining nematocyst and
filament nodes fit into the remaining spaces in P1 without exceeding bandwidth k;
further details are left to the reader. It is possible to link up any channel in F, with
any t, since k -> 6n. 71

9. Directed bandwidth. Analogous problems can be studied when G is an
acyclic directed graph, where we require its layout to be a topological sorting of the
vertices; in other words, we stipulate that f(u)< f(v) whenever u v in the graph,
and we ask for the minimum bandwidth subject to this constraint.

The algorithm in 2 through 7 above can readily be modified to test for
"directed bandwidth 2." In fact, the situation becomes so much simpler that it is
tempting to try for directed bandwidth 3 in polynomial time.

The NP-completeness construction in 8 can be modified in a straightfor-
ward way to obtain an analogous result.

THEOREM. The following problem is NP-complete Given an integer k, and
given a directed graph which is an oriented tree having no vertices ofin-degree > 2, is
its directed bandwidth <= k ?

(Each vertex of an oriented tree has out-degree -<_ 1, and there are no cycles.)
The analogous problem of minimizing Y (f(v)-f(u)) over all topological

sortings of a general acyclic directed graph has recently been proved NP-complete

494 M. R. GAREY, R. L. GRAHAM, D. S. JOHNSON AND D. E. KNUTH

by E. L. Lawler [26]; on the other hand Adolphsota and Hu [1] have resolved this
problem in polynomial time when the directed graph is an oriented tree, even
when the arcs have been assigned arbitrary weights. The above theorem indicates
that the bandwidth problem is somewhat harder than this optimal ordering
problem, in the directed as well as the undirected case.

10. Some open problems. The following related questions are still waiting
for an answer:

(a) Is the problem "Bandwidth(G)<= 3" NP-complete, given an arbitrary
graph (or perhaps a tree) G?

(b) Is there a polynomial time algorithm to enumerate the number of distinct
bandwidth-2 layouts of a given graph G?

(c) For which exponents m is the problem "Some layout of G satisfies
{If(u)-f(v)l":uv in G} <-k" NP-complete, when G is a free tree?

(d) What is the expected bandwidth, for random graphs on n vertices and rn
edges, as n and m ?

Question (b) is of potential interest because there seems to be a vague
connection between efficient algorithms for enumeration and efficient algorithms
for testing existence. For example, there is a determinant formula for evaluating
the number of spanning trees of a graph, and there are efficient algorithms for
testing connectedness. The problems of enumerating the number of hamiltonian
paths of a graph, or the number of ways to satisfy a given set of clauses, etc., do not
seem to be in NP; there most likely are polynomial-time reducibilities between
such problems, but such transformations remain to be investigated. In the case of
bandwidth-2 layouts for a graph, there is a linear time algorithm for existence, yet
no apparently "nice" characterization. So this is a candidate problem in which
enumeration might be definitely more difficult than existence.

Question (c) is suggested by the observation that the stated problem is
solvable in polynomial time for m 1 [31]., but as rn increases the best layouts are
eventually those with minimum bandwidth.

All four problems can be considered also for the case of directed bandwidth.
Another interesting question is to discover how far from optimum the various

heuristic methods for bandwidth reduction can be; see the references below for
several approaches that have been proposed.

REFERENCES

[1] D. ADOLPHSONAND T. C. HU, Optimal linear ordering, this Journal, 25 (1973), pp. 403-423.
[2] A. V. AI4O, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer

Algorithms, Addison-Wesley, Reading, MA, 1974.
[3] F.A. AKYUZ AND S. TUKU, An automatic node-relabelling scheme]’or bandwidth minimization

of stiffness matrices, Amer. Inst. of Aero. and Astro. J., 6 (1968), pp. 728-730.
[4] G. G. ALWAY AND D. W. MARTIN, An algorithm for reducing the bandwidth of a matrix of

symmetrical configuration, Comput. J., 8 (1965), pp. 264-272.
[5] I. ARANY, L. SZODA AND W. F. SMYTH, An improved method]’or reducing the bandwidth of

sparse symmetric matrices, Proc. IFIP Conference 1971, North-Holland, Amsterdam, 1972,
pp. 1246-1250.

COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION 495

[6] J. BOLSTAD, G. LEIF, A. LINDEMAN AND H. KAPER, An empirical investigation of reordering
and data managementforfinite element systems ofequations, Argonne Rep. ANL8056, Sept.
1973.

[7] K. Y. CHEN, Minimizing the bandwidth ofsparse symmetric matrices, Computing, 11 (1973), pp.
27-30, pp. 103-110.

8 V. CHVA.TAL,A remark on a problem ofHarary, Czechoslovak Math. J., 20 (1970), pp. 109-111.
[9] JARMILA CHVATALOVA, Optimal labelling of a product of two paths, Discrete Math.,

11 (1975), pp. 249-253.
[10] J. CHVATALOVA, A. K. DEWDNEY, N. E. GIBBS AND R. R. KORFHAGE, The bandwidth

problem for graphs, a collection of recent results, Research Rep. 24, Dept. of Computer Sci.,
Univ. of Western Ontario, London, Ontario, Canada, 1975.

11] E. CUTHILL AND J. MCKEE, Reducing the bandwidth ofsparse symmetric matrices, Proc. ACM
National Conference, 24 (1969), pp. 157-172.

[12] RICHARD A. DEMILLO, STANLEY C. EISENSTAT AND RICHARD J. LIPTON, Preserving
average proximity in arrays, Dept. of Computer Sci., Yale Univ. TR-CS-76-4, March 1976.

[13] D. R. FULKERSON AND O. A. GROSS, Incidence matrices and interval graphs, Pacific J. Math.,
15 (1965), pp. 835-855. [Generalized bandwidth-1 problem for hypergraphs.]

[14] M. R. GAREY AND D. S. JOHNSON, Complexity results for multiprocessor scheduling under
resource constraints, SIAM J. Computing, 4 (1975), pp. 397-411.

15], ’Strong’ NP-completeness results: Motivation, examples and implications, submitted for
publication.

[16] M. R. GAREY, D. S. JOHNSON AND RAVI SETHI, The complexity of flowshop and jobshop
scheduling, Math. of Operations Res., (1976), pp. 117-129.

[17] M. R. GAREY, O. S. JOHNSON AND L. STOCKMEYER, Some simplified NP-complete graph
problems, Theoret. Comput. Sci., (1976), pp. 237-267.

18] J. ALAN GEORGE, Computer implementation ofthe finite element method, Ph.D. thesis, Compu-
ter Sci. Dept., Stanford Univ., March 1971.

19] NORMAN E. GIBBSAND WILLIAM G. POOLE, JR., Tridiagonalization by permutations, Comm.
ACM, 20 (1974), pp. 20-24.

[20] R. L. GRAHAM, On primitive graphs and optimal vertex assignments, Ann. N. Y. Acad. Sci.,
175 (1970), pp. 170-186.

[21] H. R. GROOMS, Algorithm]’or matrix bandwidth reduction, J. of the Structural Div., Proc. Amer.
Soc. Civil Eng., 98 (1972), pp. 203-214.

[22] L. H. HARPER, Optimal assignments ol numbers to vertices, J. Soc. Indust. Appl. Math.,
12 (1964), pp. 131-135.

[23], Optimal numberings and isoperimetric problems on graphs, J. Combinatorial Theory,
(196b), pp. 385-393.

[24] ., A necessary condition on minimal cube numberings, J. Appl. Probability, 4 (1967), pp.
397-401.

[25] R. M. KARP, Reducibility among combinatorial problems, Complexity of Computer Computa-
tions, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.

[26] E. L. LAWLER, Sequencing jobs to minimize total weighted completion time subject to precedence
constraints, submitted for publication.

[27] R. J. LIPTON, S. C. EISENSTAT AND R. A. DEMILLO, Space and time hierarchies ’or classes
control structures and data structures, J. Assoc. Comput. Math., 23 (1976), pp. 720-732.
[Generalized bandwidth problem of embedding one graph in another.]

[28] CHRISTOS H. PAPADIMITRIOU, The NP-completeness of the bandwidth minimization problem,
Computing, 16 (1976), pp. 263-270.

[29] R. ROSEN, Matrix bandwidth minimization, Proc. ACM National Conference, 23 (1968), pp.
585-595.

[30] A. L. ROSENBERG, Preserving proximity in arrays, SIAM J. Comput. 4 (1975), pp. 443-460.
[31] YossI SHILOACH, Linear and planar arrangements of graphs, Ph.D. thesis, Dept. of Applied

Math., Weizmann Institute of Science, Israel, 1976.
[32] PAUL TIING RENN WANG, Bandwidth minimization, reducibility decomposition, and trian-

gularization of sparse matrices, Computer and Information Science Research Center, Ohio
State Univ., Rep. OSU-CISRC-TR-73-5, 1973.

