
Complexity Results for Enhanced Qualitative Probabilistic
Networks

Johan Kwisthout and Gerard Tel
Department of Information and Computer Sciences

University of Utrecht
Utrecht, The Netherlands

Abstract

While quantitative probabilistic networks (QPNs) allow the expert to state influences
between nodes in the network as influence signs, rather than conditional probabilities,
inference in these networks often leads to ambiguous results due to unresolved trade-offs
in the network. Various enhancements have been proposed that incorporate a notion
of strength of the influence, such as enhanced and rich enhanced operators. Although
inference in standard (i.e., not enhanced) QPNs can be done in time polynomial to the
length of the input, the computational complexity of inference in such enhanced networks
has not been determined yet. In this paper, we introduce relaxation schemes to relate
these enhancements to the more general case where continuous influence intervals are
used. We show that inference in networks with continuous influence intervals is NP -hard,
and remains NP -hard when the intervals are discretised and the interval [−1, 1] is divided
into blocks with length of 1

4 . We discuss membership of NP, and show how these general
complexity results may be used to determine the complexity of specific enhancements to
QPNs. Furthermore, this might give more insight in the particular properties of feasible
and infeasible approaches to enhance QPNs.

1 Introduction

While probabilistic networks (Pearl, 1988) are
based on a intuitive notion of causality and
uncertainty of knowledge, elicitating the re-
quired probabilistic information from the ex-
perts can be a difficult task. Qualitative prob-
abilistic networks (Wellman, 1990), or QPNs,
have been proposed as a qualitative abstrac-
tion of probabilistic networks to overcome this
problem. These QPNs summarise the condi-
tional probabilities between the variables in the
network by a sign, which denotes the direction
of the effect. In contrast to quantitative net-
works, where inference has been shown to be
NP -hard (Cooper, 1990), these networks have
efficient (i.e., polynomial-time) inference algo-
rithms. QPNs are often used as an intermedi-
ate step in the construction of a probabilistic
network (Renooij and van der Gaag, 2002), as
a tool for verifying properties of such networks

(van der Gaag et al., 2006), or in applications
where the exact probability distribution is un-
known or irrelevant (Wellman, 1990).

Nevertheless, this qualitative abstraction
leads to ambiguity when influences with con-
trasting signs are combined. Enhanced QPNs
have been proposed (Renooij and van der Gaag,
1999) in order to allow for more flexibility in de-
termining the influences (e.g., weakly or strongly
positive) and partially resolve conflicts when
combining influences. Also, mixed networks
(Renooij and van der Gaag, 2002) have been
proposed, to facilitate stepwise quantification
and allowing both qualitative and quantitative
influences to be modelled in the network.

Although inference in quantitative networks
is NP -hard, and polynomial-time algorithms are
known for inference in standard qualitative net-
works, the computational complexity of infer-
ence in enhanced networks has not been deter-

mined yet. In this paper we recall the defini-
tion of QPNs in section 2, and we introduce a
framework to relate various enhancements, such
as enhanced, rich enhanced, and interval-based
operators in section 3. In section 4 we show that
inference in the general, interval-based case is
NP -hard. In section 5 we show that it remains
NP -hard if we use discrete - rather than contin-
uous - intervals. Furthermore, we argue that,
although hardness proofs might be nontrivial
to obtain, it is unlikely that there exist poly-
nomial algorithms for less general variants of
enhanced networks, such as the enhanced and
rich enhanced operators suggested by Renooij
and Van der Gaag (1999). Finally, we conclude
our paper in section 6.

2 Qualitative Probabilistic Networks

In qualitative probabilistic networks, a directed
acyclic graph G = (V,A) is associated with a set
∆ of qualitative influences and synergies (Well-
man, 1990), where the influence of one node to
another is summarised by a sign1. For example,
a positive influence of a node A on its succes-
sor B, denoted with S+(A,B), expresses that
higher values for A make higher values for B
more likely than lower values, regardless of in-
fluences of other nodes on B. In binary cases,
with a > ā and b > b̄, this can be summarised
as Pr(b | ax)−Pr(b | āx) ≥ 0 for any value of x
of other predecessors of B. Negative influences,
denoted by S−, and zero influences, denoted by
S0, are defined analogously. If an influence is
not positive, negative, or zero, it is ambiguous,
denoted by S?. Influences can be direct (causal
influence) or induced (inter-causal influence or
product synergy). In the latter case, the value
of one node influences the probabilities of values
of another node, given a third node (Druzdzel
and Henrion, 1993b).

Various properties hold for these qualitative
influences, namely symmetry, transitivity, com-
position, associativity and distribution (Well-
man, 1990; Renooij and van der Gaag, 1999). If

1Note that the network Q = (G, ∆) represents in-
finitely many quantitative probabilistic networks that re-
spect the restrictions on the conditional probabilities de-
noted by the signs of all arcs.

we define Ŝδ(A,B, ti) as the influence Sδ, with
δ ∈ {+,−, 0, ?}, from a node A on a node B
along trail ti, we can formalise these properties
as shown in table 1. The ⊗- and ⊕-operators
that follow from the transitivity and composi-
tion properties are defined in table 2.

symmetry Ŝδ(A, B, ti) ∈ ∆⇔

Ŝδ(B, A, t−1
i) ∈ ∆

transitivity Ŝδ(A, B, ti) ∧ Ŝδ′
(B, C, tj)⇒

Ŝδ⊗δ′
(A, C, ti ◦ tj)

composition Ŝδ(A, B, ti) ∧ Sδ′
(A, B, tj)⇒

Sδ⊕δ′
(A, B, ti ◦ tj)

associativity S(δ⊕δ′)⊕δ′′
= Sδ⊕(δ′⊕δ′′)

distribution S(δ⊕δ′)⊗δ′′
= S(δ⊗δ′′)⊕(δ′⊗δ′′)

Table 1: Properties of qualitative influences

⊗ + − 0 ? ⊕ + − 0 ?

+ + − 0 ? + + ? + ?

− − + 0 ? − ? − − ?

0 0 0 0 0 0 + − 0 ?

? ? ? 0 ? ? ? ? ? ?

Table 2: The ⊗- and ⊕-operator for combining signs

Using these properties, an efficient (poly-
nomial time) inference algorithm can be con-
structed (Druzdzel and Henrion, 1993a) that
propagates observed node values to other neigh-
bouring nodes. The basic idea of the algorithm,
given in pseudo-code in figure 1, is as follows.
When entering the procedure, a node I is in-
stantiated with a ‘+’ or a ‘−’ (i.e., trail = ∅,
from = to = I and msign = ‘+’ or ‘−’). Then,
this node sign is propagated through the net-
work, following active trails and updating nodes
when needed. Observe from table 2 that a node
can change at most two times: from ‘0’ to ‘+’,
‘−’, or ‘?’, and then only to ‘?’. This algorithm
visits each node at most two times, and there-
fore halts after a polynomial amount of time.

procedure PropagateSign(trail, from, to, msign):
sign[to] ← sign[to] ⊕ msign;
trail ← trail ∪ { to };
for each active neighbour Vi of to
do lsign ← sign of influence between to and Vi;

msign ← sign[to] ⊗ lsign;
if Vi 6∈ trail and sign[Vi] 6= sign[Vi] ⊕ msign
then PropagateSign(trail, to, Vi, msign).

Figure 1: The sign-propagation algorithm

3 Enhanced QPNs

These qualitative influences and synergies
can of course be extended to preserve a
larger amount of information in the abstrac-
tion (Renooij and van der Gaag, 1999).
For example, given a certain cut-off value
α, an influence can be strongly positive
(Pr(b | ax)− Pr(b | āx) ≥ α) or weakly negative
(−α ≤ Pr(b | ax)− Pr(b | āx) ≤ 0). The basic
‘+’ and ‘−’ signs are enhanced with signs for
strong influences (‘++’ and ‘−−’) and aug-
mented with multiplication indices to handle
complex dependencies on α as a result of tran-
sitive and compositional combinations. In addi-
tion, signs such as ‘+?’ and ‘−?’ are used to de-
note positive or negative influences of unknown
strength. Using this notion of strength, trade-
offs in the network can be modelled by compo-
sitions of weak and strong opposite signs.

Furthermore, an interval network can be con-
structed (Renooij and van der Gaag, 2002),
where each arc has an associated influence in-
terval rather than a sign. Such an influ-
ence is denoted as F [p,q](A,B), meaning that
Pr(b | ax)− Pr(b | āx) ∈ [p, q]. Note that, given
this definition, S+(A,B) ⇐⇒ F [0,1](A,B),
and similar observations hold for S−, S0 and
S?. We will denote the intervals [−1, 0], [0, 1],
[0, 0] and [−1, 1] as unit intervals, being special
cases that correspond to the traditional quali-
tative networks. The ⊗- and ⊕-operator, de-
noting transitivity and composition in interval
networks are defined in table 3. Note that it is
possible that a result of a combination of two
trails leads to an empty set, for example when
combining [12 , 1] with [34 , 1], which would denote
that the total influence of a node on another
node, along multiple trails, would be greater

than one, which is impossible. Since the indi-
vidual intervals might be estimated by experts,
this situation is not unthinkable, especially in
large networks. This property can be used to
detect design errors in the network.

Note, that the symmetry, associativity, and
distribution property of qualitative networks do
no longer apply in these enhancements. For ex-
ample, although a positive influence from a node
A to B along the direction of the arc also has a
positive influence in the opposite direction, the
strength of this influence is unknown. Also, the
outcome of the combination of a strongly pos-
itive, weakly positive and weakly negative sign
depends on the evaluation order.

⊗i [r, s]

[p, q] [min X, max X],

where X = {p · r, p · s, q · r, q · s}

⊕i [r, s]

[p, q] [p + r, q + s] ∩ [−1, 1]

Table 3: The ⊗i- and ⊕i-operators for interval multipli-
cation and addition

3.1 Relaxation schemes

If we take a closer look at the ⊕e, ⊕r, and
⊗e operators defined in (Renooij and van der
Gaag, 1999) and compare them with the
interval operators ⊕i and ⊗i, we can see that
the interval results are sometimes somehow
’relaxed’. We see that symbols representing
influences correspond to intervals, but after the
application of any operation on these intervals,
the result is extended to an interval that can
be represented by one of the available symbols.
For example, in the interval model we have
[α, 1] ⊕i [−1, 1] = [α − 1, 1], but, while [α, 1]
corresponds to ++ in the enhanced model and
[−1, 1] corresponds to ?, + +⊕e? =? ≡ [−1, 1].
The lower limit α− 1 is relaxed to −1, because
the actually resulting interval [α − 1, 1] does
not correspond to any symbol. Therefore, to
connect the (enhanced) qualitative and interval
models, we will introduce relaxation schemes
that map the result of each operation to the
minimal interval that can be represented by

one of the available symbols:

Definition 1. (Relaxation scheme)
Rx will be defined as a relaxation scheme,
denoted as Rx([a, b]) = [c, d], if Rx maps the
outcome [a, b] of an ⊕ or ⊗ operation to an
interval [c, d], where [a, b] ⊆ [c, d].

In standard QPNs, the relaxation scheme
(which I will denote RI or the unit scheme) is
defined as in figure 2.

RI(a, b) =


[0, 1] if a ≥ 0 ∧ b > 0

[−1, 0] if a < 0 ∧ b ≤ 0

[0, 0] if a = b = 0

[−1, 1] otherwise

Figure 2: Relaxation scheme RI(a, b)

Similarly, the ⊕e, ⊕r, and ⊗e operators can
be denoted with the relaxation schemes in fig-
ure 3, in which m equals min(i, j) and α is an
arbitrary cut-off value. To improve readabil-
ity, in the remainder of this paper the ⊕- and
⊗-operators, when used without index, denote
operators on intervals as defined in table 3.

R⊗e(a, b) =

{
[−1, 1] if a < 0 ∧ b > 0

[a, b] otherwise

R⊕e(a, b) =



[αm, 1] if a = αi + αj ≤ b

[−1,−αm] if b = −(αi + αj) ≥ a

[0, 1] if a ≤ b = αi + αj

[−1, 0] if a = −(αi + αj) ≤ b

[0, 1] if a = (αi − αj)

and b ≥ 0 and i < j

[−1, 0] if a = −(αi − αj)

and b ≤ 0 and i < j

[−1, 1] if a ≤ 0 and b ≥ 0

[a, b] otherwise

R⊕r (a, b) =

{
[−1, 1] if a < 0 ∧ b > 0

[a, b] otherwise

Figure 3: Relaxation schemes R⊗e , R⊕e , and R⊕r

This notion of a relaxation scheme allows us
to relate various operators in a uniform way.
A common property of most of these schemes

is that the ⊕-operator is no longer associative.
The result of inference now depends on the or-
der in which various influences are propagated
through the network.

3.2 Problem definition

To decide on the complexity of inference of this
general, interval-based enhancements of QPNs,
a decision problem needs to be determined. We
state this problem, denoted as iPieqnetd2, as
follows.

iPieqnetd
Instance: Qualitative Probabilistic Net-
work Q = (G, ∆) with an instantiation
for A ∈ V (G) and a node B ∈ V \ {A}.
Question: Is there an ordering on the
combination of influences such that the
influence of A on B ⊂ [−1, 1]?

3.3 Probability representation

In this paper, we assume that the probabili-
ties in the network are represented by fractions,
denoted by integer pairs, rather than by reals.
This has the advantage, that the length of the
result of addition and multiplication of fractions
is polynomial in the length of the original num-
bers. We can efficiently code the fractions in
the network by rewriting them, using their least
common denominator. Adding or multiplying
these fractions will not affect their denomina-
tors, whose length will not change during the
inference process.

4 Complexity of the problems

We will prove the hardness of the inference
problem iPieqnetd by a transformation from
3sat. We construct a network Q using clauses
C and boolean variables U , and prove that,
upon instantiation of a node I to [1, 1], there
is an ordering on the combination of influences
such that the influence of I on a given node
Y ∈ Q \ {I} is a true subset of [−1, 1], if and
only if the corresponding 3sat instance is sat-
isfiable. In the network, the influence of a node

2An acronym for Interval-based Probabilistic Infer-
ence in Enhanced Qualitative Networks

A on a node B along the arc (A,B) is given as
an interval; when the interval equals [1, 1] (i.e.,
Pr(b | a) = 1 and Pr(b | ā) = 0) then the in-
terval is omitted for readability. Note, that the
influence of B on A, against the direction of the
arc (A,B), equals the unit interval of the influ-
ence associated with (A,B).

As a running example, we will construct
a network for the following 3sat instance,
introduced in (Cooper, 1990):

Example 1. (3satex)
U = {u1, u2, u3, u4}, and C = {(u1 ∨ u2 ∨ u3),
(¬u1 ∨ ¬u2 ∨ u3), (u2 ∨ ¬u3 ∨ u4)}

This instance is satisfiable, for example with
the truth assignment u1 = T , u2 = F , u3 = F ,
and u4 = T .

4.1 Construct for our proofs

For each variable in the 3sat instance, our net-
work contains a ”variable gadget” as shown
in figure 4. After the instantiation of node
I with [1, 1], the influence at node D equals
[12 , 1]⊕[−1

2 , 1
2]⊕[−1,−1

2], which is either [−1, 1
2],

[−1
2 , 1] or [−1, 1], depending on the order of

evaluation. We will use the non-associativity
of the ⊕-operator in this network as a non-
deterministic choice of assignment of truth val-
ues to variables. As we will see later, an eval-
uation order that leads to [−1, 1] can be safely
dismissed (it will act as a ’falsum’ in the clauses,
making both x and ¬x false), so we will concen-
trate on [−1

2 , 1] (which will be our T assign-
ment) and [−1, 1

2] (F assignment) as the two
possible choices.

We construct literals ui from our 3sat in-
stance, each with a variable gadget Vg as
input. Therefore, each variable can have a
value of [−1, 1

2] or [−1
2 , 1] as influence, non-

deterministicly. Furthermore, we add clause-
networks Clj for each clause in the instance
and connect each variable ui to a clause-network
Clj if the variable occurs in Cj . The influence
associated with this arc (ui, Clj) is defined as
F [p,q](ui, Clj), where [p, q] equals [−1, 0] if ¬ui

is in Cj , and [0, 1] if ui is in Cj (figure 5). Note

I

A

[1
2
, 1] [−1,− 1

2
]

B

D

C[− 1
2
, 1

2
]

Vg

Figure 4: ”Variable gadget” Vg

that an ⊗-operation with [−1, 0] will transform
a value of [−1, 1

2] in [−1
2 , 1] and vice versa, and

[0, 1] will not change them. We can therefore
regard an influence F [−1,0] as a negation of the
truth assignment for that influence. Note, that
[−1, 1] will stay the same in both cases.

If we zoom in on the clause-network in figure
6, we will see that the three ‘incoming’ vari-
ables in a clause, that have a value of either
[−1, 1

2], [−1
2 , 1], or [−1, 1], are multiplied with

the arc influence Fi,j to form variables, and then
combined with the instantiation node (with a
value of [1, 1]), forming nodes wi. Note that
[−1, 1

2]⊕ [1, 1] = [−1, 1]⊕ [1, 1] = [0, 1] and that
[−1

2 , 1]⊕ [1, 1] = [12 , 1]. Since a [−1, 1] result in
the variable gadget does not change by multi-
plying with the Fi,j influence, and leads to the
same value as an F variable, such an assignment
will never satisfy the 3sat instance.

The influences associated with these nodes wi

are multiplied by [12 , 1] and added together in
the clause result Oj . At this point, Oj has a
value of [k4 , 1], where k equals the number of
literals which are true in this clause. The con-
secutive adding to [−1

4 , 1], multiplication with
[0, 1] and adding to [1, 1] has the function of a
logical or -operator, giving a value for Cj of [34 , 1]
if no literal in the clause was true, and [1, 1] if
one or more were true.

We then combine the separate clauses Cj into
a variable Y , by adding edges from each clause
to Y using intermediate variables D1 to Dn−1.

I

Vg1

u1 u2 u3 u4

F1,1 F4,3

Cl1 Cl2 Cl3

F1,2 F3,3

Vg2 Vg3 Vg4

F3,2

F2,1

F2,2

F3,1F2,3

Figure 5: The literal-clause construction

u1 u2 u3 I

[12 , 1][12 , 1] [12 , 1]

[− 1
4 , 1]

F1,j F2,j
F3,j

w1

w2

w3

Oj

O′
j

Cj

[0, 1]

Clj

Figure 6: The clause construction

The use of these intermediate variables allows
us to generalise these results to more restricted
cases. The interval of these edges is [12 , 1], lead-
ing to a value of [1, 1] in Y if and only if all
clauses Cj have a value of [1, 1] (see figure 7).

The influence interval in Y has a value between
[34 , 1] and [2

k+1−1
2k+1 , 1], where k is the number of

clauses, if one or more clauses had a value of
[0, 1]. Note that we can easily transform the
interval in Y to a subset of [−1, 1] in Y ′ by con-
secutively adding it to [−1, 1] and [−1+ 1

2k+1 , 1].
This would result in a true subset of [−1, 1] if
and only Y was equal to [1, 1].

CnC2C1

[12 , 1]

Y

[12 , 1] [12 , 1]

D1

Ci

Di

[12 , 1]

[12 , 1]

[12 , 1]

Figure 7: Connecting the clauses

4.2 NP-hardness proof

Using the construct presented in the previous
section, the computational complexity of the
iPieqnetd can be established as follows.

Theorem 1. The iPieqnetd problem is NP-
hard.

Proof. To prove NP -hardness, we construct a
transformation from the 3sat problem. Let
(U,C) be an instance of this problem, and let
Q(U,C) be the interval-based qualitative proba-
bilistic network constructed from this instance,
as described in the previous section. When the
node I ∈ Q is instantiated with [1, 1], then I
has an influence of [1, 1] on Y (and therefore an
influence on Y ′ which is a true subset of [−1, 1])
if and only if all nodes Cj have a value of [1, 1],
i.e. there exists an ordering of the operators
in the ’variable-gadget’ such that at least one
literal in C is true. We conclude that (U,C)
has a solution with at least one true literal in
each clause, if and only if the iPieqnetd prob-
lem has a solution for network Q(U,C), instanti-

ation I = [1, 1] and node Y ′. Since Q(U,C) can
be computed from (U,C) in polynomial time,
we have a polynomial-time transformation from
3sat to iPieqnetd, which proves NP -hardness
of iPieqnetd.

4.3 On the possible membership of NP

Although iPieqnetd has been shown to be NP -
hard, membership of the NP -class (and, as a
consequence, NP -completeness) is not trivial to
prove. To prove membership of NP, one has to
prove that if the instance is solvable, then there
exists a certificate, polynomial in length with
respect to the input of the problem, that can
be used to verify this claim. A trivial certifi-
cate could be a formula, using the ⊕- and ⊗-
operators, influences, and parentheses, describ-
ing how the influence of the a certain node can
be calculated from the instantiated node and
the characteristics of the network. Unfortu-
nately, such a certificate can grow exponentially
large.

In special cases, this certificate might also be
described by an ordering of the nodes in the net-
work and for each node an ordering of the in-
puts, which would be a polynomial certificate.
For example, the variable gadget from figure 4
can be described with the ordering I, A,B,C,D
plus an ordering on the incoming trails in D.
All possible outcomes of the propagation algo-
rithm can be calculated using this description.
Note, however, that there are other propagation
sequences possible that cannot be described in
this way. For example, the algorithm might first
explore the trail A → B → D → C, and after
that the trail A → C → D → B. Then, the
influence in D is dependent on the information
in C, but C is visited by D following the first
trail, and D is visited by C if the second trail
is explored. Nevertheless, this cannot lead to
other outcomes than [−1, 1

2], [−1
2 , 1], or [−1, 1].

However, it is doubtful that such a descrip-
tion exists for all possible networks. For exam-
ple, even if we can make a topological sort of
a certain network, starting with a certain in-
stantiation node X and ending with another
node Y , it is still not the case that a propa-
gation sequence that follows only the direction

of the arcs until all incoming trails of Y have
been calculated always yields better results than
a propagation sequence that doesn’t have this
property. This makes it plausible that there ex-
ist networks where an optimal solution (i.e., a
propagation sequence that leads to the small-
est possible subset of [−1, 1] at the node we are
interested in) cannot be described using such a
polynomial certificate.

5 Operator variants

In order to be able to represent every possi-
ble 3sat instance, a relaxation scheme must be
able to generate a variable gadget, and retain
enough information to discriminate between the
cases where zero, one, two or three literals in
each clause are true. Furthermore, the relax-
ation scheme must be able to represent the in-
stantiations [1, 1] (or >) and [−1,−1] (or ⊥),
and the uninstantiated case [0, 0]. With a re-
laxation scheme that effectively divides the in-
terval [−1, 1] in discrete blocks with size of a
multitude of 1

4 , (such as R 1
4
(a, b) = [b4ac

4 , d4be
4])

the proof construction is essentially the same
as in the general case discussed in section 3.
This relaxation scheme does not have any effect
on the intervals we used in the variable gadget
and the clause construction of Q(U,C), the net-
work constructed in the NP -hardness proof of
the general case used only intervals (a, b) for
which R 1

4
(a, b) = (a, b). Furthermore, when

connecting the clauses, the possible influences
in Y are relaxed to [0, 1], [14 , 1], [12 , 1], [34 , 1], and
[1, 1], so we can onstruct Y ′ by consecutively
adding the interval in Y to [−1, 1] and [−3

4 , 1].
Thus, the problem - which we will denote as
relaxed-Pieqnetd - remains NP -hard for re-
laxation scheme R 1

4
.

The non-associativity of the ⊕e- and ⊕r-
operators defined in (Renooij and van der Gaag,
1999) suggest hardness of the inference problem
as well. Although ⊕e and ⊕r are not associa-
tive, they cannot produce results that can be
regarded as opposites. For example, the expres-
sion (++⊕e +⊕e−) can lead to a positive influ-
ence of unknown strength (‘+?’) when evaluated
as ((+ + ⊕e+) ⊕e −) or an unknown influence

(‘?’) when evaluated as (+ + ⊕e(+ ⊕e −)), but
never to a negative influence. A transformation
from a 3sat variant might not succeed because
of this reason. However, it might be possible
to construct a transformation from relaxed-
Pieqnetd, which is subject of ongoing research.

6 Conclusion

In this paper, we addressed the computational
complexity of inference in enhanced Qualita-
tive Probabilistic Networks. As a first step,
we have ”embedded” both standard and en-
hanced QPNs in the interval-model using relax-
ation schemes, and we showed that inference in
this general interval-model is NP -hard and re-
mains NP -hard for relaxation scheme R 1

4
(a, b).

We believe, that the hardness of inference is due
to the fact that reasoning in QPNs is under-
defined: The outcome of the inference process
depends on choices during evaluation. Never-
theless, further research needs to be conducted
in order to determine where exactly the NP/P
border lies, in other words: which enhance-
ments to the standard qualitative model allow
for polynomial-time inference, and which en-
hancements lead to intractable results. Fur-
thermore, a definition of transitive and com-
positional combinations of qualitative influences
in which the outcome is independent of the or-
der of the influence propagation might reduce
the computational complexity of inference and
facilitate the use of qualitative models to de-
sign, validate, analyse, and simulate probabilis-
tic networks.

Acknowledgements

This research has been (partly) supported by
the Netherlands Organisation for Scientific Re-
search (NWO).
The authors wish to thank Hans Bodlaender
and Silja Renooij for their insightful comments
on this subject.

References

G.F. Cooper. 1990. The Computational Complex-
ity of Probabilistic Inference using Bayesian Belief
Networks. Artificial Intelligence, 42(2):393–405.

M.J. Druzdzel and M. Henrion. 1993a. Belief Prop-
agation in Qualitative Probabilistic Networks.
In N. Piera Carrete and M.G. Singh, editors,
Qualitative Reasoning and Decision Technologies,
CIMNE: Barcelona.

M.J. Druzdzel and M. Henrion. 1993b. Intercausal
reasoning with uninstantiated ancestor nodes. In
Proceedings of the Ninth Conference on Uncer-
tainty in Artificial Intelligence, pages 317–325.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Mor-
gan Kaufmann, Palo Alto.

S. Renooij and L.C. van der Gaag. 1999. Enhancing
QPNs for trade-off resolution. In Proceedings of
the Fifteenth Conference on Uncertainy in Artifi-
cial Intelligence, pages 559–566.

S. Renooij and L.C. van der Gaag. 2002. From
Qualitative to Quantitative Probabilistic Net-
works. In Proceedings of the Eighteenth Con-
ference in Uncertainty in Artificial Intelligence,
pages 422–429.

L.C. van der Gaag, S. Renooij, and P.L. Gee-
nen. 2006. Lattices for verifying monotonicity of
Bayesian networks. In Proceedings of the Third
European Workshop on Probabilistic Graphical
Models (to appear).

M.P. Wellman. 1990. Fundamental Concepts of
Qualitative Probabilistic Networks. Artificial In-
telligence, 44(3):257–303.

