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Abstract Mapping applications onto parallel platforms is a challenging problem,
even for simple application patterns such as pipeline or fork graphs. Several antago-
nist criteria should be optimized for workflow applications, such as throughput and
latency (or a combination). In this paper, we consider a simplified model with no
communication cost, and we provide an exhaustive list of complexity results for dif-
ferent problem instances. Pipeline or fork stages can be replicated in order to in-
crease the throughput by sending consecutive data sets onto different processors. In
some cases, stages can also be data-parallelized, i.e. the computation of one single
data set is shared between several processors. This leads to a decrease of the latency
and an increase of the throughput. Some instances of this simple model are shown to
be NP-hard, thereby exposing the inherent complexity of the mapping problem. We
provide polynomial algorithms for other problem instances. Altogether, we provide
solid theoretical foundations for the study of mono-criterion or bi-criteria mapping
optimization problems.

Keywords Pipeline graphs · Fork graphs · Scheduling algorithms · Throughput
maximization · Latency minimization · Bi-criteria optimization · Heterogeneous
platforms · Complexity results

1 Introduction

In this paper we deal with scheduling and mapping strategies for simple application
workflows. Such workflows operate on a collection of data sets that are executed in

A. Benoit (�) · Y. Robert
LIP, ENS Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
e-mail: Anne.Benoit@ens-lyon.fr

Y. Robert
e-mail: Yves.Robert@ens-lyon.fr

mailto:Anne.Benoit@ens-lyon.fr
mailto:Yves.Robert@ens-lyon.fr


Algorithmica

a pipeline fashion [26, 27, 31]. Each data set is input to the application graph and
traverses it until its processing is complete. The application graph itself is composed
of several stages, each corresponding to a given task. The mapping assigns these
stages to distinct processor sets, so as to minimize one or several objectives.

Key metrics for a given workflow are the throughput and the latency. The through-
put measures the aggregate rate of processing of data, and it is the rate at which data
sets can enter the system. Equivalently, the inverse of the throughput, defined as the
period, is the time interval required between the beginning of the execution of two
consecutive data sets. The latency is the time elapsed between the beginning and the
end of the execution of a given data set, hence it measures the response time of the
system to process the data set entirely. Note that it may well be the case that different
data sets have different latencies (because they are mapped onto different proces-
sor sets), hence the latency is defined as the maximum response time over all data
sets. Minimizing the latency is antagonistic to minimizing the period, and tradeoffs
should be found between these criteria. Efficient mappings aim at the minimization
of a single criterion, either the period or the latency, but they can also use a bi-criteria
approach, such as minimizing the latency under period constraints (or the converse).

Searching for an optimal mapping encompasses various levels of difficulty, some
related to the application and others linked to the target platform. An application
stage, or even an interval of consecutive stages, may be replicated onto several proces-
sors, which will execute successive data sets in a round-robin fashion, thereby reduc-
ing the period. Another possibility for data-parallel stages is to share the execution
of the same data set among several processors, thereby reducing the latency. Achiev-
ing a balanced utilization of all resources over the entire application graph becomes
a complicated goal. This is already true on simple, homogeneous platforms com-
posed of identical processors and interconnection links. The situation becomes even
worse when dealing with heterogeneous platforms, with different-speed processors
and different-capacity links.

In this paper we make some important restrictions on the application graphs under
study, as well as on the execution model used to deploy the application workflow on
the platform. Our goal is to provide a solid theoretical foundation for the study of
single criterion or bi-criteria mappings. We aim at assessing the additional complex-
ity induced by replicated and/or data-parallel stages on the application side, and by
different-speed processors on the platform side. This implies to deal with simple (but
important) application graphs for which efficient mappings can be found in polyno-
mial time using identical processors, and without replicating or data-parallelizing any
stage.

To this purpose we restrict to two important application graphs, namely linear
pipelines and fork graphs, as illustrated on Figs. 1 and 2. Both graphs are ubiquitous
in parallel processing and represent archetype application workflows. They are the
building blocks of many parallel applications; for instance, pipeline graphs occur
in many applications in the domains of image processing, computer vision, query
processing, etc., while fork graphs are mandatory to distribute files or databases in
master-slave environments. While important, both graphs are simple enough so that
the design of optimal mappings is well understood in some simple frameworks.

Pipeline graphs are easier to deal with, because there is a single dependence path.
For example Subhlok and Vondran [27, 28] have been able to design dynamic pro-
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gramming algorithms for bi-criteria mappings on homogeneous platforms. Also, if
we neglect all communication costs, minimizing the period amounts to solve the
well-known chains-to-chains problem. Given an array of n elements a1, a2, . . . , an,
this problem is to partition the array into p intervals whose element sums are well
balanced (technically, the aim is to minimize the largest sum of the elements of any in-
terval). This problem has been extensively studied in the literature (see the pioneering
papers [10, 14, 22] and the survey [23]). It amounts to load-balance n computations
whose ordering must be preserved (hence the restriction to intervals) onto p identi-
cal processors. Does this problem remain polynomial with different-speed processors
and the possibility of replicating or data-parallelizing the intervals? The complexity
of these important extensions of the chains-to-chains problem is established in this
paper.

Fork graphs are more difficult to tackle, because there are more opportunities for
parallelism, hence a wider combinatorial space to explore when searching for good
mappings. Still, we provide several complexity results for this class of graphs. Al-
together, the main goal of this paper is to provide a solid theoretical foundation for
the study of single criterion or bi-criteria mappings, with the possibility to replicate
and possibly data-parallelize application stages. Our major contribution is to estab-
lish the complexity of all the optimization problems for pipeline and fork graphs that
are exposed in Table 1.

The rest of the paper is organized as follows. We start by illustrating the problem
on a simple example in Sect. 2. This section provides an insight of the complex-
ity of the problem, even in simple cases. Then in Sect. 3, we detail the framework:
we present both the general model, and a simplified model without communication
costs. The exhaustive complexity results for this simplified model are summarized in
Sect. 4, then we detail the results for pipeline graphs (Sect. 5), and for fork graphs
(Sect. 6). Related work is surveyed in Sect. 7. Finally, we conclude in Sect. 8.

2 Working out an Example

Consider an application workflow whose application graph is a n-stage pipeline. The
k-th stage requires wk operations. The workflow is mapped onto a platform with p
processors P1 to Pp. The speed of processor Pq is sq , which means that the time for
Pq to process stage Si is wi

sq
. For the sake of simplicity, assume that no communication

cost is paid during the execution. The rule of the game for the mapping is to partition
the set of stages into intervals of consecutive stages and to map these intervals onto
the processors. The period will be the longest time to process an interval, while the
latency will be the sum of the execution times over all intervals.

To illustrate this, consider the following little example with four stages S1 to S4.
Below each stage Si we indicate the number of computations wi (expressed in flops)
that it requires

S1 → S2 → S3 → S4
14 4 2 4

Assume that we have a homogeneous platform made up of three identical proces-
sors, all of unit speed: p = 3 and s1 = s2 = s3 = 1. What is the minimum period?
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Obviously, mapping S1 to P1, the other three stages to P2, and discarding P3, leads
to the best period Tperiod = 14. The solution is not unique, the only constraint is that
the processor assigned to S1 is not assigned any other stage. Note that the latency is
always Tlatency = 24, whatever the mapping, as it is the total computation time needed
for a data set to traverse the four stages. This simple observation always holds true
with identical processors.

How can we decrease the period? If the computations of a given stage are inde-
pendent from one data set to another, two consecutive computations (different data
sets) for the same stage can be mapped onto distinct processors, thus reducing the
period for the processing of this stage. Such a stage can be replicated, using the ter-
minology of Subhlok and Vondran [27, 28] and of the DataCutter team [6, 7, 26].
This corresponds to the dealable stages of Cole [11]. Note that the computations of
a replicated stage can be fully sequential for a given data set, what matters is that
they do not depend from previous results for other data sets, hence the possibility to
process different data sets in different locations. The following picture illustrates the
replication of interval [Su..Sv] onto three processors

. . . Su−1

� Su . . . Sv on P1: data sets 1, 4, 7, . . . �

−− Su . . . Sv on P2: data sets 2, 5, 8, . . . −−
� Su . . . Sv on P3: data sets 3, 5, 9, . . . �

Sv+1 . . .

If all stages can be replicated, a solution would be to assign the whole processing
of a data set to a given processor, and distribute the different data sets among all
processors of the platform. For instance, if the four stages of our example can all
be replicated, we can derive the following mapping: processor P1 would process
data sets numbered 1,4,7, . . . , P2 those numbered 2,5,8, . . . and P3 those numbered
3,6,9, . . . . Each data set is processed within 24 time steps, hence a new data set can
be input to the platform every 24/3 = 8 time steps, and Tperiod = 8. Such a mapping
extends the previous rule of the game. Instead of mapping an interval of stages onto
a single processor, we map it onto a set of processors, and data sets are processed in
a round robin fashion by these processors as they enter the interval. With identical
processors, we see that the time to process the interval by each processor is simply
the weight of the interval (the sum of the computation times of the stages composing
the interval) divided by the processor speed, and since each processor only executes a
fraction of the data sets, the period is the previous time, further divided by the number
of processors assigned to the replication.

With different-speed processors and such a round robin distribution, we would
need to retain the longest time needed to process an instance, i.e. the time of the
slowest assigned processor, and to divide it by the number of processors. Rather than
a round robin distribution of the data sets to processors, we could let each processor
execute a number of instances proportional to its speed, thus leading to an optimal
throughput. However, as further discussed in Sect. 3.3, we do not allow such a distri-
bution scheme since it is quite likely to lead to an out-of-order execution of data sets
which is not acceptable in the general case.
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Formally, replicating the interval Si to Sj onto processors Pq1 to Pqk
thus requires

a time
∑j

u=i wu

k × minu(squ)
.

With k identical processors of speed s, the formula reduces to

∑j
u=i wu

k × s
.

The previous mapping has replicated a single interval of length four, but it would
have been possible to replicate only a subset of stages. For instance we could replicate
only S1 onto P1 and P2, and assign the other three stages to P3, leading to Tperiod =
max( 14

2 ,4 + 2 + 4) = 10. Using a fourth processor P4 we could further replicate
the interval S2 to S4, achieving Tperiod = max(7,5) = 7. Note that the latency is not
modified when replicating stages, because the processing of a given data set remains
unchanged. Both of these mappings with replication still achieve Tlatency = 24.

So, how can we decrease the latency? We need to speed up the processing of
each stage separately, which is possible only if the computations within this stage
can be parallelized, at least up to some fraction. The processing of such data-parallel
stages can then be shared by several processors. Contrarily to replicated stages where
different instances (for different data sets) are assigned to different resources, each
instance of a data-parallel stage is assigned to several processors, which speeds-up
the production of each result, as illustrated below. The 16 units of work are perfectly
shared between the three processors, even if they are of different speed

S (w = 16)• • • •• • • •• • • •• • • •
=⇒

P1 (s1 = 2) : • • • • • • • •
P2 (s2 = 1) : • • • •
P3 (s3 = 1) : • • • •

There is another major difference: while we can replicate intervals of consecu-
tive stages, we can only data-parallelize single stages (but maybe several of them).
To see why, consider two consecutive stages, the first one executing some low-level
filtering on its input file (an image), and the second stage implementing various high-
level component extraction algorithms. Both stages can be made data-parallel, but
the entire image produced by the first stage is needed as input to the second stage.
In fact, if both stages could have been data-parallelized simultaneously, the applica-
tion designer may have chosen to gather them into a single stage, thereby given more
opportunities for an efficient parallelization.

As for now, assume fully data-parallel stages (in general, there might be an inher-
ently sequential part in the stage, which can be modeled using Amdahl’s law [2], see
Sect. 3). Then the time needed to process data-parallel stage Si using processors Pq1

to Pqk
is wi∑k

u=1 squ

. With k identical processors of speed s, the formula reduces to wi

k×s .

Going back to the example, assuming four data-parallel stages, we can reduce the
latency down to Tlatency = 17 by data-parallelizing S1 onto P1 and P2, and assigning
the other three stages to P3. Note that it is not the same mapping as above, because S1
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is data-parallelized instead of being replicated. The period turns out to be the same,
namely Tperiod = 10, but the latency is different.

To illustrate the additional complexity induced by heterogeneous platforms, we re-
visit the example with four different-speed processors: s1 = s2 = 2 and s3 = s4 = 1.
Hence P1 and P2 are twice faster than P3 and P4. Assume that it is possible to repli-
cate or data-parallelize each stage. It becomes tricky to compute the optimal period
and latency. If we replicate all stages (i.e. replicate an interval of length 4), we obtain
the period Tperiod = 24

4×1 = 6, which is not optimal because P1 and P2 achieve their
work in 12 rather than 24 time-steps and then remain idle, because of the round robin
data set distribution. A better solution is to data-parallelize S1 on P1 and P2, and to
replicate the interval of the remaining three stages onto P3 and P4, leading to the
period Tperiod = max( 14

2+2 , 10
2×1 ) = 5. This is indeed the optimal value for the period,

as can be checked by an exhaustive exploration. The first mapping achieves a latency
Tlatency = 24 while the second obtains Tlatency = 14

4 + 10 = 13.5. The minimum la-
tency is Tlatency = 14

5 + 10 = 12.8, achieved by data-parallelizing S1 on P1, P2 and
P3 and assigning S4 to P4. Again, it is not obvious to see that this is the optimal
value.

The goal of this little example was to show the combinatorial nature of the target
optimization problems. While mono-criterion problems (period or latency) with iden-
tical processors seem to remain tractable, it may well turn out much harder to solve
either bi-criteria problems with identical processors, or mono-criterion problems with
different-speed processors. The major contribution of this paper is to derive several
new complexity results for these important problems.

3 Framework

We outline in this section the characteristics of the applicative framework, together
with possible execution models on the target platform. In particular we introduce the
pipeline and fork application graphs, we define replicated tasks and data-parallel
tasks, and we discuss several scenarios to account for communication costs and com-
putation/communication overlap. We also detail the objective function, chosen either
as to minimizing the period or the response time, or as a trade-off between these two
antagonistic criteria.

Finally we describe the simplified problems whose complexity will be explored in
this paper. Although we use a crude model with neither overhead nor communication
cost for the tasks, some problems are already of combinatorial nature on homoge-
neous platforms (with identical processors), while some others remain of polynomial
complexity. We will assess the impact of heterogeneity (using different speed proces-
sors) for all these problems.

3.1 Applicative Framework

We consider simple application workflows whose graphs are either a pipeline or a
fork. Such graphs are representative of a wide class of applications, and constitute the
typical building blocks upon which to build and execute more complex workflows.
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Fig. 1 The application pipeline

Fig. 2 The application fork

Pipeline Graph A pipeline graph of n stages Sk , 1 ≤ k ≤ n is illustrated on Fig. 1.
Consecutive data sets are fed into the pipeline and processed from stage to stage, until
they exit the pipeline after the last stage.

Each stage executes a task. More precisely, the k-th stage Sk receives an input
from the previous stage, of size δk−1, performs a number of wk computations, and
outputs data of size δk to the next stage. This operation corresponds to the k-th task
and is repeated periodically on each data set. The first stage S1 receives an input of
size δ0 from the outside world, while the last stage Sn returns the result, of size δn,
to the outside world.

Fork Graph A fork graph of n + 1 stages Sk , 0 ≤ k ≤ n is illustrated on Fig. 2.
S0 is the root stage while S1 to Sn are independent stages that can be executed si-
multaneously for a given data set. Stage Sk (0 ≤ k ≤ n) performs a number of wk

computations on each data set. As for the pipeline graph, consecutive data sets are
fed into the fork. Each data set first proceeds through stage S0, which outputs its re-
sults, of size δ0, to all the other stages. The first stage S0 receives an input of size δ−1
from the outside world, while the other stages Sk , 1 ≤ j ≤ n, may return their results,
of size δk , to the outside world.

Replicated Stage/Task If the computations of the k-th stage are independent from
one data set to another, the k-th stage Sk can be replicated [26–28]: several consec-
utive computations are mapped onto distinct processors. Data sets are processed in a
round robin fashion by these processors. As already pointed out, the computations of
a replicated stage can be fully sequential for a given data set, as long as they do not
depend from previous results for other data sets. Replicating a stage or an interval
of stages does not change the latency, as each data set follows the same execution as
without replication, but it can decrease the period, as shown in the example of Sect. 2.
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Fig. 3 The target platform

Data-Parallel Stage/Task If the computations of the k-th stage are data-parallel,
their execution can be split among several processors. Each instance of a data-parallel
stage is assigned to several processors, which speeds-up the production of each re-
sult. Data-parallelizing a task reduces both the latency and the period, at the price of
consuming several resources for a given stage, as shown in the example of Sect. 2.

3.2 Execution Models

Target Platform We target a heterogeneous platform with p processors Pu, 1 ≤ u ≤
p, fully interconnected as a (virtual) clique, as illustrated in Fig. 3. There is a bidi-
rectional link linku,v : Pu → Pv between any processor pair Pu and Pv , of band-
width bu,v . Note that we do not need to have a physical link between any processor
pair. Instead, we may have a switch, or even a path composed of several physical
links, to interconnect Pu and Pv ; in the latter case we would retain the bandwidth of
the slowest link in the path for the value of bu,v . In the most general case, we have
fully heterogeneous platforms, with different processors speeds and link capacities.
The speed of processor Pu is denoted as su, and it takes X/su time-units for Pu to
execute X floating point operations. We also enforce a linear cost model for commu-
nications, hence it takes X/bu,v time-units to send (resp. receive) a message of size X

to (resp. from) Pv . Finally, we assume that two special additional processors Pin and
Pout are devoted to input/output data. Initially, the input data for each task resides on
Pin, while all results must be returned to and stored in Pout. Of course we may have a
single processor acting as the interface for the computations, i.e. Pin = Pout.

Communication Contention The standard model for DAG scheduling heuristics [19,
30, 32] does a poor job to model physical limits of interconnection networks. The
model assumes an unlimited number of simultaneous sends and receives, i.e. a net-
work card of infinite capacity, on each processor. A more realistic model is the
one-port model [8, 9]. In this model, a given processor can be involved in a sin-
gle communication at any time-step, either a send or a receive. However, indepen-
dent communications between distinct processor pairs can take place simultaneously.
The one-port model seems to fit the performance of some current MPI implemen-
tations, which serialize asynchronous MPI sends as soon as message sizes exceed a
few megabytes [25]. The one-port model fully accounts for the heterogeneity of the
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platform, as each link has a different bandwidth. It generalizes simpler models [3, 18,
20] where communication time only depends on the sender, not on the receiver. In
these models, the communication speed from a processor to all its neighbors is the
same.

Another realistic model is the bounded multi-port model [15]. In this model, the
total communication volume outgoing from a given node is bounded (by the capac-
ity of its network card), but several communications along different links can take
place simultaneously (provided that the link bandwidths are not exceeded either).
This model would require several communication threads to be deployed. On homo-
geneous platforms it would be implemented with one-port communications, because
if the links have same bandwidths it is better to send messages serially than simultane-
ously. However, the bounded multi-port is more flexible for heterogeneous platforms.

3.3 Mapping Strategies

The general mapping problem consists in assigning application stages to platform
processors. When stages are neither replicated nor data-parallel, it is easier to come
with a cost model, which we detail before discussing extensions to handle replication
and data-parallelism.

Pipeline Graphs For pipeline graphs, it is natural to map intervals of consecutive
stages onto processors [27, 28]. Intuitively, assigning several consecutive tasks to the
same processor will increase their computational load, but may well dramatically de-
crease communication requirements. The cost model associated to interval mappings
is the following. We search for a partition of [1..n] into m ≤ p intervals Ij = [dj , ej ]
such that dj ≤ ej for 1 ≤ j ≤ m, d1 = 1, dj+1 = ej +1 for 1 ≤ j ≤ m−1 and em = n.
Interval Ij is mapped onto processor Palloc(j), and the period is expressed as

Tperiod = max
1≤j≤m

{
δdj −1

balloc(j−1),alloc(j)

+
∑ej

i=dj
wi

salloc(j)

+ δej

balloc(j),alloc(j+1)

}

(1)

Here, we assume that alloc(0) = in and alloc(m + 1) = out. The latency is obtained
by the following expression (data sets traverse all stages, and only interprocessor
communications need be paid for):

Tlatency =
∑

1≤j≤m

{
δdj −1

balloc(j−1),alloc(j)

+
∑ej

i=dj
wi

salloc(j)

}

+ δn

balloc(m),out
(2)

The optimization problem INTERVAL MAPPING is to determine the best mapping,
over all possible partitions into intervals, and over all processor assignments. The ob-
jective can be to minimize either the period, or the latency, or a combination: given
a threshold period, what is the minimum latency that can be achieved? and the coun-
terpart: given a threshold latency, what is the minimum period that can be achieved?
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Fork Graphs For fork graphs, it is natural to map any partition of the graph onto
the processors. Assume such a partition with q sets, where q ≤ p. The first set of the
partition will contain the root stage S0 and possibly other independent stages (say S1
to Sk without loss of generality), while the other sets will only contain independent
stages chosen from Sk+1 to Sn. Assuming that the first set (with the root stage) is
assigned to P1, and that the q −1 remaining sets are assigned to P2, . . . ,Pq . Defining
the period requires to make several hypotheses on the communication model:

• A flexible model would allow P1 to initiate the communications to the other
processors immediately upon completion of the execution of S0, while a stricter
model (say, with a single execution thread) would allow the communications to
start only after P1 has completed all its computations, including those for stages
S1 to Sk .

• Either way, we need to specify the ordering of the communications. This is manda-
tory for the one-port model, obviously, but this is also true for the bounded multi-
port model: a priori, there is no reason for the q − 1 communications to take place
in parallel; the scheduler might decide to send some messages first and others later.

Rather than proceeding with complex formulas, let us define the period and the la-
tency informally:

• The period is the maximum time needed by a processor to receive its data, perform
all its computations, and output the result. The period does not depend upon the
ordering of the communications but only upon their duration (which is a constant
for the one-port model but changes in the bounded multi-port model, depending
upon the number of simultaneous messages sent together with the input).

• The latency is the time elapsed between the moment where a data set is input to P0
and the moment where the last computation concerning this data set is completed.
The latency depends whether the model is flexible or strict, and also depends upon
the ordering of the communications.

We will use the word interval instead of subset when partitioning the stages of a
fork graph and assigning them to processors. Each processor executes some subset
that may include the root stage and/or may include several other (independent) stages,
so the assignment is not properly speaking an interval. But for the convenience of the
reader, we keep the same terminology as for pipeline graphs.

Replicated Stages Defining the cost model for replicated stages is difficult, in par-
ticular when two or more consecutive intervals are replicated onto several (distinct)
processor sets.

We start with the replication of a single interval of a pipeline workflow. Assume
that the interval Si to Sj is replicated onto processors Pq1 to Pqk

. What is the time
needed to process the interval? Because Pq1 to Pqk

execute the stages in round-robin
fashion, the processing time will not be the same for each data set, and we need
to retain the longest time tmax taken by any processor, including communication and
computation costs. The period will then be equal to tmax

k
, because each processor com-

putes every k-th data set: the slowest processor has indeed tmax time-steps available
between the arrival of two consecutive inputs.
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It is difficult to write formulas for tmax because of communication times. If the
stages before Si and after Sj are not replicated, the source of the input and the des-
tination of the output remain the same for each assigned processor Pqu (1 ≤ u ≤ k),
which does simplify the estimation: we would define tmax as the longest time needed
for a processor to receive a message from the source, perform its computations and
output the message to the destination. But if, for instance, the stage before Si is
replicated, or belongs to a replicated interval, the source of the input will vary from
each processor assigned to the latter stage, and it becomes tricky to analyze the time
needed to send and receive messages between any processor pair. We can always take
the longest path over all possible pairs, but there may appear synchronization issues
that complicate the estimation. Finally, the latency will be the sum of the longest
paths throughout the mapping, and again it may be perturbed by hot spots and syn-
chronization issues.

The situation gets even more complicated for fork graphs. Again, we need to con-
sider the longest path to define tmax when replicating a stage interval. While the period
does not depend upon whether the model is flexible or strict for S0, the latency does.
Also, the latency dramatically depends upon the communication ordering, and the
same problems appear when we want to estimate it precisely.

We conclude this paragraph with a digression on the round-robin rule enforced for
mapping replicated stages. With different speed processors, a more efficient strategy
to replicate a stage interval would be to let each processor execute a number of in-
stances proportional to its speed. For instance, coming back the example of Sect. 2
with two fast processors of speed 2 and two slow ones of speed 1, we could as-
sign twice as many data sets to the fast processors than to the slow ones. Each re-
source would then be fully utilized, leading to an optimal throughput. However, such
a demand-driven assignment is quite likely to lead to an out-of-order execution of
data sets in the general case: because of the different pace at which processors are ex-
ecuting the computations, the k-th data set may well exit the replicated stage interval
later than the k + 1-st data set. This would violate the semantics of the application if,
say, the next stage is sequential. Because in real-life applications, some stages are se-
quential and some can be replicated, the round robin rule is always enforced [11, 24].

Data-parallel Stages When introducing data-parallel stages, even the computa-
tional model requires some attention. Consider a stage Si to be data-parallelized on
processors Pq1 to Pqk

. We may assume that a fraction of the computations is inher-
ently sequential, hence cannot be parallelized, and thus introduce a fixed overhead fi

that would depend only on the stage and not on the assigned processors. Introducing
a fixed overhead fi may be less accurate than precisely estimating the overhead intro-
duced for each assigned processor, but it does account for the startup time induced by
system calls. Hence for computations, assuming that each processor executes a share
of the work proportional to its speed, we obtain the expression

fi + wi
∑k

u=1 squ

.

Next there remains to model communications. First, we have to model intra-stage
communications. For example we can envision that a given processor, say Pq1 , acts
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as the master and delivers some internal data to the remaining processors Pq2 to
Pqk

, which in turn will return their partial results to Pq1 . This scenario would call
for a more sophisticated distribution of the work than a simple proportional sharing,
because some fast computing processor Pqj

may well have a low bandwidth link
with Pq1 . In addition, inter-stage communications, i.e. input and output data, induce
the same difficulties as for replicated stages, as they originate from and exit to various
sources. Finally, as explained in Sect. 2, we do not allow to data-parallelize stage in-
tervals for pipeline, i.e. we restrict to data-parallelizing single stages. The situation is
slightly different for the fork, i.e. we can data-parallelize a set of independent stages
(any stages except S0) on the same set of processors, since they have no dependency
relation. However, S0 cannot be data-parallelized together with other independent
stages, since the dependence relation would lead to the same problems as the ones
encountered for the pipeline. In both cases, the next difficulty is to chain two de-
pendent data-parallel stages on two distinct processor sets, which calls for a precise
model of redistribution costs.

Altogether, we see that it is very difficult to come with a satisfactory model for
communications, and that replicated and data-parallel stages dramatically complicate
the story. Still, we point out that given a particular application and a target platform,
it would be worthwhile to instantiate all the formulas given in this section, as they
are very likely to lead to a precise estimation of computation and communication
costs. We are not convinced that fully general models involving arbitrary computa-
tion and communication cost functions, as suggested in [27, 28], can be instantiated
for homogeneous platforms, and we are pretty sure that such models would fail for
heterogeneous clusters.

In contrast, we sketch below a very simplified model, where all communication
costs and overheads are neglected. We agree that such a model may be realistic only
for large-grain applications. In fact, our objective is to assess the inherent difficulty
of the period and/or latency optimization problems, and we believe that the complex-
ity results established in this paper will provide a sound theoretical basis for more
experimental approaches.

3.4 Simplified Model

In this section, we advocate a simplified model as the base model to lay solid theoret-
ical foundations. We deal either with n-stage pipeline graphs (stages numbered from
S1 to Sn) or with (n + 1)-stage fork graphs (same numbering, plus S0 the root stage).
There are p different speed processors P1 to Pp. We neglect all communication costs
and overheads. The cost to execute stage Si on processor Pu alone is wi

su
.

We assume that all stages are data-parallel and can be replicated. Computation
costs are as follows:

• The cost to data-parallelize the stage interval Si to Sj (i = j for a pipeline graph,
and 0 < i ≤ j or i = j = 0 for a fork graph) on the set of k processors Pq1 , . . . ,Pqk

is
∑j

�=i w�
∑k

u=1 squ

.
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This cost is both equal to the period of the assigned processors and to the delay to
traverse the interval.

• The cost to replicate the stage interval Si to Sj on the set of k processors
Pq1 , . . . ,Pqk

is
∑j

�=i w�

k × min1≤u≤k squ

.

This cost is equal to the period of the assigned processors but the delay to traverse

the interval is the time needed by the slowest processor, i.e. tmax =
∑j

�=i w�

min1≤u≤k squ
.

Note that we do not allow stage intervals of length at least 2 to be data-parallelized
in a pipeline: such intervals can only be replicated (or executed on a single processor,
which is a particular case of replication). However, we do allow several consecutive
(or non consecutive) stages to be data-parallelized using distinct processor sets.

For pipeline and fork graphs, the period is defined as the maximum period of a
given processor, and can be readily computed using the previous formulas. Comput-
ing the latency is also easy for pipelines, because it is the sum of the delays incurred
when traversing all stages; depending upon whether the current interval is replicated
or data-parallel, we use the formula for the delay given above.

Computing the latency for fork graphs requires some additional notations. Assume
a partition of the n + 1 stages into q sets Ir , where 1 ≤ r ≤ q ≤ p. Without loss of
generality, the first set I1 contains the root stage and is assigned to the set of k proces-
sors Pq1 , . . . ,Pqk

. Let tmax(r) be the delay of the r-th set, 1 ≤ r ≤ q , computed as if
it was a stage interval of a pipeline graph, i.e. using the previous formulas to account
for data-parallelism or replication. We use a flexible model where the computations
of set Ir , r ≥ 2, can start as soon as the computation of stage S0, from which it
has an input dependence, is completed. In other words, there is no need to wait for
the completion of all tasks in I1 to initiate the other sets Ir , we only wait for S0
to terminate. Let s0 be the speed at which S0 is processed, hence s0 = ∑k

u=1 squ if
I1 is data-parallelized, and s0 = min1≤u≤k squ if I1 is replicated. We then derive the
latency of the mapping as

Tlatency = max

(

tmax(1),
w0

s0
+ max

2≤r≤q
tmax(r)

)

.

We are ready to define the optimization problems formally. Given:

• an application graph (n-stage pipeline or (n + 1)-stage fork),
• a target platform (Homogeneous with p identical processors or Heterogeneous with

p different-speed processors),
• a mapping strategy with replication, and either with data-parallelization or without,
• an objective (the period Tperiod or the latency Tlatency),

determine an interval-based mapping that minimizes the objective. In the case with
data-parallel stages, only intervals of length one can be data-parallelized for the
pipeline, and we cannot data-parallelize S0 together with other independent stages
for the fork, as explained previously. We see that there are sixteen possible combina-
tions, hence sixteen optimization problems to solve. In fact there are more, because
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we also aim at exploring bi-criteria problems. For such problems, the objective be-
comes one of the following:

• given a threshold period Pthreshold, determine a mapping whose period does not
exceed Pthreshold and that minimizes the latency Tlatency;

• given a threshold latency Lthreshold, determine a mapping whose latency does not
exceed Lthreshold and that minimizes the period Tperiod.

Obviously, the bi-criteria problems are expected to be more difficult to solve than
mono-criterion problems. Still, in some particular cases, such as pipelines or forks
whose stages are all identical, we will be able to derive optimal algorithms of poly-
nomial complexity.

4 Summary of Complexity Results

In this section, we provide a brief overview of all the complexity results established
in this paper. As already mentioned, we restrict to the simplified model described in
Sect. 3.4, and we focus on pipeline and fork graphs. Both Homogeneous and Hetero-
geneous platforms are considered, and we study several optimization criteria (latency,
period, and bi-criteria).

We distinguish results for a model allowing data-parallelization, and a model with-
out. Replication is allowed in all cases, since complexity results for a model with
no replication and no data-parallelization are already known, at least for pipeline
graphs [5, 26, 27].

4.1 Summary

We summarize in Table 1 all the new complexity results. The upper part refers to
Homogeneous platforms while the lower part refers to Heterogeneous ones. The sec-

Table 1 Complexity results for the different instances of the mapping problem

Hom. platforms Without data-par With data-par

Objective Period Latency Bi-criteria Period Latency Bi-criteria

Hom. pipeline – –

Het. pipeline Poly (str) Poly (DP)

Hom. fork – Poly (DP) – Poly (DP)

Het. fork Poly (str) NP-hard Poly (str) NP-hard

Het. platforms Without data-par With data-par

Objective Period Latency Bi-criteria Period Latency Bi-criteria

Hom. pipeline Poly (*) – Poly (*) NP-hard

Het. pipeline NP-hard (**) Poly (str) NP-hard –

Hom. fork Poly (*) NP-hard

Het. fork NP-hard – –
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ond column corresponds to the model without data-parallel stages, while the third
column corresponds to the model with data-parallel stages (replication is allowed in
both models). Finally, heterogeneous pipelines and forks are the application graphs
described in Sect. 3.1 while the homogeneous versions refer to graph with identical
stages: in a homogeneous pipeline, each stage has the same weight w, and in a ho-
mogeneous fork, the root stage has weight w0 and each other stage has weight w.
The polynomial entries with (str) mean that the optimal algorithm is straightforward,
typically mapping the whole graph on the fastest processor, or replicating the whole
graph on all processors. The entries with (DP) are filled using a dynamic program-
ming algorithm. For a bi-criteria optimization, we compute in parallel the latency and
the period, and minimize one of the criteria while the other is bounded. Entries (*)
denote the more interesting contributions, obtained with a complex polynomial algo-
rithm mixing binary search and dynamic programming. Most of the NP-completeness
reductions are based on 2-PARTITION [13] and they are rather intuitive, except the
entry (**), which is quite an involved reduction. Entries (–) mean that the result is
directly obtained from another entry: a polynomial complexity for a more general
instance of the application implies a polynomial complexity for the simpler case.
Similarly, a NP-hard complexity for simpler cases implies the NP-completeness of
the problem for harder instances.

4.2 Preliminary Results

Lemma 1 On Homogeneous platforms, there exists an optimal mapping which min-
imizes the period without using data-parallelism.

Proof Let us denote by s the speed of the processors of the Homogeneous platform.
The minimum period obtained for a data-parallelized stage with w computations,
mapped on the set of processors J , is w∑

j∈J sj
. In the case of the data-parallelization

of an interval of independent stages in a fork graph, w is the sum of the corresponding
computations. Since the platform is Homogeneous , this period is equal to w

|J |.s , which
is the minimum period obtained by replicating the same stage (or interval of stages)
onto the same set of processors.

Any optimal mapping containing data-parallel stages can thus be transformed into
a mapping which only contains replication. �

Lemma 2 There exists an optimal mapping which minimizes the latency without
replicating stages.

Proof Replicating a stage does not reduce the latency but only the period, since the
latency is still the time required for an input to be processed by the slowest processor
enrolled in the replication.

We can thus transform any optimal mapping which minimizes the latency by a
new one realizing the same latency just by removing the extra processors assigned to
any replicated stage. �
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5 Complexity Results for Pipeline Graphs

This section deals with pipeline graphs. For homogeneous platforms (Sect. 5.1), we
revisit results from Subhlok and Vondran [27, 28] and provides new or simplified
algorithms. For heterogeneous platforms (Sect. 5.2), to the best of our knowledge, all
algorithms and complexity results are new.

5.1 Pipeline—Homogeneous Platforms

First, we consider a pipeline application on Homogeneous platforms, and the three
objective functions: (i) minimize the period, (ii) minimize the latency, (iii) minimize
both the period and the latency. This section revisits results from Subhlok and Von-
dran [27, 28] and provides either new or simplified algorithms.

For both models, the solution is polynomial for each of the objective function for a
heterogeneous pipeline (different computations for each stages). A fortiori, these re-
sults stand for homogeneous pipelines. In the following, s is the speed of the proces-
sors.

Theorem 1 For Homogeneous platforms, the optimal pipeline mapping which min-
imizes the period can be determined in polynomial time, with or without data-
parallelism.

Proof The minimum period that can be achieved by the platform is clearly bounded

by
∑n

i=1 wi∑p
j=1 sj

. Indeed, there are
∑n

i=1 wi computations to do with a total resource of
∑p

j=1 sj .
On Homogeneous platforms, this minimum period can be achieved by replicat-

ing a single interval of all stages onto all processors. In this case, minj sj = s and∑p

j=1 sj = p.s, and thus the minimum period is obtained.
Another proof is the following: from Lemma 1, any optimal mapping can be

transformed into a mapping composed of q intervals, each being replicated on bk

processors, 1 ≤ k ≤ q . Interval k has a workload ak , and
∑q

k=1 ak = ∑n
i=1 wi = w,

∑q

k=1 bk ≤ p.
This mapping by interval realizes a maximum period T = maxq

k=1(
ak

s.bk
). Or,

w =
q∑

k=1

(
ak

bk

.bk

)

≤ q
max
k=1

(
ak

bk

)

.

q∑

k=1

bk ≤ T .p.s

It follows that the maximum period of this optimal interval mapping is greater than
w

p.s which is the period obtained by mapping all stages as a single interval replicated
onto all processors. �

Theorem 2 For Homogeneous platforms without data-parallelism, the optimal
pipeline mapping which minimizes the latency can be determined in polynomial time.

Proof Following Lemma 2, since there is no data-parallelism, all mappings have the
same latency

∑n
i=1 wi/s, and thus any mapping minimizes the latency. �
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Corollary 1 For Homogeneous platforms without data-parallelism, the optimal
pipeline mapping which minimizes both the period and the latency can be determined
in polynomial time.

Proof Replicating the whole interval of stages onto all processors minimizes both
criteria (Theorems 1 and 2). �

Theorem 3 For Homogeneous platforms with data-parallelism, the optimal pipeline
mapping which minimizes the latency can be determined in polynomial time.

Proof We exhibit here a dynamic programming algorithm which computes the opti-
mal mapping.

We compute recursively the value of L(i, j, q), which is the optimal latency that
can be achieved by any interval-based mapping of stages Si to Sj using exactly q

processors. The goal is to determine L(1,n,p), since it is never harmful to use all
processors on Homogeneous platforms (we can replicate or data-parallelize stages
with the extra processors without increasing the latency).

The recurrence relation can be expressed as

L(i, j, q) = min

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wi

q ′.s + L(i + 1, j, q − q ′) for 1 ≤ q ′ ≤ q − 1

L(i, j − 1, q − q ′) + wj

q ′.s for 1 ≤ q ′ ≤ q − 1

L(i, k − 1, q − q ′ − 1) + wk

q ′.s
+ L(k + 1, j, q − q ′ − 1) for

{
1 ≤ q ′ ≤ q − 2

i < k < j

for q > 2, with the initialization

L(i, i, q) = wi

q.s
for q ≥ 1

L(i, j,1) = L(i, j,2) =
∑j

k=i wk

s
for i < j

L(i, j,0) = +∞
The recurrence is easy to justify: to compute L(i, j, q), we search over all possible

data-parallelized stages. We cannot data-parallelize an interval, and it follows from
Lemma 2 that the only way to reduce latency is to data-parallelize stages. The three
cases make the difference between choosing the first stage, the last stage, or a stage in
the middle of the interval. We have L(i, j,2) = L(i, j,1) for j > i since in this case
there are not enough processors in order to data-parallelize stages between Si and Sj .
The complexity of this dynamic programming algorithm is bounded by O(n3p). �

It is not possible to extend the previous dynamic programming algorithm to deal
with different-speed processors, since the algorithm intrinsically relies on identical
processors in the recurrence computation. Different-speed processors would execute
sub-intervals with different latencies. Because of this additional difficulty, the prob-
lem for Heterogeneous platforms seems to be very combinatorial: we prove that it is
NP-hard below (Sect. 5.2).
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Theorem 4 For Homogeneous platforms with data-parallelism, the optimal pipeline
mapping which minimizes (i) the period for a bounded latency, or (ii) the latency for
a bounded period, can be determined in polynomial time.

Proof We exhibit here a dynamic programming algorithm which computes the opti-
mal mapping.

We compute recursively the values of (L,P )(i, j, q), which are the optimal la-
tency and period that can be achieved by any interval-based mapping of stages Si to
Sj using exactly q processors. This computation can be done by minimizing L for a
fixed P (the value of L takes +∞ when the period exceeds P ), or by minimizing P

for a fixed L. The goal is to compute (L,P )(1,n,p).
The recurrence relation can be expressed as

(L,P )(i, j, q) = min

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(

∑j
k=i wk

s ,

∑j
k=i wk

q.s ) (1)

(L(i, k, q ′) + L(k + 1, j, q − q ′), max(P (i, k, q ′),
P (k + 1, j, q − q ′)))

for 1 ≤ q ′ ≤ q − 1, i ≤ k < j (2)

We assume here that i < j , thus the whole interval is composed of more than one
stage and it cannot be data-parallelized. In case (1), we replicate the whole interval,
while in case (2) we split the interval in k.

The initialization relations are:

• For a single stage, the best choice is to data-parallelize it, and thus (L,P )(i, i, q) =
(

wi

q.s ,
wi

q.s ).• If there is only one processor, the only solution is to map the whole interval onto

this processor: (L,P )(i, j,1) = (

∑j
k=i wk

s ,

∑j
k=i wk

s ).

The recurrence is easy to justify: to compute (L,P )(i, j, q), since we cannot data-
parallelize an interval, either we replicate the whole interval, either we split it into two
sub-intervals, possibly reduced to one stage and then data-parallelized. If one of the
two criteria is fixed, we can then minimize the other one. The complexity of this
dynamic programming algorithm is bounded by O(n3p). �

As already stated for the mono-criterion optimization problem, this cannot be ex-
tended for Heterogeneous platforms, and the problem then becomes NP-complete
(Sect. 5.2).

5.2 Pipeline—Heterogeneous Platforms

Theorem 5 For Heterogeneous platforms with data-parallelism, finding the optimal
mapping for a homogeneous pipeline, for any objective (minimizing latency or pe-
riod), is NP-complete.

Proof We consider the associated decision problems: (i) given a period P , is there a
mapping of period less than P ? (ii) Given a latency L, is there a mapping of latency
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less than L? The problems are obviously in NP: given a period or a latency, and
a mapping, it is easy to check in polynomial time that it is valid by computing its
period and latency.

To establish the completeness, we use a reduction from 2-PARTITION [13]. We
consider an instance I1 of 2-PARTITION: given m positive integers a1, a2, . . . , am,
does there exist a subset I ⊂ {1, . . . ,m} such that

∑
i∈I ai = ∑

i /∈I ai . Let S =∑m
i=1 ai . Without loss of generality, we can assume that all aj are different and

strictly smaller than S/2 (hence S/ak > 2 for all k).
We build the following instance I2 of our problem: the pipeline is composed of

two stages with w = S/2, and p = m processors with speeds sj = aj for 1 ≤ j ≤ m.
For the latency decision problem, we ask whether it is possible to realize a latency

of 2. Clearly, the size of I2 is polynomial (and even linear) in the size of I1. We now
show that instance I1 has a solution if and only if instance I2 does.

Suppose first that I1 has a solution. The solution to I2 which data-parallelizes
both stages, one on the set of processors I , and one on the remaining processors, has
clearly a latency of 2 since each stage completes in time 1.

On the other hand, if I2 has a solution, this solution has to use data-parallelism.
Otherwise, the best latency that can be achieved is obtained by mapping both stages
on the fastest processor k. But because S/ak > 2, the achieved latency for a given
stage is at least S/2

ak
> 2. The only way to obtain a latency smaller than 2 is thus to

data-parallelize both stages. In the solution, let I be the set of processors assigned to
the first stage. We have

S/2
∑

j∈I aj

+ S/2
∑

j /∈I aj

≤ 2.

Let a = ∑
j∈I aj . It follows that S2 ≤ 4aS − 4a2, and thus the only solution is

a = S/2. Therefore, the set of processors I is a solution to the instance of 2-
PARTITION I1.

The proof for the period problem is quite similar. We use the same instance I2,
and we ask whether we can realize a period of 1. When we have a solution of I1,
the same mapping as above realizes the period 1. Given a solution of I2, we argue
that the mapping is data-parallelized as above, because replicating one of the stages
cannot be better than a data-parallelization of the stage, and replicating both stages
on any subset of processors J would achieve a period

S

|J | × minj∈J aj

.

Since the aj are all distinct, we have |J |×minj∈J aj < S for any possible subset J . �

The results are more interesting when data-parallelism is not possible. In this case,
minimizing the latency can be done in polynomial time, but the complexity of the
problem of minimizing the period depends on the pipeline type: it is polynomial for a
homogeneous pipeline, while it becomes NP-complete for a heterogeneous pipeline.

Theorem 6 For Heterogeneous platforms without data-parallelism, the optimal
pipeline mapping which minimizes the latency can be determined in polynomial time.
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Proof Following Lemma 2, since there is no data-parallelism, the minimum latency
can be achieved by mapping the whole interval onto the fastest processor j , resulting
in the latency

∑n
i=1 wi/sj .

This result holds for both heterogeneous and homogeneous pipeline. �

Theorem 7 For Heterogeneous platforms without data-parallelism, the optimal ho-
mogeneous pipeline mapping which minimizes the period can be determined in poly-
nomial time.

First, we need a preliminary lemma which provides a regular form to the optimal
solution. The idea is that replication should be done with a set of processors of similar
speed, so that little computational resource is wasted. If we replicate some stages on a
slow processor and a fast processor, the latter could only compute at the same rate as
the former, and it would be idle for the remaining time. In other words, if we sort the
processors according to their speeds, there exists an optimal solution which replicates
stage intervals onto processor intervals:

Lemma 3 Consider the model without data-parallelism. If an optimal solution which
minimizes the period of a pipeline uses q processors, then consider the q fastest
processors of the platform, denoted as P1, . . . ,Pq , ordered by non-decreasing speeds:
s1 ≤ · · · ≤ sq . There exists an optimal solution which replicates intervals of stages
onto k intervals of processors Ir = [Pdr ,Per ], with 1 ≤ r ≤ k ≤ q , d1 = 1, ek = q ,
and er + 1 = dr+1 for 1 ≤ r < k.

Proof We prove this lemma with an exchange argument. If the optimal solution is not
using the q fastest processors P1, . . . ,Pq , we can replace one of the slower proces-
sor by a fastest one without increasing the period. It could only decrease it, but the
solution being optimal, the period remains the same.

We thus have an optimal solution using processors P1, . . . ,Pq . This solution re-
alizes a partition of the stages into intervals, and a set of processors is assigned to
each interval. Consider the interval in which P1 is enrolled. If the set of processors
of this interval is not of the form P1,P2, . . . ,Pe1 , then we can exchange the fastest
processors included in the set with the slower processors. This does not modify the
period for this interval of stages since the only parameters of the period are the speed
of P1 and the number of processors assigned to this interval. Moreover, since we
give fastest processors for the remaining stages of the pipeline, the period cannot be
decreased either.

We iterate this transformation until the solution has the expected form, and the
period cannot have been increased during this transformation. Thus, the new solution
is optimal. �

We build an optimal solution of the form stated in Lemma 3 in order to prove
Theorem 7.

Proof The algorithm performs a binary search on the period K in order to minimize
it. We also perform a loop on the number of processors q implied in the optimal solu-
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tion, with 1 ≤ q ≤ p. The q fastest processors are selected and ordered by increasing
speed. We renumber them P1, . . . ,Pq , with s1 ≤ s2 · · · ≤ sq .

Finally, we solve a dynamic programming algorithm. The stages are all identical
(homogeneous pipeline), with a workload w, and since there is an optimal solution
composed of intervals of processors replicating intervals of stages, we need to form
the intervals and decide how many stages they compute. N(i, j) denotes the number
of stages assigned to processors Pi, . . . ,Pj .

The recurrence writes:

N(i, j) = max

{
K.si (j−i)
w � (1)

maxi≤k<j (N(i, k) + N(k + 1, j)) (2)

Case (1) corresponds to assigning an interval to processors Pi, . . . ,Pj . We com-
pute the maximum number of stages that can be processed by these processors in
order to fit into period K . Case (2) recursively tries to split the interval of processors
at Pk . We maximize the number of stages that can be handled by both intervals of
processors.

The initialization is the following:

N(i, i) =
⌊

K.si

w

⌋

We want to compute N(1, q). The recurrence is easy to justify since we search
over all possible partitioning of the processors into consecutive intervals, in order to
maximize the number of stages handled by these processors. At any time, the period
is bounded by K . If N(1, q) ≥ n, then we have succeeded and we can try a smaller
period in the binary search, otherwise we increase the period if we do not succeed for
any values of q . The solution is the best one between all solutions using intervals of
consecutive processors, and this solution is optimal (Lemma 3).

The loop over the number of processors is necessary since there is a trade-off
to make between the number of processors used (possibly a large number of slow
processors) and the speed of these processors (enrolling a slow processor in a repli-
cation scheme is decreasing the period of the whole interval).

The complexity of the dynamic programming algorithm is O(p4) for each target
value of the period. We need to bound the number of iterations in the binary search to
establish the complexity. Intuitively, the proof goes as follows: we encode all appli-
cation and platform parameters as rational numbers of the form αr

βr
, and we bound the

number of possible values for the period as a multiple of the least commun multiple
of all the integers αr and βr . The logarithm of this latter number is polynomial in the
problem size, hence the number of iterations of the binary search is polynomial too.1

Finally, we point out that in practice we expect only a very small number of iterations
to be necessary to reach a reasonable precision. �

1The interested reader will find a fully detailed proof for a very similar mapping problem in [21].
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Theorem 8 For Heterogeneous platforms without data-parallelism, the optimal ho-
mogeneous pipeline mapping for a bi-criteria optimization problem can be deter-
mined in polynomial time.

Proof The bi-criteria optimization problem is slightly more complex because of the
latency which needs to be summed over all intervals. For a given latency L and a
given period K , we perform a loop on the number of processors q and then a dynamic
programming algorithm which aims at minimizing the latency. We succeed if L is
obtained, and we can either perform a binary search on L to minimize the latency for
a fixed period, or a binary search on K to minimize the period for a fixed latency.

The dynamic programming algorithm computes L(n,1, q), where L(m, i, j) is the
minimum latency that can be obtained to map m pipeline stages on processors Pi to
Pj , while fitting in period K . The recurrence writes:

L(m, i, j) = min
1≤m′<m
i≤k<j

{
m.w
si

if m.w
(j−i).si

≤ K (1)

L(m′, i, k) + L(m − m′, k + 1, j) (2)

Case (1) corresponds to replicating the m stages onto processors Pi, . . . ,Pj , while
case (2) splits the interval. The initialization writes:

L(1, i, j) =
{ w

si
if w

(j−i).si
≤ K

+∞ otherwise

L(m, i, i) =
{

m.w
si

if m.w
si

≤ K

+∞ otherwise

The recurrence is easy to justify since we search over all possible partitioning of
the processors into consecutive intervals, and over all possible number of stages as-
signed to these intervals. At any time, the period is bounded by K . If L(n,1, q) ≤ L,
then we have succeeded and we can try a smaller period or latency in the binary
search. If we do not succeed for any values of q , we increase the period or latency. The
solution is the best one between all solutions using intervals of consecutive proces-
sors, and it is easy to see that this solution is optimal, following Lemma 3, since all
the exchanges performed in the proof of the lemma are not increasing the latency.

The complexity of the dynamic programming algorithm is O(n2.p4) for each tar-
get value of the period and/or latency. The cost of the binary search can be bounded
as stated in the mono-criterion proof. �

Theorem 9 For Heterogeneous platforms without data-parallelism, the decision
problem PIPELINE-PERIOD-DEC associated to the period minimization problem for
heterogeneous pipeline applications is NP-complete.

Definition 1 (PIPELINE-PERIOD-DEC ) Given n elements w1,w2, . . . ,wn, p val-
ues s1, s2, . . . , sp and a bound K , can we find a partition of [1..n] into q intervals
I1, I2, . . . , Iq , with Ik = [dk, ek] and dk ≤ ek for 1 ≤ k ≤ q , d1 = 1, dk+1 = ek + 1
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for 1 ≤ k ≤ q − 1 and eq = n, and an assignment function σ : {1,2, . . . ,p} →
{0,1,2, . . . , q}, such that

max
1≤k≤q

∑
i∈Ik

wi

(
∑

j=1..p|σ(j)=k 1).(minj=1..p|σ(j)=k sj )
≤ K?

Notice that
∑

j=1..p|σ(j)=k 1 corresponds to the number of processors on which
interval Ik is replicated, and minj=1..p|σ(j)=k sj is the speed of the slowest proces-
sor involved in this replication. If a processor j is not used in the solution, we set
σ(j) = 0.

Proof The PIPELINE-PERIOD-DEC decision problem clearly belongs to the class
NP: given a solution, it is easy to verify in polynomial time that the partition into q

intervals is valid and that the maximum period for each interval k ∈ [1..q] does not
exceed the bound K .

To establish the completeness, we use a reduction from NUMERICAL 3-
DIMENSIONAL MATCHING (N3DM), which is NP-complete in the strong
sense [13]. We consider an instance I1 of N3DM: given 3m numbers x1, x2, . . . , xm,
y1, y2, . . . , ym and z1, z2, . . . , zm and a bound M , does there exist two permutations
σ1 and σ2 of {1,2, . . . ,m}, such that xi + yσ1(i) + zσ2(i) = M for 1 ≤ i ≤ m? Because
N3DM is NP-complete in the strong sense, we can encode M in unary and assume
that the size of I1 is O(m + M). We assume that ∀i = 1..m, xi < M, yi < M, zi <

M , and
∑m

i=1 xi + ∑m
i=1 yi + ∑m

i=1 zi = m.M , otherwise I1 cannot have a solution.
We build the following instance I2 of PIPELINE-PERIOD-DEC :

• We define n = (M + 3)m stages, whose weights are outlined below:

A1 111 . . .1︸ ︷︷ ︸ C D | A2 111 . . .1︸ ︷︷ ︸ C D | . . . | Am 111 . . .1︸ ︷︷ ︸ C D

M M M

Here, R = max(20,m + 1), B = 2M , C = 5RM , D = 10R2M2, and Ai =
B + xi for 1 ≤ i ≤ m. To define the wi formally for 1 ≤ i ≤ n, let N = M + 3. We
have for 1 ≤ i ≤ m:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w(i−1)N+1 = Ai = B + xi

w(i−1)N+j = 1 for 2 ≤ j ≤ M + 1

wiN−1 = C

wiN = D

• For the number of processors, we choose p = 3m. For k = 1..p, we let sk be the
speed of processor Pk where, for 1 ≤ j ≤ m:

⎧
⎪⎨

⎪⎩

sj = B + M − yj (slow processors)

sm+j = C + M − zj (medium-speed processors)

s2m+j = D (fast processors)
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Finally, we ask whether there exists a solution matching the bound K = 1. Clearly,
the size of I2 is polynomial in the size of I1. We now show that instance I1 has a
solution if and only if instance I2 does.

Suppose first that I1 has a solution, with permutations σ1 and σ2 such that xi +
yσ1(i) + zσ2(i) = M . For 1 ≤ i ≤ m:

• we map each stage Ai and the following zσ2(i) stages of weight 1 onto processor
Pσ1(i);• we map the following M − zσ2(i) stages of weight 1 and the next stage, of weight
C, onto processor Pm+σ2(i);• we map the next stage, of weight D, onto the processor P2m+i .

We do have a valid partition of all the stages into p = 3m intervals. Moreover, the
load and speed of the processors are equal: for 1 ≤ i ≤ m,

• the load of Pσ1(i) is Ai + zσ2(i) = B + xi + zσ2(i) and its speed is B +M − yσ1(i) =
B + xi + zσ2(i);• the load of Pm+σ2(i) is M − zσ2(i) + C, which is equal to its speed;

• the load and speed of P2m+i are both D.

The mapping does achieve the bound K = 1, hence a solution to I1.
Suppose now that I2 has a solution, i.e. a mapping matching the bound K = 1.

We first observe that si < sm+j < s2m+k = D for 1 ≤ i, j, k ≤ m. The processors are
thus categorized into slow processors, medium-speed processors and fast processors.
Indeed sj = B +M −yj ≤ B +M = 3M , 5RM ≤ sm+j = C +M −zj ≤ (5R+1)M

and D = 10R2M2.
Let us first show that each of the m stages of weight D must be assigned to a

processor of speed D, and it is the only stage assigned to this processor. If we add
more stages to the interval, we need to replicate the interval which does not fit onto
the processor of speed D. When replicated, the interval can have a load being the
number of processors multiplied by the speed of the slowest of the processors used
in the replication. Even adding all the medium-speed and/or slow processors into a
replication is not enough because their speed reduce drastically the value of the min-
imum speed. For instance, m replicated processors of medium speed cannot process
more than m.mini sm+i ≤ mCM < D. Similarly, any subset of processors including
one non fast processor cannot process a stage D, not to speak of additional stages.
The only possibility is thus to assign exactly one stage D to one single processor of
speed D, since grouping some of these stages into intervals would increase the load
for processors D and force replication.

These m singleton assignments divide the set of stages into m intervals, namely
the set of stages before the first stage of weight D, and the m − 1 sets of stages lying
between two consecutive stages of weight D. The total weight of each of these m

intervals is Ai + M + C > B + M + C = (3 + 5R)M . Thus, assigning the m slow
processors to a single interval is not enough since the computation load of an interval
processed by these processors would then be bounded by m × 3M < C. Therefore,
there is exactly one medium-speed processor assigned to each interval.

Moreover, this processor is not fast enough to handle the whole interval since its
speed is less than C +M and the load is greater than C +M +B . Since there remains
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only m available processors (the slow ones), each interval is assigned exactly one of
these slow processors.

Consider such an interval Ai 111 . . .1 C with M stages of weight 1, and let Pi1

and Pm+i2 be the two processors assigned to this interval (one slow and one medium-
speed). If the whole interval is replicated onto both processors, the computing ca-
pacity is bounded by 2 × 3M since one of the processor is a slow one. This is less
than the load of the whole interval, and so it is not possible. Stages Ai and C are not
assigned to the same processor (otherwise the whole interval would). So Pi1 receives
stage Ai and hi stages of weight 1 while Pm+i2 receives M − hi stages of weight 1
and stage C. It cannot be the other way round since Pi1 is too slow to handle stage C.

This defines two permutations σ1(i) and σ2(i) such that i1 = σ1(i) and i2 = σ2(i).
Because the bound K = 1 must be achieved, we must have:

• Ai + hi = B + xi + hi ≤ B + M − yσ1(i)• M − hi + C ≤ C + M − zσ2(i)

Therefore zσ2(i) ≤ hi and xi + hi ≤ M − yσ1(i), and

m∑

i=1

xi +
m∑

i=1

zi ≤
m∑

i=1

xi +
m∑

i=1

hi ≤ mM −
m∑

i=1

yi

By hypothesis,
∑m

i=1 xi +∑m
i=1 zi = mM −∑m

i=1 yi , hence all inequalities are tight,
and in particular

∑m
i=1 xi + ∑m

i=1 hi = mM − ∑m
i=1 yi = ∑m

i=1 xi + ∑m
i=1 zi .

We can deduce that
∑m

i=1 zi = ∑m
i=1 hi , and since zσ2(i) ≤ hi for all i, we have

zσ2(i) = hi for all i.
Similarly, we deduce that xi +hi = M −yσ1(i) for all i, and therefore xi +yσ1(i) +

zσ2(i) = M .
Altogether, we have found a solution for I1, which concludes the proof. �

6 Complexity Results for Fork Graphs

This section deals with fork graphs. To the best of our knowledge, all results are new,
including those for homogeneous platforms. We will use the word interval instead of
subset when partitioning the stages of a fork graph and assigning them to processors,
in order to keep the same terminology as in the previous section (and as discussed in
Sect. 3).

6.1 Fork—Homogeneous Platforms

Theorem 10 For Homogeneous platforms, the optimal fork mapping which min-
imizes the period can be determined in polynomial time, with or without data-
parallelism.

Proof The minimum period that can be achieved by the platform is clearly bounded

by w0+∑n
i=1 wi∑p

j=1 sj
. Indeed, there are w0 + ∑n

i=1 wi computations to do with a total re-

source of
∑p

j=1 sj .
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On Homogeneous platforms, this minimum period can be achieved by replicating
all tasks onto all processors. In this case, minj sj = s and

∑p
j=1 sj = p.s, and thus

the minimum period is obtained. �

Theorem 11 For Homogeneous platforms, the optimal homogeneous fork mapping
which minimizes the latency can be determined in polynomial time, with or without
data-parallelism.

Note that the problem becomes NP-complete for a heterogeneous fork (Theo-
rem 12).

Proof We provide a dynamic programming algorithm for the bi-criteria optimization.
The program is slightly different for the two cases, with or without data-parallelism.

In both cases, the idea is to loop over the number 0 ≤ n0 ≤ n of stages which
belong to the same interval as the root stage S0, and which are mapped onto 1 ≤
q0 ≤ p processors. Then we can compute the minimum period and latency that can
be obtained to map the n − n0 remaining stages on the p − q0 remaining processors
(possibly as a bi-criteria optimization).

Case 1 (With data-parallelism) In this case we can always data-parallelize the
n − n0 remaining stages on the processors, which leads to both the minimum period
and the minimum latency. We differentiate two cases: (1) n0 = 0, then w0 is alone
and can be data-parallelized over q0 processors, (2) the root stage is not alone and we
can only replicate it on q0 processors to decrease the period.

The minimum latency is obtained as:

min
1≤q0≤p
1≤n0≤n

(
w0

q0.s
+ n.w

(p − q0).s
, max

(
w0 + n0.w

s
,

w0

s
+ (n − n0).w

(p − 1).s

))

Note that in this case, if w0 is not alone, we do not replicate it since it does not
decrease the latency, but instead we keep the p − 1 remaining processors to data-
parallelize the other stages.

For the bi-criteria solution, we define L0 as the time required to compute w0. Since
we are in a flexible model, the other stages start computation at time L0. P0 is the
maximum period of the processors involved in the computation of w0.

If n0 = 0, then w0 is data-parallelized and

L0 = P0 = w0

q0.s

Otherwise these stages are replicated, and

L0 = w0

s
, P0 = w0 + n0.w

q0.s

For the remaining stages, they are all data-parallelized, leading to the best latency
and the best period. We thus have

L = max

(

L0 + n0.w

s
,L0 + (n − n0).w

(p − q0).s

)
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P = max

(

P0,
(n − n0).w

(p − q0).s

)

Case 2 (Without data-parallelism) This second case is slightly more complex since
we cannot data-parallelize the remaining n−n0 stages. We need to select the best way
to split them into intervals and to replicate these intervals in order to minimize the
latency for a given period, or minimize the period for a given latency (bi-criteria).
P0 and L0 are defined as above in the case with w0 replicated, but this time n0 can
be null. We compute (P,L)(n − n0,p − q0) which represents the minimum period
and latency that can be obtained to map the n − n0 remaining stages on the p − q0
remaining processors, and the recurrence writes:

(P,L)(i, q)

=
⎧
⎨

⎩

(max(P0,
i.w
q.s

),L0 + max(
n0.w

s
, i.w

s
)) (1)

min 1≤k<i
1≤q ′<q

(
max(P0,P (k, q ′),P (i − k, q − q ′)),

L0 + max(
n0w
s

,L(k, q ′),L(i − k, q − q ′))

)

(2)

Case (1) corresponds to replicating the i stages onto q processors, while case (2)
splits the interval. The initialization writes:

(P,L)(1, q) =
(

max

(

P0,
w

q.s

)

,L0 + max(n0,1)w

s

)

(P,L)(i,1) =
(

max

(

P0,
i.w

s

)

,L0 + max(n0, i)w

s

)

This recurrence is easy to justify since we try all possible splittings, and thus we
explore all the cases. We can solve the recurrence either for a fixed latency or for a
fixed period, minimizing the other criterion.

Summary. All the previous algorithms provide optimal solutions for the latency
minimization and bi-criteria problems, in polynomial time. The complexity is always
bounded by O(n3p3). �

Theorem 12 For Homogeneous platforms, the optimal heterogeneous fork map-
ping which minimizes the latency is a NP-complete problem, with or without data-
parallelism.

Proof We consider the associated decision problem: given a latency L, is there a
mapping of latency less than L? The problem is obviously in NP: given a latency and
a mapping, it is easy to check in polynomial time that it is valid by computing its
latency.

To establish the completeness, we use a reduction from 2-PARTITION [13]. We
consider an instance I1 of 2-PARTITION: given m positive integers a1, a2, . . . , am,
does there exist a subset I ⊂ {1, . . . ,m} such that

∑
i∈I ai = ∑

i /∈I ai . Let S =∑m
i=1 ai .
We build the following instance I2 of our problem: the fork is composed of m+ 1

stages, with w0 = 1 and wi = ai for i = 1..m. The platform is composed of p = 2
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processors, both of speed 1. Is it possible to achieve a latency of 1 + S/2? Clearly,
the size of I2 is polynomial (and even linear) in the size of I1. We now show that
instance I1 has a solution if and only if instance I2 does. The same reduction works
for both models (with or without data-parallelism).

Suppose first that I1 has a solution, the subset I . The solution to I2 which gives
the root stage plus the stages Si , i ∈ I to one processor and the remaining stages to the
other processor clearly achieves a latency of 1 + S/2, since it is the computational
time required by both processors (for the second one, we need to add the time 1
required to process w0).

On the other hand, if I2 has a solution, let us show that it cannot use data-
parallelism, and thus that the result holds true for both models. If S0 is associated with
some other stages, it cannot be data-parallelized, so it must be alone on its processor
if we want to data-parallelize a part of the fork. However, in this case, we need at
least one processor for S0 and one for the remaining stages, and thus we do not have
enough processors to data-parallelize anything.

Replication cannot be used to reduce latency, so the only way to obtain a latency
smaller than 1+S (everything on one processor), is to share the set of stages between
both processors. The latency of 1 +S/2 is reached only if each processor is in charge
of a computational load of exactly S/2 (without counting w0). The subset of stages
that a processor handles is thus a solution to I1, since it realizes a 2-partition of the
set of stages. �

6.2 Fork—Heterogeneous Platforms

Theorem 13 For Heterogeneous platforms with data-parallelism, finding the optimal
mapping for a homogeneous fork, for any objective (minimizing latency or period), is
NP-complete.

Proof We consider the associated decision problems: (i) given a period P , is there a
mapping of period less than P ? (ii) Given a latency L, is there a mapping of latency
less than L? The problems are obviously in NP: given a period or a latency, and
a mapping, it is easy to check in polynomial time that it is valid by computing its
period and latency.

To establish the completeness, we use a reduction from 2-PARTITION [13]. We
consider an instance I1 of 2-PARTITION: given m positive integers a1, a2, . . . , am,
does there exist a subset I ⊂ {1, . . . ,m} such that

∑
i∈I ai = ∑

i /∈I ai . Let S =∑m
i=1 ai .
We build the following instance I2 of our problem: the fork is composed of two

stages S0 and S1 with w = S/2, and p = m processors with speeds sj = aj for j =
1..m.

This instance is indeed a pipeline, thus the reduction is exactly similar to the one
of Theorem 5 (same problem for the pipeline application), which ends the proof. �

The problem is already NP-hard for a homogeneous fork, so it remains NP-hard
for the more general case of a heterogeneous fork.
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Theorem 14 For Heterogeneous platforms without data-parallelism, the optimal ho-
mogeneous fork mapping for any objectives can be determined in polynomial time.

Note that the problem becomes NP-hard if we consider a heterogeneous fork (The-
orem 15).

The algorithm that we provide for this problem is quite similar to the one for
pipeline graphs (Theorem 7). We need a variant of Lemma 3 for the fork, to ex-
press the solution with intervals of similar speed processors, but care should be taken
of S0. The idea is that S0 is handled by one of the intervals, and we need to identify
this interval.

Lemma 4 Consider the model without data-parallelism. If an optimal solution which
minimizes the period or the latency of a fork uses q processors, and the slowest
processor involved in the computation of S0 is P0, then let us consider the q fastest
processors of the platform, denoted P1, . . . ,Pq , ordered by non-decreasing speeds:
s1 ≤ · · · ≤ sq . Let q0 be the number of P0 in the new ordering, and if P0 is not in
P1, . . . ,Pq , this means that P0 is slower than P1, and we set q0 = 1.

There exists an optimal solution which replicates intervals of stages onto k in-
tervals of processors Ir = [Psr ,Per ], with 1 ≤ r ≤ k ≤ q , s1 = 1, ek = q , and
sr + 1 = er+1 for 1 ≤ r < k, and one of the intervals starts with Pq0 and is in charge
of S0.

Proof The proof uses an exchange argument, similarly to the proof of Lemma 3. If
P0 is slower than P1, we can replace it by P1 because this exchange can only decrease
period and latency.

The solution realizes a partition of the stages into intervals, each interval being
handled by a set of processors. One of the intervals is in charge of S0 (possibly an
empty interval with no other stage).

At this point, it is easy to exchange fast processors for slower ones when they
are implied in a replication with an even slower processor, as we were doing for the
pipeline case. �

We are now ready to prove Theorem 14, expressing the solution in the form exhib-
ited by Lemma 4. Note that S0 can be handled by any interval in the optimal solution,
thus we need to perform a loop on the slowest processor of the processor interval that
executes the root stage.

Proof We write the recurrence aiming at the general bi-criteria optimization problem.
A binary search is performed either on the period or on the latency, and the other
parameter is fixed, thus we build a mapping fitting a period K and a latency L.

We perform a loop on q = 1..p, the number of enrolled processors, then a loop
on q0 = 1..q , the first processor of the interval which handles S0, and we compute
recursively the number of stages that we can give to an interval of processors [Pi,Pj ],
and the corresponding period and latency that are achieved. As in Theorem 7, the
processors are ordered by non-decreasing speeds, and we maximize N(1, q) for the
given period and latency. For each interval except the one handling S0, we need to add
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w0
sq0

to the latency, which corresponds to the time at which the interval of processors

starts working. Thus we define L0 = L− w0
sq0

, which is the latency that these intervals

must achieve in order to fit into L. If L0 ≤ 0 then there is no solution.
Since we need to split the processors at q0, for q0 > 1 we compute N(1, q) =

N(1, q0 − 1)+N(q0, q). We fail if N(1, q) < n, since the total number of stages that
need to be processed is n.

The recurrence then writes, for the interval of processors [Pi,Pj ]:
N(i, j)

= max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

if i = q0,

{
min(
K.si (j−i)−w0

w �, 
L.si−w0
w �) if N(i, j) ≥ 0

−∞ otherwise
(1a)

if i = q0, min(
K.si (j−i)
w �, 
L0.si

w �) (1b)

maxi≤k<j (N(i, k) + N(k + 1, j)) (2)

Case (1) corresponds to assigning an interval to processors Pi, . . . ,Pj . We dis-
tinguish whether this interval is in charge of S0 (1a) or not (1b). Depending on w0,
it may happen that the whole interval cannot fit in the given period or latency, even
with N(i, j) = 0. In this case, we set N(i, j) = −∞ to ensure that this solution will
not be chosen. We compute the maximum number of stages that can be processed by
these processors in order to fit into period K and latency L. Case (2) recursively tries
to split the interval of processors at Pk . Initially, the period and latency are always
fitting into K or L, and the property always remains true. We maximize the number
of stages that can be handled by both intervals of processors.

The initialization is the following:

N(i, i) =
⌊

min(K,L0).si

w

⌋

for i = q0

N(q0, q0) =
{
min(K,L).s0−w0

w � if w0
s0

≥ min(K,L)

−∞ otherwise

The recurrence is easy to justify since we search over all possible partitionings of
the processors into consecutive intervals, in order to maximize the number of stages
handled by these processors. At any time, the period and latency are bounded by K

and L. If N(1, q) ≥ n, then we have succeeded and we can try a smaller period or
latency in the binary search, otherwise we increase the value if we do not succeed for
any values of q and q0. The solution is the best one between all solutions in the form
of Lemma 4, and following the lemma, it is optimal.

The complexity of the dynamic programming algorithm is O(p5) for each target
value of the period and/or latency. The number of iterations in the binary search can
be bounded exactly as in the proof of Theorem 7. �

Theorem 15 For Heterogeneous platforms without data-parallelism, finding the op-
timal mapping for a heterogeneous fork, for any objective (minimizing latency or
period), is NP-complete.
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Proof For the latency objective the problem is already NP-complete on Heteroge-
neous platforms, implying this result.

For the period, we consider the associated decision problem: given a period P ,
is there a mapping of period less than P ? The problem is obviously in NP: given
a period and a mapping, it is easy to check in polynomial time that it is valid by
computing its period.

To establish the completeness, we use a reduction from 2-PARTITION [13]. We
consider an instance I1 of 2-PARTITION: given m positive integers a1, a2, . . . , am,
does there exist a subset I ⊂ {1, . . . ,m} such that

∑
i∈I ai = ∑

i /∈I ai . Let S =∑m
i=1 ai .
We build the following instance I2 of our problem: the fork is composed of m +

2 stages such that w0 = S,wm+1 = S, and wi = ai for i = 1..m. The total load is
thus 3S. The platform is composed of 2 processors whose speeds are s1 = 5 × S

2
and s2 = S

2 . We ask the following question: is it possible to achieve a period P = 1?
Clearly, the size of I2 is polynomial (and even linear) in the size of I1. We now show
that instance I1 has a solution if and only if instance I2 does.

Suppose first that I1 has a solution, the subset I . The solution to I2 which gives
S0, Sm+1 and the stages Si , i ∈ I to P1 and the remaining stages to P2 clearly
achieves a period of 1, since the load assigned to each processor is equal to its speed.

On the other hand, if I2 has a solution, let us show that this solution does not
use replication. Since there are only two processors in the platform, the only way to
replicate consists in replicating the whole fork onto both processors, thus achieving
a period 3S

2× S
2

= 3 > 1. Also, if the solution was using only the fastest processor P1,

then the period would be 3S
5S
2

= 6
5 > 1. Therefore, I2 is sharing the load between

both processors, and P1 must handle a total load of 5 × S
2 , while P2 must handle a

total load of S
2 . Stages S0 and Sm+1 cannot be handled by P2, thus P1 is in charge of

them, and the other stages are shared between both processors following a 2-partition.
Therefore, I1 has a solution. �

6.3 Extension to Fork-join Graphs

We have concentrated in this section on the complexity of mapping algorithms for
fork graphs, but it is also very common to have fork-join graphs, in which a final
stage, Sn+1, is gathering all the results and performing some final computations.

In this section we briefly explain that all the complexity results obtained for fork
graphs can be extended to fork-join graphs. In other words, the complexity is not
modified by the addition of the final stage.

Clearly, all the problem instances which are NP-complete for a simple fork are still
NP-complete for a fork-join graph. The question is to check whether we can extend
the polynomial algorithms to handle fork-join or not. The answer is positive in all
cases. We do not formally present these new algorithms, but rather give an insight on
how to design the extensions.

First, consider the polynomial entries on Homogeneous platforms. The straight-
forward algorithm to minimize the period for a fork is still working for a fork-join,
since the replication of the whole graph on all the processors still provides the opti-
mal period. Minimizing the latency or a bi-criteria algorithm was requiring a dynamic



Algorithmica

programming algorithm for a homogeneous fork (the problem being NP-hard for a
heterogeneous fork). The dynamic programming algorithms used in the proof of The-
orem 11 extend to fork-join graphs by adding two external loops, the first over the
number of stages which belong to the same interval as the final stage Sn+1, and the
second over the number of processors onto which these latter stages are mapped. We
should also consider the case in which S0 and Sn+1 are in the same interval. The rest
of the algorithms is unchanged. Taking the new loops into account, we add a factor
O(np) to the complexity, which finally becomes O(n4p4).

The only polynomial algorithm on Heterogeneous platforms is for a homogeneous
fork without data-parallelism. This corresponds to the algorithm of Theorem 14,
which executes a binary search, and a dynamic programming computation at each
iteration of the binary search. For a homogeneous fork-join graph, Lemma 4 can be
extended to describe the form of an optimal solution, still using intervals of proces-
sors with consecutive speeds. One of the processor intervals must be in charge of
Sn+1, it can either be the one in charge of S0 or another one. We need to distinguish
both cases, and to add a loop on the first processor of the interval which handles Sn+1
whenever it is different from the one which handles S0. The formula are then slightly
modified to take into account the time of the final computations, but the algorithm
remains similar. We have added O(p) to the complexity, leading to a total complexity
of O(p6) for each iteration of the binary search.

On the theoretical side, we see that extending all the complexity results to fork-join
graphs was not very difficult. But we believe that this extension was worth mention-
ing, because of the importance of fork-join graphs in many practical applications.
In fact, numerous parallel applications can be expressed with the master-slave para-
digm: the master initiates some computations, and then distributes (scatters) data to
the slaves (in our case, stages S1, . . . , Sn of the fork-join). Results are then collected
and combined (join operation).

7 Related Work

As already mentioned, this work is an extension of the work of Subhlok and Von-
dran [27, 28] for pipeline applications on homogeneous platforms. We extend the
complexity results to heterogeneous platforms and fork applications, for a simpler
model with no communications.

We have also discussed the relationship with the chains-to-chains problem [10,
14, 16, 17, 22, 23] in Sect. 1. In this paper we extend the problem by adding the
possibility to replicate or to data-parallelize intervals of stages, which modifies the
complexity.

Several papers consider the problem of mapping communicating tasks onto hetero-
geneous platforms, but for a different applicative framework. In [29], Taura and Chien
consider applications composed of several copies of the same task graph, expressed
as a DAG (directed acyclic graph). These copies are to be executed in pipeline fash-
ion. Taura and Chien also restrict to mapping all instances of a given task type (which
corresponds to a stage in our framework) onto the same processor. Their problem is
shown NP-complete, and they provide an iterative heuristic to determine a good map-
ping. At each step, the heuristic refines the current clustering of the DAG. Beaumont
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et al. [4] consider the same problem as Taura and Chien, i.e. with a general DAG,
but they allow a given task type to be mapped onto several processors, each execut-
ing a fraction of the total number of tasks. The problem remains NP-complete, but
becomes polynomial for special classes of DAGs, such as series-parallel graphs. For
such graphs, it is possible to determine the optimal mapping owing to an approach
based upon a linear programming formulation. The drawback with the approach of [4]
is that the optimal throughput can only be achieved through very long periods, so that
the simplicity and regularity of the schedule are lost, while the latency is severely
increased.

Another important series of papers comes from the DataCutter project [12]. One
goal of this project is to schedule multiple data analysis operations onto clusters and
grids, decide where to place and/or replicate various components [6, 7, 26]. A typ-
ical application is a chain of consecutive filtering operations, to be executed on a
very large data set. The task graphs targeted by DataCutter are more general than
linear pipelines or forks, but still more regular than arbitrary DAGs, which makes
it possible to design efficient heuristics to solve the previous placement and replica-
tion optimization problems. However, we point out that a recent paper [31] targets
workflows structured as arbitrary DAGs and considers bi-criteria optimization prob-
lems on homogeneous platforms. The paper provides many interesting ideas and sev-
eral heuristics to solve the general mapping problem. It would be very interesting to
experiment these heuristics on all the combinatorial instances of pipeline and fork
optimization problems identified in this paper.

Finally, we point out that replicating stages to improve the throughput of work-
flow applications is somewhat analogous to replicating tasks to decrease the sched-
ule length of task graph applications. The latter idea has been exploited by Ahmad
and Kwok [1]: they propose efficient algorithms to decide which nodes of the orig-
inal task graph should be replicated, and which processors should be responsible
for their execution. The framework of [1] is very different from ours: (i) they have
a single task graph instead of a pipelined workflow, but this graph can be an ar-
bitrary DAG, while we restrict to linear and fork graphs; (ii) they deal with a sin-
gle objective (schedule length, which corresponds to the latency), while we con-
sider bi-criteria (period and latency) optimization problems; and (iii) they only target
fully homogeneous platforms, while we assess the impact of resource heterogene-
ity. Still, despite all these differences, the global idea is the same: identify those
tasks (or task/stage intervals in our context) that should be replicated. In particu-
lar, Ahmad and Kwok [1] provide a very interesting algorithm, namely the CPFD
(Critical Path Fast Duplication) algorithm, which gives priority to tasks belonging
to a critical path (such tasks are called CPN tasks), or to tasks belonging to a path
that leads to a CPN task. It would be very interesting (and probably very chal-
lenging) to extend or modify the CPFD algorithm to deal with latency optimization
for pipelined workflows made up of arbitrary DAGs (rather than just linear or fork
graphs), and even to deal with bi-criteria objectives as in the paper [31] discussed
above.
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8 Conclusion

In this paper, we have considered the important problem of mapping structured work-
flow applications onto computational platforms. Our main focus was to study the
complexity of the most tractable instances, in order to give an insight of the combi-
natorial nature of the problem. We have concentrated on simple application schemes,
namely pipeline and fork computations, and studied the mapping of such computa-
tion patterns on Homogeneous and Heterogeneous platforms with no communication
costs. We considered the two major objective functions, minimizing the latency and
minimizing the period, and also studied bi-criteria optimization problems. Several
instances of the problem have been shown NP-complete, while others can be solved
with complex polynomial algorithms, mixing binary search and dynamic program-
ming techniques.

It is interesting to see that most problems are already combinatorial, because it
shows that there is no chance to find an optimal mapping when adding the complexity
of communications. We have succeeded to establish the complexity of all the prob-
lems exposed in Table 1, sometimes distinguishing whether the application is fully
regular or not. Some results are surprising: for instance consider the bi-criteria opti-
mization problem on a pipeline application mapped onto a Heterogeneous platform. If
there is no data-parallelism, the problem is polynomial for a regular application while
it becomes NP-complete when pipeline stages have different computation costs. The
same problem is NP-hard in both cases if we add the possibility to data-parallelize
stages of the pipeline. The results for the fork pattern have been extended to fork-join
computations: the complexity remains the same in all cases.

We believe that this exhaustive study of complexity provides a solid theoretical
foundation for the study of single criterion or bi-criteria mappings, with the possibil-
ity to replicate and possibly data-parallelize application stages.

As future work, we could select some of the polynomial instances of the problem
and try to assess the complexity when adding some communication parameters to
the application and to the platform. Also, heuristics should be designed to solve the
combinatorial instances of the problem. We have restricted to simple communication
patterns, since the problem on general DAGs is already too difficult, but we could
build heuristics based on some of our polynomial algorithms to solve more complex
instances of the problem, with general application graphs structured as combinations
of pipeline and fork kernels. Extending ideas of task graph replication algorithms
(such as those in [1]) to this new framework, also looks a promising direction to
further explore.
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