
Complexity Results in Epistemic Planning

Thomas Bolander

DTU Compute

Tech. University of Denmark

Copenhagen, Denmark

tobo@dtu.dk

Martin Holm Jensen

DTU Compute

Tech. University of Denmark

Copenhagen, Denmark

martin.holm.j@gmail.com

Francois Schwarzentruber

IRISA

ENS Rennes

Rennes, France

francois.schwarzentruber@ens-rennes.fr

Abstract

Epistemic planning is a very expressive framework
that extends automated planning by the incorpora-
tion of dynamic epistemic logic (DEL). We provide
complexity results on the plan existence problem
for multi-agent planning tasks, focusing on purely
epistemic actions with propositional preconditions.
We show that moving from epistemic preconditions
to propositional preconditions makes it decidable,
more precisely in EXPSPACE. The plan existence
problem is PSPACE-complete when the underly-
ing graphs are trees and NP-complete when they
are chains (including singletons). We also show
PSPACE-hardness of the plan verification problem,
which strengthens previous results on the complex-
ity of DEL model checking.

1 Introduction

An all-pervading focus of artificial intelligence (AI) is the de-
velopment of rational, autonomous agents. An important trait
of such an agent is that it is able to exhibit goal-directed be-
haviour, and this overarching aim is what is studied within
the field of automated planning. At the same time, such
goal-directed behaviour will naturally be confined to what-
ever model of the underlying domain is used. In automated
planning the domain models employed are formulated using
propositional logic, but in more complex settings (e.g. multi-
agent domains) such models come up short due to the lim-
ited expressive power of propositional logic. By extending
(or replacing) this foundational building block of automated
planning we obtain a more expressive formalism for studying
and developing goal-directed agents, enabling for instance an
agent to reason about other agents.

For the above reasons automated planning has recently
seen an influx of formalisms that are colloquially referred to
as epistemic planning [Bolander and Andersen, 2011; Löwe
et al., 2011; Aucher and Bolander, 2013; Yu et al., 2013;
Andersen et al., 2012]. Common to these approaches is that
they take dynamic epistemic logic (DEL) [Baltag et al., 1998]

as the basic building block of automated planning, which
greatly surpasses propositional logic in terms of expressive
power. Briefly put, DEL is a modal logic with which we

can reason about the dynamics of knowledge. In the single-
agent case, epistemic planning can capture non-deterministic
and partially observable domains [Andersen et al., 2012]. An
even more interesting feature of DEL is the inherent ability to
reason about multi-agent scenarios, lending itself perfectly to
natural descriptions of multi-agent planning tasks.

In [Bolander and Andersen, 2011] it is shown that the
plan existence problem (i.e. deciding whether a plan exists
for a multi-agent planning task) is undecidable, and this re-
mains so even when factual change is not allowed, that is,
when we only allow actions that changes beliefs, not on-
tic facts [Aucher and Bolander, 2013]. Allowing for factual
change, a decidable fragment is obtained by restricting epis-
temic actions to only have propositional preconditions [Yu et
al., 2013] (in the full framework, preconditions of actions can
be arbitrary epistemic formulas). The computational com-
plexity of this fragment belongs to (d + 1)-EXPTIME for a
goal whose modal depth is d [Maubert, 2014].

In this work we consider exclusively the plan existence
problem for classes of planning tasks where preconditions
are propositional (as in most automated planning formalisms)
and actions are non-factual (changing only beliefs). We show
this problem to be in EXPSPACE in the general case, but also
identify fragments with tight complexity results. We do so by
using the notion of epistemic action stabilisation [van Ben-
them, 2003; Miller and Moss, 2005; Sadzik, 2006], which
allows us to put an upper bound on the number of times an
action needs to be executed in a plan. This number depends
crucially on the structural properties of the graph underlying
the epistemic action. To achieve our upper bound complex-
ity results we generalise a result of [Sadzik, 2006] on action
stabilisation. We also tackle lower bounds, thereby showing
a clear computational separation between these fragments.

Our contributions to the complexity of the plan existence
problem are summarised in Table 1 (second column from
the left), where we’ve also listed related contributions. The
fragments we study have both a conceptual and technical
motivation. Singleton epistemic actions correspond to pub-
lic announcements of propositional facts, chains and trees to
certain forms of private announcements, and graphs capture
any propositional epistemic action. Possible applications of
such planning fragments could e.g. be planning in games like
Clue/Cluedo where actions can be seen as purely epistemic;
or synthesis of protocols for secure communication (where

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

2791

Types of epistemic actions

Underlying

graphs of

actions

Non-factual,

propositional

preconditions

Factual,

propositional

preconditions

Factual,

epistemic

preconditions

SINGLETONS
NP-complete

(Theorem 5.1)
PSPACE-hard
[Jensen, 2014]

PSPACE-hard
[Jensen, 2014]

CHAINS
NP-complete

(Theorem 5.2)
?

(open question)

?
(open question)

TREES PSPACE-complete

(Theorem 5.3,

Theorem 5.4)

?
(open question)

?
(open question)

GRAPHS

in EXPSPACE

(Theorem 5.8)

in NON-

ELEMENTARY
[Yu et al., 2013]

Undecidable
[Bolander and

Andersen,

2011]

Table 1: Complexity results for the plan existence problem.

the goal specifies who are allowed to know what).
Technically our fragments increase in complexity as we

loosen the restrictions put on the underlying graph. Some
planning tasks might therefore be simplified during a prepro-
cessing phase so that a better upper bound can be guaranteed.
As a case in point, we can preprocess any planning task and
replace each graph action with a tree action that is equiva-
lent up to a predetermined modal depth k (by unravelling).
Letting k be the modal depth of the goal formula we obtain
an equivalent planning task that can be solved using at most
space polynomial in k and the size of the planning task. In au-
tomated planning such preprocessing is often used to achieve
scalable planning systems.

Our results also allow us to prove that the plan verification
problem (a subproblem of DEL model checking) is PSPACE-
hard, even without non-deterministic union, thereby improv-
ing the result of [Aucher and Schwarzentruber, 2013].

Sections 2 and 3 present the core notions from epistemic
planning. In Section 4 we improve the known upper bounds
on the stabilisation of epistemic actions. This is put to use in
Section 5 where we show novel results on the complexity of
the plan existence problem. Section 6 presents our improve-
ment to the plan verification problem, before we conclude and
discuss future work in Section 7.

2 Background on Epistemic Planning

For the remainder of the paper we fix both an infinitely count-
able set of atomic propositions P and a finite set of agentsAg.

2.1 Dynamic epistemic logic

Definition 2.1 (Epistemic models and states). An epistemic
model is a triple M = (W,R, V) where the domain W is
a non-empty set of worlds; R : Ag → 2W×W assigns an
epistemic (accessibility) relation to each agent; and V : P →
2W assigns a valuation to each atomic proposition. We write
Ra for R(a) and wRav for (w, v) ∈ Ra. We often write
WM for W , RM

a for Ra and VM for V . For w ∈ W , the
pair (M,w) is called an epistemic state whose actual world
is w. (M,w) is finite when W is finite. Epistemic states are
typically denoted by symbols such as s and s0.

The language of propositional logic over P is referred to
as LProp, or sometimes simply the propositional language.

Definition 2.2 (Propositional action models and epistemic
actions). A propositional action model is a triple A =
(E,Q, pre) where E is a non-empty and finite set of events
called the domain of A; Q : Ag → 2E×E assigns an epis-
temic (accessibility) relation to each agent; and pre : E →
LProp assigns a precondition of the propositional language to
each event. We writeQa forQ(a) and eQaf for (e, f) ∈ Qa.
We often write EA for E, QA

a for Qa and preA for pre. For
e ∈ E, the pair (A, e) is called an epistemic action whose
actual event is e. Epistemic actions are typically denoted
α, α′, α1, etc.

Propositional action models are defined to fit exactly our
line of investigation here, though other presentations consider
preconditions of more complex languages and postconditions
that allow for factual (ontic) change [Bolander and Andersen,
2011; Yu et al., 2013].

The dynamic language LD is generated by the BNF:

ϕ := p | ¬ϕ | (ϕ ∧ ϕ) | �aϕ | 〈α〉ϕ

where a ∈ Ag, p ∈ P and α is an epistemic action. Here
�a denotes the knowledge (or, belief) modality where �aϕ
reads as “a knows (or, believes) ϕ”, and 〈α〉 is the dynamic
modality where 〈α〉ϕ reads as “α is applicable and ϕ holds
after executing α”. The epistemic language LE is the sublan-
guage of LD that does not contain the dynamic modality. As
usual we use ♦aϕ := ¬�a¬ϕ, and define by abbreviation ⊤,
⊥ and the boolean connectives ∨, →, ↔. Lastly, we define
〈α〉0ϕ := ϕ and 〈α〉kϕ := 〈α〉(〈α〉k−1ϕ) for k > 0.

Definition 2.3 (Semantics). Let (M,w) be an epistemic state
where M = (W,R, V). For a ∈ Ag, p ∈ P and ϕ,ϕ′ ∈ LD

we inductively define truth of formulas as follows, omitting
the propositional cases:

(M,w) |= �aϕ iff (M, v) |= ϕ for all wRav
(M,w) |= 〈α〉ϕ iff (M,w) |= pre(e)

and (M ⊗A, (w, e)) |= ϕ

where α = (A, e) is an epistemic action s.t. A = (E,Q, pre),
and the epistemic model M ⊗ A = (W ′, R′, V ′) is defined
via the product update operator ⊗ by:

W ′ = {(v, f) ∈W × E | (M, v) |= pre(f)},
R′

a = {((v, f), (u, g)) ∈W ′ ×W ′ | vRau, fQag},
V ′(p) = {(v, f) ∈W ′ | v ∈ V (p)} for p ∈ P.

For any epistemic state s = (M,w) and epistemic action
α = (A, e) satisfying (M,w) |= preA(e), we define s⊗α =
(M ⊗ A, (w, e)). The epistemic state s ⊗ α represents the
result of executing α in s. Note that we have s |= 〈α〉ϕ iff
(M,w) |= preA(e) and s ⊗ α |= ϕ. Two formulas ϕ,ϕ′ of
LD are called equivalent (written as ϕ ≡ ϕ′) when s |= ϕ iff
s |= ϕ′ for every epistemic state s.

Example 2.4. Consider the epistemic state s1 of Figure 1.
It represents a situation where p holds in the actual world
(w), but where the two agents, a and b, don’t know this:
s1 |= p ∧ ¬�ap ∧ ¬�bp. Consider now the epistemic ac-
tion α1 = (A, e) of the same figure. It represents a private
announcement of p to agent a, that is, agent a is told that p
holds (the actual event, e), but agent b thinks that nothing is

2792

w : p v :

s1 a, ba, b a, b

e : p f : ⊤

α1 a a, bb (w, e) : p

(w, f) : p

(v, f) :

s1 ⊗ α1

b

b
a, ba

a, b

a, b

Figure 1: (Top left) An epistemic state s1. We mark each
world (circle) with its name and the atomic propositions that
are true. The actual world is coloured black. Edges show
epistemic relations of the agents. (Bottom left) An epistemic
action α1. We use the same conventions as for epistemic
states, except an event (square) is marked by its name and
its precondition. (Right) The epistemic model to the right is
the result of execution of α1 in s1, that is, s1 ⊗ α1.

happening (event f). The dynamic modality allows us to rea-
son about the result of executing α1 in s1, so for instance we
have s1 |= 〈α1〉(�ap∧¬�bp∧¬�b�ap): After agent a has
been privately informed about p, she will know it, but b will
still not know p, and will believe that a doesn’t either. This
fact can be verified by observing that �ap∧¬�bp∧¬�b�ap
is true in the epistemic state s1 ⊗ α1 of Figure 1.

2.2 Plan existence problem

Definition 2.5 (Planning tasks). An (epistemic) planning
task is a triple T = (s0,L, ϕg) where s0 is a finite epis-
temic state called the initial state, L is a finite set of epis-
temic actions called the action library and ϕg ∈ LE is called
the goal. A plan for T is a finite sequence α1, . . . , αj of
epistemic actions from L s.t. s0 |= 〈α1〉 · · · 〈αj〉ϕg . The se-
quence α1, . . . , αj can contain any number of repetitions, and
can also be empty. We say that T is solvable if there exists
a plan for T . The size of a planning task T = (s0,L, ϕg)
is given as follows. Following [Aucher and Schwarzen-
truber, 2013], for any α = (A, e) in L we define |α| =
|Ag| · |EA|2+

∑

e∈E |pre(e)| as the size of α, where |pre(e)|
denotes the length of the (propositional) formula pre(e). The
size of an epistemic action is always a finite number, since the
domain of any propositional action model and Ag are both fi-
nite. Let P ′ ⊆ P be the finite set of atomic propositions that
occur either in some precondition of an α ∈ L or in ϕg . The

size T is then |T | = |P ′| · |Ag| · |WM |2 +
∑

α∈L
|α|+ |ϕg|

where s0 = (M,w).

Note that a plan is nothing more than a sequence of epis-
temic actions leading to a goal. It is not hard to show that this
definition is equivalent to the definition of a solution [Aucher
and Bolander, 2013] and an explanatory diagnosis [Yu et al.,
2013], which are both special cases of a solution to a classical
planning task as defined in [Ghallab et al., 2004] (for the re-
lation to classical planning tasks, see [Aucher and Bolander,
2013]).

Example 2.6. Consider again Figure 1. We’ll use α2 to refer
to the private announcement of p to b, obtained simply by
swapping the epistemic relations of a and b in α1. Consider
the planning task T = (s, {α1, α2}, ϕg) with ϕg = �ap ∧

�bp ∧ ¬�a�bp ∧ ¬�b�ap. It is a planning task in which
the only available actions are private announcements of p to
either a or b, and the goal is for both a and b to know p, but
without knowing that the other knows. A plan for T is α1, α2,
since s |= 〈α1〉〈α2〉ϕg . In other words, first announcing p
privately to a and then privately to b will achieve the goal of
them both knowing pwithout knowing that each other knows.

Definition 2.7 (Plan existence problem). Let X denote a
class of planning tasks. The plan existence problem for X ,
called PLANEX(X) is the following decision problem: Given
a planning task T ∈ X , does there exists a plan for T ?

3 Background on Iterating Epistemic Actions

To get to grips on the plan existence problem, we now con-
sider the result of iterating a single epistemic action. We then
proceed to derive a useful characterisation of exactly when a
planning task is solvable.

Definition 3.1 (n-ary product). Let α = (A, e) be an epis-
temic action where A = (E,Q, pre). We denote by An =
(En, Qn, pren) the n-ary product ofA. We defineE0 = {e},
eQ0

ae for each a ∈ Ag, and pre0(e) = ⊤. For n > 0 we de-
fine

– En = {(e1, . . . , en) | ei ∈ E for all i = 1, . . . , n},

– Qn
a = {((e1, . . . , en), (f1, . . . , fn)) | eiQafi

for all i = 1, . . . , n} for each a ∈ Ag, and

– pren((e1, . . . , en)) =
∧

i=1,...,n pre(ei).

The n-ary product of α is defined as αn = (An, en), where
en denotes (e, e, . . . , e)

︸ ︷︷ ︸

n

.

This is not the standard definition of the n-ary product of
an action model, which instead goes via a definition of the
product update operator on action models. Definition 3.1 is
equivalent to the standard definition when preconditions are
of LProp. The following lemma is derived from the axioma-
tization of [Baltag et al., 1998] (relying in particular on ac-
tion composition), and is here stated for the case of the n-ary
product and utilising that preconditions are of LProp.

Lemma 3.2. For any epistemic action α and any ϕ ∈ LE we
have that 〈α〉nϕ ≡ 〈αn〉ϕ.

This lemma expresses that executing an epistemic action n
times is equivalent to executing its n-ary product once.

3.1 Bisimilarity and Stabilisation

Concerning n-ary products of epistemic actions, an interest-
ing case is when executing the n-ary product is equivalent
to executing the (n + 1)-ary product. This puts an upper
bound on the number of times the action needs to occur in a
plan since epistemic actions with propositional preconditions
commute [Löwe et al., 2011]. To analyse this, we introduce
notions of bisimulation and n-bisimulation on action models
(slightly reformulated from [Sadzik, 2006]).

Definition 3.3 (Bisimilarity). Two epistemic actions α =
(A, e) and α′ = (A′, e′) are called bisimilar, written α↔ α′,

if there exists a (bisimulation) relation Z ⊆ EA × EA′

con-
taining (e, e′) and satisfying for every a ∈ Ag:

2793

– [atom] If (f, f ′) ∈ Z then preA(f) ≡ preA
′

(f ′),

– [forth] If (f, f ′) ∈ Z and fQA
a g then there is a g′ ∈ EA′

such that f ′QA′

a g′ and (g, g′) ∈ Z, and

– [back] If (f, f ′) ∈ Z and f ′QA′

a g′ then there is a g ∈
EA such that fQA

a g and (g, g′) ∈ Z.

Definition 3.4 (n-bisimilarity). Let α = (A, e) and α′ =
(A′, e′) be epistemic actions. They are 0-bisimilar, written

α↔0 α
′, if preA(e) ≡ preA

′

(e′). For n > 0, they are n-
bisimilar, written α↔n α

′, if for every a ∈ Ag:

– [atom] preA(e) ≡ preA
′

(e′),

– [forth] If eQA
a f then there is an f ′ ∈ EA′

such that

e′QA′

a f ′ and (A, f)↔n−1(A
′, f ′), and

– [back] If e′QA′

a f ′ then there is an f ∈ EA such that
eQA

a f and (A, f)↔n−1(A, f
′).

The modal depth md(ϕ) of a formula ϕ is defined
as: md(p) = 0; md(¬ϕ) = md(ϕ); md(ϕ ∧
ψ) = max{md(ϕ),md(ψ)}; md(�aϕ) = 1 + md(ϕ);
md(〈α〉ϕ) = md(ϕ). As epistemic actions have only propo-
sitional preconditions, 〈α〉-operators do not count towards the
modal depth. This definition of modal depth, Lemma 3.5 and
Definition 3.6 are all due to [Sadzik, 2006] (slightly reformu-
lated).

Lemma 3.5. Let α, α′ be two epistemic actions and ϕ ∈ LD.

1) If α↔ α′, then 〈α〉ϕ ≡ 〈α′〉ϕ.

2) If md(ϕ) ≤ n and α↔n α
′, then 〈α〉ϕ ≡ 〈α′〉ϕ.

Definition 3.6 (Stabilisation). Let α be an epistemic action.

1) α is ↔-stabilising at stage i if αi ↔ αi+k for all k ≥ 0.

2) α is ↔n-stabilising at stage i if αi ↔n α
i+k for all k ≥

0.

Example 3.7. The 2-ary product α2
1 of α1 of Figure 1 is:

(e, e) : p ∧ p (f, f) : ⊤ ∧⊤

(f, e) : ⊤ ∧ p

(e, f) : p ∧ ⊤a a, b

a

a

b
b

b

It is easy to check that α1 ↔ α2
1, using Z =

{(e, (e, e)), (f, (f, f))}, This argument can be extended
to show that α1 is indeed ↔-stabilising at stage 1.

Since any epistemic action is finite, we have:

Lemma 3.8. If two epistemic actions are n-bisimilar for all
n, then they are bisimilar.

3.2 Bounding the Number of Iterations

We’re now ready to present our characterisation of when a
planning task is solvable. We note that Proposition 3.9 below
echoes the sentiment of [Yu et al., 2013, Theorem 5.15], in
that it states the conditions under which we can restrict the
search space when looking for a plan.

Proposition 3.9. Let T = (s0, {α1, . . . , αm}, ϕg) be a plan-
ning task and B ∈ N. Suppose one of the following holds:

1) Every αi is ↔-stabilising at stage B, or

2) md(ϕg) = n and every αi is ↔n-stabilising at stageB.

Then T is solvable iff there exists k1, . . . , km ≤ B s.t. s0 |=

〈αk1

1 〉 · · · 〈αkm
m 〉ϕg .

Proof. Assume 2) holds (the case of 1 is similar). Assume
T is solvable, and let αi1 , . . . , aij be a plan for T . Due to
commutativity of propositional action models so is any per-
mutation of αi1 , . . . , αij

[Yu et al., 2013]. We therefore have

s0 |= 〈α1〉
k′

1 · · · 〈αm〉k
′

mϕg for some choice of k′i ≥ 0. Using

Lemma 3.2, it follows that s0 |= 〈α
k′

1

1 〉 · · · 〈α
k′

m
m 〉ϕg . We now

let ki = min(k′i, B) for all i. By assumption, md(ϕg) = n
and so by definitionmd(〈α〉ϕg) = n for any epistemic action
α. Combining this with the assumption that every αi is ↔n-
stabilising at stage B ≥ ki, we apply 2) of Lemma 3.5 m

times to conclude that s0 |= 〈αk1

1 〉 · · · 〈αkm
m 〉ϕg , as required.

The proof of the other direction follows readily from Lemma
3.2 and the definition of 〈α〉k.

Let T = {s0,L, ϕg} be a planning task with md(ϕg) =
n. Given the proposition above, to show that T is solvable
we only need to find the correct number of times to iterate
each of the actions in L, and these numbers never have to
exceed B for actions that are ↔n-stabilising at stage B. The
following result, due to [Sadzik, 2006], shows that such a
bound B exists for any epistemic action.

Lemma 3.10. Let α = (A, e) be an epistemic action and n a
natural number. Then α is ↔n-stabilising at stage |EA|n.

4 Better Bounds for Action Stabilisation

In this section, we prove an original contribution, Lemma 4.2,
that generalises Sadzik’s Lemma 3.10 by giving a better
bound for action stabilisation. The overall point is this:
Sadzik gets an unnecessarily high upper bound on when an
epistemic action (A, e) stabilises by considering it possible
that any event can have up to |EA| successors. We get a bet-
ter bound by counting paths.

Definition 4.1 (Underlying graphs). Let (A, e) be an epis-
temic action. We define QA = ∪a∈AgQ

A
a . The underlying

graph of (A, e) is the directed graph (A,QA) with root e.

Let (A, e) denote an epistemic action. Note that (e, f) ∈
QA iff there is an edge from e to f in A labelled by some
agent. Standard graph-theoretical notions carry over to epis-
temic actions via their underlying graphs. For instance, we
define a path of length n in (A, e) as a path of length n in
the underlying graph, that is, a sequence (e1, e2, . . . , en+1)
of events such that (ei, ei+1) ∈ QA for all i = 1, . . . , n (we
allow n = 0 and hence paths of length 0). A path of length
≤n is a path of length at most n. A maximal path of length
≤n is a path of length ≤n that is not a strict prefix of any
other path of length ≤n. We use mpathsn(e) to denote the
number of distinct maximal paths of length ≤n rooted at e. If
all nodes have successors, this number is simply the number
of distinct paths of length n. Note that mpathsn(e) is always
a positive number, as there is always at least one path rooted
at e (even if e has no outgoing edges, there is still the path
of length 0). Note also that for any n > 0 and any event e
having at least one successor in the underlying graph:

2794

mpathsn(e) =
∑

eQAf mpathsn−1(f). (1)

In the epistemic action α1 of Figure 1 we have
mpaths2(e) = 3, since there are three paths of length 2,
(e, e, e), (e, e, f) and (e, f, f), and no shorter maximal paths.

Lemma 4.2. Let α = (A, e0) be an epistemic action and
n any natural number. Then α is ↔n-stabilising at stage
mpathsn(e0).

Proof. When f = (f1, . . . , fm) ∈ EAm

and e ∈ A, we
use occ(e, f) to denote the number of occurrences of e in
f1, . . . , fm. For instance we have occ(e, (e, e, f, f)) = 2. We
now prove the following property P(n) by induction on n.

P(n): If e ∈ EAk+1

and e′ ∈ EAk

only differ by some
event e∗ occurring at least mpathsn(e

∗)+1 times in e and at
least mpathsn(e

∗) times in e′, then (Ak+1, e)↔n(A
k, e′).

Base case P(0): Since mpaths0(e
∗) = 1, e and e′

as described above must contain exactly the same events
(but not necessarily with the same number of occurrences).
By definition of the n-ary product of an epistemic ac-

tion we get preA
k+1

(e) ≡ preA
k

(e′). This shows
(Ak+1, e)↔0(A

k, e′). For the induction step, assume that
P(n−1) holds. Given e and e′ as described in P(n), we need
to show (Ak+1, e)↔n(A

k, e′). [atom] is proved as P(0).

[forth]: Let a and f be chosen such that eQAk+1

a f . We need

to find f ′ such that e′QAk

a f ′ and (Ak+1, f)↔n−1(A
k, f ′).

Claim. There exists an f∗ such that e∗QA
a f

∗ and
occ(f∗, f) ≥ mpathsn−1(f

∗) + 1.

Proof of Claim. By contradiction: Suppose occ(f, f) ≤

mpathsn−1(f) for all f with e∗QA
a f . Since eQAk+1

a f , the
number of occurrences of e∗ in e is equal or less than the
number of occurrences of Qa-successors of e∗ in f . Hence
we get

occ(e∗, e) ≤
∑

e∗QA
a f occ(f, f)

≤
∑

e∗QA
a f mpathsn−1(f) (by assumption)

≤
∑

e∗QAf mpathsn−1(f) (by QA = ∪a∈AgQ
A
a)

= mpathsn(e
∗) (by equation (1)).

However, this directly contradicts the assumption that e∗ oc-
curs at least mpathsn(e

∗)+ 1 times in e, and hence the proof
of the claim is complete.

Let f∗ be as guaranteed by the claim. Now we build f ′ to be
exactly like f , except we omit one of the occurrences of f∗

(we do not have to worry about the order of the elements of
the vectors, since any two vectors only differing in order are
bisimilar [Sadzik, 2006]). Since f and f ′ now only differ in f∗

occurring at least mpathsn−1(f
∗) + 1 times in f and at least

mpathsn−1(f
∗) times in f ′, we can use the induction hypoth-

esis P(n − 1) to conclude that (Ak+1, f)↔n−1(A
k, f ′), as

required. [back]: This is the easy direction and is omitted.
Now we have proved P(n) for all n. Given n,

from P(n) it follows that (Ak+1, ek+1
0)↔n(A

k, ek0) for all
k ≥ mpathsn(e0). And from this it immediately follows that
(A, e0) is ↔n-stabilising at stage mpathsn(e0).

r :

s0
w1 : p1

w2 : p2 w3 : p3 wm : pn
· · ·

a a a a

ei : ¬pi

αi

a

Figure 2: Initial state and actions used in Theorem 5.1.

procedure PlanExists
(
(s0, {α1, . . . , αm}, ϕg), B

)

a) Guess a vector (k1, . . . , km) ∈ {0, . . . , B}m.
b) Accept when s0 |= 〈α1〉

k1 · · · 〈αm〉kmϕg .

Figure 3: Non-deterministic algorithm for the plan existence
problem.

5 Complexity of the Plan Existence Problem

5.1 Singleton and Chain Epistemic Actions

We define SINGLETONS as the class of planning tasks
(s0,L, ϕg), where every α = (A, e) in L is a singleton; i.e.

EA contains a single event.

Theorem 5.1. PLANEX(SINGLETONS) is NP-complete.

Proof. For any singleton epistemic action there is at most one
maximal path of length ≤n for all n. Hence, by Lemma 4.2
and 3.8, such actions are ↔-stabilising at stage 1. In NP: Fol-
lows from Theorem 5.2 below as SINGLETONS is contained
in CHAINS. NP-hard: We give a polynomial-time reduc-
tion from SAT. Let ϕ(p1, . . . , pm) be a propositional formula
where p1, . . . , pm are the atomic propositions in ϕ. We con-
struct T = (s0, {α1, . . . , αm}, ϕg) s.t. s0 and each αi are
as in Figure 2 and ϕg = ϕ(♦ap1, . . . ,♦apm) is the formula
ϕ in which each occurrence of pi is replaced by ♦api. For
any propositional valuation ν, let sν be the restriction of s0
s.t. there is an a-edge from r to wi in sν iff ν |= pi. This
means ν |= pi iff sν |= ♦api, and so from our construc-
tion of ϕg we have ν |= ϕ iff sν |= ϕg . Observe now that
s0 ⊗ αi is exactly the restriction of s0 so that there is no a-
edge from r to wi, and that αi is the only action affecting this
edge. Let ν(pi) = 0 if ν |= pi and ν(pi) = 1 otherwise. We
now have that ϕ is satisfiable iff there is a ν s.t. ν |= ϕ iff

sν |= ϕg iff s0 |= 〈α1〉
ν(p1) · · · 〈αm〉ν(pm)ϕg iff T is solv-

able, where the last equivalence follows from Proposition 3.9
since ν(pi) ∈ {0, 1} and each αi is ↔-stabilising at stage 1.
This shows that ϕ is satisfiable iff T is solvable.

For an epistemic action α = (A, e) we say that α is a chain
if its underlying graph (A,QA) is a 1-ary tree whose unique
leaf may be QA-reflexive. We define CHAINS as the class of
planning tasks (s0,L, ϕg) where every epistemic action in L
is a chain.

Theorem 5.2. PLANEX(CHAINS) is NP-complete.

Proof. In NP: For any chain epistemic action there is at most
one maximal path of length ≤ n for all n, hence any such
action is ↔-stabilising at stage 1 using Lemmas 4.2 and
3.8. It therefore follows from Proposition 3.9 that, for any
T ∈ CHAINS, PlanExists(T, 1) of Figure 3 is accepting iff
T is solvable. We must show step b) to run in polynomial

2795

time. Now if α is a chain and s an epistemic state, then the
number of worlds reachable from the actual world in s⊗α is
at most the number of worlds in s. By only keeping the reach-
able worlds after each successive product update, we get the
required, as the goal is in LE.1 NP-hard: Follows from The-
orem 5.1 as SINGLETONS is contained in CHAINS.

5.2 Tree Epistemic Actions

We now turn to epistemic actions whose underlying graph is a
any tree. Formally, an epistemic action (A, e) is called a tree
when the underlying graph (A,QA) is a tree whose leaves
may be QA-reflexive. We call TREES the class of planning
tasks (s0,L, ϕg) where all epistemic actions in L are trees.

Theorem 5.3. PLANEX(TREES) is in PSPACE.

Proof. Consider any tree action α = (A, e) and let l(α)
denote its number of leaves. As α is a tree, we get
mpathsn(e) ≤ l(α) for any n. Using Lemma 4.2 and 3.8,
any tree epistemic action α is ↔-stabilising at stage l(α).
From Proposition 3.9 we therefore have, for any T ∈ TREES,
that PlanExists(T,max(l(α1), . . . , l(αm))) of Figure 3 is
accepting iff T is solvable. Step b) can be done in space poly-
nomial in the size of the input [Aucher and Schwarzentruber,
2013]. Hence, the plan existence problem for TREES is in
NPSPACE and therefore in PSPACE by Savitch’s Thm.

We now sketch a proof of PSPACE-hardness of
PLANEX(TREES), by giving a polynomial-time reduction
from the PSPACE-hard problem QSAT (satisfiability of quan-
tified boolean formulas) to PLANEX(TREES). For any quan-
tified boolean formula Φ = Q1p1 · · ·Qnpnϕ [p1, . . . , pn]
with Qi ∈ {∀, ∃}, we define the planning task TΦ =
(s0, {α1, . . . , αn}, ϕsat ∧ ϕall) where s0 and each αi are as
in Figure 4 (every edge implicitly labelled by a),
ϕsat = O1 · · ·Onϕ[♦

1
a�a⊥, . . . ,♦

n
a�a⊥], and

ϕall = ♦n+1
a �a⊥ ∧ · · · ∧ ♦2n

a �a⊥,
where Oi = ♦a if Qi = ∃ and Oi = �a if Qi = ∀. Then
|TΦ| is polynomial in |Φ| and TΦ ∈ TREES. By Lemmas 5.6
and 5.7 below we get TΦ is solvable iff Φ is true. Hence:

Theorem 5.4. PLANEX(TREES) is PSPACE-hard.

w0 :

s0

w1 :

w2n+1 :

.

.

.

bi0 : ⊤

αi

bii−1 : ⊤

tii : ⊤

tin−1 : ⊤

fi
i : ⊤

fi
n−1 : ⊤

tin : ⊤ fi
n : ⊤

tin+1 : ⊤

ti2n+1 : ⊤

fi
n+1 : ⊤

fi
2n+1 : ⊤

ci1 : ⊤

cii : ⊤

..

.. ..

.. ..

..

Figure 4: Initial state and actions used in Theorem 5.4.

1Observe that even if each action in α1, . . . , αm is ↔-stabilising
at stage 1, this is not a sufficient condition for membership in NP as
we must also be able to verify the plan in polynomial time.

(w0, b
1
0, b

2
0)

(w1, t
1
1, b

2
1) (w1, f

1
1 , b

2
1)

(w2, t
1
2, t

2
2) (w2, t

1
2, f

2
2) (w2, f

1
2 , t

2
2) (w2, f

1
2 , f

2
2)

Non cii-chain

c11-chain

c21, c
2
2-chain

Figure 5: Binary decision tree simulated by s0 ⊗ α1 ⊗ α2

(n = 2).

The reduction is based on the idea that we can simulate a
(complete) binary decision tree using s′ = s0⊗α1⊗· · ·⊗αn.
Each world at depth n of s′ simulates a valuation, using the
convention that pi is true iff there is a maximal chain of length
i in this world. By nesting belief modalities we can check if
such a chain exists. Each action αi makes two copies of every
node between depth i and n, which is how we can simulate
every valuation.

A world w at depth i ≤ n of s′ is called an i-world.
It can now be verified that any i-world is of the form

(wi, v
1
i , . . . , v

i
i , b

i+1
i , . . . , bni) where v

j
i ∈ {tji , f

j
i }. See also

Figure 5. For any i-world w, we define a propositional valu-

ation νw on {p1, . . . , pi} by νw |= pj iff t
j
i occurs in w. We

use w0 = (w0, b
1
0, . . . , b

n
0) to denote the single 0-world in s′

(the actual world of s′), and defineM ′ so that s′ = (M ′,w0).

Lemma 5.5. Let w be any n-world. Then (M ′,w) |=
ϕ[♦1

a�a⊥, . . . ,♦
n
a�a⊥] iff νw |= ϕ[p1, . . . , pn] is true.

Proof sketch. Due to the ci1, . . . , c
i
i chain in each αi, we have

for any n-world w and i ≤ n that (M ′,w) |= ♦i
a�a⊥ iff tin

occurs in w, from which the result readily follows.

We say that an n-world w is accepting if (M ′,w) |=
ϕ[♦1

a�a⊥, . . . ,♦
n
a�a⊥], and for i < n we say that the i-

world w is accepting if some (every) child w′ of w is accept-
ing and Oi = ♦a (Oi = �a).

Lemma 5.6. TΦ is solvable iff w0 is accepting.

Proof sketch. As acceptance for i < n exactly corresponds
to the O1 · · ·On prefix, we use Lemma 5.5 to show that
(M ′,w0) |= ϕsat iff w0 is accepting. Now we must show:
1) (M ′,w0) |= ϕall, and then 2) TΦ is solvable iff α1, . . . , αn

is plan for TΦ. We omit proofs of both 1) and 2).

Lemma 5.7. Φ is true iff w0 is accepting.

Proof sketch. Let w denote any i-world. Let νw(pi) = ⊤
if νw |= pi and νw(pi) = ⊥ otherwise. We define Φw =
Qi+1pi+1 · · ·Qnpnϕ[νw(p1), . . . , νw(pi), pi+1, . . . , pn].

By induction on k we now show: If k ≤ n and w
is an (n − k)-world, then Φw is true iff w is accepting.
For the base case, k = 0 and w is an n-world, hence
ϕ[νw(p1), . . . , νw(pn)] (= Φw) is true iff w is accepting by
Lemma 5.5. For the induction step we assume that for any
(n − (k − 1))-world w′, Φw′ is true iff w′ is accepting. Let
w be an (n− k)-world. By construction, w has two children
v and u. We can then show that Φv and Φu are as Φw, except
the Qn−k+1pn−k+1 prefix and that one sets pn−k+2 true and
the other sets pn−k+2 false. Thus Φw is true iff Qn−k+1 = ∃
(or, Qn−k+1 = ∀) and Φw′ is true for some (every) child w′

2796

of w. Using the induction hypothesis, we get that Φw is true
iff w′ is accepting for some (every) child w′ of w. Hence,
Φw is true iff w is accepting, by definition. This concludes
the induction proof. For k = n it follows that Φw0

is true iff
w0 is accepting. Since Φ = Φw0

we are done.

5.3 Arbitrary Epistemic Actions

We call GRAPHS the class of planning tasks (s0,L, ϕg)
where all event models in L are arbitrary graphs. In this case,
the original result by Sadzik (Lemma 3.10) is sufficient.

Theorem 5.8. PLANEX(GRAPHS) is in EXPSPACE.

Proof. We consider (s0, {α1, . . . , αm}, ϕg) ∈ GRAPHS with
αi = (Ai, ei) and md(ϕg) = d. By Lemma 3.10, each αi is
↔d-stabilising at stage |EAi |d. It now follows from Propo-
sition 3.9 that PlanExists(T,max{|EA1 |d, . . . , |EAm |d}) of
Figure 3 is accepting iff T is solvable. The algorithm runs in
NEXPSPACE = EXPSPACE.

6 Complexity of the Plan Verification Problem

The plan verification problem is defined as the following de-
cision problem: Given a finite epistemic state s0 and a for-
mula of the form 〈α1〉 · · · 〈αj〉ϕg , does s0 |= 〈α1〉 · · · 〈αj〉ϕg

hold? The plan verification problem can be seen as a restric-
tion of the model checking problem in DEL. A similar reduc-
tion as for Theorem 5.4 gives that:

Theorem 6.1. The plan verification problem (restricted to
propositional action models that are trees) is PSPACE-hard.

Model checking in DEL with the non-determinism oper-
ator ∪ included in the language has already been proved
PSPACE-hard [Aucher and Schwarzentruber, 2013]. Theo-
rem 6.1 implies that model checking in DEL is PSPACE-hard
even without this operator. A similar result has been indepen-
dently proved in [van de Pol et al., 2015].

7 Future Work

We remind the reader that an overview of our contributions
are found in Table 1 and proceed to discuss future work.

Since propostional STRIPS planning is PSPACE-complete
[Bylander, 1994], efficient planning systems have used re-
laxed planning tasks in order to efficiently compute precise
heuristics. For instance, the highly influential Fast-Forward
planning system [Hoffmann and Nebel, 2001] relaxes plan-
ning tasks by ignoring delete lists. Our contributions here
show that restrictions on the graphs underlying epistemic
actions crucially affect computational complexity. This, in
combination with restrictions on preconditions and postcon-
ditions (factual change), provides a platform for investigating
(tractable) relaxations of epistemic planning tasks, and hence
for the development of efficient epistemic planning systems.

References

[Andersen et al., 2012] Mikkel Birkegaard Andersen,
Thomas Bolander, and Martin Holm Jensen. Conditional
epistemic planning. In Luis Fariñas del Cerro, Andreas
Herzig, and Jérôme Mengin, editors, JELIA, volume 7519

of Lecture Notes in Computer Science, pages 94–106.
Springer, 2012.

[Aucher and Bolander, 2013] Guillaume Aucher and
Thomas Bolander. Undecidability in epistemic planning.
In Francesca Rossi, editor, IJCAI. IJCAI/AAAI, 2013.

[Aucher and Schwarzentruber, 2013] Guillaume Aucher and
François Schwarzentruber. On the complexity of dynamic
epistemic logic. In TARK, 2013.

[Baltag et al., 1998] Alexandru Baltag, Lawrence S. Moss,
and Slawomir Solecki. The logic of public announce-
ments, common knowledge, and private suspicions. In
TARK, 1998.

[Bolander and Andersen, 2011] Thomas Bolander and
Mikkel Birkegaard Andersen. Epistemic planning for
single and multi-agent systems. Journal of Applied
Non-Classical Logics, 21(1):9–34, 2011.

[Bylander, 1994] Tom Bylander. The computational com-
plexity of propositional strips planning. Artificial Intel-
ligence, 69(1-2):165–204, 1994.

[Ghallab et al., 2004] Malik Ghallab, Dana S. Nau, and
Paolo Traverso. Automated Planning: Theory and Prac-
tice. Morgan Kaufmann, 2004.

[Hoffmann and Nebel, 2001] Jörg Hoffmann and Bernhard
Nebel. The ff planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence
Resesearch, 14(1):253–302, May 2001.

[Jensen, 2014] Martin Holm Jensen. Epistemic and Doxastic
Planning. PhD thesis, Technical University of Denmark,
2014. DTU Compute PHD-2014.

[Löwe et al., 2011] Benedikt Löwe, Eric Pacuit, and An-
dreas Witzel. Del planning and some tractable cases. In
Hans van Ditmarsch, Jérôme Lang, and Shier Ju, editors,
Logic, Rationality, and Interaction, volume 6953 of Lec-
ture Notes in Computer Science, pages 179–192. Springer
Berlin Heidelberg, 2011.

[Maubert, 2014] Bastien Maubert. Logical foundations of
games with imperfect information: uniform strategies.
PhD thesis, 2014. PhD thesis directed by Pinchinat, So-
phie and Aucher, Guillaume. Université de Rennes 1.

[Miller and Moss, 2005] Joseph S Miller and Lawrence S
Moss. The undecidability of iterated modal relativization.
Studia Logica, 79(3):373–407, 2005.

[Sadzik, 2006] Tomasz Sadzik. Exploring the Iterated Up-
date Universe. ILLC Publications PP-2006-26, 2006.

[van Benthem, 2003] Johan van Benthem. One is a lonely
number: On the logic of communication. 2003.

[van de Pol et al., 2015] Iris van de Pol, Iris van Rooij, and
Jakub Szymanik. Parameterized complexity results for
a model of theory of mind based on dynamic epistemic
logic. In TARK, 2015.

[Yu et al., 2013] Quan Yu, Ximing Wen, and Yongmei Liu.
Multi-agent epistemic explanatory diagnosis via reason-
ing about actions. In Francesca Rossi, editor, IJCAI. IJ-
CAI/AAAI, 2013.

2797

