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Abstract: In this study, we present the highlights of com-

plexity theory (Part I) and significant experimental verifi-

cations (Part II) and we try to give a synoptic description 

of complexity theory both at the microscopic and at the 

macroscopic level of the physical reality. Also, we pro-

pose that the self-organization observed macroscopically 

is a phenomenon that reveals the strong unifying char-

acter of the complex dynamics which includes thermo-

dynamical and dynamical characteristics in all levels of 

the physical reality. From this point of view, macroscopi-

cal deterministic and stochastic processes are closely 

related to the microscopical chaos and self-organization. 

The scientific work of scientists such as Wilson, Nicolis, 

Prigogine, Hooft, Nottale, El Naschie, Castro, Tsallis, 

Chang and others is used for the development of a uni-

fied physical comprehension of complex dynamics from 

the microscopic to the macroscopic level. Finally, we pro-

vide a comprehensive description of the novel concepts 

included in the complexity theory from microscopic to 

macroscopic level. Some of the modern concepts that can 

be used for a unified description of complex systems and 

for the understanding of modern complexity theory, as 

it is manifested at the macroscopic and the microscopic 

level, are the fractal geometry and fractal space-time, 

scale invariance and scale relativity, phase transition and 

self-organization, path integral amplitudes, renormaliza-

tion group theory, stochastic and chaotic quantization 

and E-infinite theory, etc.

Keywords: fractal acceleration; fractal dissipation; fractal 

dynamics; intermittent turbulence; non-equilibrium 

dynamics; Tsallis non-extensive statistics.

1   Introduction

The great challenge of complexity theory emerges from 

old and essential problems such as: the time arrow, the 

existence or not of a simple and fundamental physical 

level for a unified description of macroscopic and micro-

scopic levels, the relation between the observer and the 

examined object, etc. In general, as far as the complex-

ity theory and every new level of the physical reality are 

concerned, new concepts and new classifications are 

required. Initially, the first principles of the physical 

theory modeled the entire cosmos, using a reductionist 

point of view, as a deterministic, integrable, conserva-

tive, mechanistic and objectifying whole. However, 

Boltzmann’s probabilistic interpretation of entropy 

as well as the non-integrability of the large Poincare 

systems rose for the first time serious doubts concern-

ing the universality and plausibility of the primitive 

classical physical theory. Moreover, two great revolu-

tions reconfigured the absolute objectifying character 

of the classical physical theory. The first one, concern-

ing the macrocosm, was the relativity theory of Einstein 

and the second one, concerning the microcosm, was 

the Quantum Theory of Heisenberg, Schrodinger and 

Dirac. Finally, the reductionist character of the physical 

theory has been disputed after the scientific job of Fei-

genbaum, Poincare, Lorenz, Prigogine, Nicolis, Ruelle, 

Takens and other scientists who founded the chaos and 

complexity theory. Recently, Ord, Nottale, El Naschie, 

Tsallis and other scientists introduced new theoretical 

and fertile concepts for the complex nature of the physi-

cal reality and the unification of the physical theory at 

the microscopic and macroscopic levels. In particular, 

complexity theory includes: chaotic dynamics in finite 

or infinite dimensional state space, far from equilibrium 

phase transitions, long range correlations and pattern 

formation, self-organization and multi-scale coop-

eration from the microscopic to the macroscopic level, 

fractal processes in space and time and other significant 

phenomena. Complexity theory is considered as the 

third scientific revolution of the last century (after Rela-

tivity and Quantum Theory). However, there is no sys-

tematic or axiomatic foundation of complexity theory. 

In this direction, a significant contribution concerning 

the question “what is Complexity”, can be found in the 

book “exploring complexity”, written by G. Nicolis and 

Ilya Prigogine, where some complementary definitions 

of complexity can be found.

Generally, we can summarize the basic concept of 

complexity theory as follows:
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a) Complexity theory is the generalization of statistical 

physics for critical states of thermodynamical equilib-

rium and for far from equilibrium physical processes.

b) Complexity is the extension of dynamics to the non-

linearity and strange dynamics.

c) Also, according to Ilya Prigogine complexity theory 

is related to the dynamics of correlations instead of 

dynamics of trajectories or wave functions.

Complexity theory was entranced in the physical theory 

simultaneously with the entropy principle after Carnot, 

Thomson, Clausius and finaly by the statistical theory of 

Boltzmann who unified the macroscopic and the micro-

scopic theory of entropy by introducing the concept of 

microscopical “complexions”. According to the Complex-

ity theory, different physical phenomena occurring at dis-

tributed physical systems such as space plasmas, fluids 

or materials, chemistry, biology (evolution, population 

dynamics), ecosystems, DNA or cancer dynamics, social-

economical or informational systems, networks, and in 

general defect development in distributed systems, can be 

described and understood in a similar way. This descrip-

tion is based at the principle of entropy maximization. 

Therefore, complexity theory can also be considered as 

the entropy theory in all its generalizations and implica-

tions, as it is described in the following sections.

Entropy principle includes all the new and non-

Newtonian characteristics of physics, which constitutes 

the complexity theory in its deepest manifestation. In 

Newtonian physics when we ask the question, how the 

nature works? We can answer: by natural forces, gravity 

or any other kind of force producing mechanical work 

and energy. This is the basic physical concept, which 

includes also dynamical fields as the local extension of 

the force at distance concept. From the mathematical 

point of view even relativity or quantum theory, except 

the quantum measurement reduction phenomenons, both 

of them belong to the Newtonian type of theory as they 

conserve the more general Newtonian characteristics of 

determinism and temporal reversibility, which constitute 

the nucleus of Newtonian physics. In the non-Newtonian 

and non-reductionistic theory of complexity, the answer 

to the question, how nature works is this: Nature tries 

to maximize the entropy. In Newtonian physical theory 

the force is the fundamental reality and it is the cause of 

becoming while entropy is a subjective phenomenologi-

cal characteristic out of the basic theory. That is At Newto-

nian physical theory entropy is the secondary result at the 

macroscopical level of forces and dynamics acting at the 

microscopic level. Although however there is no final or 

physically accepted explanation of such a manifestation 

at the macroscopical level of the microscopic reality. 

However, in Complexity theory happens the opposite to 

this. Namely, entropy is the fundamental physical cause 

of becoming, while Newtonian force is the macroscopic or 

the microscopic result and the macroscopic-microscopic 

phenomenology of the holistically working entropy prin-

ciple. We note here that the concept of force is absent even 

in the general relativity theory as well as in the quantum 

theory where the physical description of reality is seceded 

in abstract mathematical forms, as Riemannian geom-

etries or operators in Hilbert spaces. Also according to the 

complexity theory, physical beings and physical struc-

tures, are holistically sustained dissipative structures, 

produced by the general process of nature aiming to the 

maximization of entropy. This happens even at the level 

of “elementary” or fundamental particles, as in any kind 

of physical process, at the macro or the microscopic level, 

nature must satisfy the entropy principle. After this, from 

the complexity point of view, there is no significant dif-

ferentiation between the group of galaxies, the stars, 

the animals, the flowers, or the elementary particles, as 

everywhere we have open, dynamical and self-organized 

systems and everywhere nature works to maximize the 

entropy. Therefore, the generalization by Tsallis of the 

Boltzmann-Gibbs (BG) entropy to the q-entropy through 

his non-extensive statistical theory constitutes the unifi-

cation of all the distinct characters of natural complexity, 

near or far from the thermodynamic equilibrium.

The exponential character of BG statistics permits the 

distinction between scales at micro and macro level while 

the power law character of Tsallis non-extensive statistics 

unifies all the physical scales through the development of 

strong long range correlations and multilevel interactions. 

Tsallis q-extension of statistics includes the BG statistics 

as the limit of statically theory when q tends to the value 

one (q = 1). Here we have similar behavior with quantum 

mechanical theory where the classic mechanics corre-

sponds to the limit h = 0 and relativistic mechanical theory 

where classic mechanics corresponds to the limit c = infi-

nite. That is the BG entropy principle describes the world 

near thermodynamic equilibrium while as Tsallis [1], [2] 

has shown this principle must be extended for the far from 

equilibrium processes as the Tsallis q-entropy principle. 

This generalization of entropy principle by Tsallis can 

produce the multilevel, multi scale or long range correla-

tions observed at the complex systems.

In this way the extended by Tsallis entropy principle 

applied everywhere, near or far from thermodynamical 

equilibrium manifests itself as a universal physical prin-

ciple, which can explain the holistic-complex character 

of physical processes. That is the whole is richer than its 
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parts as it includes some kind of reality more than the 

reality of its parts. The part studied as itself and indepen-

dently from the whole, is characterized by some kind of 

mechanistic behavior, which is manifested as force, flow 

of energy and momentum, as noise and flow of informa-

tion. This corresponds to the random Walk modeling of 

every dynamical process, or the Langevin-Fokker Planck 

process type description of the dynamics applied to the 

part embedded in the whole. The random Walk process 

near thermodynamic equilibrium is known as normal 

diffusion process, while far from equilibrium is known 

as anomalous diffusion and strange dynamic process. 

However, the entropy maximization principle reveals that 

the blind forces and noises acting at the random Walk 

process are not “blind” but they work in harmony with 

the entropy maximization. May be the entropy principle 

causes the random Walk in a far unified physical theory.

It is significant to note here that the strong nonlinear-

ity of the deterministic dynamics which includes strong 

dynamical instabilities, as sensitivity to initial conditions, 

acts equivalently with the random Walk entropic process 

near or far from the thermodynamical equilibrium state. 

The near equilibrium random Walk process is memoryless 

Markov process but far from equilibrium obtains memory 

as non-Gaussian and non-Markov process. The wholis-

tic character of entropy maximization principle creates 

probabilistically the whole of the possible physical states 

at which the whole and its parts can be found. More over 

the entropy principle can unify quantum and complex 

systems through the general theory of many point correla-

tions. It is already known that the probability amplitudes 

of Quantum Field Theory (QFT) can be estimated through 

the statistical correlations at thermodynamical equilib-

rium of the quantum system embedded in a higher dimen-

sion, according to the stochastic or chaotic quantization 

[3, 4].

From this point of view, the long range correlations 

of the complexity theory are nothing else than the macro-

scopic manifestation of the quantum entanglement where 

the parts cannot be divided from the whole as they are 

strongly correlated in it, while the quantum entanglement 

could be considered as the the manifestation also of sub-

dynamical complexity and self organization [5, 6].

Also, it is significant to note that the equivalence of 

quantum theory and the stochastic processes according 

to chaotic and stochastic quantization indicates the uni-

versality of Tsallis entropy principle both at the macro-

scopical as well as at the microscopical level. That is the 

entropy extramization at the microscopic level causes 

the elementary particle structuring as a microscopic self-

organization process. From a general point of view in 

this way the physical principle of the entropy maximiza-

tion describes how the whole creates its parts as it was 

supported before. In this way the entropy maximization 

creates and structures the physical states, in the classical 

or the quantum phase space, or the structures in the phys-

ical space. Parallels the entropy principle leads the physi-

cal processes in the dynamics phase space or the physical 

space. Namely, there is a internal self-consistency between 

entropy maximization principle, the topological charac-

ter of the created physical states in the phase space and 

the physical processes in the state space and the physi-

cal space. That is mathematical structuring of the set of 

physical states in phase or physical space corresponds to 

fractal sets and fractal topology. Near the thermodynamic 

equilibrium the physical states structuring corresponds to 

the Euclidean geometry and topology, while far from equi-

librium it corresponds to the strange or anomalous non 

Euclidean topology. All these are described quantitatively 

by the topological parameter known as the connectiv-

ity index θ which takes values zero (θ = 0) and greater or 

lower than 0 (θ > 0, θ < 0) if the topology is Euclidean or 

non Euclidean correspondingly. The physical processes in 

the phase or physical space are described correspondingly 

by fractional differential or integral equations for topolo-

gies with (θ ≠ 0) different than zero and normal differen-

tial or integral equations for θ = 0. Analogously with the 

above description, the physical magnitudes functions in 

the phase space or physical space are related with time or 

between them can be normal smooth that is infinitely dif-

ferentiablefunctions for θ = 0 or singular fractional func-

tions for θ ≠ 0.

In general, the fractal character of the state sets in 

phase or physical space and the correspondent fractional 

physical processes, they can satisfy spatial and temporal 

scale invariance principles, as well as power law relations. 

This is the deeper meaning of the development of long 

range and multi scale correlations as the entropy as the 

extended entropy of the system must be maximized. That 

is the non-Gaussian character of non-equilibrium statisti-

cal theory, known as the non-extensive Tsallis theory can 

create many point correlations (long range correlations) 

estimated by the functional derivative of the q-extended 

partition function. Therefore, while the BG entropy prin-

ciple is related with two point Gaussian correlations, the 

Tsallis entropy principle is related with many points cor-

relations which means long range correlations. Also the 

statistics depends upon the topological character of the 

state space as the normal Central Limit Theorem (CLT) cor-

responds to connectivity θ = 0 while for the strange topol-

ogy of state space the extended statistics causes the well 

known as q-extended central limit theorem (q-CLT). Also 
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The Tsallis q-extension of CLT produce a series of charac-

teristic indices corresponding to different physical pro-

cesses, the most significant of which constitute the Tsallis 

q-triplet.

The scale invariance character of fractal structures 

and the fractional character of processes on fractals near 

or far from thermodynamical equilibrium is related to the 

Renormalization Group Theory (RGT) which leads to the 

reduction of dimensionality of the degrees of freedom. 

This process of the reduction of the degrees of freedom 

is harmonized to or caused also by the maximization of 

entropy near equilibrium critical or far from equilibrium 

stationary critical states. In this way, the entropy maximi-

zation creates low dimensional stationary structures and 

low dimensional dynamical processes.

The q-extension of the CLT as well as the far from equi-

librium extension of the RGT are related with the general 

theory of strange dynamics-strange kinetics [7] which cor-

responds to strange topology of the phase space.

The fractal topology of the phase space is produced 

by the fractional dynamics of the complex system related 

to anomalous diffusion processes, multiscale coopera-

tion and long-range correlations as well as development 

of memory processes and percolation clusters [8, 9]. The 

phase space of nonlinear dynamics can reveal strong in 

homogeneity including a complex, multi scale and hier-

archical system of islands and stochastic sea islands 

correspond to stable nonrandom orbitals immersed in 

the stochastic sea of chaotic phase space. Cantorus or 

cantori are the boundaries between the island or system 

of islands and the stochastic sea, which can create trap-

ping of the dynamics and creates flights of the dynamics 

perpendicular to the boundaries of the islands. Cantorus 

can be imagined as a fractal curve or line including an 

infinite number of gaps immersed in the stochastic sea 

of phase space corresponding to the nonlinear dynam-

ics. All points of a cantorus belong to the same orbit if the 

initial condition has been chosen from the cantorus mani-

fold. Every islands can be enclosed with an infinite set of 

cantori the system of which can produce trapping or stick-

ing (“stickiness”) and flights of dynamics as the comple-

mentary features of anomalous diffusion of the nonlinear 

dynamics in the complex phase space. This is the meaning 

of complex or strange dynamics of complex and nonlinear 

systems, which is related with the intermittency character 

of anomalous diffusion in the phase space or the physical 

space in the case of nonlinear and distributed dynamics 

as the case of space plasma dynamics. Moreover, strange 

dynamics creates multiscale and multifractal structures 

in the phase space or the physical space. Strange dynam-

ics is the fractional dynamical manifestation also of the 

fractal topology structures, of percolation states and non-

extensive statistics in phase space.

The intermittent turbulent states and the complex spa-

tial-temporal behavior of nonlinear distributed dynamical 

systems, can be considered as the spatial-temporal mir-

roring of the strange or fractal topology of the distributed 

dynamics phase space and the included strange fractional 

dynamics in the physical space. As the control parameters 

of the system change, the system dynamics can generate 

topological and dynamical phase transition processes 

developing new equilibrium or meta-equilibrium states 

corresponding to local extremization of q-entropy and 

new fixed points, according to non-equilibrium renormal-

ization theory [10].

The theoretical description of complex systems or 

complex dynamics according to the extended entropy 

principle can be studied by using experimental signals in 

the form of Time-space series, which are the one dimen-

sional projection of complex processes in the phase or the 

physical space. That is significant characteristics of the 

physical processes are mirrored in the time- space series 

which can manifest the extensive-non extensive charac-

ter of entropy, as well as the normal or fractional-strange 

character as well as the dimensionality of the mirrored 

dynamics according to the embedding theory of Takens 

[11]. In this way by using the time series observations we 

can estimate the Tsallis q-triplet which give useful infor-

mation for the q-extended statistics of the dynamical 

process. Such information concerns the multifractality 

of the state space, the relaxation of the dynamics toward 

the equilibrium state and the entropy production rate of 

the observationally mirrored physical system at the time 

series numbers.

Parallel to the physical manifestation of complexity 

there exist also the mathematical manifestation of com-

plexity. Cantor was the founder of mathematical theory 

by introducing the set theory including smooth Euclidean 

sets as well as fractal sets as was the first fractal set known 

as the Cantor set or the Candor dust. Smooth differentia-

ble functions and smooth differentiable spaces are related 

with Gaussian statistics which permits the discrimina-

tion of macroscopic smooth Euclidean scales excluding 

the non-Euclidean or singular microscopic scales. On the 

other side the Tsallis non-Gaussian and non-extensive 

statistics unifies all the scales so that the microscopic 

non-Euclidean geometry and singularity of physical mag-

nitudes can be emerged to the macroscopic scales.

After this general description of the basic concepts of 

the complexity theory and the extended Tsallis entropy 

principle, we present in the following analytically the 

plurality of different kind of theoretical or experimental 
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manifestations of the complexity theory at distributed 

complex systems in generally.

In the following, in Sections (2–6) we present the ther-

oretical framework and methodology of data analysis for 

understanding the experimental observations by distrib-

uted dynamical systems. Finally, in Section (7) we summa-

rize and discuss the highlights of complexity theory and 

applications.

2   Theoretical concepts

2.1   Complexity theory and the cosmic 
ordering principle

According to previous introductory remarks, the com-

plexity theory concerns every kind of non-equilibrium 

distributed dynamics or equilibrium critical distributed 

dynamics.

That is conceptual novelty of complexity theory 

embraces all the physical reality from equilibrium to non-

equilibrium states. This is stated by Castro [12] as follows: 

“…it is reasonable to suggest that there must be a deeper 

organizing principle, from small to large scales, operating 

in nature which might be based in the theories of complex-

ity, non-linear dynamics and information theory in which 

dimensions, energy and information are intricately con-

nected.”. Tsallis non-extensive statistical theory [2] can be 

used for a comprehensive description of complex physi-

cal systems, as recently we became aware of the drastic 

change of fundamental physical theory concerning physi-

cal systems far from equilibrium. After the theory of scale 

relativity introduced by Nottale [13], the new concept of 

holistic and multiscale dynamics of distributed systems 

was supported by many scientists as Castro [12], Iovane 

[14], Marek-Crnjac [15], Ahmed and Mousa [16] and Agop 

et al. [17].

The dynamics of complex systems is one of the most 

interesting and persisting modern physical problem, 

including the hierarchy of complex and self-organized 

phenomena such as: anomalous diffusion-dissipation 

and strange kinetics, fractal structures, long range cor-

relations, far from equilibrium phase transitions, reduc-

tion of dimensionality, intermittent turbulence, etc. [7, 

18–23]. More than other scientists, Prigogine, as he was 

deeply inspired by the arrow of time and the chemical 

complexity, supported the marginal point of view that the 

dynamical determinism of physical reality is produced 

by an underlying ordering process of entirely holistic 

and probabilistic character which acts at every physical 

level. If we accept this extreme scientific concept then we 

must accept also the new point of view, that the classical 

kinetics is insufficient to describe the emerging complex 

character as the the physical system lives far from equi-

librium. Moreover, recent evolution of the physical theory, 

centered on nonlinearity, non-extensivity and fractality, 

shows that Prigogine’s point of view was not as extreme as 

it was considered at the beginning. After all, Tsallis exten-

sion of statistics [2] and the fractal extension for dynamics 

of complex systems as it was developed by Zaslavsky [24], 

Castro [12], Tarasov [25, 26], El Naschie [27], Milovanov 

and Rasmussen [28], El-Nabulsi [29], Nottale [13], Goldfain 

[30] and many others scientists, are the double face of a 

unified novel theoretical framework. In this way they con-

stitute the appropriate base for the modern study of non-

equilibrium dynamics, since the q-statistics is related, at 

its foundation, to the underlying fractal dynamics of the 

non-equilibrium states.

For complex systems near equilibrium, the underly-

ing dynamics and the statistics are Gaussian as it is caused 

by a normal Langevin type stochastic process with a white 

noise Gaussian component. The normal Langevin stochas-

tic equation corresponds to the probabilistic description of 

dynamics related to the well-known normal Fokker-Planck 

equation. For Gaussian processes only the moments-

cumulants of first and second order are non-zero, while 

the central limit theorem inhibits the development of long 

range correlations and macroscopic self-organization as 

any kind of fluctuation quenches out exponentially to the 

normal distribution. Also at equilibrium, the dynamical 

attractive phase space ofdistributed system is practically 

infinite dimensional as the system state evolves in all 

dimensions according to the famous ergodic theorem of BG 

statistics. However, according to Tsallis statistics, even for 

the case of thermodynamic equilibrium where the Gauss-

ian statistics lives the non-extensive character permits the 

development of long-range correlations produced by equi-

librium phase transition multi-scale processes according 

to the Wilson RGT [19]. From this point of view, the classi-

cal mechanics of fluids, materials or as the theory of parti-

cles and fields, including also general relativity theory, as 

well as the quantum mechanics – quantum field theories, 

is nothing more than a near thermodynamical equilibrium 

approximation of a wider theory of physical reality, char-

acterized as complexity theory. This theory can be related 

to a globally acting ordering process, which includes the 

statistical and the fractal extension of dynamics classical 

or quantum. That is at every level of nature physical reality 

is continuisly creating.

Generally, the experimental observation of a complex 

system presupposes non-equilibrium process of the 
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physical system which is subjected to observation, even 

if the system lives thermodynamically near to equilibrium 

states. Also, experimental observation includes discovery 

and ascertainment of correlations in space and time, as 

the spatiotemporal correlations are related to or caused by 

the statistical mean values fluctuations. The theoretical 

interpretation and prediction of observations as spatial 

and temporal correlations – fluctuations is based on sta-

tistical theory which relates the microscopic underlying 

dynamics to the macroscopic observations, indentified to 

statistical moments and cumulants. Moreover, it is known 

that statistical moments and cumulants are related to the 

underlying dynamics by the derivatives of the partition 

function to the external source variables [31–33]. From this 

point of view, the main problem of complexity theory is 

how to extend the knowledge from thermodynamical equi-

librium states to the far from equilibrium physical states. 

We believe that the non-extensive statistics introduced 

by Tsallis [2] as the extension of BG equilibrium statisti-

cal theory is the appropriate base for the non-equilibrium 

extension of complexity theory. Tsallis non-extensive sta-

tistics as the appropriate far from equilibrium statistical 

theory can produce the q-partition function and the cor-

responding q-moments and q-cumulants, in correspond-

ence with BG statistical interpretation of thermodynamics.

The observed miraculous consistency of physical 

processes at all levels of physical reality, from the mac-

roscopic to the microscopic level, as well as the ineffi-

ciency of existing theories to produce or to predict this 

harmony and hierarchy of structures inside structures 

from the macroscopic or the microscopic level of cosmos 

reveals the nessecity of new theoretical approaches. This 

completely supports or justifies new concepts as such 

indicated by Castro [12]: “of a global ordering principle” 

or by Prigogine [34], about “the becoming before being at 

every level of physical reality.” The problem however with 

such beautiful concepts is how to transform them into an 

experimentally testified scientific theory. In this direc-

tion, in his book “Randmonicity” Tsonis [35] presents a 

significant sinthesis of holistic and reductinisitc (ana-

lytic) shientific approach. The word radmnocity includes 

both meanings: chance (radomness) and mnimi-memory 

(determnism).

The Feynman path integral formulation of quantum 

theory after the introduction of imaginary time transfor-

mation by the Wick rotation indicates the inner relation 

of quantum dynamics and statistical mechanics. In this 

direction, the stochastic and chaotic quantization theory 

was developed [3, 4, 23, 36], which opened the road for the 

introduction of macroscopic complexity and self-organi-

zation concepts in the region of fundamental quantum 

field physical theory. The unified character of macro-

scopic and microscopic complexity is further verified by 

the fact that the point-Green functions produced by the 

generating functional of QFT, after the Wick rotation, can 

be transformed to point correlation functions produced by 

the partition function of statistical theory. This indicates 

the presence at every level-scale of reality the existence of 

self-organization process underlying also at the creation 

and interaction of elementary particles. This is related to 

the development of correlations in complex systems and 

classical random fields [37]. For this reason lattice theory 

describes simultaneously microscopic and macroscopic 

complexity [3, 19, 36].

In this way, instead of explaining the macroscopic 

complexity by a fundamental physical theory such as 

QFT, Superstring theory, M-theory or any other kind of 

fundamental theory, we become witnesses of the oppo-

site fact, according to what Prigogine imagined. That is, 

macroscopic self-organization process and macroscopic 

complexity install their kingdom in the heart of reduction-

ism and fundamentalism of physical theory. That is at 

the microscopic level the Renormalization field theories 

combined with Feynman diagrams that were used for the 

description of high energy interactions or the statistical 

theory of critical phenomena and the nonlinear instabili-

ties for example of plasmas [38], lose their efficiency when 

the complexity of the process scales up [32, 39].

The universality of Tsallis non-extensive statistics as 

it is presented in the follllowing of this study is the mani-

festation of the more general theory known as fractal 

dynamics which was developed rapidly the last years [24–

26]. Fractal dynamics are the modern fractal extension of 

physical theory in every level. On the other hand, the frac-

tional generalization of modern physical theory is based 

on fractional calculus: fractional derivatives of integrals 

or fractional calculus of scalar or vector fields and frac-

tional functional calculus [25, 26, 29, 40]. The efficiency 

of fractional calculus to describe complex and far from 

equilibrium systems which display scale-invariant prop-

erties, turbulent dissipation and long range correlations 

with memory preservation is very impressive, since these 

characteristics cannot be illustrated using traditional ana-

lytic and differentiable functions, as well as ordinary dif-

ferential operators. Fractional calculus permits the fractal 

generalization of Lagrange-Hamilton theory for fields or 

particles, the Fokker-Planck equation Liouville theory and 

BBGKI hierarchy, or the fractal generalization of QFT and 

path integration theory [25, 26, 29, 40, 41].

According to the fractional generalization of dynam-

ics and statistics, we maintain the continuity of functions 

but abolish their differentiable character based on the 
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fractional calculus which is the non-differentiable gener-

alization of differentiable calculus. At the same time, the 

deeper physical meaning of fractional calculus is the uni-

fication of microscopic and macroscopic dynamical theory 

based at the space-time fractality [13, 24, 42–44]. Also, the 

space-time itself is related to the fractality-multifractality 

of the dynamical phase-space, which can be manifested 

as non-equilibrium complexity and self-organization.

Moreover, fractal dynamics leads to a global generali-

zation of physical theory as it can be related to the infinite 

dimensional Cantor space, as the microscopic essence of 

physical space-time, the non-commutative geometry and 

non-commutative Clifford manifolds and Clifford algebra, 

or the p-adic physics [45, 46]. According to these new con-

cepts, introduced the last two decades, at every level of 

physical reality, from the microscopic to the macroscopic 

level, we observed and describe complex structures which 

cannot be reduced to underlying simple fundamental 

entities or underlying simple fundamental laws. Also, the 

non-commutative character of physical theory and geom-

etry [46, 47] indicates that the scientific observation is 

nothing more than the observation of undivided complex 

geometrical physical structures in every level. Cantor was 

the founder of the fractal concept, creating fractal Cantor 

sets by contraction of the continues real number set. On 

the other hand the set of continues systems can be under-

stood as the result of the observational coarse graining of 

the fractal Cantor reality [48]. From a philosophical point 

of view the mathematical forms are nothing else than 

self-organized complex structures in the mind-brain, self-

consistent to all the physical reality. On the other hand, 

the generalization of Relativity theory to scale relativ-

ity by Castro [12] or Nottale [13] indicates the unification 

of microscopic and macroscopic dynamics through the 

fractal generalization of dynamics.

After all, we conjecture that the macroscopic self-

organization connected with the novel theory of complex 

dynamics, as it can be observed at far from equilibrium 

dynamical physical states, is the macroscopic emergence 

of the microscopic complexity which can be enlarged as 

the system arrives at bifurcation or far from equilibrium 

critical points. That is, far from equilibrium the observed 

physical self-organization process the manifestation at 

the globally active ordering principle which acts in prior-

ity or self-consistenly from local interactions processes. 

In this framework of understanding, we could conjecture 

that the concept of local interactions themselves are the 

local manifestation of the universal and holistically active 

ordering principle. Namely, what until now is known as 

fundamental physical laws is nothing else than the equi-

librium manifestation or approximation of a universall 

and globally active ordering principle. This concept can be 

related to the fractional generalization of dynamics that 

can be indentified with the dynamics of correlations sup-

ported by Balescu [18], Prigogine [34] and Nicolis [49], as 

the non-equilibrium generalization of Newtonian theory. 

This conjecture concerning the fractional unification of 

macroscopic and microscopic dynamics can be strongly 

supported by the Tsallis nonextensive q-statistics theory 

which is verified almost everywhere from the microscopic 

to the macroscopic level. From this point of view, it is rea-

sonable to support that the q-statistics and the fractional 

generalization of space-time dynamics is the appropriate 

framework for the description of their non-equilibrium 

complexity.

2.2   Chaotic dynamics and statistics

The macroscopic description of complex distributed 

systems can be approximated by non-linear partial differ-

ential equations of the general type:

 
λ

∂
=

∂

� �

�

�( , )
( , )

u x t
F u

t  
(1)

where ( )u x
�

 belongs to an infinite dimensional state 

(phase) space which is a Hilbert functional space.

The control parameters (λ) measure the distance from 

the thermodynamical equilibrium as well as the critical 

or bifurcation points of the system for given and fixed 

values, depending upon the global mathematical struc-

ture of the dynamics. As the system passes its bifurcation 

points a rich variety of spatio-temporal patterns with dis-

tinct topological and dynamical profiles can be emerged 

such as: limit cycles or torus, chaotic or strange attractors, 

turbulence, vortices, percolation states and other kinds of 

complex spatiotemporal structures [18, 23, 49–52]. Gen-

erally, chaotic solutions of the mathematical system (1) 

transform the deterministic profile of dynamics to non-

linear stochastic system:

 
( , ) ( , )

u
u x t

t
Φ λ δ

∂ ′
= +′

∂

� ��

�

 
(2)

where u′ is the reduced slow part of the non-linear dynam-

ics and ( , )x tδ
�

�

 corresponds to the random force fields 

produced by strong chaoticity-fast part of the non-linear 

dynamics [53].

The non-linear mathematical models for distributed 

dynamical systems (1, 2) include plethora of mathemati-

cal solutions and phase transition processes at the bifur-

cation points as the control parameters increases. This 

scenario of non-linear dynamics can represent plethora of 
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non-equilibrium physical states included in mechanical, 

electromagnetic, chemical and other physical complex 

systems. The random component ( , )x tδ
�

�

 in equation (2), 

related to the BBGKY hierarchy as it is presented in the 

next section. As we presented at Figure 1, the low values 

of control parameters λ which means weak coupling for 

the environment the system lives near to thermodynamic 

equilibrium, as the system departs from the thermody-

namic equilibrium by increasing the control parameters 

λ we have emergence of self-organising structures as limit 

cycles, limit torus, strange attractors or more complex and 

multifractal structures. Far from equilibrium, the systems 

can lives at metaequilibrium states (local minimum of free 

energy) reaviling complex structures, fractional dynam-

ics, non-Gaussian sattistics and multiscale and long-range 

correlations [18, 25, 26, 54].

These forms of the non-linear mathematical systems 

(1, 2) correspond to the original version of the new science 

known today as complexity science. This new science has 

a universal character, including an unsolved scientific and 

conceptual controversy, which is continuously spreading 

in all directions of the mathematical descriptions of the 

physical reality concerning the integrability or comput-

ability of the dynamics [55]. The concept of universality 

was supported by many scientists, after the Poincare’s 

discovery of chaos and its non-integrability, as is it shown 

in physical sciences in many regions of the physical sci-

ences by the work of Prigogine, Nicolis, Yankov and others 

[22, 34, 49]. Moreover, non-linearity and chaos is the top 

of a hidden mountain including new physical and math-

ematical concepts such as fractal calculus, p-adic physi-

cal theory, non-commutative geometry, fuzzy anomalous 

topologies, fractal space-time etc. [7, 13, 42, 43, 45, 56–58]. 

These novel physical-mathematical concepts obtain their 

physical power when the physical system lives far from 

equilibrium.

Furthermore and following the traditional point of 

view of physical science, we arrive at the central con-

ceptual problem of complexity science. That is, how is it 

possible the local interactions in a spatially distributed 

physical system can cause long-range correlations or can 

create complex spatiotemporal coherent patterns non as 

dissipative structures, as the previous non-linear math-

ematical systems reveal, when they are solved arithmeti-

cally, or as the analysis of in situ observations of physical 

systems shows. For non-equilibrium, physical systems 

the above questions lead us to seek how the develop-

ment of complex structures and long range spatio-tem-

poral correlations can be explained and described by 

local interactions of particles and fields. At a first glance, 

the problem looks simple supposing that it can be 

explained by the self-consistent particle-fields classical 

interactions. This is the reductioning dogma of science. 

However, the existed rich phenomenology of complex 

non-equilibrium phenomena reveals the non-classical 

and strange character of the universal non-equilibrium 

critical dynamics [2, 34, 35, 49, 51]. In the following and 

for the better understanding of the new concepts we 

follow the road of non-equilibrium statistical theory [18, 

21, 23, 31, 55, 59]. Today the study of complex systems 

press as for the extension of physical theory to a new 

theoretical dogma known as the dynamics of correla-

tions which at its limit includes the old dogma of local 

foreces and local interactions.

The stochastic equation (2) belongs to the general type 

of Langevin equations. According to previous studies, the 

stochastic Langevin equations can take the general form:
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(3)

where H is the Hamiltonian of the system, δH/δu
i
 its func-

tional derivative, Γ is a transport coefficient and n
i
 are the 

components of a Gaussian white noise:
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(4)

Figure 1: This figure decribes the basic scenario toward the devel-

opment of complexity and emergence of complex structures as the 

control parameters λ increases. For weak coupling (low values of 

λ) the system lives near thermodynamical equilibrium (region A), 

where free energy obtains the absolute minimum. As the coupling of 

the system with its envriromnet becomes stronger by increasing the 

control parameters λ the system passes through bifurcation points 

and develops complex structures with strong space-time correla-

tions. Far from equilibrium, the system lives at local minimus of free 

energy where it appears complex-dissipative structures, fractional 

dynamics and Tsallis distributions.
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The above stochastic Langevin Hamiltonian equation 

can be related to a probabilistic Fokker-Planck equation [21]:

 

1
[ ( ) ]

( )

P H
P x P

x t u u u

δ δ δ
Γ

Γ δ δ δ

 ∂
= ⋅ +  ∂
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(5)

where ({ ( , )}, )
i

P P u x t t=

�

 is the probability distribution 

function of the dynamical configuration { ( , )}
i
u x t
�

 of the 

system at time t.

The solution of the FP equation can be obtained as a 

functional path integral in the state space { ( )} :
i
u x
�

 
0 0

({ ( )}, ) exp( ) ({ ( )}, )
i i

P u x t Q S P u x t∆ −∫
�� �

≃  (6)

where 
0 0
({ ( )}, )

i
P u x t

�

 is the initial probability distribution 

function in the extended configuration state space and 

S = i∫Ldt is the stochastic action of the system obtained by 

the time integration of it is stochastic Lagrangian (L) [21].

The stationary solution of the Fokker-Planck equation 

corresponds to the statistical minimum of the action and 

corresponds to a Gaussian state:

 ({ }) exp[ (1 / ) ({ })]
i i

P u uΓ Η∼ −  (7)

The path integration in the configuration field state 

space corresponds to the integration of the path prob-

ability for all the possible paths which start at the con-

figuration state 
0

( , )u x t
� �

 of the system and arrive at the 

final configuration state ( , ).u x t
� �

 Langevin and F-P equa-

tions of classical statistics include a hidden relation with 

Feynman path integral formulation of QM [3–5, 23, 37, 60]. 

As the F-P equation can be transformed to a Schrödinger 

type equation:

 
0 0

ˆ ˆ ˆ( , ) ( , )
d

i U t t H U t t
dt

= ⋅

 
(8)

by an appropriate operator Hamiltonian extension 
ˆ ˆ( ( , )) ( ( , ))H u x t H u x t⇒

� �

 of the classical function (H) 

where now the field (u) is an operator distribution. From 

this point of view, the classical stochasticity of the macro-

scopic Langevin process can be considered as caused by a 

macroscopic quandicity revealed by the complex system 

as the F-K probability distribution P satisfies the quantum 

relation:

 
0 0 0

ˆ( , | , ) | ( , ) |P u t u t u U t t u= 〈 〉  (9)

This generalization of classical stochastic process as 

a quantum process could explain the spontaneous devel-

opment of long-range correlations at the macroscopic 

level as an enlargement of the quantum entanglement 

character at critical states of complex systems. This inter-

pretation is in faithful agreement with the introduction 

of complexity in sub-quantum processes and the chaotic 

– stochastic quantization of field theory [3, 30, 37], as well 

as with scale relativity principles [12, 13, 40] and fractal 

extension of dynamics [7, 24–26, 29, 30, 40, 61] or the older 

Prigogine’s correlations dynamics theory [34]. Here, we 

can argue in addition to previous description that far from 

equilibrium quantum mechanics is transformed to a frac-

tional mechanics theory. The fractional generalization of 

QM-QFT drifts along also the tools of quantum theory into 

the correspondent non-equilibrium generalization of RG 

theory or the path integration and Feynman diagrams. 

This generalization implies also the generalization of sta-

tistical theory as the new road for the unification of mac-

roscopic and microscopic complexity through the theory 

of many points theoretical functions.

If [ ( , )]P u x t
� �

 is the probability of the entire field 

path in the field state space of the distributed system, 

then we can extend the theory of generating function of 

moments and cumulants for the probabilistic description 

of the paths [31]. The n-point field correlation functions 

(n-points moments) can be estimated by using the field 

path probability distribution and field path (functional) 

integration:
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…
 (10)

For Gaussian andom processes which described the 

equilibrium the nth point moments with n > 2 are zero. 

This corresponds to the Markov processes while far from 

equilibrium it is possible to be developed non-Gaussian 

(with infinite nonzero moments) processes. According to 

Haken [31] the characteristic function (or generating func-

tion) of the probabilistic description of paths:
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is given by the relation:
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while the path cumulants 
1

( )
s

s a a
K t t…  are given by the 

relations:
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(13)

and the n-point path moments are given by the functional 

derivatives:
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For Gaussian stochastic field processes the cumulants 

except the first two vanish (k
3
 = k

4
 = …0). For non-Gaussian 

processes it is possible to be developed long range correla-

tions as the cumulants of higher than two order are non-

zero [31]. This is the deeper meaning of non-equilibrium 

self-organization and ordering of complex systems. The 

characteristic function of the dynamical stochastic field 

system is related to the partition functions of its statistical 

description, while the cumulant development and multi-

point moments generation can be related with the BBGKY 

statistical hierarchy of the statistics as well as with the 

Feynman diagrams approximation of the stochastic field 

system [32]. For dynamical systems near equilibrium only 

the second order cumulants are non-vanishing, while far 

from equilibrium field fluctuations with higher-order non-

vanishing cumulants can be developed.

Finally, using previous decriptions we can now 

understand how the non-linear dynamics correspond to 

self-organized states as the high-order (infinite) non-van-

ishing cumulants can produce the non-integrability of the 

dynamics. From this point of view the linear or non-linear 

instabilities of classical kinetic theory are inefficient to 

produce the non-Gaussian, holistic (non-local) and self-

organized complex character of non-equilibrium dynam-

ics. That is, far from equilibrium complex states can be 

developed including long-range correlations of field and 

particles with non-Gaussian distributions of their dynamic 

variables. As we show in the next section such states reveal 

the necessity of new theoretical tools for their understand-

ing which are much different from those used in classical 

linear or non-linear approximation of kinetic theory.

2.3   Strange attractors and self-organization

When the dynamics is strongly nonlinear then far from 

equilibrium it is possible to occur strong self-organization 

and intensive reduction of dimensionality of the state 

space, by an attracting low dimensional smooth set with 

parallel development of long-range correlations in space 

and time. The attractor can be smoothly periodic (limit 

cycle, limit m-torus), simply chaotic (mono-fractal) or 

strongly chaotic with multiscale and multifractal profile. 

Also, attractors with weak chaotic profile known as SOC 

states are also well knowh. This spectrum of distinct 

dynamical profiles can be obtained as distinct critical 

points (critical states) of the nonlinear dynamics, after 

successive bifurcations as the control parameters change. 

The fixed points can be estimated by using a far from 

equilibrium renormalization process as it was indicated 

by Chang et al. [21].

From this point of view phase transition processes 

can be developed between different critical states, when 

the order parameters of the system are changing. The far 

from equilibrium development of chaotic (weak or strong) 

or other critical states include long-range correlations 

and multiscale internal self-organization. Now, these far 

from equilibrium self organized states, cause the equilib-

rium BG statistics and BG entropy, to be transformed and 

replaced by the Tsallis q-statistics and Tsallis q-entropy. 

The extension of renormalization group theory and criti-

cal dynamics, under the q-extension of partition function, 

free energy and path integral approach has been also indi-

cated [2, 62–64]. The multifractal structure of the chaotic 

attractors can be described by the generalized Rényi 

fractal dimensions:
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where p
i
 ∼ λα(i) is the local probability at the location (i) of 

the phase space, λ is the local size of phase space and a(i) 

is the local fractal dimension of the phase space dynamics.

The Rényi q̅ numbers (different from the q-index of 

Tsallis statistics) take values in the entire region (−∞, +∞) 

of real numbers. The spectrum of distinct local pointwise 

dimensions α(i) is given by the estimation of the function 

f(α) defined by the scaling of the density n(a, λ) ∼ λ−f(a), 

where n(a, λ)da is the number of local regions that have 

a scaling index between a and a + da. This reveal f(a) as 

the fractal dimension of points with scaling index a. The 

fractal dimension f(a) which varies with a shows the mul-

tifractal character of the phase space dynamics which 

includes interwoven sets of singularity of strength a, by 

their own fractal measure f(a) of dimension [65, 66]. The 

multifractal spectrum D
q̅
 of the Renyi dimensions can be 

related to the spectrum f(a) of local singularities by using 

the following relations:
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(18)

 ( ) ( )f q qα α τ= −  (19)

According to Arneodo et al. [67] the physical meaning 

of these quantities included in relations (16–19) can be 

obtained if we identify the multifractal attractor as a 

thermodynamical object, where its temperature (T), free 
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energy (F), entropy (S) and internal energy (U) are related 

to the properties of the multifractal attractor as follows:

 

1
, ( ) ( 1)

, ( )

q
q q q D F

T
U f S

τ

α α


⇒ = − ⇒ 


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(20)

This correspondence presents the relations (18–20) 

as a thermodynamical Legendre transform [68]. When q̅ 

increases to infinite (+∞), which means, that we freeze 

the system (T
(q=+∞)

→0), then the trajectories (fluid lines) 

are closing on the attractor set, causing large probability 

values at regions of low fractal dimension, where α = α
min

 

and D
q̅
 = D

−∞
. Oppositely, when q̅ decreases to infinite 

(−∞), that is we warm up the system (T
(q=−∞)

→0) then 

the trajectories are spread out at regions of high fractal 

dimension (α ⇒ α
max

). Also for q̅′ > q̅ we have D
q̅′ < D

q̅
 and 

D
q̅
 ⇒ D

+∞
(D

−∞
) for α ⇒ α

min
(α

max
) correspondingly. It is also 

known the Renyi’s generalization of entropy according 

to the relation: 
1

log .
1

R q

q i
i

S P
q

=
−

∑  However, the above 

description presents only a weak or limited analogy 

between multifractal and thermodynamical objects. The 

real thermodynamical character of the multifractal objects 

and multiscale dynamics was discovered after the defini-

tion by Tsallis [2] of the q-entropy related with the q-statis-

tics as it is summarized in the next section. As Tsallis has 

shown Renyi’s entropy as well as other generalizations of 

entropy cannot be used as the base of the non-extensive 

generalization of thermodynamics.

2.4   The highlights of Tsallis theory

As we show in the second part next of this study, every-

where in physical systems we can ascertain the presence 

of Tsallis statistics. This discovery is the continuation of a 

more general ascertainment of Tsallis q-extensive statis-

tics from the macroscopic to the microscopic level [2].

In our understanding the Tsallis theory, more than 

a generalization of thermodynamics for chaotic and 

complex systems, or a non-equilibrium generalization of 

B-G statistics, can be considered as a strong theoretical 

foundation for the unification of macroscopic and micro-

scopic physical complexity. From this point of view, Tsallis 

statistical theory is the other side of the modern fractional 

generalization of dynamics while its essence is nothing 

else than the efficiency of self-organization and develop-

ment of long-range correlations of coherent structures in 

complex systems.

From a general philosophical aspect, the Tsallis 

q-extension of statistics can be identified with the activity 

of an ordering principle in physical reality, which cannot 

be exhausted with the local interactions in the physical 

systems, as we mentioned in previous sections.

2.4.1   The non-extensive entropy (S
q
)

Usually any extension of physical theory is related to some 

special kind of mathematics. Tsallis non-extensive statis-

tical theory is connected with the q-extension of exponen-

tial-logarithmic functions as well as the q-extension of 

Fourier Transform (FT). The q-extension of mathematics 

underlying the q-extension of statistics, are included in 

the solution of the non-linear equation:
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According to (21) its solution is the q-exponential function 

:
x

q
e

 
1/(1 )[1 (1 ) ]x q

q
e q x

−

≡ + −  (22)

The q-extension of logarithmic function is the reverse 

of x
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e  according to:
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The q-logarithm satisfies the property:

 ln ( ) ln ln (1 )(ln )(ln )
q A B q A q B q A q B
x x x x q x x= + + −  (24)

In relation of the pseudo-additive property of the 

q-logarithm, a generalization of the product and sum to 

q-product and q-sum was introduced (22):
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+
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 (1 )
q

x y x y q xy⊗ ≡ + + −  (26)

Moreover in the context of the q-generalization of the 

central limit theorem the q-extension of Fourier transform 

was introduced (1):
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It was for the first time that Tsallis [2], inspired by 

multifractal analysis, conceived that the BG entropy

 
BG

ln ln(1/ )
i i i

S k p p k p= − = < >∑  (28)

is inefficient to describe all the complexity of non-linear 

dynamical systems. The BG statistical theory presupposes 

ergodicity of the underlying dynamics in the system phase 

space. The complexity of dynamics which is far beyond 

the simple ergodic complexity, it can be described by 
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Tsallis non-extensive statistics, based on the extended 

concept of q-entropy:

 1

1 ( 1) ln (1/ )
N

q

q i q i
i

S k p q k p
=

 
= − − = < >  ∑
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for continuous state space, we have

 1 [ ( )] ( 1)q

q
S k p x dx q = − − ∫  (30)

For a system of particles and fields with short range 

correlations inside their immediate neighborhood, the 

Tsallis q-entropy S
q
 asymptotically leads to BG entropy 

(S
BG

) corresponding to the value of q = 1. For probabil-

istically dependent or correlated systems A, B it can be 

proven that:
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where ( ) ({ }),A

q q i
S A S p≡ ( ) ({ }),B

q q i
S B S p≡  S

q
(B/A) and 

S
q
(A/B) are the conditional entropies of systems A, B. 

When the systems are probabilistically independent, then 

relation (31) is transformed to:

 ( ) ( ) ( ) (1 ) ( ) ( )
q q q q q
S A B S A S B q S A S B+ = + + −  (32)

The first part of S
q
(A + B) is additive S

q
(A) + S

q
(B) 

while the second part is multiplicative including long-

range correlations supporting the macroscopic ordering 

phenomena. Zelenyi and Milovanov [8] showed that the 

Tsallis definition of entropy coincides with the so-called 

“kappa” distribution, which appears in space plasmas 

and other physical realizations [69–74]. Also, they indi-

cate that the application of Tsallis entropy formalism cor-

responds to physical systems whose the statistical weights 

are relatively small, while for large statistical weights the 

standard statistical mechanism of BG is better. This result 

means that when the dynamics of the system is attracted 

in a confined subset of the phase space, then long – range 

correlations can be developed. Also according to Tsallis 

[2] if the correlations are either strictly or asymptotically 

inexistent the BG entropy is extensive whereas S
q
 for q ≠ 1 

is non-extensive.

2.4.2   The q-extension of statistics and thermodynamics

According to the Tsallis q-extension of the entropy princi-

ple, any stationary random variable can be described as 

the stationary solution of generalized fraction diffusion 

of equation (1). At metastable stationary solutions of a 

stochastic process, the maximum entropy principle of BG 

statistical theory can faithfully be described the maximum 

(extreme) of the Tsallis q-entropy function. The extremiza-

tion of Tsallis q-entropy corresponds to the q-generalized 

form of the normal distribution function:

 
2( )

( ) q
x x

q q q
p x A e

β
β

− < >

=  (33)

where 

( 1) / (1 /( 1)) / ((3 )/[2 /( 1)])
q

A q q q qπΓ Γ= − − − −

for q > 1,

and 

(1 ) / ((5 3 )/[2(1 )]) / ((2 )/(1 ))
q

A q q q q qπΓ Γ= − − − − −

for q < 1, Γ(z) being the Riemann function.

The q-extension of statistics includes also the q-exten-

sion of central limit theorem which can describe also 

faithfully the non-equilibrium long range correlations in 

a complex system. The normal central limit theorem con-

cerns Gaussian random variables (x
i
) for which their sum 

1

N

i

i

Z x

=

= ∑  gradually tends to become a Gaussian process as 

N→ ∞, while its fluctuations tend to zero in contrast to the 

possibility of non-equilibrium long range correlations. By 

using q-extension to Fourier transform, it can proved that 

q-independence means independence for q = 1 (normal 

central limit theorem), but for q ≠ 1 it means strong cor-

relation (q-extended CLT). In this case (q ≠ 1) the number 

of 
1 2 N

A A A
W

+ + +…
 of allowed states, in a composed system by 

the (A
1
, A

2
,…, A

N
) sub-systems, is expected to be smaller 

than 
1 2

1
N i

N

A A A i A
W WΠ

+ + + =
=

…

 where 
1 2

, , ,  
N

A A A
W W W…  are the 

possible states of the subsystems.

In this way, Tsallis q-extension of statistical physics 

opened the road for the q-extension of thermodynam-

ics and general critical dynamical theory as a non-linear 

system lives far from thermodynamical equilibrium. For 

the generalization of BG nonequilibrium statistics to 

Tsallis nonequilibrium q-statistics we follow Binney et al. 

[32]. In the next we present q-extended relations, which 

can describe the non-equilibrium fluctuations and n-

point correlation function (G) can be obtained by using 

the Tsallis partition function Z
q
 of the system as follows:

 
1 2 n

1 2

1 2 i

1
( , , ,  ) , , ,  s

n

n

qn

q n i i q

i i i

Z
G i i i s s

z j j j

∂
≡ 〈 〉 =

∂ ⋅∂ ∂
… …

…

 

(34)

where {s
i
} are the dynamical variables and {j

i
} their sources 

included in the effective – Lagrangian of the system. Cor-

relation (Green) equations (35) describe discrete variables, 

the n-point correlations for continuous distribution of var-

iables (random fields) are given by the functional deriva-

tives of the functional partition as follows:
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1 2 1 2

1

( , , ,  ) ( ) ( ) (

1
( )

( ) ( )

n

q n n q

q

n

G x x x x x x

Z J
Z J x J x

ϕ ϕ ϕ

δ δ

δ δ

≡ 〈 〉

=

� � � � � �

… …

…
� �

 
(35)

where ( )xϕ
�

 are random fields of the system variables and 

( )j x
�

 their field sources. The connected n-point correla-

tion functions n

i
G  are given by:

 
1 2

1

( , , ,  ) log ( )
( ) ( )

n

q n q

n

G x x x Z J
J x J x

δ δ

δ δ
≡

� � �

… …
� �

 

(36)

The connected n-point correlations correspond to cor-

relations that are due to internal interactions defined as 

[32]:

 
1 2 1 1

( , , ,  ) ( ) ( ) ( ) ( )n

q n n q n q
G x x x x x x xϕ ϕ ϕ ϕ≡ 〈 〉 − 〈 〉
� � � � �

… … …

 (37)

The probability of the microscopic dynamical configu-

rations is given by the general relation:

 conf(conf)
S

P e
β−

=  (38)

where β = 1/kT and S
conf

 is the action of the system, while 

the partition function Z of the system is given by the 

relation:

 

conf

conf

S

Z e
β−

= ∑
 

(39)

The q-extension of the above statistical theory can be 

obtained by the q-partition function Z
q
. The q-partition 

function is related with the meta-equilibrium distribution 

of the canonical ensemble which is given by the relation:

 
( )/

i q q
q E V Z

i q
p e

β− −

=  (40)

with

 

( )

conf

i q
q E V

q q
Z e

β− −
= ∑

 
(41)

and

 conf

q

q i
pβ β= ∑

 
(42)

where β = 1/KT is the Lagrange parameter associated with 

the energy constraint:

 conf conf

q q

q i i i q
E p E p U〈 〉 ≡ =∑ ∑

 
(43)

The q-extension of thermodynamics is related to the 

estimation of q-Free energy (F
q
) the q-expectation value of 

internal energy (U
q
) the q-specific heat (C

q
) by using the 

q-partition function:

 

1
ln

q q q q
F U TS qZ

β
≡ − = −

 

(44)

 

1
ln , 

q

q q

q

S
U qZ

T Uβ

∂∂
= =

∂ ∂
 

(45)

 

2

2

q q q

q

U F
C T T

T T T

δ∂ ∂ ∂
≡ = = −

∂ ∂ ∂  

(46)

The q-exponential probability distributions described 

previously, can describe the nonequilibrium plasma states 

including the random profile of fields or particles. The 

nonequilibrium plasma states correspond to the extremi-

zation of Tsallis q-entropy under appropriate conditions 

[2]. Especially, for energetic (nonthermal) particle popula-

tions the q-exponential probability distributions take the 

form of kappa distributions of two main types:

 

(1)
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B
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 −
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 

 −
+ ⋅ 

   

(47)

where U is the main kinetic energy U = 〈ε
κ
〉 [73].

According to Livadiotis and McComas [70], the con-

nection between kappa distributions and the entropic 

index q of Tsallis non-extensive statistical mechanics is 

given by the transformation k = 1/(q − 1).

2.4.3   Fractal generalization of dynamics

Fractional integrals and fractional derivatives are deriva-

tives or integrals on fractals which are related to the 

fractal contraction transformation of phase space as well 

as contraction transformation of space-time in analogy 

with the fractal contraction transformation of the Cantor 

set [47, 75]. Also, the fractional extension of dynamics 

includes the non-Gaussian scale invariance, related to the 

multiscale coupling and non-equilibrium extension of the 

renormalization group theory [24].  Moreover, Tarasov [25, 

26], Goldfain [30], Cresson and Greff [40], El-Nabulsi [29] 

and other scientists generalized the classical or quantum 

dynamics in a continuation of the original break through 

by Ord [76], El-Naschie [27], Nottale [13], Castro [12] and 

others concerning the fractal generalization of physical 

theory.

According to Tarasov [25] the fundamental theorem 

of Riemann-Liouville fractional calculus is the generaliza-

tion of the known integer integral – derivative theorem as 

follows:

If

 ( ) ( )a

x
F x I f x

α
=  (48)

Then
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 ( ) ( )a

a x
D F x f x=  (49)

where a

a x
I  is the fractional Riemann-Liouville according 

to:

 
1

1 ( )
( )

( ) ( )

x
a

a x aa

f x dx
I f x

a x xΓ
−

′ ′
≡

− ′∫
 

(50)

and a

a x
D  is the Caputo fractional derivative according to:

 
1

( ) ( )

1 ( )

( ) ( )

a n a n

a x a x x

x

a n n

a

D F x I D F x

dx dnF x

n a x x dxΓ

−

+ −

= =

′
=

− − ′∫
 

(51)

for f(x) a real valued function defined on a closed interval 

[a, b].

In the next, we summarize the basic concepts of the 

fractal generalization of dynamics as well as the fractal 

generalization of Liouville theory following Tarasov [25]. 

According to previous descriptions, the far from equi-

librium dynamics includes fractal or multi-fractal distri-

bution of fields and particles, as well as spatial fractal 

temporal distributions. This state can be described by the 

fractal generalization of classical theory: Lagrange and 

Hamilton equations of dynamics, Liouville theory, Fokker-

Planck equations and Bogoliubov hierarchy equations. In 

general, the fractal distribution of a physical quantity (M) 

obeys a power law relation:

 
0

0

D

D

R
M M

R

 
∼   

 

(52)

where (M
D
) is the fractal mass of the physical quantity (M) 

in a ball of radius (R) and (D) is the distribution fractal 

dimension. For a fractal distribution with local density 

( )xρ
�

 the fractal generalization of Euclidean space inte-

gration reads as follows:

 

( ) ( )
D D

W

M W x dVρ= ∫
 

(53)

where

 
3 3
( , )

D
dV C D x dV=

�  (54)

and
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(55)

Similarly the fractal generalization of surface and line 

Euclidean integration is obtained by using the relations:

 
2 2
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d
dS C d x dS=

�  (56)
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(57)

for the surface fractal integration and

 
1 1
( , )dl C x dl

γ
γ=

�  (58)
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(59)

For the line fractal integration. By using the fractal 

generalization of integration and the corresponding gen-

eralized Gauss’s and Stoke’s theorems we can transform 

fractal integral laws to fractal and non-local differential 

laws. The fractional generalization of classical dynamics 

(Hamilton Lagrange and Liouville theory) can be obtained 

by the fractional generalization of the quantative descrip-

tion of the phase space. For this, we use the fractional 

power of coordinates:

 sgn( )| |a a
X x x=  (60)

where sgn(x) is equal to +1 for x ≥ 0 and equal to −1 for 

x < 0.

The fractional measure M
a
(B) of a n-dimension phase 

space region (B) is given by the equation:

 

ˆ ˆ( ) ( ) ( , )
a a

B

M B g a d q pµ= ∫
 

(61)

where ˆ ˆ( , )
a

d q pµ  is a phase space volume element:

 
2

ˆ ˆ

[ ( )]

a a

a

dq dp
d

a a

Λ
µ Π

Γ
=

 

(62)

where g(a) is a numerical multiplier and a a

K K
dq dpΛ  means 

the wedge product.

The fractional Hamilton’s approach can be obtained 

by the fractal generalization of the Hamilton action 

principle:

 ˆ ˆ ˆ ˆ[ ( , ,  )]S pq H t p q dt= −∫  (63)

The fractional Hamilton equations:

 

1

ˆ

ˆ
ˆ(2 )

a

a a

p

dq
a p D H

at
Γ

− 
= −  

 

(64)

 
ˆ

ˆ
a a

t q
D p D H= −  (65)

while the fractional generalization of the Lagrange’s 

action principle:

 ( , ,  )S L t q u dt= ∫  (66)

Corresponds to the fractional Lagrange equations:

 ˆ
(2 ) [ ] 0a a a

q t U U q
D L a D D LΓ

=

− − =
ɺ

 (67)
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Similar fractional generalization can be obtained for dis-

sipative or non-Hamiltonian systems [41]. The fractal gen-

eralization of Liouville equation is given also as:

 

ˆN

N N

p
L p

t

∂
=

∂

ɶ
ɶ

 
(68)

where 
N
pɶ  and ˆ

N
L  are the fractional generalization of 

the N-particle probability distribution function and the 

Liouville operator correspondingly. The fractal gener-

alization of Bogoliubov hierarchy can be obtained by 

using the fractal Liouville equation as well as the fractal 

Fokker Planck hydrodynamical-magnetohydrodynamical 

approximations. The fractional generalization of classi-

cal dynamical theory for dissipative systems includes the 

non-Gaussian statistics as the fractal generalization of 

BG statistics. Finally the far from equilibrium statistical 

mechanics can be obtained by using the fractal extension 

of the path integral method.

The fractional Green function of the dynamics is given 

by the fractal generalization of the path integral:

 { }
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exp ( )

f

i

x
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∑
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≃

 

(69)

where K
a
 is the probability amplitude (fractal quantum 

mechanics) or the two point correlation function (statis-

tical mechanics), D[x
a
(τ)] means path integration on the 

sum {γ} of fractal paths and S
a
(γ) is the fractal generaliza-

tion of the action integral:

 

11
[ ] ( ( ), )( )

( )

f

i

x

a a

a

x

S L D q t d
a γ

γ τ τ τ τ
Γ

−= −∫
 

(70)

2.4.4   The Tsallis extension of statistics via the fractal 

extension of dynamics

At the equilibrium thermodynamical state the underlying 

statistical dynamics is Gaussian (q = 1). As the system goes 

far from equilibrium the underlying statistical dynamics 

becomes non-Gaussian (q ≠ 1). At the first case the phase 

space includes ergodic motion corresponding to normal 

diffusion process with mean-squared jump distances pro-

portional to the time 〈x2〉 ∼ t whereas far from equilibrium 

the phase space motion of the dynamics becomes cha-

otically self-organized corresponding to anomalous diffu-

sion process with mean-squared jump distances 〈x2〉 ∼ ta, 

with a < 1 for sub-diffusion and a > 1 for super-diffusion. 

In the next, we follow Zaslavsky [24] in order to present 

the internal relation of Tsallis theory and fractal extension 

of dynamics. The equilibrium normal-diffusion process is 

described by a chain equation of the Markov-type:

 3 3 1 1 2 3 3 2 2 2 2 1 1
( , ; , ) ( , ; , ) ( , ; , )W x t x t dx W x t x t W x t x t= ∫  (71)

where W(x, t; x′, t′) is the probability density for the 

motion from the dynamical state (x′, t′) to the state (x, t) 

of the phase space. The Markov process can be related 

to a random differential Langevin equation with addi-

tive white noise and a corresponding Fokker-Planck 

(FP) probabilistic equation [24] by using the initial 

condition:
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x y t x yW
∆

∆ δ
→

= −

 
(72)

This relation means no memory in the Markov process and 

help to obtain the expansion:
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∆ δ
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(73)

where a(y; ∆t) and b(y; ∆t) are the first and second moment 

of the transfer probability function W(x, y; ∆t):

 ( ; ) ( ) ( , ; )a y t dx x y W x y t y∆ ∆ ∆= − ≡ 〈〈 〉〉∫  (74)

 
2 2( ; ) ( ) ( , ; ) ( )b y t dx x y W x y t y∆ ∆ ∆= − ≡ 〈〈 〉〉∫  (75)

By using the normalization condition:

 ( , ; ) 1dyW x y t∆ =∫  (76)

we can obtain the relation:
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∆
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∂
= −
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(77)

The Fokker-Planck equation which corresponds to the 

Markov process can be obtained by using the relation:
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(78)

where p(x, t) ≡ W(x, x
0
; t) is the probability distribution 

function of the state (x, t) corresponding to large time 

asymptotic, as follows:
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where A(x) is the flow coefficient:

 
0

1
( , ) lim

t

A x t x
t∆

∆
∆→

≡ 〈〈 〉〉

 
(80)

and B(x, t) is the diffusion coefficient:
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1
( , ) lim
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B x t x
t∆

∆
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≡ 〈〈 〉〉
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(81)

The Markov process is a Gaussian process as the moments 

0

lim
m

t

x
∆

∆
→

〈〈 〉〉  for m > 2 are zero. The stationary solutions of 

FP equation satisfy the extremal condition of BG entropy:

 BG
( )ln ( )

B
S K p x p x dx= − ∫  (82)

corresponding to the known Gaussian distribution:

 
2 2( ) exp( /2 )p x x σ∼ −  (83)

According to Zaslavsky [24] the fractal extension of 

FP equation can be produced by the scale invariance prin-

ciple applied for the phase space of the non-equilibrium 

dynamics. As it was shown by Zaslavsky [24], for strong 

chaos the phase space includes self similar structures 

of islands inside islands dived in the stochastic sea. The 

fractal extension of the Fokker-Planck-Kolmogorov equa-

tion (fFPK) can be derived after the application of a Renor-

malization Group of anomalous Kinetics (RGK):

 ˆ : , 
K s t

R s S t tλ λ= =′ ′  (84)

where s is a spatial variable and t is the time. Correspond-

ingly, to the Markov process equations:
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as the space-time variations of probability W are consid-

ered on fractal space-time variables (t, ξ) with dimensions 

(β, a). For fractional dynamics a(n; ∆t), b(n; ∆t) satisfy the 

equations:

 ( ; ) | | ( , ; ) | |aa n t n W n t d
α∆ ξ ξ ∆ ξ ∆ξ= − ≡ 〈〈 〉〉∫  (87)

 
2 2( ; ) | | ( , ; ) | | a

b n t n W n t d
α∆ ξ ξ ∆ ξ ∆ξ= − ≡ 〈〈 〉〉∫  (88)

and the limit equations:
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Using the above equations we can obtain the fFPK 

equation. Far from equilibrium the non-linear dynam-

ics can produce phase space topologies corresponding to 

various complex attractors of the dynamics. In this case the 

extended complexity of the dynamics corresponds to the 

generalized strange kinetic Langevin equation with corre-

lated and multiplicative noise components and extended 

fractal fFPK equation [7, 24]. The q-extension of statistics by 

Tsallis can be related to the strange kinetics and the frac-

tional extension of dynamics through the Levy process:

 

0 0 1 1 1 1
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 (91)

The Levy process can be described by the fractal F-P 

equation:

 

1

1
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where ∂β/∂tβ, ∂a/∂(− x)a and ∂a+1/∂(− x)a+1 are the fractal time 

and space derivatives correspondingly [24]. The stationary 

solution of the FP equation for large x is the Levy distri-

bution P(x) ∼ x−(1+γ). The Levy distribution coincides with 

the Tsallis q-extended optimum distribution q-exponen-

tial function for q = (3 + γ)/(1 + γ). The fractal extension of 

dynamics takes into account non-local effects caused by 

the topological heterogeneity and fractality of the self-

organized phase-space.

Also, the fractal geometry and the complex topol-

ogy of the phase-space introduce memory in the complex 

dynamics which can be manifested as creation of long 

range correlations, while, oppositely, in Markov process 

we have complete absence of memory.

In general, the fractal extension of dynamics as it was 

done until now from Zaslavsky, Tarasov and other scien-

tists indicate the internal consistency of Tsallis q-statistics 

as the non-equilibrium extension of BG statistics with the 

fractal extension of classical and quantum dynamics.

Finally, we must mention the fact that the fractal 

extension of dynamics identifies the fractal distribution of 

a physical magnitude in space and time according to the 

scaling relation M(R) ∼ Ra with the fractional integration 

as an integration in a fractal space. From this point of view 

it could be possible to conclude the novel concept that the 

non-equilibrium q-extension of statistics and the fractal 

extension of dynamics are related to the fractal space and 

time themselves [7, 13, 77].
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3   Intermittent turbulence

Intermittent turbulence structuring of materials, fluids 

and other far from equilibrium distributed dynamical 

systems can be also dedcribed through the extremization 

of Tsallis q-entropy. That is the extremization of q-entropy 

structures the phase space as the multifractal set which 

can produce multifractal structures and long-range cor-

relations in space and time. In this case, we can assume 

the mirroring relationship between the phase space mul-

tifractal attractor of the distributed dynamics and the cor-

responding multifractal turbulence dissipation process of 

the dynamical system in the physical space. Multifractal-

ity and multiscaling interaction, chaoticity and mixing 

or diffusion (normal or anomalous), all of them can be 

manifested in both the state (phase) space and the physi-

cal (natural) space as the mirroring of the same complex 

dynamics. We could say that turbulence is for complex-

ity theory, what the blackbody radiation was for quantum 

theory, as all previous characteristics of complexity can be 

observed in turbulent states.

The multifractal character of turbulence can be char-

acterized: a) in terms of local velocity of other variables 

increments ( )
l
u rδ
�

 and the structure function ( ) p

p l
S l uδ≡ 〈 〉 

first introduced by Kolmogorov [78], b) in terms of local 

dissipation and local scale invariance of fluids equations 

upon scale transformations 
1

/3 3, , .

a

a
r r u u t tλ λ λ

−

= = =′ ′ ′
� � � �

 

The turbulent flow is assumed to process a range of 

scaling exponent, h
min

 ≤ h ≤ h
max

 while for each h there is 

a subset of point of R3 of fractal dimension D(h) such that:

 ( )  as 0h

l
u r l lδ ∼ →

�

 (93)

The multifractal assumption can be used to derive the 

structure function of order p by the relation:

 
( )3

( ) ~ ( )( )
D hph

p
S l d h l lµ

−

∫  (94)

where dµ(h) gives the probability weight of the different 

scaling exponents, while the factor l3−D(h) is the probability 

of being with a distance l in the fractal subset of R3 with 

dimension D(h). By using the method of steepest descent 

[33] we can derive the power-law:

 ( )( ) ~ , 0P J P

p l
S l u l lδ≡ →  (95)

where:

 ( ) min[ 3 ( )]
h

J p ph D h= + −  (96)

The above relation is the Legendre transforma-

tion between J(P) and D(h) as D(h) can be derived by the 

relation:

 ( ) min[ 3 ( )]
p

D h ph J p= + −  (97)

The multifractal character of the turbulent state can 

be apparent at the spectrum of the structure function 

scaling exponents J(p) by the relation:

 

( )( )
( ) [ ( ( ))] ( )

dh pdJ p
h p p D h p h p

dp dp
∗

∗ ∗ ∗
= + − =′

 

(98)

as the minimum value of the relation (96) corresponds the 

maximum of 3–J(p) function for which:

 

(3 ( ))
( ) 0

d J p d
D ph

dp dp

−

= − =

 

(99)

and

 ( ( ))D h p p
∗

=′  (100)

According to Frisch [33] the energy (ε
i
) dissipation is 

said to be multifractal if there is a function F(a) which 

maps real scaling exponents a to scaling dimensions 

F(a) ≤ 3 such that:

 1( ) ~  as 0a

l
r l lε

−

→

�  (101)

for a subset of points r
�

 of R3 with dimension F(a).

In correspondence with the structure function theory 

presented above in the case of multifractal energy dissipa-

tion the moments q

l
ε  follow the power laws:

 ~
q q

l
lε〈 〉  (102)

where the scaling exponents σ(q̅) are given by the relation:

 ( ) min[ ( 1) 3 ( )]
a

q q a F aσ = − + −  (103)

In the case of one dimensional dissipation process 

the multifractal character is described by the function 

f(a) instead of F(a) where f(a) = F(a) − 2. In the language 

of Renyi’s generalized dimensions and multifractal theory 

the dissipation multifractal turbulence process corre-

sponds to the Renyi’s dimensions D
q̅
 according to the 

relation 0
( )

3.
1q

q
D

q

σ

= +

−

 Also, according to Frisch [33] the 

relation between the energy dissipation multifractal for-

malism and the multifractal turbulent velocity increments 

formalism is given by the following relations:

 

, ( ) ( ) ( ) 2, ( )
3 3 3

a p p
h D h F a f a J p σ

 
= = = + = +   

 

(104)

In the next of this section we follow Arimitsu and 

Arimitsu [79] connecting the Tsallis non-extensive statis-

tics and intermittent turbulence process. Under the scale 

transformation:
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1

0 n 0
(l \ )

n
l

α

ε ε
−

∼  (105)

the original eddies of size l
0
 can be transformed to consti-

tuting eddies of different size l
n
 = l

0
δ

n
, n = 0, 1, 2, 3, … after 

n steps of the cascade. If we assume that at each step of 

the cascade eddies break into δ pieces with 1/δ diameter 

then the size l
n
 = l

0
δ−n. If δu

n
 = δu(l

n
) represents the velocity 

difference across a distance r ∼ l
n
 and ε

n
 represents the rate 

of energy transfer from eddies of size l
n
 to eddies of size l

n+1
 

then we have:

 

1
3

0 0

 and 

a a

n n

n n

l l
u u

l l
δ δ ε ε

−
   

= =      
 

(106)

where a is the scaling exponent under the scale transfor-

mation (33).

The scaling exponent a describes the degree singular-

ity in the velocity gradient 
0

( )
lim
n

n

l
n

uu x

x l

δ

→

 ∂
=  ∂  

 as the first 

equation in (106) reveals. The singularities a in velocity 

gradient fill the physical space of dimension d, (a < d) with 

a fractal dimension F(a).

Similar to the velocity singularity other frozen fields 

can reveal singularities in the d-dimensional natural 

space. After this, the multifractal (intermittency) charac-

ter of fluids is based upon scaling transformations to the 

space-time variables ( , )X t
�

 and velocity ( ) :U
�

 /3 1 /3, , ,a
X X U U t t

α
λ λ λ

−′ ′= = =′

�� �� �� ��

 (107)

and corresponding similar scaling relations for other 

physical variables [20, 80, 81]. Under these scale transfor-

mations the dissipation rate of turbulent kinetic or dynam-

ical field energy E
n
 (averaged over a scale l

n
 = l

0
δ

n
 = R

o
δ

n
) 

rescales as ε
n
:

 
1

0 0
( \ )

n n
l l

α

ε ε
−

∼  (108)

Kolmogorov assumes no intermittency as the locally 

averaged dissipation rate [78], in reality a random vari-

able, is independent of the averaging domain. This means 

in the new terminology of Tsallis theory that Tsallis q-indi-

ces satisfy the relation q = 1 for the turbulent dynamics 

in the three dimensional space. That is the multifractal 

(intermittency) character of the HD or the MHD dynam-

ics consists in supposing that the scaling exponent a 

included in relations (107, 108) takes on different values at 

different interwoven fractal subsets of the d-dimensional 

physical space in which the dissipation field is embed-

ded. The exponent α and for values a < d is related to the 

degree of singularity in the field’s gradient 
( )A x

x

 ∂
  ∂

 in the 

d-dimensional natural space [79]. The gradient singulari-

ties cause the anomalous diffusion in physical or in phase 

space of the dynamics. The total dissipation occurring in 

a d-dimensional space of size l
n
 scales also with a global 

dimension D
q̅
 for powers of different order q̅ as follows:

 

( 1) ( )q
q Dq d q

n n n n
n

l l l τ

ε
−

∼ =∑
 

(109)

Supposing that the local fractal dimension of the 

set dn(a) which corresponds to the density of the scaling 

exponents in the region (α, α + dα) is a function f
d
(a) 

according to the relation:

 
( )

( ) ln d
f

dn da
α

α
−

∼  (110)

where d indicates the dimension of the embedding 

space, then we can conclude the Legendre transforma-

tion between the mass exponent τ(q̅) and the multifractal 

spectrum f
d
(a):

 

( ) ( 1)( 1) 1

[( 1)( 1)]

d q

q

f a aq q D d d

d
a q D d

dq

= − − − + + −



= − − + 
  

(111)

For linear intersections of the dissipation field, that is 

d = 1 the Legendre transformation is given as follows:

 

( ) ( ), [( 1) ] ( ), 

( )

q

d d
f a aq q a q D q

dq dq

df a
q

da

τ τ= − = − =

=

 

(112)

The relations (105–107) describe the multifractal and 

multiscale turbulent process in the physical state. The 

relations (108–112) describe the multifractal and multi-

scale process on the attracting set of the phase space. 

From this physical point of view, we suppose the physi-

cal identification of the magnitudes D
q̅
, a, f(a) and τ(q̅) 

estimates in the physical and the corresponding phase 

space of the dynamics. By using experimental timeseries 

we can construct the function D
q̅
 of the generalized Rényi 

d-dimensional space dimensions, while the relation (107) 

allow the calculation of the fractal exponent (a) and the 

corresponding multifractal spectrum f
d
(a). For homo-

geneous fractals of the turbulent dynamics the general-

ized dimension spectrum D
q̅
 is constant and equal to the 

fractal dimension of the support [33, 65, 68]. Kolmogorov 

[78] supposed that D
q̅
 does not depend on q̅ as the dimen-

sion of the fractal support is D
q
 = 3. In this case, the mul-

tifractal spectrum consists of the single point [a = 1 and 

f(1) = 3]. The singularities of degree (a) of the dissipated 

fields, fill the physical space of dimension d with a fractal 

dimension F(a), while the probability P(a)da to find a 
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point of singularity (a) is specified by the probability 

density P(a)da ∼ lnd−F(a). The filling space fractal dimen-

sion F(a) is related to the multifractal spectrum function 

f
d
(a) = F(a) −(d − 1), while according to the distribution 

function Π
dis

(ε
n
) of the energy transfer rate associated with 

the singularity a, it corresponds to the singularity prob-

ability as Π
dis

(ε
n
)dε

n
 = P(a)da [79].

Moreover, the partition function q

i
i

P∑  of the Rényi 

fractal dimensions estimated by the experimental time 

series includes information for the local and global dis-

sipation process of the turbulent dynamics as well as for 

the local and global dynamics of the attractor set, as it 

is transformed to the partition function q

i q
i

P Z=∑ of the 

Tsallis q-statistic theory.

4   Non-equilibrium phase transition 

process

According to Wilson [19] the essence of phase transition 

process in distributedphysical systems is the multiscale 

character of dynamics. That is, there is no fundamental 

scale which can be used for constructing the dynamics of 

higher scales. Also multiscale dynamics is the essence of 

self organization processes in complex systems [31, 34, 49]. 

The multiscale character of dynamics at phase transition 

process is related to the efficiency of nature to create long-

range correlations which cannot be understood by the 

local character of interactions of inter-molecular dynam-

ics. The statistical explanation of long range correlated 

physical states encloses in itself the Boltzmann’s revolu-

tionary concept of the probabilistic explanation of dynam-

ics, as the macroscopic (statistical) state of the system is 

created by infinitive acceptable microstates according to 

the famous Boltzmann equation of entropy:

 

ln
i i

i

S k p p= − ∑
 

(113)

or

 lnS k W= −  (114)

where W is the number of microstates and p
i
 is the prob-

ability for the realization of microstates.

The deterministic character of classical dynamics in 

the phase space of microscopic states is clearly in con-

tradiction with the well established principle of entropy 

which cannot be defined by one microstate at every 

time instant. It is known how Einstein preferred to put 

dynamics in priority of statistics [82], using the inverse 

relation i.e. W = eS/k where entropy is not a statistical but 

a dynamical magnitude. Already, Boltzmann himself was 

using the relation lim R R

R
T

t
W

T

Ω

Ω→∞

= =  where t
R
 is the total 

amount of time that the system spends during the time T 

in its phase space trajectory in the region R while Ω
R
 is the 

phase space volume of region R and Ω is the total volume 

of phase space. The above concepts of Boltzmann and 

Einstein were innovative as concerns modern q-exten-

sion of statistics which is internally related to the fractal 

extension of dynamics. However according to Quantum 

mechanics the physical system every time materializes its 

microstates probabilistically. That is the physical system 

every instant is informed for all the acceptable micro-

states and select one of all. From this point of view the 

Boltzmann entropy principle is related to the potential-

ity of the system to create states of maximum entropy or 

minimum free energy, corresponding to long range cor-

related metastable critical states. The Wilsonian point of 

view, more than the description of macroscopic phase 

transition critical states, includes also the possibility to 

explain the experimentally observed elementary particles 

as correlations on the lattices which at the continuum 

limit of quantum fields represent elementary particles in 

similarity with the “dissipative structures” at the macro-

scopic level.

After Wilson [19] the multiscale character of dynam-

ics obtained clear mathematical description through 

the RGT. According to RGT the long range correlated 

critical states are scale invariant and correspond to the 

fixed points of the group of scale transformations. The 

non-equilibrium extension of phase transition multi-

scale dynamics based at the non-equilibrium RGT was 

 presented by Chang [21, 38].

Moreover, the multiscale character of dynamics of 

phase transition process concerning the efficiency of 

nature to develop long range correlated states is in faithful 

agreement with novel recent extensions of physical theory 

such as:

I. The dynamics of correlations based at the BBGKY 

(Bogoliubov – Born – Green – Kirkwood – Yvon) 

hierarchy of generalized Liouville theory. In this 

direction the Brussels school guided by I. Prigogine 

and G. Nikolis tried to unify complex dynamics and 

statistics as well as the microscopic reversibility 

of dynamics and the macroscopic irreversibility of 

thermo dynamics [34, 49, 83].

II. Tsallis extension of BG extensive statistical theory to 

the non-extensive statistical physics by the generali-

zation of BG entropy to the q-entropy of Tsallis and 

the q-extension of thermodynamics [2].
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III. Scale relativity theory obtained by Nottale [13] and 

extended scale relativity theory obtained by Castro 

and Granik [58].

IV. El Naschies E-infinity Cantorian space-time unifica-

tion of physical theory [57].

V. Fractional extension of dynamics by Zaslavsky, Tara-

sov and other scientists [24–26, 29, 30, 41, 61, 84].

After all, the transition phase process near or far from 

equilibrium indicate the multiscale character of complex 

dynamics which can create holistic complex states as the 

quantum dynamics creates holistic quantum states. The 

macroscopic phase transition process can be understood 

as the generalization of quantum state transition pro-

cesses in accordance with scale relativity theory, accord-

ing to which macroscopic dynamics is nothing else than 

the scale transformation of quantum  dynamics [13].

From this point of view, intermittent turbulent 

states, self-organized critical (SOC) states, chaos states 

or defect structures in distributed systems or other forms 

of self-organized states-structures of distributed complex 

dynamics are metastable stationary states caused by the 

principle of q-entropy of Tsallis statistical dynamics. In 

similarity with the microscopic quantum vacuum and 

its quantum excitations we can understand the meta-

stable and multiscale correlated complex states as the 

“bounded” macroscopic states of the generalized complex 

dynamics, while the equilibrium thermodynamical state 

corresponds to the state of vacuum of correlations accord-

ing to sub-dynamic theory of dynamics of correlations 

[18]. Thus as elementary particles and quantum struc-

ture are the excitations of the quantum vacuum state in 

the same way the non-equilibrium metastable stationary 

macroscopic states are the “excitation” of the state of the 

thermodynamic vacuum of correlations.

4.1   Fractal acceleration and fractal energy 
dissipation

The problem of kinetic or dynamical energy dissipation in 

materials, fluid and plasmas as well as the bursty accel-

eration processes of particles at flares, magnetospheric 

plasma sheet and other regions of space plasmas is an 

old and yet resisting problem of fluids or space plasma 

science.

Normal Gaussian diffusion process described by the 

Fokker-Planck equation is unable to explain either the 

intermittent turbulence in fluids or the bursty character 

of energetic particle acceleration following the bursty 

development of inductive electric fields after turbulent 

magnetic flux change in plasmas [85]. However, the fractal 

extension of dynamics and Tsallis extension of statistics 

indicate the possibility for a mechanism of fractal dis-

sipation and fractal acceleration process in fluids and 

plasmas.

According to Tsallis statistics and fractal dynamics 

the super-diffusion process:

 
2

R t
γ〈 〉 ∼  (115)

with γ > 1 (γ = 1 for normal diffusion) can be developed at 

systems far from equilibrium. Such process is known as 

intermittent turbulence or as anomalous diffusion, which 

can be caused by Levy flight process included in fractal 

dynamics and fFPK. The solution of fFPK equation (92) 

corresponds to double (temporal, spatial) fractal charac-

teristic function:

 ( , ) exp( constxt | | )P k t k a
β

= −  (116)

where P(k, t) is the Fourier transform of asymptotic distri-

bution function:

 
1( , ) constxt / , ( )P t

β αξ ξ ξ+

∼ → ∞  (117)

This distribution is scale invariant with mean 

displacement:

 | | constxt , ( )t
α βξ〈 〉 → ∞≃  (118)

According to this description, the flights of multi-

scale and multi-fractal profile can explain the intermittent 

turbulence of fluids, the bursty character of dynamical 

energy dissipation and the bursty character of induced 

electric fields and charged particle acceleration in space 

plasmas as well as the non-Gaussian dynamics of brain-

heart dynamics, or the defect-diseases spreading. The 

fractal motion of charged particles across the fractal 

and intermittent topologies of magnetic-electric fields 

is the essence of strange kinetics [7, 24]. Strange kinet-

ics permits the development of anomalous diffusion or 

defects or local sources with spatial fractal-intermittent 

condensation of induced electric-magnetic fields in brain, 

heart and plasmas parallel with fractal-intermittent dis-

sipation of magnetic field energy in plasmas and fractal 

acceleration of charged particles. Such kinds of strange 

accelerators in plasmas or defects structuring in materi-

als can be understood by using the Zaslavsky studies 

for Hamiltonian chaos in anomalous multi-fractal and 

multi-scale topologies of phase space [24]. Generally, the 

anomalous topology of phase space and fractional Ham-

iltonian dynamics correspond to dissipative non-Hamilto-

nian dynamics in the usual phase space [25, 26]. The most 
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important character of fractal kinetics is the wandering 

of the dynamical state through the gaps of cantori creates 

effective barriers for diffusion and long-range Levy flights 

in trapping regions of the phase space [7, 24]. Similar Levy 

flights processes can be developed by the fractal dynam-

ics and intermittent turbulence of the complex systems.

In this theoretical framework it is expected the exist-

ence of Tsallis non extensive entropy and q-statistics 

in non-equilibrium distributed complex systems such 

as, materials, fluids, plasmas, seismogenesis or brain 

and heart dynamics, DNA structuring systems which 

are studied in the part II of this study. The fractional 

dynamics corresponding to the non-extensive Tsallis 

q-statistical character of the probability distributions in 

the distributed complex systems indicate the develop-

ment of self-organized and globally correlated parts of 

active regions in the distributed dynamics. This charac-

ter can be related also to deterministic low dimensional 

chaotic profile of the active regions according to Pavlos 

et al. [86].

5   Theoretical expectations through 

Tsallis statistical theory and 

fractal dynamics

Tsallis q-statistics as well as the non-equilibrium fractal 

dynamics indicate the multi-scale, multi-fractal chaotic 

and holistic character of distributed dynamics. Observa-

tions in space and time of complex variables correspond-

ing to complex complex distributed dynamics produce 

ramdom signals in the form of space-time series. These 

observational signals mirror in themselves the non-exten-

sive and multifractal character of the complex dynamics 

in the phase space of the complex system according to 

Figure 2. Tsallis q-triplet estimation by using observation 

sigmals is the basic tool for the experimental verification 

of the nonextensive and multifractal character of the dis-

tributed dynamics. Moreover, Tsallis q-entropy principle 

can be used for the theoretical estimation of the multi-

fractal singularity spectrum developed in the phase space 

and mirrored at the observed signals. That is the multi-

fractal structure of the phase space and the production 

of multifractal observational sigmals corresponds to the 

extremixzation of Tsallis q-entropy. The theoretically pre-

dicted by using Tsallis q-entropy principle, multifractal 

singularity spectrum can be compared to the experimen-

tally singularity spectrum. Also the observed multifractal 

sigmals included information for three sigtnifical physi-

cal processes as the q-entropy production, the relaxation 

process and the stationary fluctuations according to the 

q-CLT. These physical processes are described by the q-tri-

plet of Tsallis as presented in Figure 3.

5.1   The q-triplet of Tsallis

The non-extensive statistical theory is based mathemati-

cally on the nonlinear equation:

Figure 2: As the dynamics evolves through the multifractal phase 

space it produce multifractal and singular time series. The phase 

space is structured as a multifractal set of dynamical microscopical 

states as the dynamics aims at the Tsallis q-entropy maximaization. 

In this figure, we have used the Wikipedia multifractal picture in 

order to show the different regions of phase space corresponding to 

definite fractal dimension. The black broken line correspond to the 

the anomalous diffusion and Random Walk of the dynamics in the 

multifral phase space of the distributed dynamics.

Figure 3: As the dynamics of the system evolves aiming to the 

q-entropy maximization it produce q-entropy. We can distinguish 

three different time periods. The first period corresponds to 

the entropy production through the q
sen

 parameter of the Tsallis 

q-triplet. The second period corresponds to some kind of relaxation 

process through the q
rel

 parameter of Tsallis q-triplet. Finally, as the 

system lives at the stationary state with maximaized q-entropy it 

reveals fluctuations through the q
stat

 parameter of Tsallis q-triplet.
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, ( (0) 1, )qdy
y y q

dx
= = ∈ℜ

 
(119)

with solution the q-exponential function defined previ-

ously. The solution of this equation can be realized in 

three distinct ways included in the q-triplet of Tsallis: (q
sen

, 

q
stat

, q
rel

). These quantities characterize three physical pro-

cesses which are summarized here, while the q-triplet 

values characterize the attractor set of the dynamics in the 

phase space of the dynamics and they can change when 

the dynamics of the system is attracted to another attrac-

tor set of the phase space. The equation (119) for q = 1 cor-

responds to the case of equilibrium Gaussian BG world [2]. 

In this case of equilibrium BG world the q-triplet of Tsallis 

is simplified to (q
sen

 = 1, q
stat

 = 1, q
rel

 = 1).

5.1.1   The q
stat

 index and the non-extensive physical 

states

According to [2] the long range correlated metaequilib-

rium non-extensive physical process can be described by 

the nonlinear differential equation:

 

statstat

stat stat

( )
( )

qi

i

i

d PZ
q PZ

dE
β= −

 

(120)

The solution of this equation corresponds to the probabil-

ity distribution:

 stat

tat stat

/i
s

E

i q q
P e Z

β−

=  (121)

where 
stat

stat

1
,

q KT
β =  stat

tat
stat

.
j

s

q E

q
j

Z e
β−

= ∑  Then the probabil-

ity distribution function is given by the relations:

 tat

stat

1/1
[1 (1 ) ] s

q

i q i
P q Eβ

−

∝ − −  (122)

for discrete energy states {E
i
} by the relation:

 stat

tat

1/12( ) [1 (1 ) ]
s

q

q
P x q xβ

−

∝ − −  (123)

for continuous X states {X}, where the values of the 

magnitude X correspond to the state points of the phase 

space.

The above distributions functions (122, 123) corre-

spond to the attracting stationary solution of the extended 

(anomalous) diffusion equation related to the nonlinear 

dynamics of system. The stationary solutions P(x) describe 

the probabilistic character of the dynamics on the attrac-

tor set of the phase space. The non-equilibrium dynamics 

can be evolved on distinct attractor sets depending upon 

the control parameters values, while the q
stat

 exponent can 

change as the attractor set of the dynamics changes.

5.1.2   The q
sen

 index and the entropy production process

The entropy production process is related to the general 

profile of the attractor set of the dynamics. The profile of 

the attractor can be described by its multifractality as well 

as by its sensitivity to initial conditions. The sensitivity to 

initial conditions can be described as follows:

 
1 1

( ) q

q

d

d

ξ
λ ξ λ λ ξ

τ
= + −

 
(124)

where ξ describes the deviation of trajectories in the phase 

space by the relation: ξ ≡ lim
∆(x)→0

{∆x(t)\∆x(0)} and ∆x(t) is 

the distance of neighbouring trajectories. The solution of 

equation (121) is given by:

 

sen 1

1

1
(1 )sen sen

1 1

1
q

q tq q
e

λλ λ
ξ

λ λ

−
− 

= − + 
   

(125)

The q
sen

 exponent can be also related to the multifractal 

profile of the attractor set by the relation:

 sen min max

1 1 1

q a a
= −

 

(126)

where a
min

(a
max

) corresponds to the zero points of the mul-

tifractal exponent spectrum f(a). That is f(a
min

) = f(a
max

) = 0.

The deviations of neighbouring trajectories as well as 

the multifractal character of the dynamical attractor set 

in the system phase space are related to the chaotic phe-

nomenon of entropy production according to Kolmogorov-

Sinai entropy production theory and the Pesin theorem. 

The q-entropy production is summarized in the equation:

 

( )
lim lim lim

q

q t W N

S t
K

t→∞ →∞ →∞

< >

≡

 

(127)

The entropy production (dS/dt) is identified with K
q
, 

as W are the number of non-overlapping little windows in 

phase space and N the state points in the windows accord-

ing to the relation 
1

.
W

ii
N N

=
=∑  The S

q
 entropy is estimated 

by the probabilities P
i
(t) ≡ N

i
(t)/N. According to Tsallis the 

entropy production K
q
 is finite only for q = q

sen
.

5.1.3   The q
rel

 index and the relaxation process

The thermodynamical fluctuation – dissipation theory is 

based on the Einstein original diffusion theory (Brownian 

motion theory). Diffusion process is the physical mecha-

nism for extremization of entropy. If ∆S denote the devia-

tion of entropy from its equilibrium value S
0
, then the 

probability of the proposed fluctuation that may occur is 

given by:
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 exp( / )P s k∆∼  (128)

The Einstein-Smoluchowski theory of Brownian motion 

was extended to the general FP diffusion theory of non-

equilibrium processes. The potential of FP equation may 

include many metaequilibrium stationary states near or 

far away from the basic thermodynamical equilibrium 

state. Macroscopically, the relaxation to the equilib-

rium stationary state of some dynamical observable O(t) 

related to the evolution of the system in phase space can 

be described by the form of general equation as follows:

 

rel

rel

1 q

q

d

dt T

Ω
Ω= −

 

(129)

where Ω(t) ≡[O(t) − O( ∞)]/[O(0) − O( ∞)] is the relaxing 

relevant quantity of O(t) and describes the relaxation of 

the macroscopic observable O(t) relaxing towards its sta-

tionary state value. The non-extensive generalization of 

fluctuation – dissipation theory is related to the general 

correlated anomalous diffusion processes [2]. Now, the 

equilibrium relaxation process is transformed to the 

metaequilibrium non-extensive relaxation process:

 

rel

rel

1 q

q

d

dt T

Ω
Ω= −

 

(130)

the solution of this equation is given by:

 rel

el

/
( )

r

t T

q
t eΩ

−

≃  (131)

The autocorrelation function C(t) or the mutual informa-

tion I(t) can be used as candidate observables Ω(t) for 

the estimation of q
rel

. However, in contrast to the linear 

profile of the correlation function, the mutual information 

includes the non-linearity of the underlying dynamics and 

it is proposed as a more faithful index of the relaxation 

process and the estimation of the Tsallis exponent q
rel

.

5.2   Measures of multifractal intermittence 
turbulence

In the following, we follow Arimitsu and Arimitsu [79] for 

the theoretical estimation of significant quantitative rela-

tions which can also be estimated experimentally. The 

probability singularity distribution P(a) can be estimated 

as extremizing the Tsallis entropy functional S
q
. Accord-

ing to Arimitsu and Arimitsu the extremizing probability 

density function P(a) is given as a q-exponential function:

 

1

2 1
1 0

( )
( ) 1 (1 )

2 / ln2

q

q

a a
P a Z q

X

−
−

 −
= − − 

   

(132)

where the partition function Z
q
 is given by the relation:

 2 /[(1 )ln2] (1 / 2, 2/1 )
q

Z X q B q= − −  (133)

and B(a, b) is the Beta function. The partition function Z
q
 

as well as the quantities X and q can be estimated by using 

the following equations:
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(1 2 )/[(1 )ln ]q

X a q q b

b q− −

 = + − − −   
= − −   

(134)

We can conclude for the exponent’s spectrum f(a) by using 

the relation P(a)≈lnd−F(a) as follows:
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0 2

( )
( ) log 1 (1 ) /(1 )

2 / ln2
o

a a
f a D q q

X

−
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(135)

where a
0
 corresponds to the q-expectation (mean) value of 

a through the relation:

 ( )2

0 0
( ) ( ) ( ) ( )q q q

q
a a daP a a a daP a< − > = −∫ ∫  (136)

while the q-expectation value a
0
 corresponds to the 

maximum of the function f(a) as df(a)/da | a
0
 = 0. For the 

Gaussian dynamics (q→1) we have mono-fractal spectrum 

f(a
0
) = D

0
. The mass exponent τ(q̅) can be also estimated by 

using the inverse Legendre transformation: τ(q̅) = aq̅ − f(a) 

as follows:

 

( )
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0 2

2 1
( ) 1 1 log 1

11
q

q

Xq
q qa C

qC
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 = − − − − +  −+
 

(137)

where Cq̅ = 1 + 2q̅2(1 − q)X ln 2.

The relation between a and q can be found by solving 

the Legendre transformation equation q ̅ = df(a)/da. Also 

if we use the equations (135–136) we can obtain the 

relation:

 ( )0
1 [ (1 )ln2]

q q
a a C q q− = − −  (138)

The q-index is related to the scaling transformations of the 

multifractal nature of turbulence according to the relation 

q = 1 − a. Arimitsu and Arimitsu [79] estimated the q-index 

by analyzing the fully developed turbulence state in terms 

of Tsallis statistics as follows:

 

1 1 1

1 q a a
− +

= −

−

 

(139)

where a
±
 satisfy the equation f(a

±
) = 0 of the multifractal 

exponents spectrum f(a). This relation can be used for the 

estimation of q
sen

-index included in the Tsallis q-triplet 

(see next section).
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6   Theoretical interpretations of 

data analysis results

In this section we present more analytically some useful 

theoretical concents that need for understanding the 

experimental evidence of complex systems that are pre-

sented in part two of this study. These concepts concern 

the q-CLT and its relation with the q-triplet of Tsallis 

as well as the fractional dynamics and the anomalous 

 diffusion-random Walk process.

6.1   The q-extension of central limit theorem 
and the q-triplet of Tsallis

According to the classical central limit theorem, the prob-

ability density functions of a sum of independent random 

variables are Gaussian when the single variables satisfied 

typical presuppositions. However, the non-Gaussian with 

heavy tails probability distribution functions, which were 

observed which are observed in distributed dynamical 

systems, the statistics of which is related to the q-exten-

sion of central limit theorem.

Tsallis non-extensive statistical mechanics includes 

the q-generalization of the classic CLT as a q-generali-

zation of the Levy-Gnedenko central limit theorem [87] 

applied for globally correlated random variables. The 

q-generalization of CLT based at the q-Fourier transform 

of a q-Gaussian can produce an infinite sequence (q
n
) of 

q-parameters by using the function 
1

( ) ,
3

s
Z s

s

+
=

−
 s ∈( − ∞, 

3) and its inverse z−1(t), t ∈( − 1,  ∞). It can be shown that 

z(1/z(s)) = 1/s and z(1/s) = 1/z−1 (s). Then with q
1
 = z(q) 

and q
−1

 = z−1(q) it follows that: 
1

1 1 1 1
, 

1
z z
q q q q

   
= =     − 

 

and 
1

1

1
2.q

q−
+ =  The set of all q-Gaussians G

q
(β, x) be  

denoted by:

 { ( , ) : 0, 0}
q q

bG x bϒ β β= > >  (140)

For q-Gaussians the q-Fourier transform hold as follows:
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where q
1
 = z(q), 1 ≤ q < 3.

The q-Fourier transform is defined by Umarov et  al. 

[87] by the formula:

 [ ]( ) ( )i

q q q
F f e f x dxξξ ×= ⊗∫  (142)

For the inverse q-Fourier transform we have the following 

formula:
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where q − 1 = z−1(q), 1 ≤ q < 3 and 
2 2( 1)

3
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8
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s

s
s

C
β
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The function z(s) permits the following q-Fourier 

transform mappings:
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as well as the inverse mappings by using the inverse 

q-Fourier transforms:
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We can introduce the sequence q
n
 = z

n
(q) = z(z

n−1
(q)), 

n = 1, 2, … starting from the initial q = z
0
(q), q < 3. The q

n
 

sequence can be extended for negative integers n = − 1, 

−2,  … by q
−n

 = z
−n

(q) = z−1(z
1−n

(q)). The sequence q
n
 can be 

given through the following mappings:

1 1 1 1 1 1

2 1 0 1 2

2 1 0 1 2

z z z z z z

z z z z z z

q q q q q q

q q q q q q
− − − − − −

− −

− −

→ → → = → → →

← ← ← = ← ← ←

…

…

while the duality relations hold:
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The q-generalization of the central limit theorem con-

sistent with non-extensive statistical mechanics is as 

follows:

For a sequence q
k
, k ∈ Z with q

k
 ∈[1,2] and a sequence 

x
1
, x

2
, x

N
, … of q

k
-independent and identically distributed 

random variable then the z
N
 = x

1
 + x

2
 + x

N
 + … is also a q

k−1
-

normal distribution as N→ ∞, with corresponding statisti-

cal attractor 
1

( ).
k j
q k

G xβ
−

 The q-independence corresponds 

to the relations:

 ( )( ) [ ]( ) [ ]( )
q q q q
F x y F x F yξ ξ ξ+ = ⊗  (147a)
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( )( ) [ ]( ) [ ]( )

q q q q
F x y F x F yξ ξ ξ

− −
+ = ⊗  (147b)

where q = z(q
−1

). The q-independence means independ-

ence for q = 1 and strong correlation for q ≠ 1 [2, 88].

The q-CLT states that an appropriately scaled limit of 

sums of q
k
 correlated random variables is a q

k
-Gaussian, 

which is the *

k
q -Fourier image of a *

k
q -Gaussian. The q

k
, 

*

k
q  are sequences:

 
1

2 (1 )
 and  for 0, 1, 2, 

2 (1 )k k k
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+ −
…

 

(148)
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including the triplet (P
att

, P
cor

, P
scl

), where P
att

, P
cor

 and P
scl

 

are parameters of attractor, correlation and scaling rate 

respectively and corresponds to the q-triplet (q
sens

, q
rel

, q
stat

) 

according to the relations [87]:

 att cor scl 1 1 sens rel stat
( , , ) ( , , ) ( , , )

k k k
P P P q q q q q q

− +
≡ ≡  (149)

The parameter P
att

 ≡ q
sens

 ≡ q
k−1

 describes the non-ergodic 

q-entropy production of the multiscale correlated process 

as the system shifts to the state of the q
att

 – Gaussian, 

where the q-entropy is extremized in accordance with the 

generalization of the Pesin’s theorem [88]:

 
sen sen

( ( )) /
lim lim lim

q i

q qt W M

S P t k
K

t
λ

→∞ →∞ →∞

≡ =

 

(150)

The parameter P
cor

 ≡ q
rel

 ≡ q
k
 describes the q-correlated 

random variables participating to the dynamical process 

of the q-entropy production and the relaxation process 

toward the stationary state.

The parameter P
slc

 ≡ q
stat

 ≡ q
k+1

 describes the scale 

invariance profile of the stationary state corresponding 

to the scale invariant q-Gaussian attractor as well as to 

an anomalous diffusion process mirrored at the variance 

scaling according to general, asymptotically scaling, form:

 

( )D

x D

x
N P x G

N

 
∼   

 

(151)

Where P
x
(x) is the probability function of the self-similar 

statistical attractor G and D is the scaling exponent char-

acterizing the anomalous diffusion process [89]:

 
2 2D
x t〈 〉 ∼  (152)

The non-Gaussian multi-scale correlation can create the 

intermittent multi-fractal structure of the phase space 

mirrored also in the physical space multi-fractal distri-

bution of the turbulent dissipation field. The multi-scale 

interaction at non-equilibrium critical NESS creates the 

heavy tail and power law probability distribution func-

tion obeying the q-entropy principle. The singularity 

spectrum of a critical NESS corresponds to extremized 

Tsallis q-entropy.

In this framework of theoretical modeling of distributed 

random fields, the fractal-multifractal character of the dis-

tributed dynamical systems at every NESS (week or strong 

turbulence) as it was shown in this study, indicate the exist-

ence of physical local singularities for the spatial-temporal 

distribution of distributed physical variables. The singular-

ity behavior of a given random field function f(x) at a given 

point x
*
 is defined as the greatest exponent h so that f is Lip-

schitz h at x
*
 [67]. The Hölder exponent h(x

*
) measures how 

irregular f is at the point X
*
 according to the relation:

 | ( ) ( ) | | |hf x P x x C x x
∗ ∗

− − ≤ −  (153)

Where P
n
(x) is a polynomial vorter n. If h(x

*
) ∈(n, n + 1) 

then f(x) is n-times but not n + 1 times differentiable at the 

point x
*
. The smaller the exponent h(x

*
) is the more irreg-

ular (singular) is the function f at the point x
*
. On a self 

similar fractal set the singularity strength of the measure 

µ at the point x is described by the scaling relation:
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Where B
x
(ε) is a ball of size (ε) centered at x and µ(B

x
) is 

the fractal mass in the B
x
 region. Homogeneous measures 

are characterized by a singularity spectrum supported by 

a single point (a
0
, f(a

0
)) while multifractal sets involve sin-

gularities of different strengths (a) described by the singu-

larity spectrum f(a).

The singularity spectrum is defined as the Hausdorff 

dimension of the set of all points x such that a(x) = a. The 

singularity strength a(x) of the fractal mass measure is 

related to the local fractal dimension D of the fractal set. 

More generally, the singularity spectrum associated with 

singularities h (Hölder exponents) of a distributed random 

variable is given follows:

 ( ) { : ( ) }
H

D h d x h x h= =  (155)

That is D(h) is the Hausdorff dimension of the set of all 

points x such as h(x) = h. For the case of space plasmas or 

fluids the singularity spectrum D(h) corresponds to the 

scaling invariance of the MHD description according to 

the scaling transformation of the MHD equations:

 
1
, , 

h h

r r r r
r r u u b bλ λ λ

− − −

′ ′
→ → →′  (156)

where h is a free parameter and u
r
, b

r
 are the velocity and 

magnetic fields of the solar wind plasma system, cor-

respondingly [90]. The a(x) singularity exponent of the 

fractal mass measure and the f(a) singularity spectrum 

describes the scaling of the energy dissipation in the solar 

wind turbulent system.

The fractal-multifractal structure of the general 

dynamical systems (particles and fields) indicates the gen-

eralization of the classical field-particle dynamics to the 

fractional dynamics, since the functions of the distributed 

physical system’s variables are irregular and they are pro-

duced by fractional dynamics on fractal structures. The 

differentiable nature of smooth distribution of the mac-

roscopic picture of physical processes is a natural conse-

quence of the Gaussian microscopic randomness which, 

through the classical CLT, is transformed to the macro-

scopic, smooth and differentiable processes. The classical 

CLT is related to the condition of time-scale separation, 
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where at the long-time limit the memory of the microscopic 

non-differentiable character is lost. On the other hand, 

the q-extension of CLT induces the nonexistence of time-

scale separation between microscopic and macroscopic 

scales as the result of multiscale global correlations which 

produce fractional dynamics and singular functions of 

spatio-temporal dynamical physical variables.

6.2   Fractional calculus

Far from equilibrium, the dynamics of distributed systems 

produces fracat-multifractal structure. For this, we must 

extend the smooth mathematical description of the system 

with fractional description by using fractional derivatives 

and integrals. Fractal sets are measurable metric sets 

with non-integer Hausdorff dimension. The elements of a 

fractal set can be represented by n-tuples of real numbers 

x =(x
1
, x

2
, …, x

n
) such that a fractal set F is embedded in 

Rn. A fractal function is defined on a fractal set as follows 

according to Tarasov [91]:

 1

( ) ( )
i

i E
i

f x X xβ
∞

=
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where X
E
 is the characteristic function of E. The continu-

ous function f(x) is defined as follows:

lim ( ) ( )
x y

f x f y
→

=  whenever ( , ) 0
x y

d x y
→

=  for the metric 

d(x, y) defined in Rn and for points (x, y) ∈ f. The Hausdorff 

measure µ
H
 of a subset E ∈ F is defined by:
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where 
1

,
i i

E U E
∞

=

⊂  D is the Hausdorff dimension of E ⊂ U, 

d(E
i
) are the diameters of {E

i
} and W(D) for balls {E

i
} cover-

ing F is given by:

 

/22
( )

1
2

D D

W D
D

Π

Γ

−

=
 

+  
 

(159)

The Lebesque – Stieltjes integral over a D-dimensional 

fractal set of a function f(x) is defined by:
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and it can be proved to be given by the relation:
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where 11
( )( ) ( ) ( )

( )

a a

z x

z

I f z x x f x dx
aΓ

∞
−≡ − ′ ′ ′∫  is the Riemann 

Liouville fractional integral [91, 92]. The last relation con-

nects the integral on fractals with fractional integrals 

and permits the application of different tools of the frac-

tional calculus for the fractal medium. Respectively to the 

Riemann Liouville fractional integral on a fractal set F we 

can define the Riemann Liouville fractional derivative by:
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The nonlocal character is evident in both cases of frac-

tional derivative and integral on a fractal set. The nonlo-

cal character of fractional calculus is related to multiscale 

and self-similar character of the fractal structure. The 

fractional extension of integral and differential calculus 

can be used for the description of the non-local multiscale 

phenomena described by fractional equations as the frac-

tional laws of materials, or fractional field equations in 

fluids, or other distributed systems. Also the Lagevin or 

the Fokker-Planck equation are transformed to fractional 

equations [25, 26, 41, 91]. The solution of the fractional 

equations correspond to fractional non-differentiable 

singular self-similar functions as we can observe at the 

experimental data.

Milovanov and Zelenyi [93] introduced the fractional 

wave equation for the description of space plasma or other 

distributed systems where fractons excitations, namely 

fractional waves on fractals can be excistense. The frac-

tional extension of wave equations for spherically sym-

metric vibrations of fractals includes temporal and spatial 

fractional derivatives as follows:
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where
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is the fractional time derivative, D is the fractal dimen-

sion of space and θ is the connectivity index of the fractal 

space. The nonlocal character of the fractional wave equa-

tion on fractals is related to the correlated and coherent 

character of local dynamical events on a self-similar struc-

ture. The solution of the fractional wave equations con-

tains exponentially decaying factors which are absent in 

Euclidian solutions. These factors are responsible for the 

spatial localization of fractons, while the strength of local-

ization is described by the connectivity index θ, through 
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the localization exponent 2 + θ/2, which coincides with the 

Hausdorff dimension of the “geodesic lines” on the fractal 

space. The localization of waves on fractals (fractons) can 

be used for the explanation of local variation of solar wind 

characteristics, especially during shock events.

6.3   Anomalous diffusion and strange 
dynamics

Nonlinear dynamics can create fractal structuring of the 

phase space and global correlations in the nonlinear system. 

For nonextensive systems the entire phase space is dynami-

cally not entirely occupied (the system is not ergodic), but 

only a scale-free –like part of it is visited yielding a long-

standing (multi)-fractal-like occupation. According to Milo-

vanov and Zelenyi [69], Tsallis entropy can be rigorously 

obtained as the solution of a nonlinear functional equation 

referred to the spatial entropies of the subsystems involved 

including two principal parts. The first part is linear (addi-

tive) and leads to the extensive Boltzman-Gibbs entropy. 

The second part is multiplicative corresponding to the non-

extensive Tsallis entropy referred to the long range corre-

lations. The fractal –multifractal structuring of the phase 

space makes the effective number W
eff

 of possible states, 

namely those whose probability is nonzero, to be smaller 

(W
eff

 < W) than the total number of states.

According to Zaslavsky [24] the topological struc-

ture of phase space of nonlinear dynamics can be highly 

complicated including trapping and flights of the dynam-

ics through a self-similar structure of islands. The island 

boundary is sticky making the dynamics to be locally 

trapped and “stickiness”. The set of islands is enclosed 

within the infinite fractal set of cantori causing the com-

plementary features of trapping and flight being the 

essence of strange kinetics and anomalous diffusion.

The dynamics in the topologically anomalous phase 

space corresponds to a random walk process which is 

scale invariant in spatial and temporal self-similarity 

transform:

 ˆ : , 
t

R t t
ξ

λ ξ λ ξ→ =′ ′  (165)

The spatial-temporal scale invariance causes strong 

spatial and temporal correlations mirrored in singular 

self-similar temporal and spatial distribution functions 

which satisfy the fractional generalization of classical 

Fokker-Planck-Kolmogorov equation (fFPK equation) [24]:
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where P ≡ P(ξ, t) is the probability density of the state (ξ) 

at the time (t).

The critical components (a, β) correspond to the 

fractal dimension of spatiotemporal nongaussian dis-

tribution of the temporal-spatial functions-processes or 

probability distributions. The quantities A, B are given by:
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where << … > >  denotes a generalized convolution opera-

tor [94].

The FFPK equation is an archetype fractional equa-

tion of fractional stochastic dynamics in a (multi)-fractal 

phase space with fractal temporal evolution caused by 

the self similar and multiscale structure of islands around 

islands, responsible for the flights and trappins of the 

dynamics. The “spatial” random variable can be any phys-

ical variable, such as position in physical space, velocity in 

the velocity space or a dynamic field (magnetic or electric) 

at a certain position in physical space, stresses in materi-

als etc, underlying to the nonlinear chaotic dynamics. The 

fractional dynamics of plasma includes fractal distribu-

tion of field and currents, as well as fractal distribution of 

energy dissipation field.

The fractional temporal derivative ∂β/∂tβ in kinetic 

equations allows one to take fractal-time random walks 

into account, as the temporal component of the strange 

dynamics in fractal-turbulent media. The waiting times 

follow the power law distribution P(τ) ∼ τ−(1+β) since the 

“Levy flights” of the dynamics also follow the power law 

of distribution.

The asymptotics (root mean square of the displace-

ment) of the transport process is given by 2 /| | 2 ,t
β αξ〈 〉 = D  

while the generalized transport coefficient D depends on 

the value of the anomalous scaling exponent b/a.

The solution of the fractional kinetic equation corre-

sponds to Levy distributions and asymptotically to Tsallis 

q-Gaussians. According to Alemany and Zanette [95], the 

set of points visited by the random walker can reveal a 

self-similar fractal structure produced by the extremiza-

tion of Tsallis q-entropy. The q-Gaussian distribution of 

the fractal structure created by the strange dynamics and 

the extremized q-entropy asymptotically corresponds 

to the Levy distribution P(ξ) ∼ ξ−1−γ where the q-exponent 

is related to the Levy exponent γ by 
3

.
1

q
γ

γ

+
=

+

 The Levy 

exponent γ corresponds to the fractal structure of the 

points visited by the random walker.

The well-known Boltzmann’s formula S = k log W 

where S is the entropy of the system and W is the number 
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of the microscopic states corresponding to a macroscopic 

state indicates the priority of statistics over dynamics. 

However, Einstein preferred to put dynamics in prior-

ity of statistics, using the inverse relation i.e. W = eS/k 

where entropy is not a statistical but a dynamical magni-

tude. Already, Boltzmann himself was using the relation 

lim R R

R
T

t
W

T

Ω

Ω→∞

= =  where t
R
 is the total amount of time that 

the system spends during the time T in its phase space tra-

jectory in the region R while Ω
R
 is the phase space volume 

of region R and Ω is the total volume of phase space. The 

above concepts of Boltzmann and Einstein were innova-

tive as concerns modern q-extension of statistics, which 

is internally related to the fractal extension of dynamics. 

According to Zaslavsky [96] and Tsallis [97] the fractal 

extension of dynamics includes simultaneously the 

q-extension of statistics as well as the fractal extension 

RNG theory in the fFPK:
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where the variables x corresponds to physical distributed 

variables of the system, while P(x, t) describes the prob-

ability distribution of the particle-fields variables.

The variables A(x), B(x) corresponds to the first and 

second moments of probability transfer and describe the 

wandering process in the fractal space (phase space) and 

time. The fractional space and time derivatives ∂β/∂tβ, 

∂α/∂xα are caused by the multifractal (strange) topology of 

phase space which can be mirrored in the spatial multi-

fractal distribution of the dynamical variables.

The q-statistics of Tsallis corresponds to the meta-

equilibrium solutions of the fFPK equation [26, 97]. Also, 

the metaequilibrium states of fFPK equation correspond 

to the fixed points of Chang non-equilibrium RGT theory 

for space plasmas [24, 98]. The anomalous topology of 

phase space dynamics includes inherently the statistics as 

a consequence of its multiscale and multifractal charac-

ter. From this point of view the non-extensive character of 

thermodynamics constitute a kind of unification between 

statistics and dynamics. From a wider point of view the 

fFPK equation is a partial manifestation of a general 

fractal extension of dynamics. According to Tarasov [25], 

the Zaslavsky’s equation can be derived from a fractional 

generalization of the Liouville and BBGKI equations. 

According also to Tarasov [25, 26, 41], the fractal exten-

sion of dynamics including the dynamics of particles or 

fields is based on the fact that the fractal structure of 

matter (particles, fluids, fields) can be replaced by a frac-

tional continuous model. In this generalization, the frac-

tional integrals can be considered as approximations of 

integrals on fractals. Also, the fractional derivatives are 

related with the development of long range correlations 

and localized fractal structures.

6.4   Fractal topology, critical percolation and 
stochastic dynamics

The nonlinearity in the dynamics of the solar wind plasma 

system including fields (B, E) and particles can create 

random distributions in space of dynamical fields and 

material fields (bulk, velocity, pressure, temperature, 

fluxes, currents etc). In this section we follow Milovanov 

and Zimbardo [99] and Milovanov [9] and present some 

basic concepts concerning topological aspects of percolat-

ing random fields.

For any random field distribution ψ(x) in the 

n-dimensional space (En) there exists a critical percola-

tion threshold which divides the space En into two topo-

logical distinct parts: Regions where ψ(x) < h
c
 marked as 

“empty”, and regions where ψ(x) > h
c
, marked as “filled”. 

When ψ(x) ≠ h
c
, one of these parts will include an infinite 

connected set which is said to percolate. As the threshold 

h changes we can find the critical threshold h
c
 where the 

topological phase transition occurs, namely the nonper-

colating part starts to percolate.

The geometry of the percolating set at the critical state 

(h → h
c
) is a typical fractal set for length scales between 

microscopic distances and percolation correlation length 

which diverges. The statistically self-similar geometry 

includes power-law behavior of the “mass” density of the 

fractal set such as “fractal mass density” ∼xD–n, where x 

is the length scale, D is the Hausdorff fractal dimension 

which must be smaller than the dimensionality (n) of the 

embedding Euclidean space. In addition to the parameter 

D of the fractal dimension, there is the index of connec-

tivity θ which describes the “shape” of the fractal set and 

may be different for fractals even with equal values of the 

fractal dimension D. The index of connectivity θ is defined 

as characterizing the shortest (geodesic) line connect-

ing two different points on the fractal set by the relation 

d
θ
 =(2 + θ)/2, where d

θ
 is the minimal Hausdorff dimension 

of the minimal (geodesic) line. The geodesic line on a self-

similar fractal set (F) is a self affine fractal curve whose 

own Hausdorff fractal dimension is equal to (2 + θ)/2. 

The index of connectivity plays an essential role in many 

dynamical phenomena on fractals, while it is a topologi-

cal invariant of the fractal set F.
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From the fractal dimension D and the connectivity 

index θ we can define a hybrid parameter d
s
 = 2D/2 + θ 

which is known as the spectral or the fracton dimension 

which represents the density of states for vibrational exci-

tations in fractal network termed as fractions [9]. The root 

mean square displacement of the random walker on the 

fractal set is given by:

 
1

2 2/2| |
d

t t θθξ
−

+〈 〉 ∼ =  (169)

Where d
θ
 is the fractal dimension of the self-affine trajec-

tory on the fractal set. Also, the spectral dimension which 

measures the probability of the random walker to return 

to the origin, is given by:

 
/2

( ) s
d

P t t
−

∼  (170)

while the Hausdorff fractal dimension D is a structural 

characteristic of the fractal structure F, the spectral 

dimension d
s
 mirrors the dynamical properties such as 

wave excitation, diffusion etc. The fractal dimension D 

of the fractal structure F of a percolating random field 

distributed in the En Euclidian space is given by D = n–

β/ν, where β, ν are the universal critical exponents of the 

critical percolation state [9]. According to the Alexander-

Orbach (AO) conjecture [100], the spectral dimension d
s
 

has been established to be equal to the value d
s
 = 4/3, for 

all embedding dimensions n ≥ 2. Especially, for embed-

ding dimensions 2 ≤ n ≤ 5, Milovanov [100] has improved 

the AO conjecture to the value d
s
 = c1327, where c is 

the percolation constant. This constant determines the 

minimal fractional number of the degrees of freedom 

that the random walker must have to reach the infi-

nitely remote point in the Euclidian embedding space 

En. According to Milovanov [9, 100, 101] and Milovanov 

and Zelenyi [69] the fractal topology and critical perco-

lation theory transform the description of plasma diffu-

sion, bulk flow and electrodynamical-MHD phenomena 

from classical smooth equations to fractional equations 

description.

The diffusion coefficient is now expressed in terms 

of the connectivity index θ =(µ–β)/ν and the Hausdorff 

dimension of the infinite percolation cluster d
f
 = n–β/ν 

where β, µ, ν are the universal critical percolation para-

meters. The Maxwell equations for the plasma current 

system are transformed to fractional equations including 

fractional derivatives of the magnetic field given by:

 0
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where s, w are spatial variables.

The fractional extension of Maxwell equations is 

caused by the non-local self-similar hierarchical structur-

ing of the plasma system, while the degree of non-locality 

is quantified by the connectivity index included in the 

power exponent γ = 2/(2 + β) in the singular kernel (s − w)−γ. 

The interaction of plasma charged particles and dynami-

cal fields described by fractional Maxwell equations and 

fractional transport equations causes self-consistency in 

the fractal distribution of dynamical (magnetic-electric) 

fields, of bulk plasma flow fields and energy dissipation 

fields. In this way, the fractal dimension and connectivity 

index (θ) of dynamical field’s distribution is self-consist-

ently related to the fractal dimension (D+) and the index of 

connectivity (θ+) of material fields.

6.5   Renormalization Group (RNG) theory and 
phase space transition

The multifractal and multiscale intermittent turbulent 

character of the distributed dynamics can be verified after 

the estimation of the spectrum f(a) of the point wise dimen-

sions or singularities (a). This justifies the application of 

RG theory for the description of the scale invariance and 

the development of long-range correlation of the distrib-

uted systems and intermittent turbulence state. Generally 

the non-equilibrium distributed random dynamics can be 

described by generalized Langevin stochastic equations 

of the general type:
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i i
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t
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where f
i
 corresponds to the deterministic process as con-

cerns the plasma dynamical variables φ(x, t) and n
i
 to the 

stochastic components (fluctuations). Generally, f
i
 are 

nonrandom forces corresponding to the functional deriva-

tive of the free energy functional of the system. According 

to Chang [38, 102] the behavior of a nonlinear stochastic 

system far from equilibrium can be described by the prob-

ability density functional P, defined by:
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where ( , ,  )L xɺϕ ϕ  is the stochastic Lagrangian of the 

system, which describes the full dynamics of the stochas-

tic system.

Moreover, the far from equilibrium renormalization 

group theory applied to the stochastic Lagrangian L gen-

erates the singular points (fixed points) in the affine space 
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of the stochastic distributed system. At fixed points the 

system reveals the character of criticality, as near critical-

ity the correlations among the fluctuations of the random 

dynamic field are extremely long-ranged and there exist 

many correlation scales. Also, close to dynamic criticality 

certain linear combinations of the parameters, character-

izing the stochastic Lagrangian of the system, correlate 

with each other in the form of power laws and the sto-

chastic system can be described by a small number of 

relevant parameters characterizing the truncated system 

of equations with low or high dimensionality. This is the 

nonequilibrium RG theory explanations of self-organ-

ization process and dynamical reduction of degrees of 

freedom. According to these theoretical results, the sto-

chastic system can exhibit low dimensional chaotic or 

high dimensional SOC like behavior, including fractal or 

multifractal structures with power law profiles. The power 

laws are connected to the near criticality phase transition 

process which creates spatial and temporal correlations 

as well as strong or weak reduction (self-organization) of 

the infinite dimensionality corresponding to a spatially 

distributed system. Critical phase transition processes can 

be related to discrete fixed points in the affine dynamical 

(Lagrangian) space of the stochastic dynamics. The SOC or 

chaos like behavior of distributed dynamics corresponds 

to the second phase transition process as the system lives 

at different fixed points of RG. The probabilistic solution 

(173) of the generalized Langevin equations may include 

Gaussian or non-Gaussian processes as well as normal or 

anomalous diffusion processes depending upon the criti-

cal state of the system.

From this point of view, a SOC or low dimensional 

chaos interpretation or distinct q-statistical states with 

different values of the Tsallis q-triplet depends upon the 

type of the critical fixed (singular) point in the functional 

solution space of the system. When the stochastic system 

is externally driven or perturbed, it can be moved from a 

particular state of criticality to another characterized by 

a different fixed point and different dimensionality or 

scaling laws. Thus, the old SOC theory could be a special 

kind of critical dynamics of an externally driven stochas-

tic system. After all SOC and low dimensional chaos can 

coexist in the same dynamical system as a process mani-

fested by different kinds of fixed (critical) points in its 

solution space. Due to this fact, the distrtibuted dynamics 

may include high dimensional SOC process or low dimen-

sional chaos or other more general dynamical process 

corresponding to various q-statistical states. The non-

extensive character of the distributed dynamics related 

with q-statistical metaequilibrium thermodynamics as 

well as the existence of long-range correlations must be 

harmonized with the nonlinear dynamics of the distrib-

uted system as well as the non-equilibrium extension of 

RGT. This is the base for the development of anomalous 

diffusion plasma processes, long-range correlations and 

scale invariance which can be amplified as the system 

approaches far from equilibrium dynamical critical points. 

Also, it is known that nonlinear dissipative dynamics with 

finite or infinite degrees of freedom includes the possibil-

ity of self-organizing reduction of the effective degrees of 

freedom and bifurcation to periodic or strange (chaotic) 

attractors with spontaneous development of macroscopic 

ordered spatiotemporal patterns.

The bifurcation points of the nonlinear dynamics, 

corresponds to the critical points of far from equilibrium 

non-classical statistical mechanics and its generaliza-

tions, as well as to the fixed points of the RGT. The RGT 

is based in the general principle of scale invariance of the 

physical processes as we pass from the microscopic statis-

tical continuum limit to the macroscopic thermodynamic 

limit. For introducing the mechanism of the RGT at dis-

tributed dynamics we start with the generalized Langevin 

equation:
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(174)

Where F is the free energy of the system and Γ is the 

relaxation rate and N is the noise component with the 

correlation:

 ( , ) ( , ) 2 ( ) ( ) ( ) ( , )
i ij i

N x t N x t x x x t t x tΓ δ δ δ Ψ〈 〉 = − −′ ′ ′ ′
� � � � � �  (175)

corresponding to the distributed physical magnitude 

of the solar wind plasma system. The structure of these 

equations (174, 175) can be produced by using the 

BBGKY (Bogoliubov-Born-Green-Kirkood-Yvon) hierar-

chy included in the Liouville equation applied at the sto-

chastic system particles and fields. Also, the structure 

of Langevin equation ensures that the metaequilibrium 

distribution is always attained as t→ ∞. In the following 

and according to Tsallis q thermodynamic theory we con-

jecture in relation with Langevin equations the generali-

zation of the Free energy functional to the q-Free energy 

functional F
q
 so that the Langevin equation can be related 

to a q-generalized Fokker-Planck equation of. By using 

the q-generalized Fokker – Planck equation we can esti-

mate the N-point correlation function (G
N
) of the plasma 

system, as well as, the partition function Z
q
 as the func-

tional integrations:
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0
where  is a source field and  lim ( ( ))
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→

=
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The N-point q-correlation function is related to the 

functional derivative of partition function as follows:
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For the estimation of the system’s partition function it 

makes no sense to consider fields, which varies rapidly 

on scales shorter than a characteristic microscopic 

dimension and such field should be excluded from the 

estimation of the partition function, as well as, from the 

application of scale transformation according to the RGT. 

This can be succeeded by a suitable cutoff parameter of 

the Fourier transform of the distributed plasma proper-

ties. According to Wilson [19] and Chang [38] the dynamics 

of distributed system as it approaches the critical points 

includes a cooperation of all the scales from the micro-

scopic to macroscopic level. The multiscale and holistic 

distributed dynamics can be produced by scale invariance 

principle included in the RG transformation correspond-

ing to the flow:

 1 0( ) ( ), 0, 1, 2n n n

l l
K R K R K n

−

= = = ⋅ =

� � �
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where 0
K
�

 is the original parameter vector 0
K
�

 and R
l
 is 

the renormalization-group operator of the partition func-

tion and the density of free energy. The parameter vector 

K
�

 has as components the parameters 
1 2
, , , 

m
K K K
� � �

…  the 

coupling constants upon which the free energy depends. 

The RG flow in the dynamical parameter space of vectors 

K
�

 is caused by a spatial change of scale as at every step 

of flow in the parameter space the spatial scale is rescaled 

according to the relation: ' 1
.r l r

−

= ⋅

� �

 As the free energy and 

the partition function are rescaled by the RG flow in the 

parameter space the correlation length (ξ) of the plasma 

fields is rescaled also according to the relation:
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At the fixed points *
K
�

 of the RG flow, the relation:

 1( ) ( )lξ Κ ξ Κ∗ − ∗

= ⋅

� �

 (180)

implies that the correlation length at the fixed point must 

be either zero or infinite. Also, as the zero value is without 

physical interest we conclude the infinite correlation of the 

system at the fixed point *
K
�

 or long-range correlation in 

near the fixed point. The dynamics of the system near the 

physical critical point corresponds to the flow of the para-

meter vector K
�

 at the neighborhood of the fixed point. The 

flow of the parameter vector K
�

 at the neighborhood of the 

fixed point *
K
�

 is a nonlinear flow in a finite dimensional 

space which survives the most significant physical charac-

teristics of the original dynamics of the plasma system with 

infinite degrees of freedom. The representation of the infi-

nite dimensional dynamics to finite dimensional and is pos-

sible at every instant the infinite dimensional dynamical 

state (state of infinite degrees of freedom) is transformed by 

the scale invariance vehicle to a finite dimensional dynam-

ics in the parameter space. According to this theoretical 

description the distributed dynamical system can exist 

at district fixed points in the parameter space of RGT cor-

responding to the shock chaos or intermittent turbulence 

states. Also the development of the strong turbulence cor-

responds to global topological phase transition process 

from the calm period to the shock period fixed point in the 

solar plasma dynamical parameter space. From the above 

theoretical point of view the quantative change of the non-

extensive Tsallis statistics as it can be observed by the esti-

mation of Tsallis q-triplet can be related to the change of the 

RGT fixed point in the dynamical parameter space.

7   Summary and discussion

Figure 4 presents the most significant concepts and theo-

retical characteristics of the dynamics and statistics as the 

distributed dynamical system departs from the thermo-

dynamic equilibrium and lives at metaequiilibrium states 

with exramized q-entropy. At the thermodynamic equi-

librium state the system reveals weak complex character 

while far from equilibrium the full complex character is 

manifastated. Near thermodynamic equilibrium statis-

tics and dynamics are two separated but fundamental 

elements of the physical theory. Also, at thermodynami-

cal equilibrium, nature reveals itself as a Gaussian and 

macroscopically uncorrelated process simultaneously 

with unavoidable or inevitable and objective determinis-

tic character. However, modern evolution of the scientific 

knowledge reveals the equilibrium characteristics of the 

physical theory as an approximation or the limit of a more 

synthetic physical theory, which is characterized as com-

plexity. The new physical characteristics of complexity 

theory can be manifested as a physical system is driven in 

far from equilibrium states.

Moreover, far from equilibrium statistics and dynam-

ics can be unified through the Tsallis nonextensive sta-

tistics included in Tsallis q-entropy theory [2] and the 

fractal generalization of dynamics included in theories 
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developed by Ord [76], Nottale [13], Castro [12], Zaslavsky 

[24], Shlesinger et al. [7], Kroger [60], Tarasov [25, 26, 41], 

El-Nabulsi [29, 61], Cresson and Greff [40], Goldfain [30, 

84] and others. Also, the new non-extensive character-

istics of non-equilibrium physical theory for distributed 

physical systems were verified experimentally until now 

by Pavlos [64, 86, 103, 104], Iliopoulos et  al. [105] and 

Karakatsanis and Pavlos [106, 107] in many cases.

Generally, the traditional scientific point of view is 

the priority of dynamics over statistics. That is dynam-

ics creates statistics. However, for a complex system the 

holistic behaviour does not permit easily such a sim-

plification or division of dynamics and statistics. From 

this point of view Tsallis statistics and fractal or strange 

kinetics are two faces of the same complex and holistic 

(non-reductionist) reality. As Tsallis statistics is an exten-

sion of Boltzmann-Gibbs statistics, we can support that 

the thermal and the dynamical character of a complex 

system are the manifestation of the same physical process 

which creates extremized thermal states (extremization of 

Tsallis entropy) or extremized mechanical actions, as well 

as dynamically ordered states. From this point of view 

the Feynman path integral formulation of the statistical 

physical theory and of the quantum probabilistic theory 

indicates the indivisible thermal and dynamical character 

of physical reality [31]. After Heisenberg’s revolutionary 

substitution of physical magnitudes by operators and the 

following probabilistic interpretation of Heisenberg opera-

tionalistic concepts and Schrodinger wave functions done 

by Max Born [54], probability obtained clearly a new real-

istic and ontological character concerning the foundation 

of physics [108]. Moreover, the development of complexity 

theory caused the extension of the probabilistic character 

of dynamics from microscopic (quantum theory) to mac-

roscopic (classical theory) level of reality. This showed 

the deeper meaning of the Boltzmann entropy principle 

through the fractal extension of dynamics, as well as the 

q-extension of statistics according to Tsallis non-extensive 

entropy theory.

Prigogine [34] and Nicolis [49] were the principal 

leaders of an outstanding transition to the new epistemo-

logical ideas from microscopic to the macroscopic level, 

as they discovered the admirable self Self-Organization 

operation of the physical-chemical systems. That is, the 

possibility for the development of long-range spatiotem-

poral correlations, as the system lives far from equilib-

rium. Thus, Prigogine and Nicolis opened a new road 

towards the physical understanding of random fields and 

statistics, related to the non-Gaussian character of the 

physical processes. This behaviour of nature is known as 

non-equilibrium development of dissipative structrures 

or self-organization process. Prigogine’s, Haken’s and 

Nicoli’s self-organization concepts inspired us to intro-

duce the self organization theory as a basic tool for the 

Figure 4: In this table we summarize the q-extension of dynamics and statistics as the system departs from the state of thermodynamic 

equilibrium and lives at meta equilibrium stationary states.
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description of many complex systems. In this direction the 

dynamics of the space plasmas [86, 104, 109], seismogen-

esis [105], as well as the dynamics of brain activity [110] 

has been decribed as a non-equilibrium and self-organi-

zation process. Parallely to the scientific work of Brussels’ 

school, Lorenz [111] discovered the Lorenz’s attractor as 

the weather’s self organization process, while other sci-

entists had already observed the self organization process 

in the dynamics of fluids (e.g. dripping faucet model) or 

elsewhere, verifying the Feigenbaum [112] mathemati-

cal scenarios to complexity included in nonlinear maps 

or Ordinary Differential Equations-Partial Differential 

Equations [113]. However, although there was such a wide 

development of complexity science, scientists till now 

prefers to follow the classical theory, namely that macro-

cosmos is just the result of fundamental laws which can 

be traced only at the microscopical level. Therefore, while 

the classical reductionistic theory considers the chaotic 

and the self-organization macroscopic processes as the 

result of the fundamental Lagrangian or the fundamental 

Hamiltonian of nature, there is an ongoing different per-

ception. Namely, that macroscopic chaos and complexity 

cannot be explained by the hypothetical reductionistic 

point of view based at the microscopic simplicity, but they 

are present also in the microscopic level of physical reality.

Therefore, scientists like Nelson [114], Hooft [5], Parisi 

[37], Beck [3] and others, used the self-organization concept 

process of the complexity science for the explanation of 

the microscopic “simplicity”, introducing theories like sto-

chastic quantum field theory or chaotic field theory. This 

new perception started to appear already through the Wil-

son’s theories of renormalization, which showed the mul-

tiscale cooperation in the physical reality [19]. At the same 

time, the multi-scale dynamical cooperation produces 

the self-similar and the fractal character of nature allow-

ing the application of renormalization methods at non-

equilibrium critical states of physical systems. This leads 

to the utilization of fractal geometry into the extended 

unification of physical theories, since the fractal geom-

etry includes properties of stochastic multiscale and self-

similar character. Scientists like Ord [76], El Naschie [27], 

Nottale [13] and others, introduced the idea of fractality 

into the geometry of space-time itself negating the notion 

of differentiability of physical variables. Also the fractional 

geometry is connected to non-commutative geometry since 

for fractional objects the principle of self similarity negates 

the Eycleidian notion of the simple geometrical point (as 

that which has no-parts), just like it negates the idea of dif-

ferentiability and determinism.

Therefore, the fractional geometry of space-time leads 

to the fractal extension of dynamics exploiting the fractal 

calculus (fractal integrals-fractal derivatives) [25, 26, 30, 40, 

41, 48]. Also, the fractal structure of space-time includes 

intrinsically a stochastic character as the presupposition 

for determinism is differentiability [13, 40]. In this way, 

statistics is unified with dynamics automatically, while 

the notion of probability obtains a physical substance, 

characterized as dynamical probabilism. The ontological 

character of probabilism can be the base for the scientific 

interpretation of self-organization and ordering principles 

just as Prigogine [34] had imagined, following the Heisen-

berg’s concept. From this point of view, we could say that 

contemporary physical theory returns to the Aristotle’s 

potentiality point of view, as Aristotelianism’s potentiality 

theory includes the Newton’s and Democritus’ mechanis-

tical determinism only as one component among others 

in the organism-like behaviour of Nature [115]. Modern 

evolution of physical theory, as it was described previ-

ously, is highlighted in Tsallis q-generalization of the Boltz-

mann-Gibbs (B-G) statistics which includes the classical 

(Gaussian) statistics, as the q = 1 limit of thermodynami-

cal equilibrium. Far from equilibrium, the statistics of the 

dynamics follows the q-Gaussian generalization of the B-G 

statistics or other more generalized statistics. At the same 

time, Tsallis q-extension of statistics is related to the fractal 

generalization of dynamics. However, for complex systems, 

their holistic behaviour does not easily permit such a simpli-

fication and division of dynamics and statistics. The Tsallis 

extension of statistics and the fractal extension of dynam-

ics as strange kinetics are two faces of the same complex 

and holistic (non-reductionist) reality. Moreover, the Tsallis 

statistical theory including the Tsallis extension of entropy, 

known as q-entropy principle, [2] the fractional generaliza-

tion of dynamics [7, 24] as well as the scale relativity exten-

sion of the Ainstein Relativity theory, parallely to the scale 

extension of relativity theory [12, 13] are the cornerstones of 

modern physical theory related to non-linearity and non-

integrability as well as to the non-equilibrium ordering and 

the self organization principle of nature.

In the following, we summarized and discussed the 

highlights of complexity theory as the road of the global 

unification of the physical theory from microscopic to 

macroscopic level of physical reality.

7.1   The Thermodynamics point of view

Complexity theory becomes effective when dynamical 

system exists far from equilibrium, where the entropy 

follows the equation:

 
2

0
S S S Sδ δ= + +  (181)
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Far from equilibrium, according to Tsallis theory, the 

Boltzmann-Gibbs entropy:

 BG
ln ( )ln ( )

i i
S P P P x P x dxκ κ= − = −∑ ∫  (182)

is the limit of a more general and non-extensive entropy. 

The non-extensive Tsallis entropy S
q
 given by the equation:
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For q = 1 the new and non-extensive statistical mechanics 

is transformed to the known Boltzmann-Gibbs statistical 

mechanics [2].

Every thermodynamical system is also a dynamical 

system with internal dynamical states and this point of 

view exists as the propabilistic character of the internal 

dynamics. Thus, the entropy corresponds to the informa-

tion that can be obtained by knowing the internal micro-

scopic state of the system.

Near equilibrium δS = 0 and δ2S is a Lyapunov func-

tion of positive time derivative. The time derivative corre-

sponds to entropy productions.

However far from equilibrium the time derivative of 

δ2S is may be negative corresponding to decreasing of 

entropy and development of order [2]. Significant con-

cepts of Thermodynamics developed for the near equi-

librium phenomena can be used for the description of far 

from equilibrium phenomena. Such concepts are: thermo-

dynamical potentials, phase-transition, order parameters, 

nucleation phenomena. Also the Ginzburg-Landau theory 

can be extended for the description of the far from equilib-

rium phase transition processes and pattern formation in 

many different dynamical systems [31].

7.2   The dynamical point of view

Complex systems can be at the same time thermodynami-

cal and dynamical systems. The far from equilibrium 

dynamics can be described by the generalized free energy 

H function which depends generally upon the macro-

scopic field ( , )x tϕ
�

 (order parameter field). The gen-

eralized free energy function can be estimated by using 

generalized Hamiltonians and Lagrangian, while the 

dynamics is given by a Langevin type equation:
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where f is stochastic noise.

The Langevin equation (184) is equivalent to a func-

tional Fokker-Planck equation:
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where [ ( , ), ]P x t tϕ
�

 is the probability density functional 

[21].

The probability density functional can be calculated 

by the method of math integral formalism. According to 

Chang [102], for nonlinear stochastic systems near critical-

ity the correlations among the fluctuations of the random 

dynamical fields are extremely long-ranged and there 

exist many correlations states. The far from equilibrium 

generalization of the renormalization group transforma-

tion includes the existence of fixed points (singular point) 

for the Lagrangian scaling flow on the parameter stochas-

tic Lagrangian affine space. As the stochastic nonlinear-

complex system is perturbed from a particular fixed point 

(meta-equilibrium state) it may be attached to another 

critical state revealing symmetry breaking and phase tran-

sition processes.

Anomalous diffusion and non-Gaussian distribu-

tions, low dimensional chaos, self organized critically, 

spatiotemporal chaos, spatiotemporal patterns, directed 

percolation processes, scaling and other macroscopic 

complex phenomena can be described by the application 

of the generalized renormalization group theory. In the 

above description the Langevin equations can be of more 

general type corresponding to a general type of master 

equations and discrete spatio-temporal stochastic or 

deterministic chaotic processes. According to the relation:

 | |
t t t
P L P∂ 〉 = 〉  (186)

where |P
t
〉 is the probability distribution vector and L the 

so-called Liouville operator which generates the temporal 

evolution [116]. It is a truth that from the microscopic to the 

macroscopic level, the modern physical theory includes 

non-linear dynamical processes in finite-dimensional or 

infinite-dimensional state spaces. The dynamical pro-

cesses can be of different and independent form at every 

level of dynamical description of nature. Superstrings, 

elementary particles or other physical forms and patterns 

observed at the macroscopic or cosmological level can be 

produced as solutions of non-linear mathematical equa-

tions including Hamiltonians, Lagrangians, and other 

mathematical forms corresponding to continuing or dis-

crete fields, quantum or classical.

The great dream of theoretical scientists is to develop 

some kind of organizing physical principles valid at 

all levels. The strong simultaneous presence of chaos 
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and fractal self-similarity at the macroscopic and at the 

quantum level indicates the possibility for the existence of 

such global organizing principles. Some significant con-

cepts in this direction are described in the following.

7.3   Fractal theory space and renormalization 
group theory

According to Nottale [13] theory space can be endowed 

with certain geometrical symmetries based essentially on 

the renormalization group (RG) transformations. Fractal 

lattices, known already in condensed matter physics, are 

used to construct classes of new theory spaces. Theory 

space lattices are defined recursively by replacing each 

site with a new simplex of S sites, while this process is 

iterated k times.

In the limit K→ ∞ this lattice describes a continuum 

theory whose properties are determined be certain scaling 

laws of critical systems. At finite critical temperature the 

Feynman path integral is invariant under the RG transfor-

mations. Wilson’s approach is based on an effective action
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where Z
A
 is the partition function and the integration 

extends over a functional space of fields.

According to Morozov and Niemi [117], a RG flow 

could indeed tend towards a nontrivial attractor with 

even a fractal structure corresponding to a chaotic flow 

in the space of couplings. This could lead to a Big Mess 

scenario in applications to multiphase systems, from 

spin-glasses and neural networks to fundamentals string 

theories. The concept of the fractal theory space can be 

extended in a general unifying scheme to include Lan-

gevin processes or directed percolation processes corres-

ponding to macroscopic far from equilibrium processes 

[118–120].

7.4   Scale relativity theory

According to Nottale [121–123] the Scale Relativity theory 

extends the Einstein Relativity theory to scale transfor-

mations of resolution [25, 48]. In this theory the axiom of 

space-time differentiability is given up and the space-time 

corresponds to a fractal set. This is in accordance with Fey-

nman’s path integral approach to quantum mechanics, 

which at small length and time scales reveals continuous 

and non-differentiable paths with fractal dimension D = 2. 

The fractal character of space-time indicates that the 

space-time variables can be described as depending also 

on resolutions Φ = ϕ(x, ε). Nottale extended the principle 

of Relativity theory to scale Relativity, which the laws of 

nature should apply to all reference systems whatever 

their state if scale. This is a scale covariance principle in 

the spirit of renormalization group theory corresponding 

to the typical form:
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In this theory the probabilistic character of quantum 

theory is derived naturally by the fractal nature of space-

time while the microscopic quantum laws and the macro-

scopic stochastic processes are the different manifestation 

of the same physical law under the scale transformation 

in the fractal space-time. This led us to consider the mac-

roscopical chaos and complexity in natural systems as the 

manifestation of the large scale fractal nature of space-

time. From this point of view, the Feynman path integral 

formulation of physical theory in a fractal space-time is the 

unifying tool of the microscopic and macroscopic complex-

ity. In this way, the path probability density, the correlation 

function and the generating functional are the common 

tools in a unified point of view of microscopic and macro-

scopic stochastic processes according to the relation:
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where, Z
G
 = ∫Dϕe−H(J) is the partition function of the system 

and GN the correlation functions.

Classical macroscopic distributed far from equilib-

rium systems and microscopic quantum field systems are 

connected through stochastic and chaotic quantization 

theory. According to the Parisi and Wu [124] approach the 

classical field Φ described by an action S[ϕ] can be quan-

tized by means of a stochastic Langevin equation:
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where f denotes spatio-temporal Gaussian white noise.

The classical stochastic process corresponds to a 

non-equilibrium D + 1 dimensional space-time system 

while its corresponding Fokker-Planck distributed equa-

tion at the equilibrium state is identified with the theory 

of the quantum field Φ in the D-dimensional space-time. 

The classical stochastic dynamics in the D + 1 dimen-

sional space-time is described by the correlators 〈Φ(x
1
, 

t
1
), Φ(x

2
, t

2
), …., Φ(x

n
, t

n
)〉, where Φ(x, t) are the solutions 
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of equation (190). The classical stochastic correlators in 

the limit t→ ∞ reproduce the Feynman graphs of the cor-

responding D dimensional quantum theory.

On the other hand, according to Beck [3, 125] there 

are deterministic chaotic dynamical systems that can 

generate the Langevin dynamics of equation (184). This 

approach corresponds to the chaotic quantization theory 

as it simulates quantum fields by chaotic dynamics. More-

over, Beck introduced a class of coupled map lattices, by 

using coupled third – order Tschebyscheff polynomials, 

which can simulate quantum field theories. The stochas-

tic and chaotic quantization theories reveal the mathe-

matical similarity of the classical and quantum dynamics 

but more than this it indicates the deep unity of physical 

theory at the microscopic and the macroscopic level. This 

point of view can be supported by modern theoretical con-

structions, which can produce the quantum theory as the 

manifestation of a subquantum chaotic dynamics.

Hooft [5, 6] conjectured that quantum mechanics can 

logically arise as the low energy limit of a microscopically 

deterministic but dissipative theory. Biro et al. [4] showed 

that quantum field theory can emerge in the infrared limit 

of a high-dimensional quantum field theory as Yang- Mills 

fields can quantize themselves.

7.5   Becoming before being

Quantum theory and Relativity theory (special and 

general) introduced the notion of becoming in the heart 

of being showing that being is the production of becom-

ing. Complexity theory is a theory of being as Becoming 

in its essence. From this point of view we believe that 

complexity theory, as the essential theory of becoming 

and pattern formation, shows the route for a global uni-

fication of physical theory. Particularly, the quantum 

states include becoming and potentiality in an objective 

way. Because of this the physical magnitudes are related 

probabilistically with the quantum states. Entropy and 

complexity are inherent in the quantum states. Simi-

larly, in relativity material particles are condensed 

energy and space and time are continuously. In this 

point of view the great Hellenic philosophers Heracli-

tus, Plato and Aristotle meet one another. For Heraclitus 

all the cosmos is one. For Aristotle matter is the poten-

tiality of the being and for Plato the essence of things is 

the form.

According to the modern theoretical concepts, 

the essence of the physical theory is the mathematical 

structure-equations with solutions corresponding to the 

observed phenomena. All this state of knowledge can be 

included in the general form of Feynman path integral for-

mulation of the probability amplitudes of dynamics:
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where Φ is the dynamical state and S the action functional 

of the dynamics.

The unification of micro and macro dynamics passes 

through the fractal theory, and the scale invariance of 

Feynman amplitudes. The Feynman principle must be 

related somehow to the general probabilistic Liouville 

dynamical theory. As we show in the following, the prob-

abilistic character of modern theory reveals the funda-

mental character of becoming or process in the physical 

theory. According to the radical conjecture of Prigogine 

becoming is prior to being in a fundamental way includ-

ing even the physical laws. According to Kovacs [51] many 

of the pattern formation processes observed in systems 

of quite different genesis exhibit astonishing analogies 

independently of the composition of the system and of 

the interactions between individual components. As 

the formation of structures is a geometrical event, the 

observed qualitative analogies indicate common topolog-

ical origin. From this point of view, physics is geometry 

and topology.

In this direction bifurcation theory and symmetry 

breaking processes are the common base of the far from 

equilibrium dynamics in micro and macro cosmos. In 

the bifurcation theory, bifurcation phenomena include 

topological equivalence while the bifurcations are largely 

determined by geometrical constraints as the dimension 

and shape or inherent symmetries. The structural stabil-

ity of physical patterns at every level of physical reality is 

inherent in the fundamental law (laws) of physics derived 

by geometrical invariance principles such as space-time 

symmetries or gauge symmetries. The link between geom-

etry and physics is due to topological invariance princi-

ples which cause inherent stability properties. Structural 

stability proves includes the interaction and correlation 

physical phenomenology of physical systems. On the 

other hand, self-organization is a far from equilibrium 

thermodynamical process revealing entropy decrease and 

order development according to the equation:

 
e i

dS d S d S= +  (192)

where d
e
S is the reversible entropy transfer and d

i
S is the 

irreversible producedentropy within the system.

Thermodynamics is coupled to dynamic through the 

general Liouville equation:

 ( ) ( )
t
f t Lf t∂ =  (193)
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where f(t) is the infinite dimensional distribution vector 

f(t) = {f
0
, f

1
(x

1
), f

2
(x

1
, x

2
), ….}, including the Bogolinbov-

Born-Green-Kirkwood-Yvon (BBGKY) [18] correlations 

hierarchy.

The dynamics of correlations corresponds to a func-

tional Hilbert space H∞. In order the dynamical theory to 

be in agreement with the thermodynamical theory, the 

Liouville equation (193) must be solved in an extended 

functional space called rigged Hilbert space or Gelfand 

space according to Petrosky and Prigogine [126, 127]. For 

the integrable classical or quantum dynamical systems 

the dynamical theory does not lead to thermodynamics. 

Chaotic dynamical systems are non-integrable Poincare 

systems. For chaotic or non-integrable dynamical systems, 

the Liouville equation can be solved in an extended func-

tional space which includes the thermodynamical states 

and the irreversible Markov stochastic processes under-

lying to the far from equilibrium thermodynamics. The 

extended physical space in a Rigged Hilbert space or 

Gelfald space, in which the infinite dimensional correla-

tion hierarchy and the corresponding extended Liouville 

equation must include as general solutions the observed 

physical forms or states in the microscopic or the macro-

scopic level. Also, the physical states in the Rigged Hilbert 

space correspond to possibilities or potentialities. In this 

way, the extended in the Rigged Hilbert space Liouville 

equation can be transformed to a Fokker-Planck equa-

tion including dynamics and thermodynamics simul-

taneously with breaking of time reversal symmetry and 

entropy production. According to Prigogine the flow of 

correlations in the extended Riggen Hilbert space creates 

the observable physical states and the observed dynam-

ics. In this way, the process as becoming is before being 

and correlations as potentialities are the fundamental 

physical reality.

7.6   Chaos, fractals and unification of 
dynamics to thermodynamics

In this chapter, we conjecture that the above mathemati-

cal construction must be related somehow to the infi-

nite dimensional fractal space included in the E-infinite 

theory of El Naschie [57]. Von Neumann understood that 

the quantum dynamics includes non-commutative geom-

etry of the quantum space which has no points at all. This 

means that the physical reality is not created by geometri-

cal points or by simple material points without internal 

structure. At every level physical reality is complex includ-

ing forms, structures and patterns. Non-commutative 

geometry corresponds also to fuzzy spaces. The E-infinite 

theory of El Naschie introduces randomness and scale 

invariance to the very concept of space-time geometry. 

Space-time is an infinite-dimensional, hierarchical and 

random geometrical manifold with infinite numbers of 

equivalent paths. In this space, any so-called point will 

always reveal a structure on a close examination. Canto-

rian space-time E∞ of the El Naschie theory is a form of non-

commutative geometry and it can be constructed using 

an infinite number hierarchy of Cantor fractal sets mixed 

together in all possible forms of union and intersections.

Let us remember that in the Euclidean theory of space, 

the curved surface is included as a subset of Euclidean 

points. In the Riemannian theory the Euclidean space is a 

local characteristic of the general Riemannian manifold. 

For Einstein, the space-time Riemannian manifold is the 

primitive or fundamental physical reality, which includes 

every other physical form as a geometrical characteristic. 

Ofcourse the dynamical cosmology and the expanded 

space included in the equations of general relativity of 

Einstein was for him an undesirable trouble. For modern 

complexity theory the Mandelbrot fractal theory, the 

Euclidean or Riemannian manifolds are the smoothed 

out character of a primitive fractal manifold with scale 

dependent dimensions and other topological invariant 

properties. For El Naschie and other modern scientists 

every physical form in the universe is a scale depend-

ent geometric characteristic of the infinite dimensional 

fractal Cantor’s manifold. In El Naschie’s theory, space-

time is an infinite dimensional fractal that happens to 

have D = 4 as the expectation value for the topological 

dimension. The topological dimension 3 + 1 means that in 

our low energy resolution the world appears to us as it 

were four-dimensional. According to Iovane et al. [128], 

Iovane [129], Ahmed [130], and Agop et al. [44] the differ-

ence between micro and macro physics depends only on 

the resolution in which the observer looks at the world. 

Nature shows us structures with scaling rules where hier-

archy clustering properties are revealed from cosmologi-

cal to microscopical objects. The universe is self-similar 

from the quantum to the cosmological level according to 

the scale invariance law:
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where R is the radius of the astrophysical structures, M 

is the total Mass of the self-gravitating system, h is the 

Planck constant, N is the number of nucleons, c the speed 

of light and a = 3/2.

For N = 1, R is equal to the Compton wavelength. There 

is no breaking point between microscopic and large scale 

universe. This is in agreement with El Naschie’s E-infinite 
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theory of cantorian space-time, the Golden Mean and the 

Fibonacci numbers, as well as to the general theory of the 

stochastic self-similar processes in a fractal space. Also it 

appears that the universe has a memory of its quantum 

origin as was suggested by Penrose. Consequently the uni-

verse with its structures as all scales from the quantum 

level to the organic cell and human to super clusters or 

galaxy and the cosmological level is a self-similar complex 

system and includes self-similar processes at every level. 

In this theory the fractal space-time includes in a funda-

mental way the probabilistic character of the physical 

dynamics as well as the symmetry braking of time reversal.

7.7   Complexity as a new theory

Complexity is considered as a new and independent 

physical theory which was developed after the Relativ-

ity Theory and Quantum mechanics. It is related to far 

from equilibrium dynamics and concerns the creation 

and destruction of spatiotemporal patterns, forms and 

structures. According to Prigogine [34], Nicolis [49, 131] 

and others, complexity theory corresponds to the flow 

and development of space-time correlations instead of 

the fundamental local interactions. Moreover, according 

to Sornette [132], systems with a large number of mutually 

interacting parts and open to their environment can self-

organize their internal structure and their dynamics with 

novel and sometimes surprising macroscopic emergent 

properties. These general characteristics make the com-

plexity theory, a fundamentally probabilistic theory of the 

non-equilibrium dynamics.

Until now complexity concerns mainly macroscopic 

physical systems. The traditional point of view is to explain 

macroscopic complex dynamics by the basic microscopi-

cal physical theory which is a fundamental Quantum 

Field Theory (QFT) with all its modern manifestations 

like supersymmetry and gauge symmetries or super-

string theory (ST) including the M-theory (superstring) or 

D-branes theories [12]. Also, such a type of fundamental 

field theory belongs to the general class of time reversible 

and deterministic physical theory. However, the quantum 

probabilism is not included inherently in the fundamental 

theory but as an external interpretation of its mathemati-

cal formulation. It concerns the observer and the action 

measurement (observation), but not the dynamics of the 

objective physical system which corresponds to an objec-

tive and deterministic process in a general state space. 

At the macroscopic level, we are obliged as observers 

or as knowing subjects to use statistical or probabilistic 

methods. From this point of view, chaos with its famous 

characteristic of sensitivity to initial conditions (chaotic 

instability) or the older Heisenberg’s uncertainty princi-

ple do not cause any trouble to the theoretical or dogmatic 

determinism rooted to the Cartesian metaphysic realism.

After all it is significant to search for a unifying route 

through complexity of the physical theory at the micro-

scopical and macroscopical or cosmological level even 

of it is too early for such a dream. In the following, we 

present significant evidence for such a route.

7.8   Complexity as a kind of macroscopic 
quanticity

The central point of complexity theory is the possibility 

for a physical system, which includes a great number of 

parts or elements, to develop internal long-range corre-

lations leading to macroscopic ordering and coherent 

patterns. These long-range correlations can also appear 

at the quantum level. In particular, according to the 

general entanglement character of the quantum theory, 

the quantum mechanical states of a system with two or 

more parts cannot be expressed as the conjunction of 

quantum states of the separate parts. This situation gen-

erally reflects the existence of non-local interactions and 

quantum correlations while the measurements bearing 

on either part correspond to random variables which are 

not independent and can be correlated independently of 

the spatial distance of the parts [133]. This means that 

the quantum density operator cannot be factored while 

the quantum state corresponds to the global and undi-

vided system. The macroscopic manifestation of the 

quantum possibility for the development of long-range 

correlations is the spontaneous appearance of ordered 

behavior in a macroscopic system examples of which are 

phenomena like superfluidity and superconductivity or 

lasers [134].

These quantum phenomena display coherent behav-

ior involving the collective cooperation of a huge number 

of particles or simple elements and a vast number of 

degrees of freedom. They correspond also to equilibrium 

phase transition processes which constitute the meeting 

point of quantum theory and complexity. Here the devel-

opment of quantum long range correlations leads to a 

macroscopic phase transition process and macroscopic 

ordering. It is not out of logic or physical reality to extend 

the unifying possibility of quantum process for develop-

ment of long-range correlations or the quantum entangle-

ment character to a macroscopic self-organizing factor 

causing also the far-from equilibrium symmetry breaking 

and macroscopic pattern formation. From this point of 
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view we can characterize complexity as a kind of a macro-

scopic quanticity [19, 135, 136].

7.9   Quantum theory as a kind of microscopic 
chaoticity or complexity

Bohm and Hiley [137] imagined that the quantum theory 

must be the manifestation of subquantum complex 

dynamics. During the last years, we observe the produc-

tive onset or the impetus invasion of chaos and complex-

ity from macroscopic to the microscopic quantum level 

[5]. In the following we present some novel concepts in 

this direction:

Analytical continuation and fractal space-time can 

convert an ordinary diffusion equation into a Schrödinger 

equation and a telegraph equation into a Dirac’s equation. 

From this point of view analytical continuation is a short 

of cut quantization.

Positive Lyapunov exponents of non-abelian gauge 

fields reveal the significance of chaos for the quantum 

field theory [4].

Coupled map lattices with spatiotemporal chaotic 

profile can be used to simulate quantum field theories in 

an appropriate scaling limit.

Kaneko coupled map lattices including chaotic strings 

provide the background for the Parisi-Wu stochastic quan-

tization of ordinary string and quantum field theories [3, 

125]. Chaotic strings can be used also to provide a theo-

retical argument why certain standard model parameters 

are realized in nature reproducing numerical values of the 

electroweak and strong coupling constants masses of the 

known quarks and leptons neutrino, W boson and Higgs 

mass.

Renormalization group (RG) flows on the superstring 

world sheet becomes chaotic and leads to non-Mark-

ovian Fokker-Planck equation with solutions describ-

ing the transition from order to chaos and revealing the 

 Feigenbaum universal constant [138]. The appearance 

of this constant reveals the scaling of space-time curva-

tures at the fixed points of the RG flow, which becomes 

chaotic near singularities where the curvature is very 

large [117, 139].

The Parisi and Wu [124] stochastic quantization theory 

relates the quantum field theory in D-dimensions to a 

classical Langevin equation in D + 1-dimensions where 

the  Parisi-Wu fictitious time plays the role of an extra 

dimension. In this picture there exists a short of classical 

stochasticity and quantum theory duality [140]. The sto-

chastic quantization can be transform to chaotic quanti-

zation, similar to chaotic deterministic dynamical systems 

which can generate Langevin dynamics in an appropriate 

scaling limit. In this approach, quantum field theories can 

be simulated by chaotic dynamics. Non-extensive statis-

tics [2], fractal string and branes, fractal statistics, fractons 

and anyons particles as well as chaotic M(atrix) theory 

indicate the establishment of chaos and complexity at the 

microscopic and the quantum level [12]. In this direction, 

Gerard Hooft raised the conjecture that quantum theory 

can be derived as the low-energy limit of a microscopically 

deterministic but dissipative theory [6]. According to this 

concept classical Perron-Frobenius operators or deter-

ministic automata can produce quantum states in Hilbert 

spaces as well as the Schrödinger equation [141–144].

7.10   The road of complexity for the physical 
theory unification

In this way, the Feynman rules and diagrams become 

common tool from the estimation of probabilistic processes 

at the microscopic quantum level or the macroscopic level 

of continuous media as they are being described by the 

Ginzburg-Landau model [118, 119]. In this direction, we 

could imagine Feynman rules and renormalization group 

theory as the universal characteristics of probabilistic pro-

cesses at the microscopic and the macroscopic level. The 

renormalization group equations have many common fea-

tures with non-linear dynamical systems, so that besides 

the existence of isolated fixed points, the coupling in a 

renormalizable field theory may flow also towards more 

general even fractal attractors. This could lead to Big Mess 

scenarios in application to multiphase systems, from spin-

glasses and neural networks to fundamental string theory 

[117]. In this direction Cristopher Hill [145] introduced 

the fractal theory space where the key idea is that the 

Feynman path integral is invariant under a sequence of 

renormalization group transformations that map the kth 

lattice into the k – 1 lattice. In the continuum limit these 

models produced quantum field theories in fractal dimen-

sions D = 4 + ε. These theories are connected to the scaling 

behavior of fractal strings (branes), while the couplings 

oscillate on a limit cycle. Moreover, the concept of fractal 

space-time can be used for the foundation of an extended 

Einstein’s Relativity Principle unifying the micro and 

macro levels [121–123, 136].

In this direction, Ord [76] showed that fractal trajecto-

ries in space with Hansdorff dimension D = 2 exhibit both 

an uncertainty principle and a De Broglie wave – particle 

duality relations. Furthermore, L. Nottale introduced the 

principle of Scaled Relativity according to which the laws 

of physics are scale invariant. This theory is related also 
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to the concept of fractal space-time. According to Nottale, 

the consequence of scale invariance principle and space-

time fractality opens the door for a grand unification of 

cosmos, from the microscopic quantum level to the mac-

roscopic and cosmological level. The starting point of the 

theory is the refusing of the unjustified assumption of the 

differentiability of the space-time continuum.

The non-differentiable space-time continuum is nec-

essarily fractal. The development of the theory starts by 

making the various physical quantities explicitly depend-

ent on the space-time scale while the fundamental laws 

become also scale dependent. In this frame of theory the 

non-differentiability of space-time implies the breaking 

of time reversibility, and the global unification of micro-

scopical and macroscopical laws.
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