
RESEARCH ARTICLE

Complexome profile of Toxoplasma gondii

mitochondria identifies divergent subunits of
respiratory chain complexes including new
subunits of cytochrome bc1 complex

Andrew E. MacleanID
1*, Hannah R. BridgesID

2, Mariana F. SilvaID
1,3, Shujing Ding2,

Jana OvciarikovaID
1, Judy HirstID

2, Lilach SheinerID
1*

1 Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom, 2 MRC
Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom, 3 Institute of Biomedical

Sciences, Federal University of Uberlândia, Uberlândia, Brazil

* andrew.maclean@glasgow.ac.uk (AEM); lilach.sheiner@glasgow.ac.uk (LS)

Abstract

The mitochondrial electron transport chain (mETC) and F1Fo-ATP synthase are of central

importance for energy and metabolism in eukaryotic cells. The Apicomplexa, important

pathogens of humans causing diseases such as toxoplasmosis and malaria, depend on

their mETC in every known stage of their complicated life cycles. Here, using a complexome

profiling proteomic approach, we have characterised the ToxoplasmamETC complexes

and F1Fo-ATP synthase. We identified and assigned 60 proteins to complexes II, IV and

F1Fo-ATP synthase of Toxoplasma, of which 16 have not been identified previously. Nota-

bly, our complexome profile elucidates the composition of the Toxoplasma complex III, the

target of clinically used drugs such as atovaquone. We identified two new homologous sub-

units and two new parasite-specific subunits, one of which is broadly conserved in myzozo-

ans. We demonstrate all four proteins are essential for complex III stability and parasite

growth, and show their depletion leads to decreased mitochondrial potential, supporting

their assignment as complex III subunits. Our study highlights the divergent subunit compo-

sition of the apicomplexan mETC and F1Fo-ATP synthase complexes and sets the stage for

future structural and drug discovery studies.

Author summary

Apicomplexan parasites, such as Toxoplasma and Plasmodium, cause diseases of global

importance, such as toxoplasmosis and malaria. The mitochondrial electron transport

chain (mETC) and F1Fo-ATP synthase, which provide the parasite with energy and

important metabolites, are essential for parasite function. Here, using a proteomic tech-

nique called complexome profiling, we report the composition of the ToxoplasmamETC

and F1Fo-ATP synthase. In particular, we reveal the compositions of complexes II and III

for the first time. Complex III is an important drug target, yet its full protein composition
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was unknown. We identify new parasite-specific complex III subunits and demonstrate

that they are essential for parasite survival and for proper functioning of the mETC. Our

study highlights the divergent nature of the apicomplexan mETC and F1Fo-ATP synthase.

Introduction

The mitochondrial electron transport chain (mETC), a series of protein complexes in the

inner mitochondrial membrane, is essential in nearly all eukaryotic cells. Typically, four com-

plexes (complexes I-IV) (Fig 1A) transport electrons that are harvested from metabolic path-

ways, such as fatty acid oxidation and the TCA cycle, to oxygen, the final electron acceptor.

Complexes I, III and IV in the mETC couple electron transfer to proton translocation across

the inner mitochondrial membrane to form an electrochemical potential, which is then utilised

by the mitochondrial F1Fo-ATP synthase (ATP synthase) to generate ATP: this whole process

is known as oxidative phosphorylation. In addition to generating ATP, the electrochemical

potential produced by the mETC powers many other essential functions, including the import

of mitochondrial proteins [1] and the synthesis of pyrimidines [2].

Apicomplexans are eukaryotic unicellular parasites which cause diseases of global impor-

tance in humans and livestock. Malaria, caused by Plasmodium spp, kills an estimated 400,000

people annually [3] while Toxoplasma gondii causes toxoplasmosis, a disease that can be fatal

in immunocompromised people and foetuses [4]. Apicomplexans have a complicated life cycle

in which they undergo both asexual and sexual replication as they progress between intermedi-

ate and definitive hosts and within the tissues of each host. In both Plasmodium and Toxo-

plasma, the mETC is essential in all the life cycle stages studied [2, 5–7] and it is a major drug

target, e.g. for the clinically used atovaquone [8–12]. T. gondii is an important pathogen, and

as it can be cultured in quantities suitable for organelle enrichment and proteomics and is

genetically tractable [13], it is a versatile model to study the unique and conserved traits of api-

complexan mETC biology.

The apicomplexan complexes involved in oxidative phosphorylation (Fig 1B) are highly

divergent from those of mammals. Notably, the genomes of apicomplexan and related organ-

isms [14] lack genes encoding the subunits of complex I (NADH:ubiquinone oxidoreductase),

rendering them insensitive to the complex I inhibitor rotenone [15, 16]. Thus, while in mam-

mals electrons are fed from the TCA cycle on NADH to complex I and on succinate to com-

plex II (succinate dehydrogenase), electrons from NADH enter the apicomplexan mETC

through an alternative NADH dehydrogenase (NDH2) (Fig 1B) [17]. In total, five quinone

reductases are suggested to operate in Apicomplexa. In the absence of complex I, complex III

(the ubiquinol:cytochrome c oxidoreductase, also known as the cytochrome bc1 complex), is

the first proton pumping complex in the apicomplexan mETC. Information is already avail-

able about the composition of Toxoplasma complex IV (the cytochrome c:O2 oxidoreductase)

and ATP synthase, including the presence of parasite-specific subunits [6, 7, 18]. However,

despite the importance of complexes II and III to the function of the apicomplexan mETC,

their composition remains uncharacterised.

The structure and function of complex III in the mETC of opisthokonts, such as yeast and

mammals, is well understood [19–23]. Three core subunits are directly involved in electron

transfer from ubiquinol to the mobile carrier protein, cytochrome c, and in the concomitant

proton pumping reaction: the cytochrome b, Rieske and cytochrome c1 subunits [24]. One

electron is passed from ubiquinol bound at the Qo site, via two haem b groups on cytochrome

b, to ubiquinone at the Qi site; the other is transferred via the Rieske iron-sulphur (FeS) cluster
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and cytochrome c1 to the mobile cytochrome c protein. All complexes III are structural dimers,

with the Rieske subunit crossing the dimer interface. Each monomer of the mammalian com-

plex contains eight further ‘supernumerary’ subunits [25], and the yeast complex contains

seven [26]. The subunit composition of complex III in apicomplexans is currently unknown.

The three key conserved catalytic subunits, the cytochrome b, Rieske and cytochrome c1

Fig 1. mETC and F1Fo-ATP synthase in mammals and apicomplexans. A schematic showing the main features of the mitochondrial electron transport chain
(mETC) and ATP synthase in mammals (A) and in apicomplexans (B). The four complexes are depicted in orange (Complex I: NADH:ubiquinone
oxidoreductase; Complex II: succinate dehydrogenase; Complex III: cytochrome bc1 complex; Complex IV: cytochrome c oxidase; and F1Fo-ATP synthase).
Mobile electron carriers (ubiquinone/ubiquinol and the intermembrane space protein cytochrome c) are depicted in green. Main alternative entry points (the
dehydrogenases DHODH: dihydrooratate dehydrogenase; G3PDH:glycerol 3-phosphate dehydrogenase; MQO:malate:quinone oxidoreductase and NDH2:
type 2 NADH dehydrogenase (Toxoplasma possesses two copies)) are depicted in grey. The path of electron flow across the mETC complexes is depicted by
blue arrows and the path of protons across the inner mitochondrial membrane (IMM) from the matrix to intermembrane space (IMS) and back is depicted
with black arrows.

https://doi.org/10.1371/journal.ppat.1009301.g001
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proteins, along with four well-conserved supernumerary subunits, can be readily identified by

homology searches [14, 17, 27]. Further apicomplexan or myzozoan-specific subunits, as have

been identified in apicomplexan complex IV and ATP synthase [6, 7, 18], likely remain to be

identified.

Despite its important role in parasite survival, and as a drug target, there are still large gaps

in our knowledge of the apicomplexan mETC [17, 28]. In this study, we use a complexome

profiling proteomic approach to explore the highly divergent mETC and ATP synthase of T.

gondii. We confirm previously identified subunits of complex IV and ATP synthase, and pro-

pose new apicomplexan and myzozoan-specific subunits for those complexes. We investigate

in detail the composition of complexes II and III, and describe and validate four previously

undescribed structural subunits of complex III. We show that these complex III subunits are

essential for parasite growth, for mETC function, and for enzyme integrity. Along with a con-

temporaneous study [29] this is the first description of the composition of apicomplexan com-

plex III; it increases our understanding of this critical complex and sets the stage for future

structural and drug discovery studies.

Results

Complexome profiling of Toxoplasmamitochondria identifies the
respiratory complexes and reveals putative new subunits of complex IV and
ATP synthase

Over the last decade complexome profiling has proved a powerful technique for studying

mitochondrial macromolecular complexes, providing large scale proteomic data of complexes

separated under native conditions [30–33]. Here, we applied complexome profiling to the

Toxoplasmamitochondrial complexes to gain a fuller understanding of their composition.

Toxoplasmamitochondria were enriched as described previously [34], and then further iso-

lated via a Percoll gradient purification step (Figs 2A and S1). Immunoblot analyses showed

the mitochondrial fraction had only a low abundance of other prominent Toxoplasma cellular

components, such as pellicles and the plasma membrane (Fig 2B), although some host (Chlor-

ocebus sabaeus) cell mitochondria were also recovered (S2A Fig). As observed previously [35]

apicoplast contamination was observed in the mitochondrial fraction. Mitochondrial samples

were solubilised in 1% n-dodecyl β-D-maltoside (DDM) detergent and protein complexes sep-

arated by size under native conditions by blue-native PAGE (BN-PAGE) (S1 Fig). The gel

shown in S2A Fig was cut into 63 gel slices and each slice analysed by mass spectrometry. The

top two slices were excluded from analysis as they typically contain insoluble aggregates that

did not fully enter the gel, thus distorting abundance profiles. Then, the relative abundance of

each protein in each of the remaining 61 slices shown in S2A Fig was calculated to create the

‘complexome profiles’ that can be clustered to identify co-migrating proteins that are bound

together in complexes of different total molecular mass. In total, 842 Toxoplasma proteins

were identified (S1, S2, and S3 Tables), including 75% (Fig 2C and S3 Table) of the 170 pro-

teins assigned to the mitochondrial membrane fraction in a recent organelle proteomics atlas,

generated for Toxoplasma via Localisation of Organelle Proteins by the Isotope Tagging

(LOPIT) method [36]. This comparison suggests that our isolation process captured the

majority of mitochondrial membrane proteins. The total also includes 41% of the 229 proteins

assigned to the soluble mitochondrial fraction and 46% of the 405 proteins from a Toxoplasma

mitochondrial matrix proteome [7] (Fig 2C and S3 Table). In total, 261 proteins with previous

proteomic support for mitochondrial localisation were identified (S3 Table). Interestingly,

most known subunits of the Toxoplasmamitoribosome were not detected and the three
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detected did not share abundance profile (S4 Table). It is possible that the mitoribosome did

not enter the gel under the conditions used.

Proteins in the same intact mETC complex co-migrate in native gels [6, 7, 18, 34] and typi-

cally display similar relative abundance profiles. Indeed, the dataset generated here showed

that numerous previously assigned mETC and ATP synthase proteins co-migrated in the gel,

allowing us to identify the migration positions of the different respiratory complexes (Figs 2D,

S2B and S2C and S1 Table). Previously uncharacterised proteins with similar abundance pro-

files as the known subunit proteins are therefore potential new components of the T. gondii

respiratory complexes. The contamination with host mitochondria served as a useful valida-

tion for the PAGE and clustering process–we identified the complexes from C. sabaeus (the

primate origin of the host cells used to propagate T. gondii for this experiment) formed by the

expected clusters of subunits, and we were able to use the known [37–39] or Mitoprot-pre-

dicted [40] mature masses of several C. sabaeus proteins as a calibration to estimate the

unknown masses of observed T. gondii protein complexes (S2D Fig and S5 Table).

The composition of ATP synthase in Toxoplasma has recently been studied through immu-

noprecipitation and in silico analyses [6, 18]. 27 of the 29 previously identified Toxoplasma

ATP synthase subunits [6, 18] were detected in our data. We observed that profiles for the con-

served α and β subunits showed two peaks, one of which coincided with other subunits from

the Toxoplasma complex, and the other with ATP synthase subunits from C. sabaeus (S3 Fig).

Closer inspection found that highly abundant peptides common to both species were skewing

the profiles. To overcome this, the α and β protein sequences from both species in the database

were truncated to before the first common peptide (S3 Fig and S6 Table). After truncation,

the profiles for Toxoplasma ATP synthase subunits α and β coincided with the profiles of the

other ATP synthase subunits (S3 Fig) with their relative abundance profiles peaking in gel

slice 4 (Figs 2D and S2D). Our mass calibration (S2B Fig and S5 Table) suggests Toxoplasma

ATP synthase has a total mass of ~1860 kDa, substantially larger than the 900 kDa complex

suggested by Huet et al, 2018 [6] and the 1–1.2 MDa complex suggested by Salunke et al, 2018

[18]. Differences from previous studies may be a result from the use of different detergents,

which affect the Native migration of complexes. Native PAGE carried out under the same con-

ditions as for the complexome analysis, followed by immunoblotting with an antibody against

the ATP synthase β subunit, confirmed the migration of the Toxoplasma ATP synthase and its

high molecular mass,>1 MDa (S4A Fig). Of the known ATP synthase subunits, only OSCP

(TGGT1_284540) exhibits an apparent additional peak elsewhere in the gel (slice 37, ~86

kDa), possibly representing an assembly intermediate or electrophoretic degradation. Three

additional proteins, TGGT1_246540, TGGT1_290710 and TGGT1_211060 exhibit similar rel-

ative abundance profiles to known ATP synthase subunits, suggesting they could be novel

Fig 2. Complexome profiling of Toxoplasma respiratory complexes. (A) Percoll gradient used for density-gradient fractionation.
Samples were taken from the top, 18%/23% and 23%/40% Percoll interfaces (marked with dashes lines) for analysis via immunoblot
(shown in B). The fraction recovered from the 23%/40% Percoll interface was used for complexome profiling. (B) Immunoblot analysis
of fractions from total cell lysate (total) and the density-gradient fractionation (top, 18/23 and 23/40) with antibodies against marker
proteins for several cell components. Protein concentration from each fraction was quantified with a Bradford assay and 5 μg loaded per
lane. Equal loading was confirmed by comassie staining (bottom panel). The following antibodies were used: Mys (mitochondrion),
CPN60 (apicolplast), SAG1 (plasma membrane), IMC1 (inner membrane complex) and aldolase (cytosol). (C) Proportion of three
mitochondrial proteome datasets: LOPIT mitochondrial membrane, LOPIT mitochondrial soluble [36] and mitochondrial matrix
proteome [7] found in the complexome profile dataset. (D) Complexome profile heatmap of the Toxoplasma respiratory complexes
subunits. Protein IDs or names are shown on the left of their respective profiles. Previously identified subunits are labelled in black, and
putative novel subunits are labelled in blue. Heatmaps x-axis depict the 61 gel slices of the BN-PAGE gel from the top (left) to the
bottom (right) of the gel. Molecular weight markers are based on the migrations of mammalian mitochondrial complexes of known
size. Red indicates the highest relative abundance (1) and black the lowest (0). Asterisks mark subunits CytC1 of complex III and
ATPTG1 of ATP synthase, which are both encoded by the same gene, TGGT1_246540, and therefore have the same profile (see S4 Fig).
The full complexome profiling dataset is provided in S1 Table.

https://doi.org/10.1371/journal.ppat.1009301.g002
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members of this complex (Figs 2D and S2D). Indeed, these three proteins were identified in a

recent structure of Toxoplasma ATP synthase [41] and were named ATPTG1, ATPTG7 and

ATPTG16, respectively. Homology searches with the HMMER tool suggests they have a simi-

lar phylogenetic distribution to recently discovered myzozoan-restricted ATP synthase sub-

units [6, 18] (S4B Fig and S7 Table), highlighting the divergence of the ATP synthase complex

in this lineage. Of note, the TGGT1_246540 gene that encodes ATPTG1 also encodes the cyto-

chrome c1 subunit of complex III (see below). Supporting this, we observe two peaks for the

abundance of TGGT1_246540 in the gel: its highest relative abundance is in slice 15, with

other complex III subunits, however it also exhibits a peak in slice 4, with ATP synthase sub-

units. Peptides with a peak in slice 4 (ATP synthase) map to the N-terminal portion of the pro-

tein, while peptides with their peak in slice 15 (complex III) map to the C-terminal portion,

after residue 153 (S4C Fig). Apicomplexan homologs of ATPTG1 inHammondia hammondi,

Babesia bovis, Plasmodium falciparum and Plasmodium berghei also contain cytochrome c1

domains (S4B Fig and S7 Table), but homologs from Cryptosporidium muris, Vitrella brassi-

caformis and Perkinus marinus do not contain this domain.

All of the 14 recently identified nuclear encoded complex IV subunits [7, 34] were identi-

fied and co-migrated on the gel, with peak abundance observed in gel slice 19 (Figs 2D, S2C

and S2D). Using the sequence of the T. gondiimitochondrial genome from a recent study

[42], we also detected the two mitochondrially encoded complex IV subunits, CoxI and CoxIII

(Fig 2D), which have not been previously detected in large-scale proteomic studies. The Toxo-

plasma complex IV is estimated to have a total mass of ~460 kDa (S5 Table), smaller than the

600 kDa estimated by Seidi et al., 2018 [7], but substantially larger than the 200 kDa of mam-

mals and yeast [43, 44]. The sum of the protein masses of the 16 previously identified subunits,

after removal of any mitochondrial targeting sequences estimated by Mitoprot [40], is 364 kDa

(S8 Table), lower than both experimental estimates, suggesting the presence of additional,

unidentified Toxoplasma complex IV subunits. In support of this prediction six other proteins

(TGGT1_257160; TGGT1_225555; TGGT1_312160; TGGT1_200310; TGGT1_263630;

TGGT1_316255) co-migrated with complex IV, suggesting that they may be novel complex IV

subunits (Fig 2D). The identification of TGGT1_257160 was based on a single peptide with a

moderate score (above the p<0.05 threshold but not above the p<0.01 threshold). The sum of

their masses is 74 kDa, which, when added to 364 kDa for the known subunits, gives a total of

438 kDa, close to the experimental estimate of 460 kDa. Further evidence for their assignment

as complex IV subunits is apparent from close examination of proteomic data from two recent

studies [7, 34]; both studies observed these proteins, but did not assign them to complex IV. In

addition, the LOPIT dataset [36] suggests all six proteins are present in mitochondrial mem-

branes (S8 Table) and homology searches with the HMMER tool suggests their phylogenetic

distribution is limited to apicomplexans and coccidians (S5 Fig and S6 Table).

The identification of all previously known complex IV subunits and most known ATP

synthase subunits both validates our approach and confirms the compositions of these two

complexes. Our approach has further highlighted three additional ATP synthase subunits and

six candidate new components of complex IV.

Identification of an unusually large complex II and assignment of new
apicomplexan complex II subunits

The composition of the apicomplexan complex II has not previously been investigated. The

mammalian complex is made up of four subunits [45], and genes for the soluble domain (FAD

and FeS-containing subunits SDHA and SDHB) are readily identified in T. gondii [14, 17, 27].

However, the sequences for the membrane-bound subunits responsible for quinone binding
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and reduction remain elusive (Tables 1 and S9). In our complexome analysis, we found the

FeS-containing subunit B (SDHB) to migrate at ~500 kDa, with its highest abundance in slice

18 (Figs 2D, S2C and S2D and S5 Table). This size is much larger than for the mammalian

and yeast complexes (~130 kDa) [37, 43], but in line with a the similarly large complex of 745

kDa recently proposed for the apicomplexan Eimeria tenella [46]. The SDHA subunit profile

showed two peaks, one of which coincided with SDHB from Toxoplasma, and the other with

the known C. sabaeus complex II subunits. As described above for α and β subunits of ATP

synthase, where we encountered a similar issue, we attempted to overcome this problem by

truncating the protein sequences in the database before the common peptides. However, this

time the peak relative abundance for the Toxoplasma SDHA subunit remained in the same

slice as that for the C. sabaeus complex. To confirm the migration of SDHB and the apparent

large molecular weight of the T. gondii complex II, we attached a C-terminal triple hemaggluti-

nin (HA) epitope tag to the SDHB subunit, by endogenous tagging using CRISPR-mediated

homologous recombination in the TATiΔku80 parental strain [47] (S6A Fig). Clonal lines

were isolated by serial dilution and confirmed by PCR (S6B Fig). Migration of Toxoplasma

SDHB-HA on SDS-PAGE confirmed its predicted size from the gene model (TGGT1_215280,

~42 KDa) (Fig 3A). BN-PAGE and immunoblot analysis indicated the SDHB subunit migrates

between the 480 and 720 kDa marker (Fig 3B), consistent with the ~500 kDa observed in our

complexome profile. Further, Toxoplasma SDHB-HA co-localised with the mitochondrial

marker TOM40 [48] in an immunofluorescence assay (IFA), confirming its predicted mito-

chondrial location (Fig 3C). These data suggest that Toxoplasma possesses a complex II that is

greater in size than in other well studied systems. While the large size could partly be explained

by a higher order oligomer of the complex, it may also point to additional parasite-specific

subunits. Likewise, functionally, it is expected that there must be at least one other subunit

associated in addition to the identifiable SDHA and B subunits, to allow electron transfer from

the FeS clusters to ubiquinone. In support of these predictions, seven other proteins were

found to co-migrate with SDHB, with peak abundances in gel slice 18 (Fig 2D) suggesting the

existence of novel complex II subunits. Five of these were identified by the Toxoplasma LOPIT

study as proteins of the mitochondrial membrane fraction [36], consistent with the expected

mitochondrial membrane localisation for complex II (Tables 1 and S9); all seven proteins are

annotated as hypothetical proteins and do not contain any protein features indicative of

function.

To investigate these complex II subunit candidates further we considered their phylogenetic

distribution using the HMMER similarity search tool (Fig 3D and S7 Table). All of them,

except for TGGT1_227920, are well conserved in the apicomplexans Hammondia hammondi,

Babesia bovis, Plasmodium falciparum and Plasmodium berghei (Fig 3D), although absent

from ciliates, suggesting myzozoa restricted distributions. To discriminate between putative

complex II subunits and other mitochondrial proteins we used the fact that complex II is pres-

ent in Cryptosporidium muris, but absent from Cryptosporidium parvum [17]. Therefore, com-

plex II subunits should follow this phylogenetic pattern, as observed for SDHA and SDHB (Fig

3D). Four of the seven co-migrating proteins (TGGT1_306650, TGGT1_252630,

TGGT1_206480 and TGGT1_315930) follow this same pattern, supporting their allocation to

complex II. These four proteins were also identified in the recent Toxoplasmamitochondrial

matrix proteome [7]. In summary, we identify seven candidate novel Toxoplasma complex II

subunits by co-migration and find phylogenetic support for four of them (Tables 1 and S7).

In addition to complex II, we observed evidence for the following quinone reductases: two

single-subunit type II NADH dehydrogenases (NDH2) (in ToxoplasmaNDH2-I and II [49]),

malate:quinone oxidoreductase (MQO), dihydroorotate dehydrogenase (DHODH) and FAD-

dependent glycerol 3-phosphate dehydrogenase (G3PDH) [17] (S7 Fig). These proteins all
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migrated to positions under 140 kDa, consistent with their presence as monomers or dimers,

and their predicted sizes from current gene models.

Identification of putative new apicomplexan complex III subunits

The composition of the apicomplexan complex III has not previously been studied. Six canonical

subunits of eukaryotic complex III can be readily identified in apicomplexan genomes, including

Toxoplasma, by homology searches [7, 14, 17, 27] (Tables 2 and S9). They include the catalytic

Rieske and cytochrome c1 subunits (TGGT1_320220 and TGGT1_246540), herein named

Rieske and CytC1, and four supernumerary subunits (TGGT1_236210; TGGT1_202680;

TGGT1_320140 and TGGT1_288750) herein named QCR1, QCR2, QCR6 and QCR7. These six

conserved subunits co-migrated with peak abundance in gel slice 15, corresponding to ~670

kDa, slightly larger than the 500 kDa complex found in mammals [39, 43] (Figs 2D, S2B, S2C,

and S2D and S5 Table). We also detected the mitochondrially encoded subunit, cytochrome b

(CytB) identified with a single peptide with a moderate score (above the p<0.05 threshold but

not above the p<0.01 threshold) (Fig 2D). Three other subunits found in the mammalian com-

plex (UQCRQ, UQCR10 and UQCR11) are not identified in the Toxoplasma genome by homol-

ogy searches. The larger size of T. gondii complex III, and the inability to identify homologs for

these three subunits, suggest further subunits of complex III are present. In line with this predic-

tion, six additional proteins co-migrate with the known complex III subunits in our complexome

analysis (Fig 2D and S1 Table). Given the importance of complex III as a drug target, and the

fact that little is known about the apicomplexan complex, we proceeded to provide validation to

the assignment of these putative new subunits as integral parts of Toxoplasma complex III.

All 13 proteins identified here as potential complex III subunits are detected in the LOPIT

dataset [36], 12 of them in the mitochondrial membranes fraction (Tables 2 and S9). The only

protein not predicted to be mitochondrial is encoded by TGGT1_233220; it was predicted to

be Golgi and/or plasma membrane localised, and so was not studied further. Of the remaining

12 proteins, 11 were also identified in a Toxoplasmamitochondrial matrix proteome generated

through proximity tagging (Tables 2 and S9) [7]. The exception is the highly conserved CytB

subunit, either due to it being a highly hydrophobic, membrane-embedded protein or to previ-

ously uncertain gene-model annotation.

The mETC chain is essential for Toxoplasma survival in culture [6, 7, 17], and inhibitors of

complex III result in parasite death [50–55]. Consequently, subunits of complex III are pre-

dicted to be essential for growth in culture. A genome wide CRISPR screen has provided

Table 1.
Details of putative complex II subunits. Phenotype scores were taken from Sidik et al., 2016 [56]; Matrix proteome from Seidi et al., 2018 [7] (Y–present in proteome,
N–absent); LOPIT from Barylyuk et al., 2020 [36] (mm–mitochondrial membrane, ms- mitochondrial soluble N/A–not identified in dataset). TMD: Transmembrane
domain, predicted by TMHMM.

Gene ID Name Phenotype score Matrix proteome LOPIT Length (aa) Size (kDa) TMD

TGGT1_215590 SDHA -3.96 Y ms 669 72.7 No

TGGT1_215280 SDHB -2 Y mm 342 38.6 No

TGGT1_206480 hypothetical -1.8 Y mm 207 22.5 No

TGGT1_252630 hypothetical -1.45 Y mm 136 15.1 No

TGGT1_306650 hypothetical -1.8 Y mm 286 31.4 No

TGGT1_315930 hypothetical -3.84 Y mm 157 18.1 No

TGGT1_223485 hypothetical -1.49 N N/A 93 10.3 No

TGGT1_226500 hypothetical -0.89 N mm 92 11.1 Yes (1)

TGGT1_227920 hypothetical -2.42 N N/A 85 9.5 No

https://doi.org/10.1371/journal.ppat.1009301.t001
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phenotype scores for thousands of genes [56]. 10 of the 11 nuclear-encoded genes encoding

putative complex III subunits have phenotype scores below -3 (Table 2), indicating a high

degree of contribution to fitness. In contrast, TGGT1_297160, encoding one of the hypotheti-

cal proteins, has a high phenotypic score (0.1), suggesting a dispensable role for growth in cul-

ture. In addition, we considered the predicted protein size. By considering the well-studied

complex III of mammals, in which the remaining subunits, UQCRQ, UQCR10 and UQCR11,

are all smaller than 150 amino acids, we hypothesised that any new Toxoplasma complex III

subunits would be of similar size. While four of the five hypothetical complex III subunit can-

didates are under 150 amino acids in length, TGGT1_297160 is predicted to encode a 564

amino acid protein (Table 2). The high fitness score and large size render TGGT1_297160 an

unlikely candidate for a novel complex III subunit. These bioinformatic data allowed us to

focus on four putative novel subunits: TGGT1_201880, TGGT1_214250, TGGT1_207170 and

TGGT1_227910.

Fig 3. Analysis of putative Toxoplasma complex II subunits. (A) Immunoblot analysis of complex II subunit SDHB
endogenously tagged with an HA epitope. Proteins from total lysate were separated by SDS-PAGE and detected using
anti-HA antibodies. Parasites from the parental line (TATIΔku80) were analysed as negative control. (B) Total lysate
from SDHB-HA separated by BN-PAGE and immunolabelled with anti-HA antibodies. (C) Immunofluorescence
assay with parasites expressing the endogenously HA-tagged SDHB (cyan), showing co-localisation with the
mitochondrial marker protein TOM40 [48] (magenta), along with merge and phase. Scale bar is 5 μm. (D)
Table showing the previously predicted (known) and complexome identified putative novel (novel) complex II
subunits and their homology distribution across key groups. Homology searches were performed using the HMMER
tool [57]. Coloured circles refer to the e-value from the HMMER search: white indicates a hit with an e-value above
0.0001, black indicates no hits, and red indicates hits with an e-value below 0.0001, as indicated in the coloured scale.
Full data are given in S7 Table.Hh:Hammondia hammondi; Bb: Babesia bovis; Pf: Plasmodium falciparum; Pb:
Plasmodium berghei; Cp: Cryptosporidium parvun; Cyryptosporidium muris; Vb: Vitrella brassicaformis; Pm: Perkinsus
marinus; Sm: Symbiodinium microadriaticum; Pt: Paramecium tetraurelia.

https://doi.org/10.1371/journal.ppat.1009301.g003
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Using HHPRED [57] to determine structural similarity, two of our candidates had regions

predicted to be homologous to existing complex III subunit structures. TGGT1_227910 dis-

played homology with Bos taurusUQCRQ/QCR8 (97.51% probability, e-value 2.2e-6, between

amino acids 58–119, PDB annotation: 1PP9_T). TGGT1_201880 had homology with Saccha-

romyces cerevisiae cytochrome bc1 complex subunit 9 (QCR9) (99.82% probability, e-value

1.7e-23, between amino acids 71–128, PDB annotation: 3CX5_T). Therefore, these proteins

are renamed QCR8 (TGGT1_227910) and QCR9 (TGGT1_201880). TGGT1_214250, and

TGGT1_207170 did not display strong homology with any other known proteins; they are

thus predicted to be parasite-specific and were named QCR11 and QCR12 respectively.

We then investigated the conservation of complex III subunits across different species. The

CytC1 and Rieske subunit genes were widely distributed and found across eukaryotes in all

groups with the exception of Cryptosporidium parvum, which lacks complex III [17] (Fig 4A).

QCR1 and QCR2 were likewise widely conserved but were also conserved in Cryptosporidium

parvum. This is likely due to their peptidase M16 domains, which are also found in mitochon-

drial processing peptidase (MPP) proteins in Cryptosporidium parvum and which may play a

role in mitochondrial protein cleavage. QCR6 and QCR7 are widely conserved, although

homologs were not detected in all groups, possibly due to the small protein size and sequence

divergence. Homologs for QCR8 and QCR9 could not be detected outside the myzozoa, likely

due to high sequence divergence. Interestingly, QCR11 appeared only present in myzozoans

and QCR12 was restricted to the coccidia.

Proteomic data, phenotype scores and structural prediction supported the assignment of 11

proteins, including 4 new ones, from the complexome analysis as complex III subunits. A par-

allel independent study which characterised the Toxoplasma complex III via co-immunopre-

cipitation [29] identified the same 11 subunits, providing support to these assignments. This

new subunit nomenclature was agreed with Hayward and colleagues to keep uniformity in the

field.

Putative complex III subunits localise to the mitochondrion and are part of
a ~670 kDa complex

Our complexome profiling and bioinformatic analysis identified 10 nuclear encoded proteins,

and one mitochondrially encoded protein of complex III. To confirm the predicted mitochon-

drial localisation of the nuclear encoded subunits, proteins were C-terminally tagged with a

Table 2. Details of nuclear encoded complex III subunits. Phenotype scores were taken from Sidik et al., 2016 [56]; Matrix proteome from Seidi et al., 2018 [7]; (Y–pres-
ent in proteome, N–absent); LOPIT from Barylyuk et al., 2020 [36] (mm–mitochondrial membrane, N/A–not identified in dataset). TMD: Transmembrane domain, pre-
dicted by TMHMM server. TGGT1_297160 was initially identified as a potential complex III subunit but was later excluded.

Gene ID Name Human/yeast homolog Phenotype score Matrix proteome LOPIT Length (aa) TMD (TMHMM)

TGGT1_246540 CytC1 CYC1/CYT1 -4.36 Y mm 398 Yes (1)

TGGT1_320220 Rieske UQCRFS1/RIP1 -5.76 Y mm 487 No

TGGT1_236210 QCR1 UQCRC1/QCR1 -4.74 Y mm 509 No

TGGT1_202680 QCR2 UQCRC2/QCR2 -4.3 Y mm 563 No

TGGT1_320140 QCR6 UQCRH/QCR6 -3.69 Y mm 89 No

TGGT1_288750 QCR7 UQCRB/QCR7 -4.04 Y mm 234 No

TGGT1_227910 QCR8 UQCRQ/QCR8 -3.2 Y mm 122 No

TGGT1_201880 QCR9 UQCR10/QCR9 -3.63 Y mm 128 No

TGGT1_214250 QCR11 - -3.94 Y mm + o 80 Yes (1)

TGGT1_207170 QCR12 - -3.44 Y mm 141 Yes (1)

TGGT1_297160 - - 0.1 Y mm 564 No

https://doi.org/10.1371/journal.ppat.1009301.t002
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Fig 4. Analysis of putative Toxoplasma complex III subunits. (A) Table showing the previously predicted (known) and
complexome identified putative novel (novel) complex III subunits and their homology distribution across key groups.
Homology searches were performed using the HMMER tool [57]. Coloured circles refer to the e-value from the HMMER
search: white indicates a hit with an e-value above 0.0001, black indicates no hits, and red indicates hits with an e-value below
0.0001, as indicated in the coloured scale. Full data are given in S7 Table.Hh:Hammondia hammondi; Pb: Plasmodium
berghei; Cp: Cryptosporidium parvun; Cyryptosporidium muris; Vb: Vitrella brassicaformis; Pm: Perkinsus marinus; Sm:
Symbiodinium microadriaticum; Pt: Paramecium tetraurelia; At: Arabidopsis thaliana; Sc: Saccharomyces cerevisiae;Hs:
Homo sapiens. (B) Immunoblot analysis of putative complex III subunits endogenously tagged with an triple-HA epitope tag.
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triple HA epitope tag, as described above (S6A Table). Clonal lines were isolated by serial dilu-

tion and confirmed by PCR (S6B Fig). We successfully endogenously tagged the CytC1,

Rieske, QCR1, QCR2, QCR6 and QCR7 proteins. Expression of HA tagged proteins was con-

firmed by immunoblot and immunofluorescence (Fig 4B and 4C). QCR7 appeared to have a

much weaker immunoreactive signal (Fig 4D), perhaps suggesting lower expression levels, or

the HA epitope tag may interfere with recruitment into the complex, thereby leading to its

turnover. All candidates co-localised with the mitochondrial marker protein TOM40 [48],

confirming their mitochondrial localisation (Fig 4C).

To validate the predicted ~670 kDa size of complex III, lysates from each epitope tagged

line except QCR7 were separated by BN-PAGE and immunoblotted with antibodies against

HA. All putative subunits co-migrated below the 720 kDa molecular weight marker, consistent

with the expected ~670 kDa mass (Fig 4E). A lower molecular weight band, of ~150 kDa, was

observed in some immunoblots of QCR2 (Fig 4E), possibly representing an assembly interme-

diate or electrophoretic degradation.

In other eukaryotes, mETC complexes can associate together to form respiratory supercom-

plexes [43, 58, 59]. These can be detected by native PAGE upon solubilisation by mild non-

ionic detergents, such as digitonin [43]. However respiratory supercomplex formation has not

previously been observed in Toxoplasma. In order to investigate this, lysates from epitope

tagged Rieske, CytC1 and QCR2 parasites were solubilised in DDM, digitonin or octyl β-D-
glucopyranoside (OGP) and separated by BN-PAGE. In digitonin solubilised samples, com-

pared to samples solubilised in DDM, a second, higher molecular weight band was observed

between the 720 and 1048 kDa molecular weight markers, suggesting complex III’s participa-

tion in a supercomplex (Fig 4F). Proteins from total cells of the CytC1-HA line solubilised

with OGP displayed an even higher molecular weight band, above 1048 kDa.

Novel complex III subunits are essential for parasite growth, mitochondrial
membrane potential and intact complex III

To further study the function of QCR8, QCR9, QCR11 and QCR12 we generated conditional

knockdown lines of each gene by replacing the native promoter with an anhydrotetracycline

(ATc) regulated promoter, as previously described [34] (S8A Fig). The knockdowns were gen-

erated in a parental line in which the Rieske complex III subunit was endogenously tagged

with a triple HA epitope tag. Integration of the regulated promoter was confirmed by PCR

(S8B Fig) and downregulation of transcripts after addition of ATc confirmed by qRT-PCR

(S8C Fig). Depletion of each of the four genes resulted in a severe parasite growth defect in pla-

que assays (Fig 5A) demonstrating their importance for parasite fitness.

It is expected that disruption of complex III would result in disruption of the mitochondrial

membrane potential, as observed when complex III is inhibited by the drug atovaquone [60,

61]. We were able to observe the membrane potential of all four of the subunit conditional

knockdown mutants using the cationic carbocyanine dye, JC-1, for which membrane potential

Proteins from total lysate were separated by SDS-PAGE, blotted and detected using anti-HA antibodies. Parasites from the
parental line (Δku80) were analysed as negative control. Antibodies against the mitochondrial protein Mys
(TGME49_215430) [84] were used as a loading control. (C) Immunofluorescence assay of parasites with endogenously HA-
tagged putative complex III subunits (cyan), showing co-localisation with the mitochondrial marker protein TOM40
(magenta), along with merge and phase. Scale bars are 5 μm. (D) Immunoblot analysis of complex III subunits CytC1-HA
and QCR7-HA. Proteins from total lysate were separated by SDS-PAGE, blotted and detected using anti-HA antibodies.
Antibodies against the mitochondrial protein TOM40 [48] were used as a loading control. (E) Total lysate from tagged
complex III subunits separated by BN-PAGE, blotted and immunolabelled with anti-HA antibodies. (F) Total lysate from
tagged complex III subunits, solubilised with different detergents, DDM or digitonin, separated by BN-PAGE, blotted and
immunolabelled with anti-HA antibodies.

https://doi.org/10.1371/journal.ppat.1009301.g004
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dependent accumulation in mitochondria result in change from green to red fluorescence

[62]. The control treatment of parasites with valinomycin, an ionophore that abolishes the

mitochondrial membrane potential, as well as the complex III inhibitors atovaquone and anti-

mycin a, resulted in a decrease of the red signal population, indicating a loss of membrane

potential, as expected. Likewise, depletion of each of the four subunits through treatment with

ATc, resulted in disruption of the membrane potential, observed as a decrease in the red signal

population (Fig 5B). Treatment of the parental line, TATiΔku80, with ATc did not result in
any such decrease.

In Toxoplasma, changes in mitochondrial morphology have been observed in response to

major mitochondrial dysfunction [34]. We assessed the impact of downregulation of QCR8,

QCR9, QCR11 and QCR12 on mitochondrial morphology via immunofluorescence micros-

copy. No significant defect in mitochondrial morphology was observed after downregulation

(S10 Table), suggesting the absence of general mitochondrial biogenesis defect and pointing

to specific defect in complex III.

The putative structural role of supernumerary subunits suggest that their depletion may

result in stalled assembly or impaired stability of the complex, as shown in S. cerevisiae [63, 64]

and in other ToxoplasmamETC complexes [6, 7]. Using immunoblotting against the endoge-

nously tagged Rieske subunit, we assessed the migration of complex III in BN-PAGE following

depletion of each of the four components (Fig 6A, 6B, 6C and 6D). Depletion of all four sub-

units resulted in loss of the complex. This was apparent in QCR8, QCR11 and QCR12 after

two days of downregulation and in QCR9 after three days. Addition of ATc to the parental

Rieske-HA line, where no promoter replacement was performed, had no effect on complex III

stability (Fig 6E). These data suggest all four proteins are required for complex formation and/

or stability. Moreover, at these time points, two unrelated mitochondrial complexes, the mito-

chondrial protein import complex Translocon of the Outer mitochondrial Membrane (TOM)

(Fig 6F) and the mETC complex IV (Fig 6G) were observed to remain fully formed confirm-

ing the specificity of the effect on complex III.

Our data demonstrate the existence of four novel complex III subunits that are crucial for

the formation and/or stability of complex III. Disruption of any of them results in loss of the

complex, collapse of the membrane potential and lack of parasite viability.

Discussion

The mETC and F1Fo-ATP synthase of apicomplexan parasites are highly divergent from those

of their mammalian hosts [6, 7, 17, 18]. Beyond energy metabolism [5–7], the mETC plays a

role in pyrimidine biosynthesis [2], making it indispensable at every stage of the apicomplexan

life cycle studied to date. Our complexome analysis has provided a comprehensive overview of

the apicomplexan mETC and ATP synthase complexes, identifying 71 protein subunits includ-

ing 20 previously unknown subunits, and describing the composition of complex II and com-

plex III for the first time in an apicomplexan model.

Isolating mitochondria from Toxoplasma has proven challenging. Here, we utilised a Per-

coll density gradient purification step, but the resulting fraction contained both mitochondria

and apicoplasts, and had some contamination from other cell components. Previously, other

techniques have also been unable to obtain pure fractions [18, 34, 36], highlighting the diffi-

culty in obtaining pure cellular fractions from Toxoplasma. Despite this, our highly enriched

fraction was suitable for proteomic analysis by complexome profiling. Host cell mitochondria

were also present in the final sample. However, the mammalian mitochondrial complexes are

well characterised, and we exploited their presence in the sample for more precise calibration

of the masses of Toxoplasmamitochondrial complexes.
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Fig 5. Loss of the new complex III subunits affects parasite growth andmitochondrial membrane potential. (A) Plaque assays of the
parental line (parental) and four promoter replacement lines (rQCR8/9/11/12 / Rieske-HA). Parasites were grown for 9–10 days in the absence
(-ATc) or presence of ATc (+ATc) before being fixed and stained with crystal violet. (B)Mitochondrial membrane potential detected using the
JC-1 probe of parental (parental) and each of the four promoter replacement lines (rQCR8/9/11/12 / Rieske-HA) in the absence (blue) or
presence (orange) of ATc, or valinomycin/atovaquone/antimycin a. Representative histograms of red fluorescence, which is dependent on
mitochondrial membrane potential, recorded by flow cytometry are shown.

https://doi.org/10.1371/journal.ppat.1009301.g005

PLOS PATHOGENS Divergent respiratory complexes in Toxoplasma parasites

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009301 March 2, 2021 15 / 31

https://doi.org/10.1371/journal.ppat.1009301.g005
https://doi.org/10.1371/journal.ppat.1009301


Using complexome profiling, we identified 27 of the 29 previously discovered subunits of

ATP synthase, including 13 of the recently described apicomplexan-unique subunits [6, 18].

One of the subunits we were unable to detect (TGGT1_249720, subunit c), has proven elusive

by mass spectrometry, also being absent from other Toxoplasmamitochondrial proteome

datasets [6, 7, 18, 36]. The migration of ATP synthase at ~1860 kDa (S5 Table) is higher to

that observed in previous studies, which may be due to the different detergent conditions used

(DDM in this study vs digitonin [6]), but which is consistent with the migration observed

using an anti-beta subunit antibody (S4A Table). The ATP synthase complex of Toxoplasma is

therefore likely to be larger than the ~1250 kDa dimer [43] observed in yeast, probably due to

the addition of many lineage-specific subunits. Our complexome identified three putative new

subunits of ATP synthase which have not previously been detected. We name these ATPTG1,

ATPTG7 and ATPTG16 in line with a recent structure of Toxoplasma ATP synthase that

assigned new nomenclature and that observed these three proteins as part of the structure

Fig 6. Loss of each of the four putative subunits affects stability of complex III. (A-D) Total lysate from parasites from
promoter replacement lines in the Rieske-HA background (rQCR8/9/11/12 / Rieske-HA) grown in the absence (0) or presence
of ATc for 1–3, were separated by BN-PAGE, blotted and immunolabelled with antibodies against HA. Samples were also
separated by SDS-PAGE and immunolabelled with anti-HA antibodies. (E) Total lysate from the parental Rieske-HA line
grown in the absence (0) or presence of ATc for 3 days were separated by BN-PAGE, blotted and immunolabelled with anti-HA
antibodies. (F) Total lysate from promoter replacement lines in the Rieske-HA background (rQCR8/9/11/12 / Rieske-HA)
grown in the absence (0) or presence of ATc for 3 days (3) were separated by BN-PAGE and immunolabelled with anti-TOM40.
Samples were also separated by SDS-PAGE and immunolabelled with anti-HA and anti-SAG1 antibodies. (G) Total lysate from
promoter replacement lines in the Rieske-HA background (rQCR8/9/11/12 / Rieske-HA) grown in the absence (0) or presence
of ATc for 3 days (3) were separated by clear native-PAGE and complex IV oxidation activity was performed. A line where
ribosomal protein mS35 is downregulated was used as positive control for loss of complex IV [34].

https://doi.org/10.1371/journal.ppat.1009301.g006
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[41]. Interestingly, TGGT1_246540 appears to encodes both the ATP synthase subunit

ATPTG1 and the complex III subunit CytC1. One possibility is that TGGT1_246540 encodes

two separate proteins. Another is that, like its yeast homolog [65] the protein is post-transla-

tionally cleaved upon mitochondrial import. An example where the N-terminal targeting

sequence is retained after cleavage is the case of the mammalian Rieske protein, for which the

cleaved N-terminus is retained as part of complex III [66]. Several observations support a

model of post-translational cleavage: the C-terminally HA tagged CytC1 protein migrates at

~35 kDa, 10 kDa lower than the ~45 kDa predicted from the gene model. Likewise, in eight IP

experiments for complex III that we performed (five using CytC1, and two using Rieske, as

baits) only C-terminal peptides of TGGT1_246540, from the portion of the protein predicted

to encode the complex III subunit CytC1, are identified (S11 Table). Finally, the atomic model

of ATP synthase resolved only the N-terminal 153aa of ATPTG1 as part of the structure [41].

The ATPTG1 subunit appears myzozoan-specific but is only fused to a cytochrome c1 domain

in a phylogenetically restricted group of apicomplexans. The evolution of this subunit deserves

future study.

Our complexome dataset predicts a size of ~460 kDa for complex IV (S5 Table). This is

smaller than previous estimates (for example the ~600 kDa suggested by Seidi et al [7]), which

may be due to different detergent conditions or differences in mass estimation accuracy. Three

subunits assigned apicomplexan specific (ApiCox) by Seidi et al [7] have similarity to mamma-

lian complex IV subunits. As noted by Seidi et al, ApiCox23 corresponds, according to

HHPRED [57], to cytochrome c oxidase complex subunit 4 and ApiCox25 to subunit 6A. We

propose renaming these subunits as TgCox4 and TgCox6a. In addition, ApiCox 26

(TGGT1_306670) has similarity to mammalian cytochrome c oxidase complex subunit

NDUFA4 (92.64% probability, e-value 0.35, between amino acids 69–114, PDB annotation:

5Z62_N) and so should be renamed TgNDUFA4. Our analysis detected six putative new sub-

units co-migrating with the complex (Fig 2D). All six were detected previously, but not recog-

nised as complex IV subunits [7, 34]. Five of these proteins are restricted to the

apicomplexans, while one, TGGT1_200310, appears myzozoan specific (S4 Fig). The existence

of these evolutionary divergent subunits underlines the highly divergent nature of the apicom-

plexan/myzozoan cytochrome c oxidase complex. It remains to be investigated whether the

divergent Toxoplasma complex can perform parasite-specific functions and what the role of

the recently discovered subunits are.

Compared to well-studied organisms, little is known about complex II (succinate dehydro-

genase) in apicomplexan parasites. Clear homologs of mammalian SDHA and SDHB can read-

ily be identified by BLAST searches [14, 17, 27]. SDHA contains a flavin adenine dinucleotide

(FAD) cofactor and SDHB contains three Fe-S clusters. These subunits transfer electrons from

succinate to ubiquinone, reducing it to ubiquinol for reoxidation by complex III. Unexpect-

edly, our analysis was unable to resolve the SDHA homolog (TGGT1_215590) in the same gel

slice as other complex II subunits, raising a question about its association with complex II.

However, TGGT1_215590, is suggested to be mitochondrial in both the LOPIT [36] and mito-

chondrial matrix proteome [7], and has a low phenotype score [56], all of which are consistent

with its assignment as a complex II subunit. Future experiments, for example immunoprecipi-

tation, will be required to confirm if SDHA associates with other complex II subunits. The

SDHB subunit migrated at ~500 kDa in our complexome (Fig 2D), significantly larger than

the ~130 kDa complex seen in mammals and yeast [37, 43]. Native PAGE and immunoblotting

of the triple-HA epitope tagged SDHB subunit confirmed this finding (Fig 3C), which is also

in line with a recent study of the apicomplexan Eimeria tenella [46]. The mammalian complex

contains two other subunits, SDHC and SDHD, which function as hydrophobic membrane

anchors. Both subunits together bind a single haem group, and SDHD also has a ubiquinone
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binding site. No clear homologs of SDHC or SDHD have been identified in apicomplexans.

Two proteins were suggested to correspond to SDHC/D in Plasmodium [67, 68], but have yet

to be confirmed. The suggested PfSDH4 (PF3D7_1010300) does not have a clear homolog in

Toxoplasma. TGGT1_320470 appears to be a homolog for the proposed PfSDH3

(PF3D7_0611100), however, while TGGT1_320470 is present in our mass spectrometry data-

base, we did not detect it in our complexome analysis and its mitochondrial localisation is not

supported by previous proteomic approaches [7]. Additionally, a recent preprint study investi-

gating mitochondrial complexes in P. falciparum found that the proteins encoded by

PF3D7_1010300 and PF3D7_0611100 did not co-migrate with other complex II subunits [69].

Together these data suggest that these two proteins are probably not complex II subunits.

Here, we identified seven proteins which co-migrated with the highly conserved SDHB sub-

unit. Five were suggested to be mitochondrial and four had a similar phylogenetic distribution

in myzozoans as SDHA and SDHB, supporting their candidacy as novel lineage-specific com-

plex II subunits. If confirmed, this would represent the largest number of subunits for a

eukaryotic complex II, and explain the large observed size of the complex in apicomplexans.

The sum of the masses of known and novel complex II subunits is ~190 kDa (S8 Table), sug-

gesting either that more subunits await discovery or that the complex migrates in native PAGE

as a higher order oligomer.

Apicomplexan complex III is a clinically validated drug target, and numerous inhibitors are

in therapeutic use. Hydroxynaphthoquinones, including atovaquone and buparvaquone, and

decoquinate are thought to bind to the Qo site, while others, including endochin-like quino-

lones and 4-pyridones, are thought to target the Qi site [53–55, 70–73]. However, despite wide-

spread clinical use, the mechanisms of drug action are not well understood, due to lack of

knowledge of the complex’s composition and structure. The increased susceptibility of api-

complexan complex III to these inhibitors compared to other organisms suggests divergent

features. Previously, six well-conserved complex III subunits have been identified using bioin-

formatic approaches [14, 17, 27], although none have been experimentally studied, with the

exception of QCR2/TGGT1_202680 which was localised in a previous study [48]. Here we

confirm that these subunits co-migrate in a ~670 kDa complex by BN-PAGE and localise to

the mitochondrion. Beyond these conserved subunits, we investigated the novel subunits

QCR8, QCR9, QCR11 and QCR12. Downregulation of each of the four genes resulted in a

severe growth defect and resulted in a specific defect in complex III stability. Downregulation

of all four of these genes resulted in disruption of the mitochondrial membrane potential, con-

sistent with a proposed role for these proteins in stability of the complex. Recent structural

studies of S. cerevisae respiratory supercomplexes suggest that ScQCR9 and ScQCR10 bind to

the transmembrane region of Rip1 protein (the Rieske subunit) [26, 74], thereby securing it on

the complex. ToxoplasmaQCR9 is the homolog of ScQCR9 and may play a similar role.

ScQCR10 does not have a Toxoplasma homolog and so it is possible that TgQCR11 and or

TgQCR12 play a similar structural role. Overall, we identified 11 Toxoplasma subunits of com-

plex III which combine to a predicted weight of 305 kDa (S8 Table). We observed a complex

of approximately twice this size, ~670 kDa, which matches its expected dimeric nature, sug-

gesting that we identified the majority of Toxoplasma complex III subunits.

In other eukaryotes, mETC complexes often associate together to form respiratory super-

complexes [43, 58, 59]. Their exact physiological role is still debated, but they have been pro-

posed to play a role in decreasing reactive oxygen species production, assisting in complex

assembly, regulating mETC activity, and preventing aggregation in the inner membrane [58].

The presence of supercomplexes in Toxoplasma has been hypothesised [7] but never observed.

Here, using mild non-ionic detergents, we observe the Rieske, CytC1 and QCR2 subunit in a

complex of higher molecular weight than the complex III dimer, providing the first evidence
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of a supercomplex formation in Apicomplexa. In mammals, complex III can associate

with complex I, complex IV or both complex I and IV to form several supercomplexes

[58]. Given the absence of complex I in apicomplexans, Toxoplasma complex III may sim-

ply associate with complex IV, like in yeast and mycobacterium [26, 74–76]. It is also pos-

sible, given the divergence of the apicomplexan mETC, that novel parasite-specific

respiratory supercomplexes are formed which could have relevance in control of

metabolism.

The mitochondrial genome of Toxoplasma has recently been sequenced [42]. It contains

three protein encoding genes, which encode three mETC subunits: CoxI, CoxIII and CytB.

Prior to this, the exact gene models and sequences were uncertain, hindering efforts to identify

and correctly assign peptides in proteomic studies. A recent study of the mitochondrial matrix

proteome [7] did not identify any of the three proteins, while the whole cell LOPIT proteome

could only identify CytB [36]. Using the recent sequence data, we were able to identify all three

proteins and found that they co-migrate with other subunits from complex III (CytB) and

complex IV (CoxI, CoxIII).

In this study, we have elucidated the composition of apicomplexan complex III. An

independent study has also looked at Toxoplasma complex III [29] and identified the same

11 subunits. As these studies were carried out in parallel and using different methods,

these findings provide independent support of each other. Understanding the subunit

composition of the mETC and F1Fo-ATP synthase is the first step to understanding how

respiration occurs and is regulated in these obligate parasites. Any divergence in these

essential processes from their mammalian hosts might present targets for future drug

discovery.

Materials andmethods

Cell culture and growth analysis

T. gondii tachyzoites were cultured in human foreskin fibroblasts (HFF), sourced from ATCC,

catalogue number #CRC1041, or in Vero cells, derived from Chlorocebus sabaeus kidney epi-

thelial cells, for mitochondrial isolation experiments. HFF and Vero cells were cultured in Dul-

becco’s Modified Eagle’s Medium (DMEM), supplemented with 10% (v/v) fetal bovine serum,

4 mM L-glutamine and Penicillin/Streptomycin antibiotics and grown at 37˚C with 5% CO2.

Where relevant anhydrotetracycline (ATc) was added to the growth medium at a final concen-

tration of 0.5 μM. For plaque assays fresh HFFs were infected with parasites in the presence or

absence of ATc for 9–10 days. Cells were fixed with methanol and stained with crystal violet

staining solution.

Plasmid construction and stable transfection

C-terminal triple HA epitope tagging: gRNAs targeting the stop codon of each GOI were iden-

tified with the ChopChop tool (https://chopchop.cbu.uib.no/) and were cloned into a U6 pro-

moter and CAS9-GFP expressing vector (Tub-Cas9YFP-pU6-ccdB-tracrRNA) [77] using the

BsaI restriction site. The CAT selection cassette and triple HA epitope were amplified by PCR

from a p3HA.LIC.CATΔpac plasmid [47, 78]. The gRNA/CAS9 vector-PCR product mixture

was transfected into the TATiΔku80 [47] line by electroporation and cassette integration was

selected with chloramphenicol. Positive clones were isolated by serial dilution and confirmed

by PCR analysis.

Promoter replacement: gRNAs targeting the start codon of each GOI were identified and

cloned into the Cas9-GFP expressing vector as detailed above. The DHFR selectable cassette

and ATc repressible promoter were amplified by PCR from pDT7S4myc [47, 79]. The gRNA/
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CAS9 vector-PCR product mixture was transfected into a line containing an HA-tagged ver-

sion of the Rieske subunit line by electroporation and cassette integration was selected with

pyrimethamine. Positive clones were isolated by serial dilution and confirmed by PCR

analysis.

qRT-PCR

In each experiment, parasites were cultured in triplicate in the absence or presence ATc for 2

days. Cells were harvested and large host cell debris were removed by a 3 mircon filter. RNA

was extracted using RNeasy kit (Qiagen) with an added DNAseI step. cDNA was made with

High capacity RNA-to-cDNA kit (AppliedBiosystems). qRT-PCR was set up with PowerSYBR

green master mix (ThermoFisher) using 10 ng of cDNA as a template. Water only and RNA

(10 ng) were included as controls. qRT-PCR was run with 7500 Real Time PCR System

(Applied Biosystems) using default temperature settings and performing a dissociation step

after each run. Expression in +ATc samples relative to -ATc samples was calculated using the

double Δ Ct method [80] using catalase (TGGT1_232250) as internal control. Data was plotted

in GraphPad Prism 8.4.3 and treatments compared with an unpaired t-test.

Blue and clear-native PAGE

For blue-native PAGE, whole parasite or mitochondrial protein samples were suspended in

solubilisation buffer (750 mM aminocaproic acid, 50 mM Bis-Tris–HCl pH 7.0, 0.5 mM

EDTA, 1% (w/v) detergent: dodecyl maltoside, digitonin or OGP) and incubated on ice for 15

minutes. The mixture was centrifuged at 16,000 × g at 4˚C for 30 minutes. The supernatant

containing solubilised membrane proteins was combined with sample buffer containing Coo-

massie G250 (NativePAGE), resulting in a final concentration of 0.25% DDM and 0.0625%

Coomassie G250. Samples (equivalent of 2.5 or 5 x 106 parasites per lane for immunoblotting)

were separated on a on NativePAGE 4–16% Bis-Tris gel. NativeMark was used as a molecular

weight marker.

Clear-native PAGE and complex IV activity stain was performed as described previously

[34]. Briefly, whole parasite samples were suspended in solubilisation buffer (50 mMNaCl, 50

mM Imidazole, 2 mM 6-aminohexanoic acid, 1 mM EDTA–HCl pH 7.0, 2% (w/v) n-dodecyl-

maltoside) and incubated on ice for 10 minutes. The mixture was centrifuged at 16,000 × g at

4˚C for 15 minutes. The supernatant containing solubilised membrane proteins was combined

with glycerol and ponceau S to a final concentration of 6.25% and 0.125% respectively. Sam-

ples (equivalent of 1.5 x 107 parasites per lane) were separated on a on NativePAGE 4–16%

Bis-Tris gel. NativeMark was used as a molecular weight marker. Complex IV oxidation activ-

ity was shown by incubating gels in a 50 mM KH2PO4, pH 7.2, 1 mg ml−1 cytochrome c, 0.1%

(w/v) 3,30-diaminobenzidine tetrahydrochloride solution.

SDS-PAGE and immunoblot analysis

Total cell samples (2.5 x 106 parasites per lane) were resuspended in Laemmli buffer (2% (w/v)

SDS, 125 mm Tris–HCl pH 6.8, 10% (w/v) glycerol, 0.04% (v/v) β-mercaptoethanol, and

0.002% (w/v) bromophenol blue) and boiled at 95˚C for 5 minutes. Proteins were then sepa-

rated on a 12.5% SDS-PAGE gel. EZ-Run Prestained Rec protein ladder was used as a molecu-

lar weight marker. Proteins were transferred under semi-dry conditions to nitrocellulose

membrane (0.45 μm Protran), labelled with the appropriate primary antibodies: anti-HA

(1:500, Sigma), anti-ALD (1:2000), anti-Mys/TGME49_215430 ([81], 1:2000), anti-TOM40

([48], 1:2000), anti-ATPβ (Agrisera AS05085, 1:5000), IMC1 ([82], 1:1000), CPN60 ([83],

1:2000), SAG1 (gift from the Soldati lab, 1:2000), and detected using either secondary

PLOS PATHOGENS Divergent respiratory complexes in Toxoplasma parasites

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009301 March 2, 2021 20 / 31

https://doi.org/10.1371/journal.ppat.1009301


horseradish peroxidase-conjugated antibodies and chemiluminescence detection using Pierce

ECLWestern Blotting Substrate and an x-ray film or using secondary fluorescent antibodies

IRDye 800CW, 680RD (1:10000, LIC-COR) and detection with an Odyssey CLx.

For the blue native-PAGE, proteins were transferred onto a PVDF membrane (0.45 μm,

Hybond) using wet transfer in Towbin buffer (0.025 M TRIS 0.192 M Glycine 10%Methanol)

for 60 minutes at 100 V. After transfer, immunolabelling and visualisation was carried out as

described above by chemiluminescence detection.

Immunofluorescence assay and microscopy

Parasites were inoculated on fresh HFFs on glass coverslips. After 1-day cells were fixed with

4% paraformaldehyde. Cells were permeabilised and blocked with a solution of 2% bovine

serum albumin and 0.2% triton X-100 in PBS before incubation with primary antibodies (anti-

HA, Sigma, 1:1000 and rabbit anti-TOM40, [48], 1:1000, followed by secondary antibodies

(Alexa Fluor Goat anti-Rat 488 Invitrogen #A-11006, 1:1000 and Alexa Fluor Goat anti-Rabbit

594 Invitrogen #A-11012, 1:1000). Coverslips were mounted on slides with Fluoromount-G

mounting media containing DAPI (Southern Biotech, 0100–20). Images were acquired on a

DeltaVision Core microscope (Applied Precision) using the 100x objective as previously

described [84]. Images were processed and deconvolved using the SoftWoRx and FIJI

software.

To assess mitochondrial morphology parasites were grown in the presence or absence of

0.5 μMATc for 2 days. Mitochondria were visualised by immunofluorescence, as described

above, using anti-Mys/TGME49_215430 ([81], 1:1000). 150–200 parasites of each treatment

were counted, and mitochondrial morphology was assessed as normal or abnormal as

described previously [34]. Experiments were performed in triplicate.

Mitochondrial isolation

Parasite tachyzoites from a line with a mitochondrial ribosomal subunit HA tagged (rTgmS35;

[34]) were grown in Vero cells and harvested (1.5 x 1010 parasites). Parasite cells were lysed by

nitrogen cavitation and a mitochondrially enriched pellet isolated by differential centrifugation

as previously described [34]. This crude mitochondrial pellet was further purified on a discon-

tinuous Percoll gradient (buffer composition 18/23/40% Percoll) by centrifugation (40,000 x g,

1hr, 4˚C) in an SW41 rotor (Beckman Coulter) and enriched mitochondria were collected

from the 23–40% interface (adapted from [85]). Fractions at each interface were also taken,

pelleted and protein content determined by a Bradford assay. Fractions were analysed by

immunoblot to determine their composition.

Complexome profiling

Blue native PAGE/complexome profiling was performed as described previously [86], based

on the method developed in [30]. Briefly, 20 μg of mitochondrial sample was separated by

BN-PAGE as described above, with a DDM: protein ratio of 2.5:1. The gel lane was cut into 63

equally sized slices before being digested with trypsin and peptides extracted by the addition of

60% acetonitrile and 4% formic acid. A portion of each extraction (1–3 ul) was added straight

into 10 ul of 0.1% TFA, 3% acetonitrile and 10 μl was used for analysis. Samples were fraction-

ated on an Acclaim PepMap nanoViper C18 reverse-phase column (Thermo Scientific)

(75 μm × 150 mm), with a gradient of 5–40% acetonitrile in 0.1% formic acid at a flow rate of

300 nL min− 1 over 84 min, then peptides were analysed by a Q-Exactive Plus Orbitrap mass

spectrometer (Thermo Scientific) with fragmentation performed by higher-energy collisional

dissociation (HCD) using nitrogen. The mass range was 400 to 1600 m/z for the precursor
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ions; the top 10 most abundant ions were selected for MS/MS analyses. Spectra were assigned

to peptide sequences and originating proteins using Mascot 2.4 (Matrix Science Ltd.) with a

peptide precursor mass tolerance of 5 ppm and fragment mass tolerance of 0.01 Da, allowing

for up to two missed cleavages and variable modifications (methionine oxidation, cysteine pro-

pionamide, protein N-formylation and N-acetylation). Only peptide assignments made by

Proteome Discoverer scoring at or above its P< 0.05 threshold versus a decoy database were

considered. 67 out of 76 proteins of interest (those displayed in Figs 2D and S7) were identi-

fied by 2 or more peptides. 7 of the 9 proteins identified by 1 peptide scored at or above a

P< 0.01 threshold. The 2 remaining proteins, TGGT1_257160 and CytB, scored at or above

its P< 0.05 threshold but not the P< 0.01 threshold.

To assign peptide sequences the Proteome Discoverer (Thermo Fisher Scientific) software

was used with Mascot 2.4 (Matrix Science Ltd.) configured to use a custom database contain-

ing Toxoplasma gondiiGT1 proteins (ensembl proteins toxoplasma_gon-

dii_gt1_gca_00149715.TGGT1.pep.all.fa last updated 04.03.2020) in addition to Chlorocebus

sabaeus ensembl proteins (Chlorocebus_sabaeus.ChlSab1.1.pep.all last updated 05.03.2020)

with the manual addition of the protein sequences for T. gondiimitochondrial encoded pro-

teins CoxI, CoxIII and CytB [42], plus NCBI reference sequence XP_007959728. A separate

copy of the database was further modified to truncate sequences for F1Fo ATP synthase sub-

units alpha and beta and succinate dehydrogenase subunit A to before a peptide that is com-

mon between the species, to avoid erroneous apparent co-migration.

Protein quantification was performed per slice using Proteome Discoverer. Abundances for

all well-assigned peptides observed in all the samples was counted and combined into a multi-

consensus spreadsheet using default parameters. Its standard aggregation algorithm was used

to measure the relative protein abundance for each protein in each gel slice by taking the quan-

tified precursor peak area information and normalising to the highest point for each protein,

which was set to 1. Clustering was performed using Pearson distribution and Heatmaps were

generated using Nova v0.8.0 [87]. Full datasets used for complexome profiling were deposited

in the ComplexomE profiling DAta Resource (CEDAR) database (https://www3.cmbi.umcn.

nl/cedar/browse/experiments/CRX27).

Proteins identified in our analysis were compared to existing proteomic datasets [7, 36]

using ToxoDB.org (release 46, accessed August 2020).

JC-1

Parasites grown in the presence or absence of 0.5 μMATc for 2 or 3 days, as indicated. Intra-

cellular parasites were lysed out of host cells using a 26G needle filtered through a 3 μm filter

and incubated in their growth media with 1.5 μM of JC-1 (5,5’,6,6’-Tetrachloro-1,1’,3,3’-tetra-

ethylbenzimidazolocarbocyanine iodide, Thermo Fisher Scientific, stock 1.5 mM in DMSO)

for 15 minutes at 37˚C before analysis using BD FACSCelesta (BD Biosciences). Treatment

with 10 μM valinomycin for 30 minutes was included prior to JC-1 incubation as a depolaris-

ing control. Treatment with 1μM atovaquone and 200 μM antimycin a for 4 hours was

included prior to JC-1 incubation as a complex III inhibitory control. Unstained controls were

used to define gates for analysis. 100,000 events per treatment, were collected and data were

analysed using the FlowJo software to define the population of parasites with red fluorescent

signal.

Immunoprecipitations

Parasites (Rieske-HA or CytC1-HA) were grown (1–2 x108 cells) on HFFs cells and harvested.

Parasites were lysed with a 1% DDM or triton X-100 solution and immunoprecipitated with
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Pierce anti-HA agarose beads. Bound proteins were eluted with 50 mMNaOH. Eluted proteins

were detected by mass spectrometry as described previously [34].

Supporting information

S1 Fig. Mitochondrial isolation and complexome profiling workflow. Schematic representa-

tion of the workflow for complexome profiling: a large number of Toxoplasma tachyzoites (~1

x 1010) were harvested and then cells lsyed using nitrogen cavitation. Three different centrifu-

gation conditions were used to obtain a mitochondrially enriched fraction: differential centri-

fugation (at 1,500 x g and 16,000 x g) was used to separate organelles from unbroken cells and

heavy cell debris. This fraction was then layered onto a Percoll step gradient and then, after

density-gradient fractionation at 40,000 x g, recovered from the 23%/40% Percoll interface.

Proteins were then separated on a Blue Native PAGE gel and the gel cut into 61 gels slices.

Each gel slice was subjected to mass spectrometry and label free quantification performed. The

resulting data allowed calculation of the relative abundance of individual proteins in each slice,

and this is visualised using a heatmap. The total dataset gives the relative abundance informa-

tion for hundreds of proteins across all gel slices.

(TIF)

S2 Fig. Mass calibration of complexes and subunit profiles. (A)Mitochondrial samples sepa-

rated by blue native PAGE used to generate the complexome profile. The gel was cut into 61

gel slices as indicated on the right of the gel and molecular weights, based on the masses of

mammalian complexes, indicated to the right of the gel slice numbers. The identities of host

cell and Toxoplasma complex Coomassie-stained bands are indicated to the left of the gel strip.

(B) Graphs depicting complexome profiles of T. gondii ATP synthase (V, red), complex IV, III

and II (yellow, blue, green respectively) through a representative subunit from each complex

(gamma for ATP synthase, Cox2a, Rieske and SDHB for complexes IV, III, II respectively).

The x-axis depicts the gel slice number and the y-axis the protein’s relative abundance. The full

complexome profiling dataset is provided in S1 Table. (C) Graphs depicting complexome pro-

files of all T. gondii subunits from ATP synthase (complex V), complex IV, III and II. The x-

axis depicts the gel slice number and the y-axis the protein’s relative abundance. The full com-

plexome profiling dataset is provided in S1 Table. (D)Mass calibration using C. sabaeus host

cell complexes of known or predicted size. The x-axis depicts the molecular mass in kDa and

the y-axis the gel slice number. Full detail of mass calibration is provided in S5 Table. AK2—

Adenylate kinase 2; LAS—Lipoic acid synthetase; SQOR—Sulfide:quinone oxidoreductase;

ETF—Electron-transferring flavoprotein A+B; ETFDH—ETF dehydrogenase; IDH—Isoci-

trate dehydrogenase; CS—Citrate synthase; Cx II—Complex II; LDH—Lactate dehydrogenase

complex; Cx IV—Complex IV; Fum—Fumarase; GDH—Glutamate dehydrogenase; Cx III—

complex III; Cx III2 +IV—Complex III + IV; Cx V—ATP synthase; Cx I—Complex I.

(TIF)

S3 Fig. Profiles of subunits with common peptides between Toxoplasma and Chlorocebus.

Graphs depicting complexome profiles and alignments of ATP synthase subunit alpha (A) and

ATP synthase subunit beta (B) from T. gondii (red, Tgα and Tgβ) and C. sabaeus (black, Csα
and Csβ) before and after truncation of common peptides. ATP synthase subunit gamma from

T. gondii (grey, dashed line, Tgγ) depicts the position of T. gondii ATP synthase subunits. The

x-axis depicts the gel slice number and the y-axis the protein’s relative abundance. Common

peptides between the two proteins are outlined in the alignment by a red box, and Toxoplasma

specific peptides after truncation are marked by a blue box. Alignments were performed by
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Clustal Omega. Full detail of protein truncation is provided in S6 Table.

(TIF)

S4 Fig. Analysis of putative ToxoplasmaATP synthase subunits. (A) Total lysate from para-

site cells separated by BN-PAGE and immunolabelled with antibodies against the betta subunit

of ATP synthase (ATPβ). (B) Table showing examples for two previously identified subunits—

ATP synthase subunit beta and ATP synthase subunit gamma (ATPβ,γ) (known) and com-

plexome identified putative novel ATP synthase subunits—ATPTG1,7,16 (novel) and their

homology distribution across key groups. Homology searches were performed using the

HMMER tool [57]. Coloured circles refer to the e-value from the HMMER search: white indi-

cates a hit with an e-value above 0.0001, black indicates no hits, and red indicates hits with an

e-value below 0.0001, as indicated in the coloured scale. Full data are given in S7 Table.Hh:

Hammondia hammondi; Pb: Plasmodium berghei; Cp: Cryptosporidium parvun; Cyryptospori-

dium muris; Vb: Vitrella brassicaformis; Pm: Perkinsus marinus; Sm: Symbiodinium microa-

driaticum; Pt: Paramecium tetraurelia. (C) Graph depicting peptide abundances detected for

TGGT1_246540 in the complexome profile and the amino acid sequence of the protein with

the peptides detected in colour. Peptides from the N-terminal portion of the protein, which

constitute ATPTG1 are marked in cyan, and peptides in the C-terminal portion of the protein,

which constitute CytC1, are marked in magenta. (D) Schematic diagram of TGGT1_246540

showing the amino acids that make up ATPTG1 (cyan) and the cytochrome c1 domain

(magenta). Residues in bold show the detected peptides.

(TIF)

S5 Fig. Analysis of putative new Toxoplasma putative complex IV subunits. Table showing

previous predicted (known) and complexome identified putative novel (novel) complex II sub-

units and their homology distribution across key groups. Homology searches were performed

using the HMMER tool [57]. Coloured circles refer to the e-value from the HMMER search:

white indicates a hit with an e-value above 0.0001, black indicates no hits, and red indicates

hits with an e-value below 0.0001, as indicated in the coloured scale. Full data are given in S7

Table.Hh:Hammondia hammondi; Bb: Babesia bovis Pf: Plasmodium falciparum; Pb: Plasmo-

dium berghei; Cp: Cryptosporidium parvun; Cyryptosporidium muris; Vb: Vitrella brassicafor-

mis; Pm: Perkinsus marinus; Sm: Symbiodinium microadriaticum; Pt: Paramecium tetraurelia.

(TIF)

S6 Fig. Generation of endogenous HA tagged lines. (A) Schematic depiction of the endoge-

nous HA-tagging strategy of a gene of interest (GOI). (i) CRISPR/CAS9 guided cut at the pre-

dicted GOI/UTR boundary, (ii) a repair cassette containing the triple hemagglutinin epitope

tag (3HA), the Chloramphenicol acetyltransferase (CAT) selection marker, and homology to

the GOI/UTR boundary, is inserted between the GOI and UTR during cut repair guided by

homology regions, (iii) GOI with the integrated repair cassette. The black arrows represent the

four primers used to confirm integration via the PCRs shown in B. (B) Confirmation of gener-

ation of 3HA-tagging at the desired loci via PCR analysis using primers 1–4 (primers in S12

Table) shown in A.

(TIF)

S7 Fig. Complexome heatmap of additional mETC dehydrogenases. Heatmaps of the com-

plexome profiles of additional Toxoplasmamitochondrial mETC dehydrogenases. Heatmaps

represent the 61 gel slices the BN-PAGE gel was cut into, from the top (left) to the bottom

(right) of the gel. Molecular weight markers shown on the top are based the migrations of

mammalian mitochondrial complexes of known size. Protein names are shown on the left of

their respective profiles. Red indicates the highest relative abundance (1) and black the lowest
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(0).

(TIF)

S8 Fig. Generation of promoter replacement strains of four novel complex III subunits.

(A) Schematic depiction of the promoter replacement strategy allowing knock-down of a gene

of interest (GOI) with the addition of anhydrotetracycline (ATc). (i) CRISPR/CAS9 guided cut

at the predicted promoter/ATG boundary, (ii) a repair cassette containing the ATc repressible

promoter, the dihydrofolate reductase (DHFR) selection marker, and homology to the pro-

moter/ATG boundary, is inserted between the promoter and GOI during cut-repair guided by

the homology sequences, (iii) GOI, under the control of ATc repressible promoter, is down

regulated when ATc is added. The black arrows represent the four primers used to confirm

integration via the PCRs shown in B (primers in S12 Table). (B) Confirmation of generation

of promoter replacement at the desired loci via PCR analysis using primers 1–4 (primers in S9

Table) shown in A. (C) Transcript levels of each gene (QCR8,9,11,12) were analysed by

qRT-PCR, in the absence (-) or presence (+) of ATc after 2 days. Bars represent the

mean ± SEM (n = 3).

(TIF)

S1 Table. Complexome data—Calculated relative abundance for each protein identified in

the Complexome analysis. A) Complexome profiles of Toxoplasma proteins displayed in Figs

2D and S7. B) Complexome profiles of all Toxoplasma proteins.

(XLSX)

S2 Table. Proteomics summary data–score, predicted protein coverage and number of

unique peptides found for each Toxoplasma protein found in the complexome analysis

and Chlorocebus proteins used for mass calibration. A) Toxoplasma proteins displayed in

Figs 2D and S7. B) Chlorecebus proteins used for mass calibration. C) Complete list of Toxo-

plasma proteins detected.

(XLSX)

S3 Table. Proteome comparisons–analysis of presence of complexome identified proteins

in previous proteomics studies with mitochondrial proteomes.

(XLSX)

S4 Table. Mitoribosomal proteins found in the complexome dataset.

(XLSX)

S5 Table. Mass calibration–calculation of apparent mass found in each gel slice.

(XLSX)

S6 Table. Truncated proteins–abundance profiles of proteins before and after truncation

of peptides that are mutual to the Toxoplasma and Chlorocebus homologs of ATP synthase

and complex II subunits.

(XLSX)

S7 Table. HMMER homology–summary of data obtained from homology searches per-

formed via HMMER for the complexome identified Toxoplasma subunits of each complex.

(XLSX)

S8 Table. Subunit masses–prediction of mass of each complexome identified Toxoplasma

subunits while considering predicted mitochondrial targeting sequence removal.

(XLSX)
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S9 Table. mETC and ATP synthase subunits–summary information of all known and pre-

dicted ToxoplasmamETC and ATP synthase subunits.

(XLSX)

S10 Table. Mitochondrial morphology–counts of normal and abnormal mitochondrial

morphology in rQCR8,9,11,12/ Rieske-HA lines in the presence and absence of ATc.

(XLSX)

S11 Table. TGGT1_246540 immunoprecipitation–peptides of TGGT1_246540 detected in

immunoprecipitation experiments.

(XLSX)

S12 Table. Primers–summary of primers used in this study for generation and confirma-

tion of gene tagging and promoter replacement.

(XLSX)

Acknowledgments

We thank Leandro Lemgruber from the imaging facilities of the Wellcome Centre for Integra-

tive Parasitology, Diane Vaughn and Alana Hamilton from the cellular analysis facility of the

Institute of Infection, Immunity and Inflammation at the University of Glasgow and Michael

Harbour and Ian Fearnley (MBUmass spectrometry facility) for technical support. We thank

Prof. Ron Dzikowski for providing experimental facilities at the Kuvin Centre, Hebrew Uni-

versity of Jerusalem during the Covid19 lockdown.

Author Contributions

Conceptualization: Andrew E. Maclean, Lilach Sheiner.

Data curation: Andrew E. Maclean, Hannah R. Bridges, Judy Hirst, Lilach Sheiner.

Formal analysis: Shujing Ding, Jana Ovciarikova.

Funding acquisition: Andrew E. Maclean, Judy Hirst, Lilach Sheiner.

Investigation: Andrew E. Maclean, Hannah R. Bridges, Mariana F. Silva, Shujing Ding, Jana

Ovciarikova.

Methodology: Andrew E. Maclean, Hannah R. Bridges, Judy Hirst, Lilach Sheiner.

Supervision: Judy Hirst, Lilach Sheiner.

Writing – original draft: Andrew E. Maclean, Judy Hirst, Lilach Sheiner.

Writing – review & editing: Andrew E. Maclean, Hannah R. Bridges.

References
1. Martin J, Mahlke K, Pfanner N. Role of an energized inner membrane in mitochondrial protein import.

Delta psi drives the movement of presequences. J Biol Chem. 1991; 266: 18051–7. Available: http://
www.ncbi.nlm.nih.gov/pubmed/1833391 PMID: 1833391

2. Painter HJ, Morrisey JM, Mather MW, Vaidya AB. Specific role of mitochondrial electron transport in
blood-stage Plasmodium falciparum. Nature. 2007; 446: 88–91. https://doi.org/10.1038/nature05572
PMID: 17330044

3. WHO.World Malaria Report. https://www.who.int/malaria. 2019. Available: https://www.who.int/
publications-detail/world-malaria-report-2019

4. Montoya J, Liesenfeld O. Toxoplasmosis. Lancet. 2004; 363: 1965–1976. https://doi.org/10.1016/
S0140-6736(04)16412-X PMID: 15194258

PLOS PATHOGENS Divergent respiratory complexes in Toxoplasma parasites

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009301 March 2, 2021 26 / 31

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1009301.s017
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1009301.s018
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1009301.s019
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1009301.s020
http://www.ncbi.nlm.nih.gov/pubmed/1833391
http://www.ncbi.nlm.nih.gov/pubmed/1833391
http://www.ncbi.nlm.nih.gov/pubmed/1833391
https://doi.org/10.1038/nature05572
http://www.ncbi.nlm.nih.gov/pubmed/17330044
https://www.who.int/malaria
https://www.who.int/publications-detail/world-malaria-report-2019
https://www.who.int/publications-detail/world-malaria-report-2019
https://doi.org/10.1016/S0140-6736%2804%2916412-X
https://doi.org/10.1016/S0140-6736%2804%2916412-X
http://www.ncbi.nlm.nih.gov/pubmed/15194258
https://doi.org/10.1371/journal.ppat.1009301


5. Sturm A, Mollard V, Cozijnsen A, Goodman CD, McFadden GI. Mitochondrial ATP synthase is dispens-
able in blood-stage Plasmodium berghei rodent malaria but essential in the mosquito phase. Proc Natl
Acad Sci U S A. 2015; 112: 10216–10223. https://doi.org/10.1073/pnas.1423959112 PMID: 25831536

6. Huet D, Rajendran E, van Dooren GG, Lourido S. Identification of cryptic subunits from an apicom-
plexan ATP synthase. Elife. 2018; 7: 1–22. https://doi.org/10.7554/eLife.38097 PMID: 30204085

7. Seidi A, Muellner-Wong LS, Rajendran E, Tjhin ET, Dagley LF, Aw VY, et al. Elucidating the mitochon-
drial proteome of Toxoplasma gondii reveals the presence of a divergent cytochrome c oxidase. Elife.
2018; 7: 1–36. https://doi.org/10.7554/eLife.38131 PMID: 30204084

8. KorsinczkyM, Chen N, Kotecka B, Saul A, Rieckmann K, Cheng Q. Mutations in Plasmodium falcipa-
rum cytochrome b that are associated with atovaquone resistance are located at a putative drug-binding
site. Antimicrob Agents Chemother. 2000; 44: 2100–2108. https://doi.org/10.1128/aac.44.8.2100-2108.
2000 PMID: 10898682

9. Biagini GA, Fisher N, Shone AE, Mubaraki MA, Srivastava A, Hill A, et al. Generation of quinolone anti-
malarials targeting the Plasmodium falciparummitochondrial respiratory chain for the treatment and
prophylaxis of malaria. Proc Natl Acad Sci U S A. 2012; 109: 8298–8303. https://doi.org/10.1073/pnas.
1205651109 PMID: 22566611

10. Stickles AM, Smilkstein MJ, Morrisey JM, Li Y, Forquer IP, Kelly JX, et al. Atovaquone and ELQ-300
combination therapy as a novel dual-site cytochrome bc1 inhibition strategy for malaria. Antimicrob
Agents Chemother. 2016; 60: 4853–4859. https://doi.org/10.1128/AAC.00791-16 PMID: 27270285

11. Mather MW, Henry KW, Vaidya AB. Mitochondrial drug targets in apicomplexan parasites. Curr Drug
Targets. 2007; 8: 49–60. https://doi.org/10.2174/138945007779315632 PMID: 17266530

12. Goodman CD, Buchanan HD, McFadden GI. Is the Mitochondrion a GoodMalaria Drug Target? Trends
Parasitol. 2017; 33: 185–193. https://doi.org/10.1016/j.pt.2016.10.002 PMID: 27789127

13. Jacot D, Lourido S, Meissner M, Sheiner L, Soldati-Favre D, Striepen B. Genetic manipulation of Toxo-
plasma gondii. Toxoplasma gondii. Elsevier; 2020. pp. 897–940. https://doi.org/10.1016/B978-0-12-
815041-2.00020–7

14. Danne JC, Gornik SG, MacRae JI, McConville MJ, Waller RF. Alveolate mitochondrial metabolic evolu-
tion: Dinoflagellates force reassessment of the role of parasitism as a driver of change in apicomplex-
ans. Mol Biol Evol. 2013; 30: 123–139. https://doi.org/10.1093/molbev/mss205 PMID: 22923466

15. Uyemura SA, Luo S, Vieira M, Moreno SNJ, Docampo R. Oxidative Phosphorylation and Rotenone-
insensitive Malate- and NADH-Quinone Oxidoreductases in Plasmodium yoelii yoelii Mitochondria in
Situ. J Biol Chem. 2004; 279: 385–393. https://doi.org/10.1074/jbc.M307264200 PMID: 14561763

16. Fry M, Beesley JE. Mitochondria of mammalian Plasmodium spp. Parasitology. 1991; 102 Pt 1: 17–26.
https://doi.org/10.1017/s0031182000060297 PMID: 2038500

17. Hayward JA, van Dooren GG. Same same, but different: Uncovering unique features of the mitochon-
drial respiratory chain of apicomplexans. Mol Biochem Parasitol. 2019; 232: 111204. https://doi.org/10.
1016/j.molbiopara.2019.111204 PMID: 31381948

18. Salunke R, Mourier T, Banerjee M, Pain A, Shanmugam D. Highly diverged novel subunit composition
of apicomplexan F-type ATP synthase identified from Toxoplasma gondii. PLoS Biol. 2018; 16: 1–28.
https://doi.org/10.1371/journal.pbio.2006128 PMID: 30005062

19. Berry EA, Huang LS, Zhang Z, Kim SH. Structure of the avian mitochondrial cytochrome bc1 complex.
J Bioenerg Biomembr. 1999; 31: 177–190. https://doi.org/10.1023/a:1005459426843 PMID: 10591524

20. Lange C, Hunte C. Crystal structure of the yeast cytochrome bc1 complex with its bound substrate cyto-
chrome c. Proc Natl Acad Sci U S A. 2002; 99: 2800–2805. https://doi.org/10.1073/pnas.052704699
PMID: 11880631

21. Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, et al. Complete structure of the 11-subunit
bovine mitochondrial cytochrome bc1 complex. Science (80-). 1998; 281: 64–71. https://doi.org/10.
1126/science.281.5373.64 PMID: 9651245

22. Xia D, Yu CA, Kim H, Xia JZ, Kachurin AM, Zhang L, et al. Crystal structure of the cytochrome bc1 com-
plex from bovine heart mitochondria. Science (80-). 1997; 277: 60–66. https://doi.org/10.1126/science.
277.5322.60 PMID: 9204897

23. Zhang Z, Huang L, Shulmeister VM, Chi YI, Kim KK, Hung LW, et al. Electron transfer by domain move-
ment in cytochrome bc1. Nature. 1998; 392: 677–684. https://doi.org/10.1038/33612 PMID: 9565029

24. Crofts AR. The Cytochrome bc 1 Complex: Function in the Context of Structure. Annu Rev Physiol.
2004; 66: 689–733. https://doi.org/10.1146/annurev.physiol.66.032102.150251 PMID: 14977419
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