
Compliance-preserving Cloud Storage Federation

based on Data-driven Usage Control

Tobias Wüchner

Technische Universität München, Germany

tobias.wuechner@cs.tum.edu

Steffen Müller and Robin Fischer

Karlsruhe Institute of Technology, Germany

{st.mueller, robin.fischer}@kit.edu

Abstract—Cloud storage federation improves service avail-
ability and reduces vendor lock-in risks of single-provider
cloud storage solutions. Federation therefore distributes and
replicates data among different cloud storage providers.
Missing controls on data location and distribution however
introduce security and compliance issues. This paper pro-
poses a novel approach of using data-driven usage control to
preserve compliance constraints in cloud storage federation.
Based on common compliance regulations and laws we
provide a brief categorization of compliance problems into
spatial, temporal, and qualitative requirements. In addition,
we show how usage control policies can be employed to
constrain federation according to these categories. To demon-
strate the feasibility of our approach we evaluate security and
performance of our prototypical implementation.

Keywords-cloud storage; federation; usage control; com-
pliance;

I. INTRODUCTION

Steadily increasing data volumes and the rising depen-

dency on data ubiquity is one of the main reasons for the

advent of cloud storage services. Today a plethora of cloud

storage services, like DropBox or Google Drive, allow

users to store their data on remote servers. These services

generally offer superior availability and reliability due to

redundancy and data distribution at provider side. Relying

on one particular storage provider, however, implies a

strong dependency on its service qualities like availability

or costs. In case of service availability issues, for example,

the availability of customer data is compromised. Mostly,

leaving customers little compensation options.

Cloud storage federation addresses such single-provider

problems through brokerage: users employ a federation

service to take care of the data storage and maintenance

at different providers, rather than storing data at only one

location. This service then distributes and replicates the

data among different cloud storage providers for the sake

of reduced vendor lock-in and increased data availability.

Problem: Applying cloud storage federation can induce

issues with data security and compliance requirements.

Especially the transparent data distribution and replication

on the provider-side limits the user’s direct control over

data flows, leading to potential violations of compliance

constraints. Personal data, for example, sometimes must

not leave the jurisdiction of a specific country. While

the distribution in such a case is reasonable in terms

of availability, it clearly can violate privacy compliance

regulations like e.g. the EU Data Protection Directive.

Solution: This paper presents an approach to embody

data-driven usage control and provenance tracking into

a federated cloud storage system to enforce compliance

constraints in form of usage control policies.

Contribution: Existing approaches to tackle federation

compliance problems demand modifications to the under-

lying storage services or assume a certain storage architec-

ture. Our approach in contrast acts as a light-weight, trans-

parent proxy between storage users and providers, which

allows us to enforce compliance in an unintrusive way,

independent of underlying cloud storage infrastructures.

Organization: We provide required backgrounds on com-

pliance requirements, cloud storage federation and data-

driven usage control in section II. The data flow model and

architecture of our approach are presented in section III.

In section IV, we evaluate security and performance of

our approach. We relate to existing work in section V.

The paper concludes with a discussion of benefits and

limitations in section VI.

II. BACKGROUND

A. Compliance Requirements for Data Storage Services

Compliance means to act in correspondence with rele-

vant laws, regulations, standards, and specifications. In the

context of cloud storage services this relates to constraints

on the storage, usage, distribution, or deletion of data.

Based on an analysis of relevant compliance-related laws

and regulations, we identify three categories of compliance

requirements for our compliance enforcement approach:

Spatial Requirements: Federated cloud storage systems

distribute data to multiple locations and thus potentially

cross different jurisdictions. In this context, the EU direc-

tive 95/46/EC, e.g. requires personal data to not be stored

in countries with inadequate level of privacy protection.

Temporal Requirements: Laws and regulations may de-

mand that certain types of data must be maintained for or

deleted after a given period of time. SOX, for example,

requires audit (related) information to be maintained for

at least 7 years. PCI-DSS, e.g., requires deletion of card-

holder data after exceeds defined retention periods.

Qualitative Requirements: Laws and regulations put

constraints on how data is handled. For example, access to

or transport of data is constrained to be only granted when

using certain security technology. PCI-DSS, e.g., requires

to use SSL-based mechanisms to protect insecure services.

B. Federated Cloud Storage

Cloud federation unites services from different

providers into a single resource pool to increase

redundancy or combine complementary resources.

Through different routing and replication techniques,

cloud federation can improve availability, or ease mi-

gration. The open-source federated cloud storage service

MetaStorage [1] acts as basis for our approach.

MetaStorage consists of Node, Distributor and Coor-

dinator components. A Node acts as a wrapper for a

cloud storage service and provides a generic interface of

the cloud storage service to a Distributor component. A

Distributor unites a set of nodes and is responsible for the

replication and retrieval of the data as well as the assertion

of the availability of replica. A Coordinator component

manages the configuration states of different Distributor

instances. Additionally, it handles the communication be-

tween multiple MetaStorage instances. The Coordinator

instances are deployed within so-called MetaStorageHosts,

containing at least one Coordinator and Distributor pair.

User interaction with MetaStorage is handled through a

SOAP interface (WSHandler) of the MetaStorageHost.

C. Data-driven Usage Control

Data-driven usage control combines usage control with

dynamic data flow tracking to ensure a holistic enforce-

ment. The Obligation Specification Language (OSL) is

a general-purpose language to formally express usage

obligations and provisions as first-order linear temporal

logic predicates on sequences of events that express what

should and must not happen to data in the future [2].

OSL policies come in form of Event-Condition-Action

(ECA) rules that contain logic predicates on sequences

of events. The Event part specifies for which incoming

events the policy should be triggered, the Condition part

contains further logical propositions on these events, and

the AuthorizationAction part specifies the result of the

policy evaluation process. An incoming Event consists of

a name (actionName), a list of parameters (paramMatch),

and attributes that specify the location of the issuer of the

event (Locsrc) and that of its intended target (Locdst).

The condition part specifies predicate or temporal logic

constraints on event parameters. The used notation also

supports the specification of xPath expressions and state-

based predicates, that express containment constraints be-

tween container and data. We enriched the OSL with a

location-based operator isLocatedWithin, which evaluates

to true iff a given event location is within a defined radius

around a trigger location (Loccmp).

If an event triggers a policy and matches all specified

constraints, the AuthorizationAction part is evaluated. It

specifies, whether the event should be allowed, inhibited,

or modified prior to its actual execution.

Due to its general-purpose applicability, we see OSL

as natural candidate for the specification of compliance

constraints and thus as basis for our approach. For details

on its syntax and semantics please refer to [2], [3].

III. APPROACH

A. Data Flow Model

We model a cloud storage federation service as state

machine that represents the current distribution of data

among different virtual locations. Specific actions that are

issued on the federation service (PUT, GET, DELETE)

influence the distribution of data and thus modify the state

of this model. A cloud storage federation service is thus

defined by (Data, Locvirt, Action,R,Σ, i), where Σ is

the set of states with Σ := store× own, and i ∈ Σ is the

initial state with i := ∅ × ∅. The store function describes

the containment relation between data items and storage

locations. The own function represents the possession

relation between data and entities. The transition relation

R ⊆ Σ × Action → Σ represents the state changes

issued by the execution of PUT, GET, or DELETE actions.

Additionally we define a function update notation: for any

mapping m : S → T and variable x ∈ X ⊆ S, we

define m[x ← expr]x∈X = m′ with m′ : S → T so that

m′(y) = expr if y ∈ X and m′(y) = m(y) otherwise.

The semantics of this model is defined over traces that

map abstract points in time to sets of states. Listing 1

depicts the definitions of the used sets and relations.

The transition relation R is then defined as follows:

A PUT action results in a flow of a data item from a client

machine (clt) to a storage provider server (srv). The first

PUT action at t=0 determines the data possession:
∀store ∈ [Data→ 2

Locvirt], ∀own ∈ [Data→ Ent],

∀d ∈ Data, ∀srv, clt ∈ Locvirt, ∀e ∈ Ent, ∀t ∈ N \ {0} :

((store, own), (PUT, d, clt, srv, e, t),

(store[srv ← store(srv) ∪ d], own)) ∈ R

A GET action is inverse to a PUT action and results in a

data flow from a storage server to a client:
∀store ∈ [Data→ 2

Locvirt], ∀own ∈ [Data→ Ent],

∀d ∈ Data, ∀srv, clt ∈ Locvirt, ∀e ∈ Ent, ∀t ∈ N :

((store, own), (GET, d, clt, srv, e, t),

(store[clt← store(clt) ∪ d], own)) ∈ R

A DELETE action removes a data item from a specific

storage server (= virtual location):
∀store ∈ [Data→ 2

Locvirt], ∀own ∈ [Data→ Ent],

∀d ∈ Data, ∀srv, clt ∈ Locvirt, ∀e ∈ Ent, ∀t ∈ N :

((store, own), (DELETE, d, clt, srv, e, t),

(store[srv ← store(srv)\d], own)) ∈ R

B. Architecture

Our approach bases on event interception: prior to any

execution of data manipulation events like GET, PUT,

DELETE, the system verifies if the event execution would

Listing 1: Data Flow Model - Sets and Relations

Data := Name× Content× 2Tag

Locvirt := Name× 2IP

Ent := Person ∪ Organization

Person := Name× 2Role × Organization

Organization := Name× 2Ent

Action := {PUT,GET,DEL} ×Data× Locvirt × Locvirt

×Person× Timestamp

store : Locvirt → 2Data

own : Data→ Ent

UC FrameworkMetaStorage

Policy Decision Point

(PDP)

Policy Information Point

(PIP)

Nodes /

Policy Enforcement Points (PEP)

WSHandler

...

Storage Providers

(e.g. Amazon, Private Cloud, …)

Figure 1: Conceptual Architecture

violate a deployed compliance policy. Based on the ver-

ification result it then either allows, inhibits, or modifies

the event execution.

Events are directly intercepted at the level of Node com-

ponents that wrap the target cloud storage providers and

thus take care of the actual data distribution and deletion.

Whenever a Node component tries to retrieve (GET), store

(PUT), or delete (DELETE) data from a storage provider,

the further execution is blocked and the event is forwarded

to the employed usage control framework which then takes

care of the actual decision process. The usage control

framework, as described in detail in [2], is in charge of

controlling the execution of usage-related events, based

on previously deployed usage control policies. In our

case, these policies represent compliance requirements.

Therefore, prior to any compliance verification, a corre-

sponding compliance policy must have been deployed to

the usage control framework. Figure 1 depicts the high-

level architecture of our integration approach.

The complete enforcement process looks as follows:

i) the PEP intercepts all attempts to retrieve, store, or

delete data from a cloud storage provider and forwards the

corresponding events to the PDP; ii) based on previously

deployed policies, the PDP then decides on their execution

and modification, potentially querying the PIP, which im-

plements the data flow model introduced in section III-A,

for additional context information, and finally sends its

decision back to the PEP; iii) the PEP then, based on

the PDP’s decision, either executes, modifies, or drops the

event and, in case where the execution is not inhibited,

notifies the PIP about the event execution; iv) the PIP

then updates its internal state according to the modeled

semantics of the intercepted event.

C. Instantiation

1) Compliance Policy Examples: Assume the following

fictitious setting: ACME ltd. is a globally acting

management consulting company. ACME recently moved

parts of their data to the cloud to benefit from reduced

data storage and maintenance costs. Fears concerning data

availability and vendor lock-in issues drove the decision

to employ a cloud storage federation solution. Next we

depict some sample policies based on this scenario.

Example 1-Data Protection: ACME employees process

large amounts of customer data, including personal

data, to derive informed consulting advices. ACME thus

underlies data protection regulations like the German data

protection law. In consequence, data must not be stored

on servers outside the EU. (Spatial requirement)

<preventiveMechanism name="Scenario1">

<trigger action="PUT"/>

<condition>

<not><isLocatedWithin>

<loc_dst lon="50.555325" lat="10.085449" rad="2500"/>

</isLocatedWithin></not>

</condition>

<authorizationAction>

<inhibit/>

</authorizationAction>

</preventiveMechanism>

Example 2-Heterogeneous Protection Needs: ACME

contractors have heterogeneous protection demands.

ACME thus demands confidential data to be encrypted

when stored in public clouds. (Quality requirement)

<preventiveMechanism name="Scenario2">

<trigger action="PUT"/>

<condition>

<not><impl>

<xPathEval>

contains(//event/param[@name="Data.Tag"]/@value,"conf")

</xPathEval>

<xPathEval>

contains(//event/param[@name="Srv"]/@value,"private")

</xPathEval>

</impl></not>

</condition>

<authorizationAction>

<modify>

<parameter name="content" value="enc(AES,512,&cont)"/>

</modify>

</authorizationAction>

</preventiveMechanism>

2) System Implementation: We extended MetaStorage

with functionality to enrich events with meta information

like geographical location, or data ownership.

The geographical location of storage destinations and

users is retrieved the Google geolocation API. Whenever

an event execution attempt is detected, the geolocation

API is queried to retrieve the location of the issuer and

the target of the event. To identify to which entity a

particular request is associated to, we use authentication

information of MetaStorage, as requests to MetaStorage

can only be issued by authenticated users. In general, all

meta-information that is necessary to enforce the targeted

compliance requirements could be either retrieved through

the geolocation API, the MetaStorage API, or the different

storage provider APIs.

IV. EVALUATION

A. Security

Assumptions: Our major security assumption is that the

employed usage control infrastructure can not be tampered

or disabled. This assumption is crucial, as a client needs

to trust the infrastructure to correctly enforce the deployed

compliance policies, but it is justified as we assume our

approach to be running at customer side.

Attacker model: An attacker in our setting is interested in

interfering with the compliance enforcement mechanisms

to issue non-compliant distribution or replication of data.

As a direct manipulation of the enforcement infrastructure

is ruled out by our assumptions, we only consider system-

external attackers that only have access to the same

interfaces as regular non-malicious users.

Attacks and Countermeasures: One way an attacker

could manipulate the compliance enforcement would be to

deploy malicious policies into the system. This attack is

counteracted by a built-in authentication and authorization

system that restricts usage of the cloud storage federation

service to authorized users. Another potential attack would

be a man-in-the-middle-attack between client and federa-

tion service to e.g. on-the-fly change and weaken to-be

deployed compliance policies. This attack is counteracted

by the employed end-to-end encryption between all service

components. Finally a denial-of-service could allow an

authenticated attacker to flood the system with compu-

tationally complex policies to put stress on the evaluation

component and slow down the service. One way of coping

with this attack would be to introduce limits for the policy

deployment frequency per user or data.

B. Performance

We tested our approach against a non-modified version

of MetaStorage in terms of throughput and request latency.

The client, the MetaStorage service, and the usage control

framework were deployed on separate machines that were

connected via a local network connection. This simulated

a setting close to the anticipated application environment,

where we assumed the components of our approach to be

located within the same organizational boundaries.

To measure the performance we applied two test setups:

First, we measured the performance of a non-modified

MetaStorage service as base line; second, we evaluated

the MetaStorage+ (with the compliance enforcement ex-

tension) with four deployed policies.

For every test setup we measured the minimum, the

maximum, and the average latency in milliseconds. We

set the test workload to 5,000 PUT requests, transferring

about 3,300 different files, each of size 10kb to analyze the

performance in a stress situation. For the second test setup

with deployed policies, we tuned the requests to trigger a

policy with a probability of 90%.

The results for MetaStorage and MetaStorage+ with

deployed policies indicate an overhead of about 95% for

the minimum (+98ms), 154% for the maximum (+791ms),

26% for the average latencies (+54ms), and a slight

throughput penalty of about 20% (-0.26 kb/sec).

Being in general below the magnitude of 1, with an av-

erage latency penalty of less than 30%, we do not consider

the performance overhead of our approach a show-stopper.

In addition, we see potential for performance optimization

of our implementation that could provide more satisfying

performance in a realistic application context.

V. RELATED WORK

The concept of CloudFilter by Papagiannis et al. [4] is

close to ours as it intercepts HTTP requests to a cloud ser-

vice to enforce file distribution policies. The main differ-

ence to this work is that we employ a sound usage control

model to specify and enforce complex spatial, temporal, or

qualitative compliance policies whereas CloudFilter bases

its enforcement on pre-defined data labels. Furthermore,

our approach explicitly tracks data provenance through a

formal data flow model; CloudFilter does not.

Massonet et al. [5] propose a compliance enforcement

architecture for a federated cloud infrastructure. The main

difference to our work is that they rely on the RESER-

VOIR federation architecture with specific mechanisms

in place at provider and consumer side. Our approach in

contrast does not demand any modifications at the cloud

service provider side. The compliance enforcement of our

approach is solely performed within the federation service

and thus can be seen as a light-weighted transparent layer

on top of unmodified cloud storage services.

Approaches like [6], [7] are related to our work as they

enforce compliance in a cloud storage context. They differ

from our approach as they enforce compliance demands

at the storage-provider side, which implies modification of

the infrastructure.

VI. DISCUSSION AND CONCLUSION

Despite sufficient performance and security in the antic-

ipated application area, our approach has some limitations.

The enforcement is limited to events within the federation

service itself. Once data leaves this environment, com-

pliance requirements cannot be enforced anymore. Also,

the imprecision of the employed geolocation algorithm

highly influences the enforcement and may lead to wrong

distribution decisions. Furthermore the specification of

compliance policies is not trivial due to the underlying

specification formalism and the inherently blurry, non-

binary, and potentially conflicting nature of compliance

regulations. Our approach may have side effects on im-

portant quality aspects of the federation service like data

availability. Considering inevitable cost-benefit tradeoffs

between compliance and availability, policies must thus

be carefully balanced out in this respect.

REFERENCES

[1] D. Bermbach, M. Klems, M. Menzel, and S. Tai, “Meta-
storage: A federated cloud storage system to manage
consistency-latency tradeoffs,” in Proc. of CLOUD’11, 2011.

[2] A. Pretschner, E. Lovat, and M. Büchler, “Representation-
independent data usage control,” in Proc. of STM’11, 2011.

[3] T. Wüchner and A. Pretschner, “Data loss prevention based
on data-driven usage control,” in ISSRE, 2012.

[4] I. Papagiannis and P. Pietzuch, “Cloudfilter: practical control
of sensitive data propagation to the cloud,” in Proc. of
CCSW’12, 2012.

[5] P. Massonet, S. Naqvi, C. Ponsard, J. Latanicki, B. Rochw-
erger, and M. Villari, “A monitoring and audit logging
architecture for data location compliance in federated cloud
infrastructures,” in Proc. of IPDPSW’11, 2011.

[6] S. Betge-Brezetz, G.-B. Kamga, M. Ghorbel, and M.-P.
Dupont, “Privacy control in the cloud based on multilevel
policy enforcement,” in Proc. of CLOUDNET’12, 2012.

[7] W. Itani, A. Kayssi, and A. Chehab, “Privacy as a service:
Privacy-aware data storage and processing in cloud comput-
ing architectures,” in Proc. of DASC’09, 2009.

