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For consumer protection, many governments perform random inspections on goods sold by weight or

volume to ensure consistency between actual and labeled net contents. To pass inspection, random samples

must jointly comply with restrictions placed on the individual sampled items and on the sample average.

In this article, we consider the current United States National Institute of Standards and Technology

joint acceptance criteria. Motivated by a problem from a real manufacturing process, we provide an

approximation for the probability of sample acceptance that is applicable for processes with one or more

known sources of variation via a random effects model. This approach also allows the assessment of

the sampling scheme of the items. We use examples and simulations to assess the quality and accuracy

of the approximation and illustrate how the methodology can be used to fine-tune process parameters

for a prespecified probability of sample acceptance. Simulations are also used for estimating variance

components.

KEY WORDS: Average criterion; Individual criterion; NIST Handbook 133; Regulatory inspections;

Variance components.

1. INTRODUCTION

For consumer protection, many governments regulate the pro-

duction of goods sold by weight or volume to ensure consistency

between contents and labeling. Inspections are randomly per-

formed to verify that (a) on average, products being sold have

net contents within a reasonable range of the labeled content

(e.g., 500 mL of cola) and (b) very few items are defectively

underfilled (i.e., have net content significantly less than the la-

beled content). For regulatory acceptance, a sample of items

must jointly satisfy an “average criterion” and an “individual

criterion.”

From a manufacturing perspective, guaranteeing sample ac-

ceptance by overfilling all units is an inefficient and costly

solution. It is useful to have a means of exploring the proba-

bility of sample acceptance given any set of operating condi-

tions. Thus, it is natural to express the probability of sample

acceptance as a function of process parameters (i.e., the pro-

cess mean and the variance components associated with differ-

ent manufacturing steps) so that compliance with government

regulations can be achieved via more economical parameter

fine-tuning.

The joint acceptance criteria vary by country and evolve over

time. Under old U.S. guidelines, there were two criteria: one

that considers each individual item and another for the aver-

age measurement of the sample units. The individual criterion

was based on a maximum allowable number of defectively

underfilled items, and the average criterion was based solely

on the sample mean being greater than the labeled net con-

tent. To calculate the acceptance probability, the distribution of

the process must be assumed, and to date methodologies as-

sume a normally distributed process with only one source of
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244 CRYSTAL D. LINKLETTER ET AL.

variability, for example, unit-to-unit variability. With this dis-

tributional assumption, Schilling and Dodge (1969) gave tables

of exact acceptance probabilities under the old U.S. criterion

for small sample sizes using tabulated integral values for the

distribution of an extreme deviate from the sample mean (de-

veloped by Nair 1948; Grubbs 1950). To accommodate larger

sample sizes, Elder and Muse (1982) proposed an approxima-

tion that writes the acceptance probability of a sample as the

product of the conditional probability of passing the mean cri-

terion, given the individual criterion is met (an approximate

truncated normal distribution), and the marginal probability of

passing the individual criterion (an exact binomial distribution).

This conditioning approach is attractive as it breaks the joint

probability into tractable pieces. Alternatively, Vangel (2002)

derived a saddlepoint approximation to the bivariate distribu-

tion of the sample mean and the sample extremum, address-

ing the special case where no defective individual items are

permitted.

The recent U.S. National Institute of Standard and Technol-

ogy (NIST) Handbook 133 (2005) now expresses the average

criterion as an upper-limit of the confidence interval based on

both the sample mean and the sample standard deviation of mea-

sured items. While arguably more reasonable, the inclusion of

the sample standard deviation in the average criterion presents

new challenges. Constantine, Field, and Robinson (2000) sug-

gested two possible ways of handling the additional random en-

tity. First, they replaced the unknown sample standard deviation

by a known quantity, such as the true process standard deviation,

thereby simplifying the mathematical derivation of the proba-

bility of sample acceptance. In this case, the approximation of

Elder and Muse (1982) can directly be applied. This ignores the

uncertainty in the sample standard deviation. Alternatively, they

proposed an approximation that is based on an implicit (but in-

correct) assumption that the sample standard deviation and the

individual measurements are independent. Rather fortuitously,

this oversight has relatively little impact on the probability calcu-

lations in regions of the parameter space, which are typically of

interest, that is, the regions that correspond to a very high proba-

bility of acceptance. The premise of the Constantine, Field, and

Robinson (2000) formulation is problematic, and not suitable

for extensions to accommodate more realistic assumptions like

multiple sources of variations.

In this article, we develop new methodology for determining

the probability of sample acceptance as available methodologies

are out-of-date in two fundamental ways. First, the probability

of acceptance has been successfully derived only under the old

inspection guidelines, which do not include the sample standard

deviation. Second, in reality, many production processes have

multiple sources of variation (e.g., lot-to-lot or batch-to-batch)

associated with different stages of production. Such variations

can have considerable implications for the distribution of the

inspection sample measurements and the probability of sample

acceptance. In general, we assume these variance components

are known from online monitoring or are well measured, as

is the case for many companies; however, we discuss uncer-

tainty in the estimation of these parameters in simple cases (see

Example 3). The goal of this article is to provide methodology

to calculate the probability of sample acceptance given these

parameter values, allowing manufacturers to (a) evaluate the

probability of acceptance under current operating conditions,

(b) choose a process mean that yields a prespecified probability

of acceptance, and (c) evaluate the impact of variance reduction

programs on the acceptance probability.

2. JOINT ACCEPTANCE CRITERION

During an inspection, n units of a product are sampled from

a store shelf and their individual net content (e.g., weight or

volume) are measured. Let xj denote the net content of the jth

unit (generally, we use upper case to denote random variables

and lower case for measured or computed quantities). To pass the

average criterion, the upper limit of a 100(1− α)% confidence

interval for the process mean must be at least as large as the

labeled net content, V . That is,

x̄n + t1−α/2,n−1

s
√

n
≥ V, (1)

where x̄n and s are the sample mean and the sample standard

deviation, respectively, and t1−α/2,n−1 is the 100(1− α/2)th per-

centile of the t distribution with n− 1 degrees of freedom. We

define b = t1−α/2,n−1/
√

n for convenience, making the criterion

x̄n + bs ≥ V . The inclusion of “bs” is an evolution from the

previous requirement, x̄n ≥ V , the criterion addressed by Elder

and Muse (1982) and Vangel (2002). From the manufacturer’s

perspective, the important issues are estimating the probability

of passing inspection and also adjusting the process parameters

(e.g., mean and, if possible, variability) so that the system passes

inspection with a prespecified probability.

To pass the individual criterion, no more than r items can

have net content below a defective level, c. NIST Handbook

133 (2005) specifies the defective level as the labeled net

content minus a “maximum allowable variation” (MAV). Let

Yc be the number of items in the sample with net content less

than c (i.e., Yc =
∑n

j=1 I (Xj ≤ c)). The individual criterion

is then

yc ≤ r. (2)

For most applications, only very small values of r (e.g., r =
0, 1, or 2) are allowed. Overall, the probability that a sample

jointly satisfies criteria (1) and (2) (i.e., is accepted) is

P (X̄n + bS ≥ V, Yc ≤ r). (3)

The evaluation of (3) as a function of process parameters is the

main focus of this article.

In assessing compliance to (1) and (2) an inspector does

not give any consideration to the mechanism that produced the

sample. The sample mean and the sample standard deviation

are calculated in the usual way, and the sample is either ac-

cepted or not. However, to correctly ascertain the probability

of a sample being accepted, it is necessary to understand the

production process under different scenarios and thereby the

joint distribution of X̄n, S, and Yc, where X̄n =
∑n

k=1 Xk/n and

S2 =
∑n

k=1(Xk − X̄n)2/(n− 1).

For ease of exposition, we initially restrict our attention to

processes that have two sources of variation, say a lot-to-lot

variance (σ 2
a ) and a within-lot unit-to-unit variance (σ 2

ε ). More

general settings are explored later in Sections 3.1 and 3.2. Sup-

pose M different “production lots” are represented in the sample.
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COMPLIANCE TESTING WITH JOINT ACCEPTANCE CRITERIA 245

In the two variance component case, the process model is

Xij = µ+ ai + εij , j = 1, . . . , ni ;

i = 1, . . . ,M;

M
∑

i=1

ni = n, (4)

where µ is the overall process mean, the lot random effects

{ai} are independent N (0, σ 2
a ) and uncorrelated with indepen-

dent N (0, σ 2
ε ) errors {εij }. Thus, the problem of interest is

calculating (3) as a function of process mean and variance com-

ponents, P (µ, σa, σε).

Clearly from (4), the number of production lots, M, that

comprise the sample will play a role in computing the prob-

ability of sample acceptance. For example, it is easy to show

that under model (4), var(X̄n) = q1σ
2
a + n−1σ 2

ε , where q1 =
n−2

∑M
i=1 n2

i . Note that the maximum value of q1 = 1 is at-

tained when M = 1 and the minimum value of q1 = n−1 is

attained when M = n. Meanwhile, E(S2) = q2σ
2
a + σ 2

ε , where

q2 = n(1− q1)/(n− 1), and E(S2) is minimized at q2 = 0 (or,

q1 = 1) when M = 1 and maximized when M = n. Thus,

S2 systematically underestimates the process variability unless

each sample is from a different lot, thereby making (1) more

difficult to satisfy in most cases. The worst scenario is single-lot

sampling, where the bias can be substantial if σ 2
a is large relative

to n−1σ 2
ε . On the other hand, the lot effects in the sample have

an opposite effect on passing the individual criterion: single lot

sampling is the easiest case, and M = n the hardest. Assum-

ing that a process is reasonably well tuned, one expects the

probability of passing the individual criterion to be fairly high.

Therefore, the relative impacts of lot effects will be somewhat

smaller on the individual criterion than on the average criterion,

and the overall worst case for passing the joint criteria is when

all samples are drawn from a single lot. Simulations presented in

Section 4 attest to this. We will therefore, use single-lot sampling

as a conservative case to provide a lower bound to the probability

of sample acceptance under more general sampling scenarios.

Example 1. To illustrate the pitfalls of ignoring variance

components when computing the probability of sample accep-

tance, consider the following example from the Procter and

Gamble Company (for proprietary reasons, details on the prod-

uct cannot be provided). Suppose a product has labeled net

content V = 40 oz, and so from NIST Handbook 133, the

MAV in the product is 1.376 oz. Thus, the critical defec-

tive level is c = 38.624 oz (calculated as net content minus

the MAV). Assume that the number of products on the shelf

at the time of inspection is at least n, the number of sam-

pled items, and for the individual criterion, no items are per-

mitted to be defectively underfilled (i.e., r = 0). Using the

average criterion as stipulated by the NIST Handbook (with

percentile t0.975,n−1), the probability of sample acceptance is

P (X̄n + t0.975,n−1S/
√

n ≥ 40, Y38.624 = 0).

Consider two scenarios: (A) the variance component decom-

position is ignored, and suppose the total variability for the pro-

cess is σ 2
total = 0.118; and (B) 30% of the total variability is due

to lot-to-lot variation, σ 2
a = 0.0354 (here a lot is defined as an

8 hr production period), and the remainder is due to unit-to-unit

variation, σ 2
ε = 0.0826, and every sample of size n is produced

at the same time, that is, all items are from the same lot. To simu-

late from scenario (A), samples of size n are randomly generated

from a N (µ, σ 2
total), while for scenario (B), a random effect aL is

first generated from a N (0, σ 2
a ) distribution and then a sample

of size n is randomly generated from a N (µ+ aL, σ 2
ε ) distri-

bution. The probability of sample acceptance is the proportion

of generated samples, which jointly satisfy criteria (1) and (2).

We use 10 million simulations to reduce the impact of Monte

Carlo error to below four decimal places (see Robert and Casella

2005). Moreover, to assess the sensitivity of sample size on the

probability of acceptance, we conducted the simulation study

for a range of sample sizes, n = 8, 10, 12, 15, and 20. These are

comparable to sample sizes recommended in the NIST Hand-

book 133. The results are summarized in Figure 1.
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Figure 1. Probability of acceptance as a function of µ with and without variance decomposition. (a) One variance component, (b) two variance

components.
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Figure 1(a) shows the acceptance probability for different

process means under scenario (A) for different sample sizes.

There are some immediate observations from the plot. First,

as somewhat expected, the acceptance probability is monotoni-

cally increasing with the process mean. Second, when µ < V ,

the probability of passing the inspection appears to be decreas-

ing as the sample size increases for any fixed µ, whereas, the

reverse seems to be true when µ > V . For larger sample sizes,

the estimated process mean has smaller variance and thus, is

known more precisely. As a consequence, the probability of in-

correctly passing inspection (when µ < V ) or incorrectly failing

inspection (when µ > V ) is reduced. It turns out that the prob-

ability of failing the inspection due to an individual underfill is

extremely small under these cases, and thus, the average crite-

rion guides the probability of sample acceptance. That is, such

a trend may not always exist.

Figure 1(b) presents the probability of acceptance under sce-

nario (B). The pattern is similar to the region µ < V in sce-

nario (A). Because of the additional variance component, the

probability of acceptance curves in panel (b) are less steep as

compared to that in panel (a), and the probability curves tend to

1 as µ increases.

Comparing both panels in Figure 1, it is clear that previously

derived methodologies, which ignore variance decomposition,

and rely on the assumption that there is only one source of

variability, overestimate the probability of sample acceptance.

For example, with n = 12, if the Procter and Gamble Company

equated the process mean to the labeled net content (i.e., set

µ = 40 oz) and ignored the variance decomposition, they would

erroneously calculate a 97.5% probability of sample acceptance;

in reality this probability would be around 80%. To achieve

97.5% probability, they would have to increase the process mean

to about 40.25 oz.

For scenario (A), the Monte Carlo estimates of the prob-

abilities of sample acceptance under the mean criterion in

(1) and individual criterion in (2) are P (X̄ + t0.975,11S/
√

n ≥
V ) = 0.9750 and P (Y38.624 ≤ r) = 0.9997, respectively. Sim-

ilarly, the probabilities under scenario (B) are P (X̄ +
t0.975,11S/

√
n ≥ V ) = 0.8032 and P (Y38.624 ≤ r) = 0.9996. In

both cases, the probability of satisfying the individual criterion

is essentially 1, and thus, the probability of satisfying the joint

criterion (3) is the same as that of satisfying the mean criterion

(1) alone.

3. METHODOLOGY

To outline our approach to estimating the acceptance prob-

ability, we begin with the simplest case in which the manu-

facturing process has two known variance components, a lot-

to-lot variance, σ 2
a , and a within-lot unit-to-unit variance, σ 2

ε ,

so the process can be modeled as in (4). We also assume

that all n sampled items come from one lot with lot random

effect aL.

Let {XLj , j = 1, . . . , n} be a random sample such that

XLj |aL ∼ N (µ+ aL, σ 2
ε ) for all j, that is, X̄n| aL ∼ N (µ+

aL, σ 2
ε /n) and (n−1)S2

σ 2
ε
| aL ∼ χ2

(n−1). Because the lot random ef-

fect for a sample is unknown a priori, uncertainty about the

random effect can be incorporated by averaging over the lot

random effect. Let fa(·) denote the N (0, σ 2
a ) density function.

Then

P (µ, σa, σε) = P (X̄n + bS ≥ V, Yc ≤ r)

=
∫ ∞

−∞
P (X̄n + bS ≥ V, Yc ≤ r| aL)fa(aL)daL.

(5)

To evaluate the average-individual joint probability in the

integrand of (5), we condition in the way opposite to Elder and

Muse (1982):

P (X̄n + bS ≥ V, Yc ≤ r| aL)

= P (X̄n + bS ≥ V | aL)P (Yc ≤ r| X̄n + bS ≥ V, aL). (6)

We consider the two factors on the righthand side of (6) sepa-

rately. Leaving the technical details to Appendix A, we find that

the first factor can be explicitly computed as

P (X̄n + bS ≥ V | aL) = 1− Ft ′:n−1,δ(−b
√

n), (7)

where Ft ′:n−1,δ(·) denotes the cdf of the noncentral t distribution

(see e.g., Johnson and Kotz 1970) with n− 1 degrees of freedom

and noncentrality parameter δ =
√

n(µ+ aL − V )/σε .

To approximate the second factor in (6), we first define

WLj = I [XLj ≤ c], j = 1, . . . , n, where WLj = 1 if unit j

is defectively underfilled, and 0 otherwise. The conditional

probability pW = P (WLj = 1| X̄n + bS ≥ V, aL) = P (XLj ≤
c| X̄n + bS ≥ V, aL) does not depend on j, and can be computed

by noting that

pW =
P (XLj ≤ c, X̄n + bS ≥ V | aL)

P (X̄n + bS ≥ V | aL)
. (8)

The denominator in (8) is simply the noncentral t probability

specified in (7). To tackle the numerator, define fX̄n|aL
(·) and

fS|aL
(·) to be the conditional sampling distributions of X̄n and S

specified above. Using results in Appendix B, the numerator in

(8) can be written as

P (XLj ≤ c, X̄n + bS ≥ V | aL)

=
∫ ∞

0

∫ ∞

V−bs

FB(c0)fX̄n|aL
(x̄n)fS|aL

(s)dx̄nds, (9)

where FB(·) is the cumulative distribution function of

Beta( n−2
2

, n−2
2

) and

c0 =
1

2

[

1+
√

n(c − x̄n)

(n− 1)s

]

.

The double integral in (9) can be evaluated using numerical in-

tegration techniques. We used the Gaussian quadrature routine

dblquad in Matlab with error tolerance for the integral approx-

imation set to be 10−6. The second factor in (6) can now be

written as

P (Yc ≤ r| X̄n + bS ≥ V, aL) = P (W ≤ r| X̄n + bS ≥ V, aL),

where W =
∑n

j=1 WLj . It is important to note that because

of the conditioning constraint that the average criterion is

satisfied, the indicators WLj are conditionally dependent. In

our case—though not independent the indicators are identi-

cally distributed— WLj | (X̄n + bS ≥ V, aL) ∼ Bin(1, pW ) for

every j. Approximations for the distribution of the sum of
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dependent indicators have been discussed extensively (Ba-

hadur 1960; Altham 1978; Soon 1996). After exploring sev-

eral of these options for the distribution of W | (X̄n + bS ≥
V, aL), we chose the approximation from Soon (1996),

W | (X̄n + bS ≥ V, aL)
D

≈ Bin(n, pW ), for obtaining

P (Yc ≤ r| X̄n + bS ≥ V, aL) ≈
r

∑

q=0

(

n

q

)

p
q

W (1− pW )n−q .

(10)

For more details on the approximate distribution of W | (X̄n +
bS ≥ V, aL) see Remark 2 at the end of this section. In sum-

mary, the two components of (6) are evaluated using (7) and

(10). Plugging these into (5), a reasonable approximation for

the probability of acceptance is

P (µ, σa, σε) ≈
∫ ∞

−∞
[1− Ft ′:n−1,δ(−b

√
n)]

×
r

∑

q=0

(

n

q

)

p
q

W (1− pW )n−qfaL
(aL)daL. (11)

This approximation is valid for a sample from the two

variance component model given in (4) and the conservative

sampling assumption that all items in the sample were pro-

duced close together in time. We now consider two possible

generalizations.

3.1 Multiple Variance Components

If we maintain the sampling assumption that all items in the

sample were produced at the same time, it is straightforward

to generalize to process models with more (or less) than two

variance components. First, if there is only unit-to-unit vari-

ability in the process (as assumed by Elder and Muse (1982)

and others), averaging over the extra source of variability in (5)

is not needed. In this simpler case, the probability of sample

acceptance reduces to

P (µ, σε) ≈ [1− Ft ′:n−1,δ0
(−b

√
n)]

r
∑

q=0

(

n

q

)

p
q

W (1− pW )n−q .

(12)

The computational difference to note here is the absence of

the outer most integral and the reduced noncentrality parameter

of the noncentral t distribution in (12), δ0 =
√

n(µ− V )/σε ,

also used in the evaluation of pW in (8) for this case.

Alternatively, consider a production process with K differ-

ent stages (e.g., personnel shifts, batches, plant locations, lots,

etc.). The more general version of model (4) with K variance

components—plus unit-to-unit variability—is

Xi1i2...iKj = µ+
K

∑

k=1

aik + εi1i2...iKj ,

where all the means associated with the different stages, aik ,

k = 1, . . . , K , are independently distributed as N (0, σ 2
ak

), inde-

pendent of εi1i2...iKj

iid∼ N (0, σ 2
ε ). Though on the surface more

complicated, results readily follow the given assumption that

all sampled items were produced at the same time. Suppose

that (i1, . . . , iK ) = (L1, . . . , LK ) for all j = 1, . . . , n, with lot

random effects aik = aLk
given for k = 1, . . . , K , that is, the

production stages are the same for all items in the sample. De-

fine aL =
∑K

k=1 aLk
and σ 2

a =
∑K

k=1 σ 2
ak

. Substituting these re-

defined parameters, the sampling distributions of X̄n|aL and

S|aL are the same as in the two variance component case, and

the probability of sample acceptance can still be written as (11).

3.2 Mixed Sampling Schemes

We now consider relaxing the assumption that M = 1 in (4).

For notational convenience, we use the two variance component

model (4) to illustrate how more general sampling plans can

be incorporated. More variance components can be considered

similarly.

Suppose that n1 units in the sample were produced at the same

time and the other n2 units were also produced close together

(but at a different time), n1 + n2 = n. Denote the data vector

in this case as X = (X11, . . . , X1n1
, X21, . . . , X2n2

)′, where the

first subscript indicates whether an observation came from lot 1

or lot 2. Let θ = (a1, a2)′ be the random effects for the two lots,

η = (n1, n2)′ be the sampling scheme, and let

H =
[

1n1
0n1

0n2
1n2

]

,

where 1ni
and 0ni

are ni × 1 vectors of 1s and 0s, respec-

tively, for i = 1, 2. Given the lot random effects θ and the sam-

pling scheme η, we can write X|(θ, η) ∼ Nn(µ1n +Hθ , σ 2
ε In).

This implies the sampling distributions X̄n|(θ , η) ∼ N (µ+
ā, σ 2

ε /n) and (n−1)S2

σ 2
ε
|(θ, η) ∼ χ2

n−1(λ), where

ā =
n1a1 + n2a2

n

and χ2
n−1(λ) distribution is a noncentral χ2 distribution with

noncentrality parameter

λ =
n1(a1 − ā)2 + n2(a2 − ā)2

σ 2
ε

.

Let fa(θ) be the bivariate normal density, N2(02, σ
2
a I2), then

the probability of sample acceptance can be computed by aver-

aging over the random effects similar to (5), that is,

P (µ, σa, σε) =
∫ ∫

2

P (X̄n + bS ≥ V, Yc ≤ r| θ , η)fa(θ)dθ ,

(13)

where 2 = R
2. The integrand in (13) can be evaluated as in

(6), but when there is a mixture of two lots in the sample, the

first factor on the righthand side of (6) is now given by the

doubly noncentral t distribution with n− 1 degrees of freedom

and noncentrality parameters δ =
√

n(µ+ ā − V )/σε and λ,

defined above. To evaluate the second term in (6) with mixed

lots, we define two sets of indicators Wij = I [Xij ≤ c], j =
1, . . . , ni , i = 1, 2, where Wij = 1, if unit j that was produced

in lot i is defective, and 0 otherwise. Conditional on the average

criterion being satisfied, the probability that unit j in lot i is

defective is

pWi
= P (Wij = 1| X̄n + bS ≥ V, θ , η)

= P (Xij ≤c|X̄n + bS≥V, θ , η), i = 1, 2; j = 1, . . . , ni .
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Derivations of pW1
and pW2

are similar to the one lot case

(see Appendix C). Using these indicators,

P (Yc≤r|X̄n+bS≥V, θ , η) = P (W ′ ≤ r|X̄n + bS ≥ V, θ , η),

where W ′ =
∑n1

j=1 W1j +
∑n2

j ′=1 W2j ′ . As before, these indi-

cators are conditionally dependent, but now the distribution

of Wij |(X̄n + bS ≥ V, θ , η) are also not identical between lots

(i.e., for different values of i), but rather only within lots. An

alternative approximation from Soon (1996) can be used to de-

duce that W ′|(X̄n + bS ≥ V, θ , η)
D

≈ Bin(n′, p′W ), where

n′ =

⌊

(n1pW1
+ n2pW2

)2

n1p
2
W1
+ n2p

2
W2

+
1

2

⌋

,

and

p′W =
n1pW1

+ n2pW2

n′
.

The notation bxc denotes the integer part of x.

In summary, when n1 items in the sample are from one lot and

the remaining n2 items are from a second lot, the probability of

sample acceptance becomes

P (µ, σa, σε) ≈
∫

2

[1− Ft ′′:n−1,δ,λ(−b
√

n)]

×
r

∑

q=0

(

n′

q

)

(p′W )q(1− p′W )n
′−qfa(θ )dθ , (14)

where Ft ′′:n−1,δ,λ is the cumulative distribution function of a

doubly noncentral t distribution.

Remarks:

(1) In addition to incorporating beliefs about how many lots

are represented, prior distributions can also be placed on

η, the number of items from each lot. For example, for

η = (n1, n2)′, η ∼ multinomial(n; 1/2, 1/2) would spec-

ify an uninformative prior on the sample size distribution.

To incorporate this into (13),

P (µ, σa, σε)

=
∑

η

∫

2

P (X̄n + bS≥V, Yc ≤ r| θ , η)fa(θ )dθP (η),

where P (η) denotes the joint probability mass function

of η. Note that the multinomial prior places most of

its weight on a mixed sample, but does also give small

weight to a one-lot-only sample. Subsequently, the pro-

cedure for evaluating the conditional joint probability in

the integrand will depend on if it is a mixed sample or a

one-lot-only sample.

(2) The conditional dependence of Wij ’s makes the compu-

tation of P (Yc ≤ r|X̄n + bS ≥ V, ∗) challenging under

the sampling scenarios described above. For instance,

in the one variance component case, corr(Wi,Wj |
X̄n + bS ≥ V ) = (p12 − p2

1)/(p1 − p2
1), for i 6= j ,

where p1 = P (Xi ≤ c|X̄ + bS ≥ V ) and p12 =
P (Xi ≤ c,Xj ≤ c|X̄ + bS ≥ V ). By using the defini-

tion of conditional probability, it is easy to show that

P (Xi ≤ c,Xj ≤ c|X̄ + bS ≥ V ) = P (Xi ≤ c|Xj ≤ c,

X̄ + bS ≥ V )P (Xj ≤ c|X̄ + bS ≥ V ), and P (Xi ≤
c| Xj ≤ c, X̄ + bS ≥ V ) ≤ P (Xi ≤ c|X̄ + bS ≥ V ).

Consequently, p12 ≤ p2
1 and hence, corr(Wi,Wj |X̄n +

bS ≥ V ) ≤ 0. However, the magnitude of the corre-

lation coefficient depends on several quantities such

as the mean (µ) and variance component (σ 2
ε ) in the

distribution of XLj , and parameters in the acceptance

criteria, such as the sample size (n), the individual cutoff

(c) and the average cutoff (V). If there are more variance

components and/or multiple lots in the sample, even

more parameters contribute to the dependence structure.

For the setup in Example 4, we investigated the accuracy of

the binomial approximation (proposed by Soon 1996) used for

the distribution of W |(X̄n + bS ≥ V ). It turns out that the dis-

crepancy measured in terms of Kolmogorov–Smirnov distance

between the simulated distribution of W |(X̄n + bS ≥ V ) based

on Monte Carlo simulation with 106 random samples, and the

binomial approximation, by Soon (1996), is essentially zero in

the regions of interest (see Figure 6). The discrepancy turned

out to be of the order of 10−3 in regions where probability of

passing is quite small (less than 0.7).

4. EXAMPLES

Example 2. Recall Example 1 that was outlined in Section 2

and helped motivate this work. This production process follows

the two variance component model in (4). The initial question

posed was as follows: given a production process which has two

known sources of variability, what production mean should be

targeted to achieve a prespecified probability of passing?

Due to the presence of the lot-to-lot variability component,

the answer to this question depends on how many lots were

included in the sample. Under the conservative assumption that

all sampled items come from the same production lot, the prob-

ability of sample acceptance can be calculated using (11). Al-

ternatively, under the more favorable sampling scenario that the

inspection sample consists of a mixture of two production lots,

the probability of sample acceptance is given by (14). For com-

parison, (12) gives the probability of sample acceptance when

the variance components are ignored.

Using the specified regulatory constants (V = 40 oz, c =
38.624 oz, r = 0, n = 12) and variance components (σ 2

a =
0.0354, σ 2

ε = 0.0826, σ 2
total = σ 2

a + σ 2
ε = 0.118), Figure 2

shows the probability of sample acceptance as calculated by

(11), (14), and (12) for a sequence of production targets, µ,

and sample size mixtures (n1, n2). In Figure 2, the two curves

corresponding to the one-lot sampling scenario with and with-

out variance decomposition (which were previously calculated

and plotted in Figure 1 via simulation) are highlighted in bold.

As can be seen from Figure 2, in the two variance component

case the calculated probability of sample acceptance is always

lowest for a given target under the one-lot sampling scheme,

emphasizing the conservative nature of this scenario.

In the situation where the manufacturer has little flexibility in

tuning process variability, the curves in Figure 2 can be used to

determine how much overfilling is required to achieve a prespec-

ified probability of sample acceptance under the fixed process

variability settings and a variety of sampling scenarios. In this

example, if the Procter and Gamble Company aims for a 95%
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Figure 2. Probability of sample acceptance as a function of µ with

and without variance decomposition. All total sample sizes are n = 12;

lot size mixtures given as (n1, n2).

probability of sample acceptance, they should conservatively set

their production target to µ = 40.17. In contrast, if it is known

that the sample will consist of an equal mixture of two lots, the

same probability of sample acceptance could be achieved by

only overfilling to µ = 40.07. Erroneously tuning the process

to the dotted line (calculated without the variance decompo-

sition), the target corresponding to 95% sample acceptance is

µ = 39.97, effectively resulting in an acceptance probability of

only 76.1% under the conservative sampling scheme.

Alternatively, if tuning of the variance components is pos-

sible, (11) can similarly be used to assess variance reduction

strategies (restricting attention to the one-lot sampling scenario).

Here we consider two possibilities: (a) the total variability,

σ 2
total = 0.118, is held constant but the proportion of variabil-

ity due to noise, which we denote γ = σ 2
ε /σ 2

total, can be varied;

and (b) the proportion of variability due to noise, γ , is fixed to

70% but the total variability can be changed. Figure 3 shows

the acceptance probability as a function of the target mean for

a variety of variance decompositions. As γ increases (i.e., the

lot-to-lot variability decreases), less overfilling is required to

achieve the same probability of acceptance. Figure 4 shows

contours of the probability of acceptance surface for a number

of combinations of µ and σ 2
total. For this example, there seems

to be a limited benefit in reducing the total variability (with the

proportion of lot-to-lot variability, γ , held fixed at 0.7). While

less total variability does decrease the target required for a spec-

ified probability of acceptance, the narrow gaps between con-

tour lines suggests that the probability of acceptance decreases

quickly with small changes in µ when the total variability is

reduced. In practice, costs of overfilling can be weighed against

costs of reducing variability to achieve an optimum strategy.

In some instances the variances of the random effects can be

estimated with very little error from a wealth of data acquired

by online monitoring and inspection. This may not be the case

in some applications, and the variance components (e.g., unit-

to-unit, lot-to-lot, etc.) have to be estimated from experiments.

In the next example, we present a simulation study to investigate

the impact of (a) the estimation error in the variance component,

(b) misspecification of the number of variance components and
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Figure 3. Probability of sample acceptance as a function of µ for a

variety of variance decompositions, γ . Calculations based on a one-lot

sampling scheme with n = 12 and fixed σ 2
total.

(c) the percentage of lot-to-lot variance in computing the joint

probability of acceptance.

Example 3. Consider the setup of Examples 1 and 2. The pa-

rameters were set to µ = 40, MAV = 1.376, c = µ−MAV =
38.624, r = 0, σ 2

total = (MAV/k)2 for k = 1, 2.5, 4 and σ 2
ε =

γ σ 2
total for 0 ≤ γ ≤ 1. The choices of k span the range of capa-

bility that most processes will have in relation to the MAV.

Note that a small value of k implies large variation in the

data. Consequently, as k increases, the probability of pass-

ing the individual criterion (Yc = 0) increases. In this exam-

ple, k = 1 implies σ 2
total ≈ 1.89 and the six-sigma range for

the data is (35.87, 44.13). That is, the individual criterion

(Y38.624 = 0) would be difficult to satisfy. The results for k = 1 is

not very appealing from a company’s perspective, however, they

show how the estimation affects the performance by using the

two models in an extreme case.
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Figure 4. Contours of the probability of sample acceptance as a

function of µ and σ 2
total. Calculations based on a one-lot sampling

scheme with n = 12 and fixed γ = 0.7.
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In this example, we use simulation results to illustrate

the impact of the three issues (a)–(c) mentioned above in

estimating the probability of passing the joint acceptance

criterion. The variance components σ 2
ε and σ 2

a are estimated

using the restricted maximum likelihood (REML) approach

from randomly generated populations with m lots of 10 units

per lot. The simulation results in Tables 1 and 2 are summarized

for different combinations of m = 10, 30, 50, k = 1, 2.5, 4, and

γ = 0.75, 0.9. We used n = 12 as this is the most common

type of sampling for NIST. Since the probability estimation

under two variance components model is computationally time

consuming, the simulation results summarized here are based

on roughly 50 realizations.

Truth—One Variance Component. The goal of this simulation

is to find out how the misspecification in the number of variance

components and the uncertainty in the estimates themselves

affect the calculated probabilities. Assume that the true process

is in perfect control and there is a single variance component

(unit-to-unit). That is, all observations in the random population

(of m lots with 10 units per lot) are iid N (µ, σ 2
total), where

σ 2
total = σ 2

ε . But we include a lot-to-lot variance component in

our analysis, using REML to compute the estimates. Table 1

summarizes the mean and standard error of several realizations

of (a) Ptrue—the probability of passing, computed using the

true parameters σε = σtotal = MAV/k and σa = 0 (b) Pest(1

var)—the probability of passing, computed using the estimate

of σ 2
ε obtained from REML (under the assumption of σa = 0)

and (c) Pest(2 var)—the probability of passing computed using

the estimate of σ 2
ε and σ 2

a from REML (under the assumption of

two variance components with n1 = 0, 3, 6 and n2 = n− n1).

The numbers in the parentheses are the standard errors.

From Table 1, it is clear that Pest(1 var) provides the best ap-

proximation for the truth in all the cases considered here. Sim-

ilar to Figure 2, the estimated probabilities for k ≥ 2.5 slightly

increase with the mixing of the samples from the two lots,

but the probability estimates for k = 1 show somewhat oppo-

site trend as it becomes more difficult to satisfy the individ-

ual criterion (Yc = 0) due to large variation in the data. This

is because the individual criterion becomes dominant when k

is small, whereas for large k the mean criterion is the domi-

nant one. Moreover, Table 1 also shows that the standard error

of the estimated probabilities is approximately directly pro-

portional to σ 2
total and inversely proportional to the number of

lots (M).

Truth—Two Variance Components. Assume that the true un-

derlying population has two variance components, lot-to-lot

variance σ 2
a and within lot (unit-to-unit) variance σ 2

ε . The ob-

servations for the ith lot of the random population are generated

from N (µ+ ai, σ
2
ε ), where ai ∼ N (0, σ 2

a ) is the lot random ef-

fect for the ith lot and σ 2
total = σ 2

ε + σ 2
a . The objective of this

simulation is to show how our method will more accurately pro-

vide the correct probability (i.e., under the two variance compo-

nents model) over the single variance model by showing Ptrue(2

var) and Pest(2 var) along with Pest(1 var). Similar to the one

variance component case, Table 2 summarizes the mean and the

standard errors. Unlike the one variance component case, Ptrue(2

var) values are computed for n1 = 0, 3, 6 and n2 = n− n1. In

addition to different combinations of the number of lots (M)

and σ 2
total (or equivalently k), the simulation results are also

classified by the percentage of lot-to-lot variance component

γ = σ 2
ε /σ 2

total = 0.9 and 0.75.
Similar to the one variance component model case, Table 2

shows that the proposed approach provides a good approxima-

tion of the truth under the correct assumption of the number

of variance components and [n1, n2] combination. Similar to

Table 1, the simulation results for k = 1 exhibit the reverse trend

Table 1. Truth: the data come from one variance component scenario. The entries, which are in the format:

mean (standard error) of the probabilities, show the distribution of the estimated probability of passing the

joint acceptance criterion under different assumptions

Pest(2 var)

Ptrue Pest(1 var) [0, 12] [3, 9] [6, 6]

# lots = 10 k = 1 0.1294 0.1352 0.1481 0.1350 0.1337

(0.0010) (0.0012) (0.0103) (0.0102)

k = 2.5 0.9061 0.9042 0.8939 0.8905 0.8923

(0.0010) (0.0011) (0.0102) (0.0099)

k = 4 0.9746 0.9743 0.9614 0.9656 0.9675

(2.7 × 10−5) (0.0006) (0.0030) (0.0023)

# lots = 30 k = 1 0.1294 0.1317 0.1391 0.1387 0.1375

(0.0005) (0.0006) (0.0041) (0.0038)

k = 2.5 0.9061 0.9047 0.8992 0.8950 0.8960

(0.0005) (0.0006) (0.0054) (0.0054)

k = 4 0.9746 0.9745 0.9679 0.9709 0.9716

(1.2 × 10−5) (0.0003) (0.0015) (0.0012)

# lots = 50 k = 1 0.1294 0.1314 0.1368 0.1366 0.1357

(0.0004) (0.0005) (0.0033) (0.0032)

k = 2.5 0.9061 0.9049 0.9004 0.9023 0.9036

(0.0004) (0.0005) (0.0028) (0.0028)

k = 4 0.9746 0.9745 0.9692 0.9735 0.9731

(9.1 × 10−6) (0.0002) (0.0003) (0.0006)
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Table 2. Truth: the data come from the two variance components scenario. The entries, which are in the format: mean (standard error) of the

probabilities, show the distribution of the estimated probability of passing the joint acceptance criterion under different assumptions

Ptrue(2 var) Pest(2 var)

[0, 12] [3, 9] [6, 6] Pest(1 var) [0, 12] [3, 9] [6, 6]

# lots = 10 k = 1 γ = 0.90 0.1948 0.1686 0.1611 0.1333 0.1994 0.1675 0.1604

(0.0037) (0.0051) (0.0081) (0.0075)

γ = 0.75 0.2858 0.2263 0.2115 0.1359 0.2849 0.2115 0.2035

(0.0044) (0.0059) (0.0081) (0.0128)

k = 2.5 γ = 0.90 0.8599 0.8766 0.8522 0.9072 0.8625 0.8673 0.8711

(0.0030) (0.0044) (0.0074) (0.0072)

γ = 0.75 0.8027 0.8391 0.8509 0.9035 0.8149 0.8460 0.8464

(0.0047) (0.0054) (0.0181) (0.0157)

k = 4 γ = 0.90 0.9110 0.9371 0.9454 0.9742 0.9120 0.9401 0.9463

(0.0001) (0.0047) (0.0048) (0.0038)

γ = 0.75 0.8269 0.8812 0.8997 0.9740 0.8259 0.9060 0.8842

(0.0001) (0.0056) (0.0104) (0.0125)

# lots = 30 k = 1 γ = 0.90 0.1948 0.1686 0.1611 0.1322 0.1946 0.1647 0.1569

(0.0018) (0.0033) (0.0042) (0.0048)

γ = 0.75 0.2858 0.2263 0.2115 0.1365 0.2853 0.2287 0.2138

(0.0024) (0.0034) (0.0061) (0.0048)

k = 2.5 γ = 0.90 0.8599 0.8766 0.8822 0.9058 0.8592 0.8722 0.8763

(0.0021) (0.0029) (0.0039) (0.0047)

γ = 0.75 0.8027 0.8391 0.8509 0.9076 0.8071 0.8385 0.8502

(0.0023) (0.0031) (0.0075) (0.0056)

k = 4 γ = 0.90 0.9110 0.9371 0.9454 0.9746 0.9220 0.9441 0.9509

(3.8 × 10−5) (0.0029) (0.0025) (0.0024)

γ = 0.75 0.8269 0.8812 0.8997 0.9745 0.8313 0.8895 0.9089

(4.5 × 10−5) (0.0030) (0.0055) (0.0041)

# lots = 50 k = 1 γ = 0.90 0.1948 0.1686 0.1611 0.1289 0.1925 0.1693 0.1615

(0.0013) (0.0022) (0.0026) (0.0027)

γ = 0.75 0.2858 0.2263 0.2115 0.1287 0.2835 0.2245 0.2092

(0.0017) (0.0022) (0.0034) (0.0026)

k = 2.5 γ = 0.90 0.8599 0.8766 0.8821 0.9044 0.8604 0.8741 0.8785

(0.0016) (0.0024) (0.0035) (0.0036)

γ = 0.75 0.8027 0.8391 0.8509 0.9057 0.8040 0.8371 0.8478

(0.0019) (0.0024) (0.0045) (0.0032)

k = 4 γ = 0.90 0.9110 0.9371 0.9454 0.9746 0.9143 0.9388 0.9460

(2.5 × 10−5) (0.0018) (0.0017) (0.0013)

γ = 0.75 0.8269 0.8812 0.8997 0.9745 0.8334 0.8838 0.9040

(3.4 × 10−5) (0.0025) (0.0037) (0.0021)

as compared to that for k ≥ 2.5. For instance, the probability

values are inversely proportional to γ for k = 1 and directly

proportional to γ for k = 2.5 and 4. In addition, Pest(1 var) un-

derestimates the probabilities when k is small and overestimates

the probabilities of passing the joint acceptance criterion when

k is large.

It is clear from Tables 1 and 2 that all standard errors for Pest(1

var) are less than 0.005. For the estimation of Pest(2 var) using

at least 30 lots of data, the standard errors are also often below

0.005 (16/18 in Table 1 and 32/36 in Table 2). This indicates

that most of the time the estimated probabilities would be within

±2(0.005) = 0.01. In general, the amount of historical data for

most products will be extensive enough to obtain at least 30 lots

worth of data to estimate the variance components. However, if

the historical data is limited, the 10 lot simulation results show

that 23 out of 27 estimates of Pest(2 var) in Tables 1 and 2 have

standard errors that are about 0.01 or less, and the maximum

is 0.018. That is, one should be cautious to go below 10 lots

for the estimation of the variance components and resulting

probabilities.

In summary, the simulation study shows that when there are

truly multiple variance components we need to account for them.

In the case when there is truly just a single variance component

and we model two, we do not lose much accuracy or precision of

the estimated probability in regions that most companies would

be operating in (k ≥ 2.5).

Example 4. Constantine, Field, and Robinson (2000)—

hereafter referred to as CFR—evaluated the probability of sam-

ple acceptance under the joint acceptance criteria (1) and (2)

using an implicit assumption that the sample standard deviation

(S) and the number of defective items (Yc) are independent.

Here, we use their wine bottle filling process example to assess

the impact of this assumption on the accuracy of the calculated

acceptance probability. Since the methodology of CFR only ap-

plies when there is one source of variability, namely σ 2
ε , we
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Figure 5. Probability of acceptance contours for the wine bottle example. Comparison of CFR methodology and Monte Carlo simulation

results. (a) Solid: CFR; dashed: simulation, (b) dashed: discrepancy with simulation.

restrict our attention to the proposed comparable approximation

given in (12) which uses the binomial approximation (10). For

this example, the desired process features were V = 750 mL,

c = 735 mL, n = 20, r = 1, and b = t0.995,19/
√

20 = 0.640,

and the goal was to calculate the probability of sample ac-

ceptance for a variety of µ and σ 2
ε values. We consider how

accurately our proposed approximation given in (12) provides

parameter (µ, σε) settings that correspond to a prespecified

probability of sample acceptance, and how accurately it gives

the probability of sample acceptance for a given set of parameter

(µ, σε) values.

Following CFR, define dV = (V − µ)/σε and dc = (c −
µ)/σε . Without loss of generality, assume that X1, . . . , Xn are

N (0, 1) distributed and subject to regulatory constraints Ydc
≤

r and X̄n + bS ≥ dV . Note that any combination (dV , dc) trans-

lates directly to the parameter setting (µ = V − σεdV , σε =
(c − V )/(dc − dV )) in the original scale of the problem. The

standardization facilitates calculating probabilities of sample

acceptance corresponding to production processes on any scale

of measurement. Figure 5(a) gives contours of the probability

of sample acceptance calculated using the CFR method in solid

lines, and similarly those obtained using Monte Carlo simulation

in dashed lines for a variety of values of dV and dc. Alternatively,

Figure 5(b) shows the contours of the discrepancy, P (acceptance

estimated using CFR method) −P (acceptance estimated using

Monte Carlo simulation), that speak to inaccuracies in parameter

tuning for prespecified probabilities of sample acceptance.

It can be seen in Figure 5 that when dV is large and negative

(i.e., the process target µ is many standard deviations above

the label V) so that P (X̄n + bS ≥ dV ) ≈ 1, or alternatively dc is

negative enough that P (Ydc
≤ r) ≈ 1 (this is the case in Example

1), then the independence assumption is moot and there is no

approximation error. On the other hand, in the subset of the

parameter space where neither of these marginal probabilities

are essentially 1 (at the bend of the contours in Figure 5(a)), the

independence assumption results in a systematic overestimation

of the probability of passing inspection for a given parameter

setting. Correspondingly, if the CFR method is used to find

the parameter settings that yield a prespecified probability of

passing, the necessary amount of overfilling is underestimated.

While the error in the probability calculation can be as much

as a few percent, the implications are relatively minor since

they primarily occur in regions of the parameter space with

low probabilities of sample acceptance, which producers will

naturally avoid anyway. It is enough of a concern, however, to

motivate the development of a new methodology for the multiple

variance component setting.

In contrast, probability contour plots calculated using (12) are

given in Figure 6. Figure 6(a) shows that the probability of ac-

ceptance contours estimated by (12) and by Monte Carlo simula-

tion are visually indistinguishable. A closer look at the contours

of the discrepancy between (12) and simulation, P(acceptance

estimated using (12)) −P (acceptance estimated using simula-

tion), shows that the binomial approximation error for a given

parameter setting is at most only a small fraction of a percentage

point (see Figure 6(b)).

Example 5. The standardization of (V, c) to (dV , dc) can sim-

ilarly be applied in the two-variance-component setting. Define

dV = (V − µ)/σtotal and dc = (c − µ)/σtotal. For a fixed propor-

tion of noise variability, γ , plots similar to Figures 5 and 6 can be

drawn. A slight inconvenience is that this plot must be redrawn

for different proportion γ to be considered. In comparison with

the standardized settings, it would typically be more practical to

focus on visualization of such contours in the original unit of a

particular problem (as in Example 2). However, the standardiza-

tion is useful for gaining insight into the problem and confirming

that the impact of the binomial approximation is minimal under

a wide variety of parameter settings (we considered r = 0, 1 and

γ = 0.5, 0.7, 1).

For each of these six parameter combination settings,

we computed the probability of acceptance using (11) in

the region {(dV , dc) : −0.5 ≤ dV ≤ 1,−4 ≤ dc ≤ −1.5} and

compared with the simulation results. The contours of the
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Figure 6. Probability of acceptance contours for the wine bottle example. Comparison of approximation given by (12) and Monte Carlo

simulation results. (a) Solid: evaluation of (12); dashed: simulation, (b) dashed: discrepancy with simulation.

discrepancy between the probability of acceptance estimated

using (11) and simulation look similar to that shown in Figure

6 and thus are omitted from the article. Nonetheless, there are a

few points worth noting.

The error induced by the binomial approximation (10), that is,

the discrepancy P (acceptance estimated using (11))−P (accep-

tance estimated using simulation), never exceeds a small fraction

of a percent anywhere in the specified (dV , dc) region for any

given (r, γ ) combination we considered. As r changes from 0

to 1, there is no difference in acceptance probabilities in the

dV direction, but higher passing probabilities are achieved with

µ being fewer standard deviations above c (there are changes in

the dc direction). When one defective item is permitted in the

sample, the process mean does not have to exceed the defective

level as much as it does when no defective items are permit-

ted. Moreover, as γ increases a producer has more flexibility

in parameter tuning at high probabilities of acceptance. For ex-

ample, when γ = 0.5, there are very few settings that yield

a 99% probability of acceptance. There are more possibilities

when γ = 0.7 or γ = 1. This parallels the earlier observation

that less overfilling is required when the proportion of lot-to-lot

variability decreases.

5. DISCUSSION

Random government inspections on net content hold man-

ufacturers accountable to their customers, but it is mutually

important for manufacturers to be able to run their processes

efficiently and cost-effectively within acceptable bounds. Hav-

ing a means to calculate the probability of passing inspections

for given process parameters helps achieve this balance. In this

article, we derive a new methodology for calculating the proba-

bility of sample acceptance with two primary innovations. First,

by conditioning in the way opposite to Elder and Muse (1982),

we are able to derive an approximation to the acceptance proba-

bility under the more complex current joint acceptance criteria.

Second, by assuming a random effects model for the produc-

tion process, we allow for the incorporation of multiple sources

of variation. A byproduct of this random effects approach is

that how items are sampled becomes a concern. Assuming all

items come from one production lot is a conservative sampling

scenario with computational benefits. Generalizations to more

refined knowledge or prior beliefs about the sampling scheme

can be incorporated as desired on a case-by-case basis.

One challenge associated with the use of a random effects

model is that it is highly individualized. Though the theory is

quite general, computations and visualizations are most use-

ful when they are tailored to a specific problem. There is no

convenient standardization for generating multiuse operating

characteristic (OC) curves or tables of acceptance probabili-

ties. This is not prohibitive, however, because although differ-

ent applications may require their own study, the probability

approximations we derived are relatively routine calculations

under quite broad assumptions. The complexity that can be

considered is really only limited by the ability to solve high-

dimensional integrals (we used a Gaussian quadrature routine

in Matlab with an error tolerance of 10−6). Overall, we feel

the theoretical results proposed here are a nice complement to

simulation studies or other available tools for exploring process

quality.

Finally, the methodology as it currently stands enables man-

ufacturers to calculate the probability of passing for their given

process parameters. It does not, however, provide an automatic

means of recovering the inverse information, that is, finding all

parameter combinations that yield a prespecified probability.

As illustrated in Figures 5 and 6, plots can be constructed to

help access this information. Having a more concise form for

the inverse problem would be extremely helpful for economical

process tuning and is future work.

APPENDIX A: DERIVATION OF (7) IN SECTION 3

The probability P (X̄n + bS ≥ V |aL) can be derived by start-

ing with the distributional assumption that XLj |aL ∼ N (µ+
aL, σ 2

ε ) for all j, and {XLj , j = 1, . . . , n} is a random sam-

ple from N (µ+ aL, σ 2
ε ). Thus, X̄n|aL ∼ N (µ+ aL, σ 2

ε /n) is

TECHNOMETRICS, AUGUST 2012, VOL. 54, NO. 3

� �� ! �"# $#% &'( )"#* "+  * ,$-.* / &0 "/12 34567( 898./6156



254 CRYSTAL D. LINKLETTER ET AL.

conditionally independent of (n−1)S2

σ 2
ε
|aL ∼ χ2

(n−1). Then

P (X̄n + bS ≥ V | aL) = P

(

X̄n − V

S
≥ −b|aL

)

= P

(√
n(X̄n − V )/σε

S/σε

≥ −b
√

n|aL

)

.

(A.1)

Letting δ =
√

n(µ+ aL − V )/σε , it follows that
√

n(X̄n −
V )/σε |aL ∼ N (δ, 1). Since the desired probability in (A.1) is the

ratio of a conditionally independent noncentral normal random

variable and the square root of a chi-squared random variable

divided by its degrees of freedom, results from Johnson and

Kotz (1970) can be used to yield (7).

APPENDIX B: DERIVATION OF (9) IN SECTION 3

Derivation of P (XLj ≤ c, X̄n + bS ≥ V | aL) starts with the

same distributional assumptions as given in Appendix A. Let

fX̄n|aL
(·) and fS|aL

(·) denote the sampling distributions of

X̄n|aL and S|aL, respectively. Then

P (XLj ≤ c, X̄n + bS ≥ V | aL)

=
∫ ∞

0

P
(

XLj ≤ c, X̄n + bs ≥ V |s, aL

)

fS|aL
(s)ds

=
∫ ∞

0

∫ ∞

V−bs

P

(

XLj − X̄n

S
≤

c − x̄n

s
|x̄n, s, aL

)

× fX̄n|aL
(x̄n)fS|aL

(s)dx̄nds

=
∫ ∞

0

∫ ∞

V−bs

P

(

XLj − X̄n

S
≤

c − x̄n

s
|aL

)

× fX̄n|aL
(x̄n)fS|aL

(s)dx̄nds (B.1)

The last step follows from an application of Basu’s Theo-

rem (see, e.g., Casella and Berger 2001). Define c0 = 1
2
(1+

√
n(c−x̄n)

(n−1)s
). Then the probability in the integrand of (B.1) can be

written as

P

(

XLj − X̄n

S
≤

c − x̄n

s
|aL

)

= P

(

1

2

{

1+
√

n

n− 1

(

XLj − X̄n

S

)}

≤ c0|aL

)

.

Let

U =
√

n(XLj − X̄n)
√

n− 1σε

∼ N (0, 1) and

V =
(n− 2)S2

(−j )

σ 2
ε

∼ χ2
n−2,

where

S2
(−j ) =

1

n− 2

∑

k 6=j

(XLk − X̄(−j ))
2 and

X̄(−j ) =
1

n− 1

∑

k 6=j

XLk.

By noting that

(n− 1)S2 = (n− 2)S2
(−j ) +

n

n− 1
(XLj − X̄n)2,

it can be seen that (n−1)S2

σ 2
ε

= V + U 2. Define

T =
√

n

n− 1

(

XLj − X̄n

S

)

=
U

√
V + U 2

.

A change of variables from (U,V ) to (T ,R = V + U 2) and

integration over R gives the desired result that

1

2

{

1+
√

n

n− 1

(

XLj − X̄n

S

)}

| aL

=
1

2
(1+ T )| aL ∼ Beta

(

n− 2

2
,
n− 2

2

)

,

as used in (9).

APPENDIX C: DERIVATION OF pWi IN SECTION 3.2

Here we derive the probability pW1 and the derivation of

pW2 follows similarly. When there is a mixture of two production

lots represented in the sample, the sample can be written as X =
(X11, . . . , X1n1

, X21, . . . , X2n2
)′ where X|θ , η ∼ MVN(µ1n +

Hθ , σ 2
ε In) with θ = (a1, a2)′ and η = (n1, n2)′. It follows that

X̄n|θ , η ∼ N (µ+ ā, σ 2
ε /n) and is conditionally independent of

(n−1)S2

σ 2
ε
|θ , η ∼ χ2

n−1(λ), where

ā =
n1a1 + n2a2

n
and λ =

n1(a1 − ā)2 + n2(a2 − ā)2

σ 2
ε

.

The desired probability is

pW1
= P (X1j ≤ c|X̄n + bS ≥ V, θ , η)

=
P (X1j ≤ c, X̄n + bS ≥ V |θ, η)

P (X̄n + bS ≥ V |θ , η)
, (C.1)

The denominator in (C.1) is given by the cdf of a doubly

noncentral t distribution (see the discussion in the text and Bul-

gren and Amos 1968). The numerator can be found using an

extension of the results in Appendix B. As above,

P (X1j ≤ c, X̄n + bS ≥ V |θ, η)

=
∫ ∞

0

∫ ∞

V−bs

P

(

X1j − X̄n

S
≤

c − x̄n

s
|θ , η

)

× fX̄n|θ ,η(x̄n)fS|θ ,η(s)dx̄nds.

To solve this integral, it is necessary to find

P

(

X1j − X̄n

S
≤

c − x̄n

s
|θ, η

)

= P

(√
n(X1j − X̄n)

(n− 1)S
≤

√
n

n− 1

(

c − x̄n

s

)

|θ , η

)

= P (T1 ≤ c1|θ , η), (C.2)
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where c1 =
√

n(c−x̄n)

(n−1)s
and T1 = U1√

U 2
1+V1

. Random variables

U1 and V1 are defined as follows. Let

U1 =
√

n(X1j − X̄n)
√

n− 1σε

and ξ1 =
√

n(a1 − ā)
√

n− 1σε

so that U1|θ , η ∼ N (ξ1, 1). Also define

(n− 2)S2
1(−j ) =

n1
∑

k=1(6=j )

(X1k − X̄1(−j ))
2

+
n2
∑

k=1

(X2k − X̄1(−j ))
2 and X̄1(−j )

=
1

n− 1





n1
∑

k=1(6=j )

X1k +
n2
∑

k=1

X2k



 .

Then

(n− 1)S2 = (n− 2)S2
1(−j ) +

n

n− 1
(X1j − X̄n)2

and

V1 =
(n− 2)S2

1(−j )

σ 2
ε

|θ , η ∼ χ2
n−2(λ(−j ))

where

λ(−j ) =
(n1 − 1)(a1 − ā(−j ))

2 + n2(a2 − ā(−j ))
2

σ 2
ε

and

ā(−j ) =
(n1 − 1)a1 + n2a2

n− 1
.
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