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T
he design of nanophotonic sensors

has garnered increasing interest as

nanoscale fabrication becomes more

sophisticated. New fabrication capabilities,

advances in nanoscale analysis, and the

improved computational power of full-field

electromagnetic simulations have led to a

wealth of new designs based on the surface

plasmon resonance of metallic structures.

By tuning the geometrical properties of

nanoscale features, shapes from crescents

to bowtie antennas have achieved increas-

ingly higher electric field enhancements,

which translate to improved sensitivity.1�3

In recent years, optical metamaterials, which

are metallodielectric composites made up

of subwavelength elements, have emerged

as a new class of nanostructured architec-

tures that enable the control and directed

emission of light.4�6 While nanostructured

plasmonic designs exhibit a characteristic

dielectric permittivity resonance, metama-

terial designs offer in addition tunable opti-

cal frequency magnetic resonance, which is

more sensitive to the environment and ex-

hibits a narrower line width.7 This resonance

can be tuned from the visible through the

infrared by changing the geometry of a

characteristic resonator, and the line width

can be narrowed via coupling of metamater-

ial unit cells.8

A common approach to sensing is to

detect small changes in the refractive index

of the local environment by measuring the

shift in frequency of the local surface plas-

mon resonance (LSPR).9�14 Plasmonic nano-

structures have been used extensively as

LSPR detectors since their resonant fre-

quency is highly sensitive to changes in

the dielectric constant of their environment.

Typical wavelength and energy sensitivities

are respectively in the hundreds to thou-

sands of nm/RIU and tens to hundreds of

meV/RIU. The highest reported values are

for structures with sharp edges and coupled

features with small interparticle gaps.15�19

Functionalization of the metallic surfaces

can be used to limit binding to specific

analytes, and this approach has been used

to demonstrate a high degree of molecular

sensitivity.20

Complementary to refractive index sen-

sors are surface-enhanced spectroscopic tech-

niques, such as surface-enhanced Raman

spectroscopy (SERS) and surface-enhanced

infrared absorption (SEIRA), which are widely

used for sensing particular biological and

chemical agents. The sensitivity depends on

the high electric field intensities of nanostruc-

tured surfaces leading to signal enhancement

factors on the order of 108 and 104�105 for

SERS and SEIRA, respectively.1,2,21�28 Similarly,

the most sensitive SERS and SEIRA structures

have sharp corners or edges, which support

significant enhancements to the local electric

field intensity, resulting in detection limits on
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ABSTRACT Metamaterials can be designed to operate at frequencies from the visible to the mid-

IR, making these structures useful for both refractive index sensing and surface-enhanced infrared

absorption spectroscopy. Here we investigate how the mechanical deformation of compliant

metamaterials can be used to create new types of tunable sensing surfaces. For split ring resonator

based metamaterials on polydimethylsiloxane we demonstrate refractive index sensing with figures

of merit of up to 10.1. Given the tunability of the resonance of these structures through the infrared

after fabrication, they are well suited for detection of the absorption signal of many typical

vibrational modes. The results highlight the promise of postfabrication tunable sensors and the

potential for integration.
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the order of zeptomoles for SEIRA25 and single-mole-

cule spectroscopy using SERS substrates.29�31 SEIRA

enhancements are weaker than those anticipated for

SERS, as the SEIRA local field enhancement depends on

|E|2 versus |E|4 for SERS. This combined with the diffi-

culty of making a substrate that can operate over the

entire infrared regime has led to far less research into

SEIRA substrates. Metamaterial designs are well suited

to this problem, as they can be designed to operate

throughout the infrared spectral range and have both

sharp edges and strong interfeature coupling required

for high enhancement factors. There have been several

previous demonstrations of both surface-enhanced

and refractive index metamaterial-based sensors in

the literature.14,25,32 By building metamaterial-based

sensors that operate in the near to mid-IR, the mole-

cular fingerprinting regime, the narrow magnetic re-

sonance could be exploited to both sense changes in

refractive index and enhance the signal of a particular

vibrational mode.

Although metamaterials can be designed to work in

any wavelength regime, their operating frequency is

largely fixed by the constituent materials at the time of

fabrication. Ideally the response would be tunable

in situ to operate over a broader bandwidth and cover

many different vibrational modes of the analyte. Here,

we use a metamaterial system based on coupled split-

ring resonators (SRR) adhered to a polymeric substrate,

polydimethylsiloxane (PDMS), to demonstrate precise

control over resonant frequency tunability and electric

field enhancement. The resonant frequency of an SRR,

ω0, is described by ω0 ≈ 1/(LC)1/2, where L is the

inductance and depends on the resonator path length

and C is the capacitance across the split in the reso-

nator. By integrating the resonators with a compliant

substrate, mechanical deformation can be used to

change the capacitance of the gap and the coupling

strength between resonators.32,33 This can be

exploited to achieve up to line-width tunability of the

resonant response and to customize the response of

the metamaterial postfabrication. Here we present a

metamaterial-based sensor that exploits the mechan-

ical deformability of a highly compliant polymeric

substrate to both detect small changes in refractive

index and resonantly enhance the signal from several

specific vibrational modes.

RESULTS AND DISCUSSION

The sensitivity of both refractive index sensors and

surface-enhanced spectroscopic techniques depends

critically on the intensity of the local electric field and

its overlap with the analyte. We have previously shown

that designing coupled resonator structures greatly

enhances the local field at the resonant frequency, in a

manner similar to the hybridization of plasmonic

nanostructures.8 Thus, we start our discussion with

an analysis of the calculated field enhancements for

coupled resonators. The resonator geometries that we

choose to utilize in this work are 100 nm thick Au SRRs

coupled to Au bars (SRR-bar) on a PDMS substrate. As

discussed in previous work,32 the metamaterials are

fabricated by patterning Au resonators on a Si handle

wafer (Figure 1A) and then transferring the patterns to

a PDMS substrate using a hard/soft nanolithographic

pattern transfer process. The SEM micrograph of the

structures on PDMS (Figure 1A, right panel) shows the

fidelity of the pattern transfer process for a represen-

tative array of SRRs with a resonator width (w) of

500 nm and a coupling distance (d) of 40 nm. For the

resonators utilized in this work the SRR-bar aspect ratio

remained constant as the dimensions were varied, as

indicated in Figure 1A.

The electric field intensity for three different resona-

tors on PDMS is calculated via full-field electromagnetic

Figure 1. (A) SEM micrographs of a representative array of split ring resonators (SRRs) are shown both before and after
transfer to the PDMS substrate. The schematics serve as labels for the micrographs. For the structures shown here,
w = 500 nm, d = 40 nm, and the other dimensions scale as indicated with w. (B) The electric field intensity is plotted for
three different resonator cases, each at their respective resonant frequency. The straight SRR case shows the simulated field
for a basic uncoupled SRR. The bending SRR case includes the deformation of the SRR arms when the resonators are attached
to a compliant substrate. The bottom right panel shows the coupled SRR-bar system, and the schematic at the bottom left
shows the electric field polarization relative to an individual resonator.
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simulation at their respective resonant frequencies with

the electric field polarized perpendicular to the resona-

tor arms (Figure 1B). In the top left panel, we show the

electric field plot for an SRR with straight arms. This

simulation uses the measured geometry of a resonator

on Si as determined from SEM micrographs of the

patterned Au. When uncoupled resonators are trans-

ferred to the PDMS substrate, however, the stress in the

PDMS causes the arms to bend inward slightly. This

bending causes an increase in the electric field intensity

at the tips of the SRR, as made evident by the top right

panel of Figure 1B, which increases the sensitivity of

these structures compared to straight SRRs. In the

bottom right panel, the coupled SRR-bar case is plotted.

The coupling in this unit cell increases the maximum

field intensity by an order of magnitude relative to the

uncoupled case. Coupling resonators in a metamaterial

unit cell is thus critical to the design of highly sensitive

sensors or to any application that requires locally en-

hanced electromagnetic fields.

In order to further test the idea of usingmetamateri-

als as refractive index sensors, we consider first the SRR

geometry shown in Figure 1 with w = 500 nm. We use

FTIR spectroscopy to measure the reflectance of the

arrays across the IR spectrum. The experimentally mea-

sured spectra for both an uncoupled SRR and a cou-

pled SRR-bar with d = 40 nm are shown in Figure 2A.

For clarity, we limit the width of the graph to the

region where the magnetic resonant peak is located.

We note that the electric resonance of the material is

blue-shifted from this peak. The resonance of the

uncoupled SRR on PDMS in an ambient environment

is 3.14 μm, and coupling of an SRR to a bar shifts the

resonant frequency to 3.42 μm (Figure 2A). In order to

determine the sensitivity of the arrays as refractive

index sensors, the reflection spectra were measured in

three different index-matching fluids with refractive

indices of 1.47, 1.54, and 1.61. The resonant frequency

of the array is highly dependent on the dielectric

constant of the surrounding environment, and in-

creases cause the resonance to red-shift due to the

increase in effective capacitance of the split gap. The

resonance shifts from 4.37 μm in the n = 1.47 index-

matching fluid to 4.61 μm in the n = 1.61 index-

matching fluid. This represents a shift in the resonant

wavelength, Δλres, from the initial measurement in air

of 1.23 and 1.47 μm, respectively. The resonant peak

shifts are more dramatic for the d = 40 nm coupled

resonator case, where the resonance is 4.71 μm in the

n = 1.47 index-matching fluid and 4.94 μm in the

n = 1.61 index-matching fluid, a red shift of 1.28 and

1.51 μm, respectively. The simulated data for these

resonator arrays are shown in Figure 2B. The uncou-

pled resonator data shown take into account the reso-

nator bending described previously and enable amuch

better fit to the experimentally obtained values than

the straight SRR case, which is not shown here.

From the reflectance data, we can calculate the

sensitivities of the resonator arrays, defined as the

change in resonant frequency as a function of change

in refractive index in units of nm/RIU. The sensitivity is

then divided by the full width at half-maximum (fwhm)

of the resonant peak in an ambient environment to

determine the figure of merit (FOM) of the resonator

array.34We report FOMvalues for two different unit cell

width geometries: 500 and 220 nm. A representative

SEMmicrograph of a 4� 4 array of resonators on PDMS

is shown (Figure 3A and D). For the larger, w = 500 nm,

resonator arraywe calculate FOMvalues of up to 8.9 for

a coupling distance of d = 40 nm and a slightly lower

value of 8.2 for a coupling distance of 55 nm. The

unfilled data point in Figure 3Bwhere d= 500 nm refers

to the uncoupled resonator case. Figure 3C shows

corresponding simulation data for a number of differ-

ent coupling distances, andwe calculate FOM values of

6.0 and 5.4 for coupling distances of 40 and 60 nm,

respectively. We attribute the lower FOM values to the

broadening of the resonant peaks in simulation, as

evident in Figure 2B. We simulate the SRR with both

straight arms and with bending arms as previously

described, and we find that the enhanced local field of

the SRR while bending leads to an increase in the

FOM from 3.3 to 3.7. The FOM values for the smaller

resonator are higher than those reported for the

larger unit cell, with values of 10.1 for a coupling

distance of 30 nm and 9.3 for a coupling distance of

40 nm (Figure 3B). As in Figure 3B, we plot the FOM

Figure 2. (A) Experimentally measured FTIR reflection
spectra for representative arrays are shown. The bottom set
of data are for an array of uncoupled resonators in air and
three different optical matching fluids. The index of the
fluids used is indicated in the plot. The coupled data are for
an array of SRR-bar resonators with a coupling distance of
40 nm. The response for uncoupled and coupled arrays is
also simulated, and these data are shown in (B).
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value of 8.5 for the uncoupled resonator at a cou-

pling distance equal to the resonator width of

220 nm. The simulated values are also reported for

a number of points, and we compute a FOM of 8.9 for

d = 40 nm, 8.3 for d = 60 nm, and 7.1 for the

uncoupled, bent SRR case.

Reducing the coupling distance between resonators

leads to higher FOM as a result of the higher local

electric field for both resonator sizes. In addition, we

find that the FOM value will always be higher for a

coupled resonator, as the presence of the bar narrows

the resonant peak. We attribute part of the discrepancy

between simulation and experiment to inaccurate

modeling of the SRRs on PDMS and assume that the

average degree of bending of the SRR arms is actually

higher for the ensemble than that predicted by the

single SRR unit cell used in simulation. It is also possible

that the SRR arms bend inward when coupled to a bar,

and this could also contribute differences for larger

coupling distances where the stress is not offset by the

bar. Nevertheless, these FOM data represent the high-

est values reported for nanostructures in the IR com-

pared to previous reports of 3.9 for Au structures.14 This

design is rivaled only by a three-dimensional double

nanopillar structure, which has a FOM of 23 at a

resonant wavelength of 1368 nm.17

We summarize our experimental results in Table 1

and find that the highest FOM values can be engi-

neered for the smallest coupling distances and the

smallest resonator sizes. On the other hand, large SRRs

are capable of achievingmuch higher sensitivity values

(nm/RIU). One of the key features of this approach is

that resonators can be designed to span a broad

spectrum. We report the resonant wavelength of the

structures on PDMS in an ambient environment for a

number of different sized resonators in addition to

their sensitivities and FOM values. The sensitivity in

units of eV/RIU is also reported for comparison with

other sensor geometries. The wide distribution of

resonance values shows that resonators can be de-

signed to work throughmost of the IR with limits being

imposed, not by the fabrication technique or design

stipulations, but rather by the characterization techni-

ques available. For instance, the 800 nm SRR-bar

geometry is not included in Table 1 because the

resonance is red-shifted out of the range of the

detector.

The ability to tune the response of these resonators

either through fabrication or with in situ dynamic strain

is also of interest for surface-enhanced spectroscopic

techniques, where alignment to particular vibrational

modes is crucial for enhancement of the molecular

signal. For example, the dips in the experimental data

in Figure 2A for the coupled resonator in air case (black

Figure 3. (A) Environmental SEM of representative structures on PDMS are shown. (B) Experimentally determined figure of
merit (FOM) values of resonatorswithw=500nmareplotted. The FOM is the sensitivity in terms of nm/RIUdividedby the full-
width at half-maximum (fwhm) of the resonant peak in air. The unfilled data point at a coupling distance of 500 nm refers to
the uncoupled SRR, i.e., without a bar. (C) Simulated data for the same resonators are plotted. Two different uncoupled
resonator cases are simulated: the “straight SRR” and “bending SRR”. The same data for smaller resonators are shown in
(D�F). Here, the uncoupled distance is equal to the width of the resonator, 220 nm.

TABLE 1. Summary of the Values Obtained for Different

Sizes of Coupled and Uncoupled Resonatorsa

structure

w

(nm)

d

(nm)

λres

(μm)

sensitivity (nm/

RIU)

sensitivity (meV/

RIU)

fwhm

(nm) FOM

SRR 220 1.42 1192 497 141 8.5

SRR-bar 220 40 1.45 1225 488 121 10.1

SRR 500 3.14 2480 216 381 6.5

SRR-bar 500 40 3.33 2546 190 286 8.9

SRR 800 5.09 3366 116 521 6.5

a Resonator width, w, and coupling distance, d, are used to define the resonator

geometry. λres is the resonant wavelength in air, fwhm is the full width at half-

maximum of the resonance peak in air, FOM is the figure of merit defined as

sensitivity (nm/RIU)/fwhm (nm).
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line) near 3.3 μm are due to an overlap of the meta-

material resonance with the vibrational modes of the

symmetric and antisymmetric C�H stretch bonds in

the PDMS. The notch in the uncoupled resonator in air

peak is also due to these modes. In this work, we focus

our attention on the IR absorption signals from the

vibrational modes of p-mercaptoaniline (pMA) and

show how they can be enhanced using coupled SRR-

bar nanostructures.

First, we use arrays of coupled Au SRR-bar resonators

on Si with unit cell widths of 500 nm and coupling

distances from 40 to 140 nm. This static structure

emulates the behavior that can be induced mechani-

cally by integrating the resonators with a compliant

substrate as the resonant frequency shifts from 6.0 to

6.3 μm over this range of coupling distances. The

surface of the coupled resonators is functionalized

with a monolayer of pMA by leaving the sample in a

10mMethanolic solution overnight. The thiol group on

the pMA binds preferentially to the Au, and a mono-

layer is formed. The sample is then thoroughly rinsed

with ethanol prior to measuring to ensure that only a

monolayer remains bound to the surface of the Au. The

pMA coverage was also confirmed using XPSmeasure-

ments. The reflectance spectra after pMA functionali-

zationare reported for each couplingdistance (Figure 4A).

We identify three peaks in the data corresponding to

the δN�H mode at 6.20 μm (1614 cm�1), the νC�C

mode at 6.31 μm (1585 cm�1), and the νC�C and

δC�H vibrational modes at 6.73 μm (1485 cm�1) (ref

21). As the coupling distance changes, the resonant

peak shifts through these frequencies and the overlap

of the metamaterial resonance with each vibrational

mode results in pronounced dips in the reflection

spectra.

The enhancement of the vibrational mode signals

can be calculated relative to an 800 nm thick reference

film of pMA (Figure 4A, black line) and is dependent on

the local field enhancement at the resonant peak. We

first quantify the dip in the reflection spectra as the

difference, ΔRSRR, between the maximum and the

minimum value of reflectance at each vibrational

frequency. We findmaxima of 4.5% for the C�C stretch

bond at 1585 cm�1, 1.7% for the N�H delta mode, and

1% for themode at 1485 cm�1. In order to confirm that

the observed signals are due to enhanced electromag-

netic fields at the metamaterial resonance, we also

report the cross-polarized reflectance spectra for the

d = 40 nm SRR-bar (Figure 4A, blue dotted line).

We note that there are no observable peaks in this

spectrum. This is corroborated by measurements (not

shown here) of functionalized planar Au surfaces

and arrays with resonant frequencies far from these

vibrational modes where there is also no detectable

pMA signal. The electric field intensity at 6.25 μm

(1600 cm�1) for both the x�y plane and the x�z plane

of the d= 40 nm SRR-bar is shown in Figure 4B. The x�z

plane cut is taken at a point just beyond the tips of the

Figure 4. (A) FTIR reflection spectra data are shown for arrays of resonators on Si functionalized with pMA. The coupling
distance is indicated in the labels. The dotted line shows cross-polarized data for the array at 40 nm coupling distance. The
black line is the spectrum for an 800 nm thick filmof pMAonglass. The structure of the pMAmolecule is inset in thefigure. The
data are offset for clarity. (B) Electric field intensity at the resonant wavelength (λ = 6.25 μm) for the 40 nm coupled resonator
system is plotted. The simulated data for both the x�y plane (left) and the x�z plane (right) are shown. The x�z plane is taken
at the point indicated by the dotted line on the x�yplane panel. (C) The enhancement factor values for each vibrationalmode
signal are graphed as a function of coupling distance.
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SRR arms, where the field intensity is highest (dotted

white line). We note that the near-field enhancement is

strongest through the gap and along the sides of the

SRR and choose all regionswith |Ex|
2greater than 103 to

determine the electromagnetic hot spot region. We

assume monolayer coverage of pMA to the resonators

and amolecular cross-section on Au of 0.3 nm2 (ref 35).

The signal enhancement factor (EF) for each vibrational

mode is determined by comparing the ratios of the

resonantly enhanced signals to the signals from the

neat pMA according to EF = (ΔRSRR/NSRR)/(ΔRref/Nref),

whereNSRR is the number ofmolecules adsorbed in the

high-intensity region of the SRR, Nref is the number of

molecules contributing to the signal from the pMA

film, and ΔRref is the signal for each vibrational

mode. The EF values for the vibrational modes at each

coupling distance are reported in Figure 4C. For the

d = 40 nm SRR-bar array, we find SEIRA enhancement

factors for all modes on the order of 104, which is the

sameasother optimizednanostructuredgeometries.2,21

The high enhancement factors and the wide tunability

of the approach enable access to any particular set of

vibrationalmodes, indicating thatmetamaterial designs

may be of particular interest to the development of new

SEIRA, as well as SERS, substrates.

Although the enhancement factors for resonators

on Si are high, this approach lacks the in situ tunability

that may be possible with active metamaterial compo-

nents. We also evaluate the coupled resonator meta-

materials on PDMS as a potential SEIRA substrate. A

major concern for this system, however, is the relatively

low electric field intensity that is attainable. The electric

field intensity observed for the SRRs on Si (Figure 4B) is

an order of magnitude higher than that observed for

the resonators on PDMS (Figure 1C) due to the much

higher refractive index contrast of the Si with respect

to the environment. The attractiveness of the PDMS

system is the tunability of the resonant response

postfabrication, and we have previously shown that

the metamaterial resonance can be tuned by a full line

width via mechanical distortion of the substrate.32

Here we use plastic deformation of the PDMS at the

nanoscale to tune a resonator to the correct resonant

frequency. We select an SRR-bar coupled resonator

geometry withw = 800 nm, d = 40 nm (Figure 5, inset),

and an initial resonant frequency of 5.78 μm (Figure 5,

blue line). The sample is stretched 25% parallel to the

SRR arms, pulling the bar away from the SRR. When the

strain is released, the PDMS between the resonators

contracts, causing the coupling distance to decrease

from the initial value. The resonant wavelength is

permanently red-shifted to 6.27 μm, which is evident

from the FTIR reflection spectrum (Figure 5, dark red

line). The new resonance coincides with the vibrational

mode of interest in pMA at 1585 cm�1, demonstrating

how sensors with customizable responses can be

designed with postfabrication tunability.

The pMA is adsorbed to the surface of the PDMS in a

manner similar to that used in microcontact printing.36

A drop of a 10 mM ethanolic solution of pMA is placed

on the surface of the PDMS and allowed to dry. The

sample is measured after drying, and an obvious dip is

present in the center of the resonant peak (Figure 5, red

line), which represents a ΔR of 0.9%. The cross-polar-

ized data are also reported (red dashed line) and show

that the molecular signal from the metamaterial sub-

strate is due to the overlap of the metamaterial reso-

nance and the pMA vibrational modes. The pMA signal

was not apparent on bare patches of the PDMS or on

arrays whose resonances did not overlap with the

vibrational modes. We assume that a number of mol-

ecules, those adhered to the Au and those between the

SRR and bar, contribute to the signal; however it is

unclear exactly howmany molecules contribute to the

signal andwill depend on the diffusion of pMA through

the PDMS. Nevertheless, the observed signal for the

pMA-coated sample is the first report of SEIRA from a

compliant substrate and suggests that polymeric-

based metamaterials could be useful platforms for

sensing given both their in situ tunability and the

potential for integrationwith polymeric-based devices,

such as microfluidic cells. The signal from these types

of sensors could be increased by using higher index

polymeric substrates, making this approach a promis-

ing step forward in the design of flexible, tunable

metamaterial-based sensors.

CONCLUSION

We have shown that compliant metamaterials can

be used to sense changes in refractive index at a

number of resonant frequencies with FOM values of

up to 10.1. We have shown that resonator size can be

used to tune the resonant frequency through the IR

Figure 5. FTIR reflection spectra for an array of resonators
on PDMS with a coupling distance of 60 nm are shown. The
“As-fabricated” response for the resonator array is shown in
blue, the dark red line shows the spectrum for the array of
resonators after stretching to the appropriate resonance,
and the red line indicates the response for the array after
functionalizing with pMA. The dotted line shows the cross-
polarized measurement for the functionalized array.
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and achieve sensitivities of 3370 nm/RIU (120meV/RIU)

for large resonators at long wavelengths and 1190 nm/

RIU (500 meV/RIU) for small resonators in the near IR.

We have also demonstrated that by coupling themeta-

material resonance to particular vibrational modes, we

can enhance a vibrational mode signal with coupled

Au resonators on Si by a factor of 104. Resonators on a

compliant substrate can be stretched and mechani-

cally deformed in order to optimize the alignment

of a vibrational mode with the metamaterial resonant

frequency postfabrication, and we note that vibra-

tional modes at frequencies more than a line width

distance from the as-fabricated resonance could be

accessed by inducing substrate strain. Exploiting and

tailoring the mechanical deformation of these meta-

material systems opens the door to the possibility of

creating a new class of in situ customizable sensing

surfaces.

EXPERIMENTAL METHODS AND MATERIALS

Sample Fabrication. The samples are fabricated using the
hard/soft nanolithographic pattern transfer technique de-
scribed in previous work.32Arrays of 100 nm thick Au resonators
are patterned via e-beam lithography on Si, with dimensions as
shown in Figure 1A. Each array is 100 μm long by 100 μmwide.
The Au is functionalized using 3-mercaptopropyl trimethoxysi-
lane to improve adhesion to the polydimethylsiloxane. PDMS
with increased elasticity is made using a ratio of 1:12 curing
agent to prepolymer (Dow Corning Sylgard 184). The PDMS is
cured for 1 h at 70 �C on the patterns, and a low-bias inductively
coupled plasma reactive ion etch (ICP-RIE) with SF6 is used to
selectively remove the Si wafer, leaving a free-standing, 1 mm
thick PDMS substrate with 100 nm thick metallic patterns
(Figure 1B).

FTIR Measurements. The samples are measured between λ =
1.5 and 8 μm in a Fourier transform infrared (FTIR) microscope
equipped with a liquid nitrogen cooled MCT detector. The
measurements are taken in reflectionmode at normal incidence
and are the result of the coaddition of 64 scans with a
1.928 cm�1 resolution. A CaF2 polarizer is placed in the incident
beampath, and a KBr beamsplitter is used for all measurements.
The reflectance data are normalized to a gold standard. The
measurements are conducted with the light hitting the sample
from the SRR or fluid side. For the fluid experiments, aMgOglass
slide is used on top of the fluid surface. The refractive index
environment was varied using Series A index-matching fluids
from Cargille.

Simulation. Full-field electromagnetic wave calculations are
performed using Lumerical, a commercially available finite-
difference time-domain simulation software. A unit cell of the
investigated structure is simulated using periodic boundary
conditions along the x and y axes and perfectly matched layers
along the propagation of electromagnetic waves (z axis). A
broadband plane wave is incident on the unit cell along theþz
direction, and reflection is monitored by a powermonitor that is
placed behind the radiation source. Electric fields aremonitored
by frequency profilemonitors. The optical constants for Auwere
taken from Palik, and a constant refractive index of 1.2 was used
for the PDMS.

Calculating IR Signal Enhancement. We choose all regions in the
simulated unit cell with |Ex|

2 greater than 103 to determine the
active surface area. The path length of the high-intensity region
ismultiplied by the thickness of the Au, 100 nm, to give a surface
area of 0.087 μm2. We assume monolayer coverage of pMA to
the resonators and a molecular cross-section on Au of 0.3 nm2

(ref 35), yielding approximately 4.4� 108 active pMAmolecules
per SRR (NSRR). Monolayer coverage of the Au SRRs was con-
firmed using XPS. The number of molecules contributing to the
signal from the 800 nm thick pMA reference film is 1.2 � 1013

molecules (Nref). We determine the enhancement factor: EF =
(ΔRSRR/NSRR)/(ΔRref/Nref).

Stretching Compliant Sample and Customizing Resonant Frequency. A
custom-built stage is used to induce tensile strain in the
samples. Strain is defined as l/l0 � 100%, where l0 is the initial
length of the sample array. This length is measured in the
microscope and accurate towithin 1%. The stage ismounted on

the FTIR microscope in order to measure the resonance at each
strain and each “relaxed” or deformed state.
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