
Compliant Quadruped Locomotion

Over Rough Terrain

Jonas Buchli, Mrinal Kalakrishnan, Michael Mistry, Peter Pastor, and Stefan Schaal

Computational Learning and Motor Control Lab, University of Southern California

Los Angeles, CA 90089

Email: {buchli,kalakris,mmistry,pastorsa,sschaal}@usc.edu

Abstract— Many critical elements for statically stable walking
for legged robots have been known for a long time, including
stability criteria based on support polygons, good foothold
selection, recovery strategies to name a few. All these criteria
have to be accounted for in the planning as well as the control
phase. Most legged robots usually employ high gain position
control, which means that it is crucially important that the
planned reference trajectories are a good match for the actual
terrain, and that tracking is accurate. Such an approach leads to
conservative controllers, i.e. relatively low speed, ground speed
matching, etc. Not surprisingly such controllers are not very
robust – they are not suited for the real world use outside of
the laboratory where the knowledge of the world is limited
and error prone. Thus, to achieve robust robotic locomotion
in the archetypical domain of legged systems, namely complex
rough terrain, where the size of the obstacles are in the order
of leg length, additional elements are required. A possible
solution to improve the robustness of legged locomotion is to
maximize the compliance of the controller. While compliance is
trivially achieved by reduced feedback gains, for terrain requiring
precise foot placement (e.g. climbing rocks, walking over pegs or
cracks) compliance cannot be introduced at the cost of inferior
tracking. Thus, model-based control and – in contrast to passive
dynamic walkers – active balance control is required. To achieve
these objectives, in this paper we add two crucial elements to
legged locomotion, i.e., floating-base inverse dynamics control and
predictive force control, and we show that these elements increase
robustness in face of unknown and unanticipated perturbations
(e.g. obstacles). Furthermore, we introduce a novel line-based
COG trajectory planner, which yields a simpler algorithm than
traditional polygon based methods and creates the appropriate
input to our control system. We show results from both simulation
and real world of a robotic dog walking over non-perceived
obstacles and rocky terrain. The results prove the effectivity
of the inverse dynamics/force controller. The presented results
show that we have all elements needed for robust all-terrain
locomotion, which should also generalize to other legged systems,
e.g., humanoid robots.

I. INTRODUCTION

For fast and precise movement in known environments, high

gain position control of robots can achieve accurate results,

and control mechanisms can remain simple. However, when

the task involves contact with the environment, and especially

if these contacts have a stochastic element, the advantage of

high gain position control can turn into a severe disadvantage:

the controller will try to satisfy the position goal at all cost

and with all available force, at the danger of unbalancing the

robot. A further drawback of high gain position control is the

dependence on a “perfect” plan: a perfect kinematic model

of the robot and the environment and velocity matching when

making ground contact. The latter is important, since if contact

with the environment occurs at moments when the end-effector

has non-zero velocity, a perturbation is created at the end-

effector and due to the high gain position control in each joint,

this perturbations gets transmitted into every element of the

kinematic chain.

These issues are particularly problematic in legged loco-

motion, where we have no fixed contact with the ground. An

inadvertent impact of the swing leg with an obstacle or the

terrain will create a perturbation to the body as well as to

all other feet, which can jerk the body around, and in the

case of difficult terrain with small and non-ideal footholds,

induce critical slipping and/or tumbling of the robot. Ideally

one wants to decouple the center of gravity (COG) from the

end-effector of the (swing) legs. This requires low gain control.

Low gain control without sacrificing precision in the executed

movements requires a feedforward element based on an inverse

dynamic model. This controller is able to predict the required

torque for accurate control in a feedforward fashion.

In legged locomotion over rough terrain, compliant control

is very desirable [1] as it is unavoidable that the planned

trajectories will be executed with errors, thus leading to

unplanned contacts due to slip, modeling errors, and imprecise

knowledge of the terrain. In essence we need to be able to

combine compliant walking with active balance control, which

is in contrast to passive [2] or almost-passive dynamic walkers

[3] which have robustness margins that are too small, and are

not versatile enough to be of use in complex terrain.

While theoretically inverse dynamics control addresses is-

sues of accurate control and balance control, its practical

application for autonomous robots such as legged robots has

been hindered by several issues. In the next section we will

discuss these issues and show how they can be addressed by

a novel, analytically correct, floating-base inverse dynamics

law. Inverse dynamics requires desired joint trajectories, which

are twice differentiable. In order to convert the task space

of locomotion, i.e., the space of foot movement, into usable

joint space trajectories, the end-effector trajectories need to

be completed with a COG trajectory. In this paper we will

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 814

thus focus on two aspects: First, we will review the novel

Inverse Dynamics control law for floating-base systems as

first introduced in [4], then we will explain our approach

for COG path planning. We will show that stability triangles

are not explictly needed for quasi steady state locomotion,

but the criterion reduces to lines formed by diagonal pairs of

footholds.

Results from simulation and on the real robot will be

presented showing the advantage of the low gain inverse

dynamics force control in presence of not or wrongly perceived

obstacles and environments.

II. INVERSE DYNAMICS CONTROL

While inverse dynamics control for a fixed-base robot, such

as an industrial manipulator, is textbook knowledge [5], it is

not so easy to develop a general inverse dynamics control law

for a floating-base system such as a legged robot. Practical ap-

plication of floating-base inverse dynamics has been hindered

by the following issues: (a) Dependence on precise dynamics

models, amplified by numerical problems that can arise due

to matrix inversions, in particular the inversion of the rigid

body dynamics (RBD) inertia matrix [6], (b) external forces

need to be measured, and (c) no general analytically correct

framework for floating-base systems for arbitrary constraints

from the environment and closed loop kinematic chains.

In a recent development [4], we demonstrated how we

can address (b),(c). As it turns out the solution, while still

dependent on a model, is less susceptible to modeling errors

as it avoids inversion of the RBD inertia matrix, such that it

also alleviates issue (a). (c) is also partially taken care of by

planning constraint satisfying reference trajectories.

Our novel way of computing inverse dynamics control for

floating-base systems can be applied to arbitrary robots with

multiple and dynamically changing constraints. Because of the

problems that are caused by working with measured contact

forces directly, we have developed an approach that avoids

knowledge of the contact forces. This solution is accomplished

by computing the analytically correct inverse dynamics torques

in the reduced dimensional Null-space of the constraints, as

realized by an orthogonal decomposition of the constraint

Jacobian.

In the following we will shortly review the requirements

and the central results of our floating-base inverse dynamics

framework. For further details please refer to [4].

A. Floating-Base Dynamics

The configuration of the full floating-base system is de-

scribed as

q =
[

qT
r xT

b

]T
(1)

where qr ∈ R
n is the joint configuration of the rigid body

robot with n joints and xb ∈ R
6 is the position and orientation

of the coordinate system attached to the robot base, and

measured with respect to an inertial frame (cf. [4] for further

details). When the robot is in contact with the environment,

the equations of motion with respect to an inertial frame are

given by

M(q)q̈ + h(q, q̇) = ST τ + JT
C(q)λ (2)

with variables defined as follows:

• M(q) ∈ R
n+6×n+6: the floating base inertia matrix

• h(q, q̇) ∈ R
n+6: the floating-base centripetal, Coriolis,

and gravity forces.

• S =
[

In×n 0n×6

]

: the actuated joint selection matrix

• τ ∈ R
n: the vector of actuated joint torques

• JC ∈ R
k×n+6: the Jacobian of k constraints

• λ ∈ R
k: the vector of contact forces

In order to be able to derive an inverse dynamics control

law that is not depending on measured forces we make the

following assumptions

1) ẋC = ẍC = 0 is maintained, i.e., there is sufficient fric-

tion and stiffness at the constraint locations to prevent

motion.

2) The system is not over-constrained: The matrix JC

should remain full row rank, i.e., every constraint can

be simultaneously satisfied.

3) The system is sufficiently constrained to eliminate

under-actuation: if we divide the constraint Jacobian

into its parts (JC =
[

∂xC/∂qr ∂xC/∂xb

]

), the

constraint Jacobian related to base motion (∂xC/∂xb),

must have a rank equal to 6.

It is important to note that while these assumptions are

needed to ensure that the calculated torques are analytically

correct they are not numerically critical. This means even

when some of the assumptions are violated (which is likely to

happen on a real system), the algorithms are still numerically

stable. This means while the torques will not be 100% accurate

they can not grow to infinity. They remain meaningful and

useful for practical purposes. Refer to [7] for further discussion

of these assumptions. Such graceful degradation in respect to

the violation of the assumptions together with avoiding the

inversion of inertia matrices makes our method applicable to

real systems.

B. QR decomposition of the constraint Jacobian

Condition 2) and Rank(JC) = k allows us to compute the

QR decomposition of JT
C

JT
C = Q

[

R

0

]

(3)

where Q is orthogonal (QQT = QTQ = I), and R is

an upper triangle matrix of rank k. Additionally, if R is

constrained to have all positive diagonal elements, Q and R

are unique.

It can then be shown [4] that the analytically correct inverse

dynamics can be written as

τ =
(

SuQ
TST

)+
SuQ

T [Mq̈d + h] (4)

where

Su =
[

0(n+6−k)×k I(n+6−k)×(n+6−k)

]

(5)

and (.)
+

is the right pseudo-inverse (A+ = AT
(

AAT
)−1

).

815

Eq. (4) does not depend on the contact forces and produces

the analytically correct inverse dynamics torques that will

realize the desired joint accelerations q̈d. This control law

is just a projection of the floating-base inverse dynamics (the

term in square brackets), which can be computed with efficient

algorithms that scale linearly with the number of the degrees-

of-freedom of the robot [8].

III. COMPLIANT LOW GAIN LOCOMOTION CONTROL FOR A

QUADRUPED ROBOT

A. Platform

While the recent decades have seen a lot of research on

walking robots and gait generation, only a few projects focus

on the archetypical domain of legged locomotion, i.e. maneu-

vering in truly complex terrain. This fact is a bit surprising

since it is only in complex terrain where legged locomotion

gains advantages over wheeled locomotion. Thus, while a lot

of work commonly cites these facts in the research motivation,

little research is done towards robust solutions for complex

terrain walking. Our Learning Locomotion project differs in

that walking over rough terrain is its primary focus.

Our experimental setup consists of the LittleDog quadruped

robot (Fig. 1) manufactured by Boston Dynamics. It is about

0.3m long, 0.18m wide, and 0.26m tall, weighs approximately

2.5kg, and has 3 degrees of freedom per leg. Joint angle

references, force controller gains and feedforward commands

are sent to the robot from a Linux host computer over a

wireless connection at 100Hz, and the on-board low level

controller servos each actuator using PD, feedforward and

force control at 400Hz.

LittleDog has a 3-axis force sensor on each foot, position

sensors to measure joint angles, and an on-board inertial

measurement unit (IMU). An external motion capture system

(VICON) provides information about the absolute world po-

sition and orientation of the robot.

The robot has to overcome steps of more than 10cm height

and gaps of more than 15cm width (i.e. in the order of

magnitude of the leg length of the robot). The goal of this

project is to cross a variety of terrain, e.g. slopes, jersey

barriers, rocks with cracks, round rocks, and logs, while

reaching a goal state as fast as possible.

B. Control law & Dynamics model

To realize the inverse dynamics controller we use a standard

control law that combines the feedforward torque computed

based on the desired acceleration q̈d and the current state of

the robot q, q̇ with a negative feedback correction computed

via a standard PD controller:

τ = τID(q, q̇, q̈d) − KP (q− qd) − KD (q̇ − q̇d) (6)

where τID is inverse dynamics feedforward term computed

using Eq. 4. KP > 0 and KD > 0 are the proportional and

differential gain respectively. The dynamics model uses a mix

of CAD based data and estimated parameters.

Fig. 1. The quadruped robot LittleDog and a sample terrain to be crossed.

Force control: We can use the inverse dynamics to predict

the contact forces at the stance feet (cf. [4]):

λ = R−1ScQ
T

[

Mq̈d + h− ST τ
]

(7)

where

Sc =
[

Ik×k 0k×(n+6−k)

]

(8)

Since we do not rely on measured contact forces to compute

the inverse dynamics, we can instead use the predicted contact

forces (Eq. 7) to add a force control term to our controller:

τF = JT
F (Fm − λ) (9)

where Fm are the measured foot forces and JT
F is the Jacobian

transpose of the foot forward kinematics.

This term will in case of unexpected terrain contact coun-

teract the PD controller, thus having the robot not continuing

to push into the terrain with all force. This active compliance

makes the behavior more robust as will be shown in the results.

IV. TRAJECTORY GENERATION

Inverse dynamics requires a desired joint trajectory

qd, q̇d, q̈d. In order to get satisfactory performance the tra-

jectory q should be twice differentiable, i.e. should have a

continuous acceleration profile. Furthermore, the joint tra-

jectory should be compatible with the constraints from the

environment, or, more technically, should be in the null-space

of the constraints. These requirements arise naturally in our

case by having three of four stance legs in the different phases

of walking, which do not move in task space, i.e., relative to

the ground. However to get a completely defined joint-space

trajectory we need to complete the leg motion with a COG

motion.

A. Path planning, Foothold search

For terrain of medium to high difficulty (comparable with

the difficulty of humans scrambling over large boulders or

rock climbing) locomotion becomes foothold oriented. In other

words, it is crucially important that the robot is able to

choose and reach good footholds as otherwise it might slip,

fall into cracks, or roll over etc. The COG is a secondary

816

planning objective, which, given the footholds, has to satisfy

the stability (force, moment distribution) requirements. We

assume that a COG path can be planned given the step-

sequence, i.e. it is possible to find a path that is kinematically

feasible.

In our approach, a series of steps is planned first based on

the estimated quality of footholds and kinematic constraints,

and subsequently, a COG plan is realized which is in line with

the constraints imposed by the foothold sequence.

In this paper, we do not focus on the problem of finding

the footholds. Foothold selection is explained in more detail

in another contribution [9]. We assume that we are already

given a feasible step sequence.

B. COG trajectory generation

In the following we explain how the COG path is planned

for a given step sequence. This path has to satisfy the condition

of differentiability (as above) and kinematic feasibility.

While kinematic feasibility is naturally satisfied with

joint-space oriented trajectory generation methods (e.g.

CPG/oscillator based), it is hard for this methods to satisfy the

task space goals (footholds) and constraints (i.e. a trajectory

that is in the null space of the constraints). Constraint incom-

patible trajectories often introduce discontinuities when the

trajectory gets projected into the null-space of the constraints,

and discontinuities cause slipping and falling.

Therefore, for our task and platform we opt for a task space

oriented finite state machine approach.

For statically stable walk the usual way to address stability

is to examine the polygons formed by the stance legs [10].

As long as the center of pressure (which in the quasi static

regime coincides with the projection of the COG) lies in the

support polygon the robot is statically stable. In static walk,

at any moment of time, either 3 or 4 feet are in ground-

contact and act as stance legs. This means in case a leg is

swinging, the support polygon is a triangle, usually called the

support triangle. COG planning for a statically stable walk

therefore involves finding a path for the COG that traverses the

sequence of support triangles in an efficient and perturbation-

robust manner.

There are a total of six swing possible leg sequences.

However, only one sequence satisfies the requirement that it is

possible to move forward (and not backward) with the COG

at all times (given a minimal step length). This sequence is

[LH,LF,RH,RF], i.e. on each side of the robot, first the hind

leg swings, then the front leg, then the other side’s hind leg,

and finally the other side’s front leg. Therefore, we chose this

pattern for steady state operation, i.e. as long as no larger event

requires a complete switch of movement strategy.

In order to get a robust plan, a safety margin is applied

to the support triangles (see [11] for discussion of different

margins), which in essence reduces the usable area of the

support triangle. Reducing the area of the support triangles

also leads to the fact that support triangles might become

disjoint, requiring a four leg support phase in which we have

a support polygon spanned by the four feet. The margins can

also account for the fact that the COG is only an approximation

of the COP, to avoid a full ZMP or a even more involved

dynamic model based planning scheme [11].
A line based COG path trajectory generator: To plan a

fast, efficient path where the COG never has to move back

in such a sequence we can make use of the intersection of

two subsequent support triangles of hind and front swing.

The intersection of this triangle is called a “double support

triangle” (DST) [10], [12] and is often used in COG path

planning for static walk. To make use of the DST we need to

look ahead four steps (to get two subsequent DST).

While indeed the support polygon determines the stability of

a walking gait, as we will show, we do not have to consider the

complete polygons to plan a fast COG trajectory for complex

terrain locomotion. This insight reduces the complexity of the

algorithms tremendously, in particular, there is no numerical

optimization needed as in, for instance, most ZMP approaches.

The method we will present also extends and generalizes our

earlier work on a simple COG trajectory planner for rough

terrain [13].

In the following we will show how to develop the line-based

COG trajectory generator, starting from the traditional support

triangles and polygons. We will show that as long as there are

no large perturbation requiring special recovery behaviors, the

only relevant elements to plan a COG trajectory (that supports

fast movements) are lines defined by diagonal pairs of legs.

This reduces the complexity of the COG planning algorithms

and especially does not require memorization a history of past

footholds.

First of all let us state important design aspects for the COG

trajectory:

• Avoid unnecessary accelerations and jerks: The COG

should move at near constant velocity for fast and smooth

locomotion with minimal slipping. This requires proper

velocity boundary conditions.

• Avoid unnecessary movements (such as moving back as

in figure-8 patterns) – This requirement is achieved by

using the equivalence of a DST. However, as we will

show, we will not have to compute the double support

triangles explicitly.

• Optimal sway (velocity dependent) – The faster the COG

is moving the more the path is straightened out (see

calculation of vy below).

• Appropriate safety margins (velocity/acceleration depen-

dent) – The margins facing towards the next and previous

stability triangle are reduced proportionally to the veloc-

ity, to account for the fact that the momentum of the body

is pushing the COG into the next support triangle. The

sideways margins remain constant (and are normally not

directly relevant in a steady gait as shown below).

In the following discussion we assume a coordinate system

that is fixed on the robot, the x-axis points in the forward

direction and the y-axis to the left. Furthermore to label feet

in relation to the current swing leg we designate the side on

which the current swing leg is with I (ipsilateral) and the

opposite as C (contralateral) concatenated with the standard

817

F, H for front leg/hind leg respectively. The “diagonal cross

over point” (DCO) is used to label the point where the COG

would cross the diagonal in case of zero stability margin. SI

and SO label the points in which the COG enters the (velocity

dependent) stability region or leaves it respectively.

Figure 2, develops the idea of the line based stability

criterion. Please refer to the figure caption for an explanation.

Finally, we present an algorithm that uses the ideas in-

troduced in Fig. 2 to generate a COG path. Parameters of

the algorithm are: vx: average desired forward velocity, ms:

“static” stability margin, g: gain to modify the stability margin

dependent on velocity – g also influences the velocity bound-

ary conditions. Given the step sequence and the parameters,

the algorithm proceeds as follows:

1) Calculate next cross over point – The mid point on the

IH-CF between the intersection of this line with the next

IF-CH and previous IF-CH yields the next DCO (Fig.

2d, star).

2) Calculate time needed for hind and front swing based

on the distance of the last and next DCO. ts =
||(DCO(n),DCO(n+1))||

vx

3) Apply velocity dependent stability margins by moving

the IF-CH and IH-CF lines by m = ms − g|vx|, if m <
0 → m = 0 (cf. Fig. 3).

4) Apply velocity dependent y-velocity boundary condi-

tions |vy | = |vx|(1 − g|vx|/ms),if |vy | < 0 → |vy| = 0.

5) Calculate SI and SO – To calculate these points a line

with the direction (vx, vy) through DCO is intersected

with the relevant line (SI: IH-CF or SO: IF-CH), modi-

fied by the stability margins (from Step 3). These points

are taken as SI and SO.

6) Spline the movement from the SI to SO. (For four leg

support a spline segment from SO to SI is used).

7) Find the mid point of the spline at ts

2 to separate between

hind swing and front swing.

We use splines to connect the critical points (SI,SO) and

generate the final path for each control cycle of the robot.

Fifth order splines are used to ensure continuous acceleration

profiles required by the inverse dynamics controller, although

other methods could be used.

Swing leg trajectory: While the COG path together with

the stance legs positions (from the step sequence) define the

trajectories for the DOFs of stance legs (three DOFs per leg for

our robot), the swing leg has to be specified separately. There

are several constraints that have to be fulfilled, including to

avoid impact with the terrain, appropriate timing, and velocity

constraints. We use a simple convex-hull computed over the

obstacles of the terrain and a spline based swing leg trajectory.

V. EXPERIMENTAL RESULTS

A. Improvement of robustness over non-perceived obstacle

A total of 12 different controllers were tested in a physics

based simulator [14]. Three different gain settings (HG) high

gains, (MG) medium gains (half of the HG settings) and (LG)

low gains at 1/6 of the HG settings. All of these three gain

Step 1

(a) Support triangles

Step 2 Step 3 Step 4

Step 1

(b) Double support triangles

Step 2 Step 3 Step 4

Step 1

(c) Sequence of double support triangles

Step 2 Step 3 Step 4

IH

CF

CH

IF

Step 1

(d) Lines replacing double support triangles

IH

CF

CH

IF

Step 2

IH

CF

CH

IF

Step 3

IH

CF

CH

IF

Step 4

Fig. 2. This figure develops step-by-step the idea of using the diagonal
feet pairs to replace the double support triangles in calculation of the COG
path. All rows show the same four footsteps of a typical step sequence
[RH,RF,LH,LF], see text for definition of labels – (a) The hollow circle
depicts the origin and the cross the goal of the swing leg. The solid circles
depict the stance legs and they form the support triangle, illustrated with
solid lines. (b) The intersection of two subsequent unilateral (hind then front)
swing leg movements yields the double support triangle (solid line, hind leg
support dashed, front leg support dotted). (c) The double support triangles
are drawn (solid) with the previous (dotted) and following (dashed) double
support triangle. A path through these triangles will allow the COG to always
have a forward movement. (d) The diagonal feet pairs yield the critical lines,
which hold the same information as the full double support triangles. IH-CF
yields the forward limit (red line), IF-CH yields the rearward limit (green
line), i.e. the COG must be ahead of the green line and not cross the red line.
The next IF-CH diagonal (green dashed) determines the sideways margins –
this line is where the same foot pair will be two steps later, i.e. the red line
needs to be crossed behind the green dashed lines, the middle point of this
segment yields the largest achievable stability margin (stars) and is taken as
the DCO. The critical diagonals with an example COG path are drawn in Fig.
3 a)

818

a) b) c) −0.1 −0.05 0 0.05 0.1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d) −0.1 0 0.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Fig. 3. (a) A typical path corresponding to the footsteps in Fig. 2. (b)
The sequence shown with the velocity dependent margins applied. The arrow
indicates the velocity used for the spline boundary conditions. (c) Paths found
by holding all parameters constant but but changing the desired velocity. The
faster the COG travels the straighter the path gets. (d) For short steps the
algorithm finds naturally to the figure eight pattern [13] since satisfying the
stability constraints in combination with short footsteps requires the COG to
either move backward or come to halt (note the different scale).

a) b)

c)

Fig. 4. Setups to test the robustness of the controllers towards non-perceived
obstacles (a) simulation (b) real world. The brown respectively wooden
obstacle are not perceived by the robot. (c) Terrains to assess the performance
of the controller on more realistic setups, see video supplement.

settings were run with four different control laws: (PD) PD

position control only, (F) PD + force control, (F/ID) PD +

force and inverse dynamics, and (ID) PD + inverse dynamics.

All controllers were subjected to an unperceived obstacle of

variable height (cf. Fig. 4) from 1cm to 7cm (corresponding

to up ∼50% of the leg length). Table I lists the results. A P

denotes passing the obstacles without falling and F denotes

failure and falling over. The experiments were repeated 10

times and despite the simulator having stochastic elements due

to the “penalty method” employed to model ground contacts,

the results were consistently either pass or fail for a given

setup and obstacle height.

While lowering the gains (MG) already gives higher robust-

ness, it is not strictly mandatory to use inverse dynamics with

these gain settings. The robot fulfills the task pretty well with

PD control only. However, in the case of LG, the PD only (and

PD/F) control is not able to track well enough that the robot is

even able to take a single step (cf. tracking results). To lower

the gains that much inverse dynamics is the crucial element to

TABLE I

Tracking results and results of robustness step on non-perceived obstacles for
different controller types. (HG) high gains (MG) medium (half) gains (LG)
low (1/6) gains. Control laws: (PD) PD position control only (F) PD + force
control (F/ID) PD + force and inverse dynamics (ID) PD + inverse dynamics.
Bottom row, avg. foothold tracking. Top panel: Simulation results (Pass/Fail)
- Bottom panel: real robot, number of passed trials out of 10.

achieve even basic task-fulfillment. From the last two columns

in the table we see that the lower gains achieve the highest

tolerance for non-perceived obstacles, with the combination of

ID/F control giving the best performance.

As outlined above in our case reaching the footholds is of

utmost importance. Hence, the tracking quality was assessed

by evaluating the average distance of the swing foot from the

desired foothold at touch-down and the results are listed in the

last row in Table I.

Looking at the tracking results it is clear that with reducing

the gains, as expected, we reduce the accuracy but at the

same time gain a large amount of robustness in presence of

not or wrongly perceived obstacles. The reduction of foothold

tracking is still acceptable. The benefits in robustness thus

justify the use of such a low gain inverse dynamics and force

controller.

B. Real world tests

The same tests were repeated on the real robot. Table

Ib) shows the results. The results match the predictions of

the simulation very well. Again, the LG-F/ID controller is

the most robust one. However, in contrast to the simulation

the LG-ID controller seems to perform equally well as the

combined LG-F/ID controller. The tracking performance de-

grades more significantly in the low gain condition, although

increased robustness is still observed in the same way as in the

simulation tests. It should be noted that our inverse dynamics

model was not of high quality – it was partially derived from

CAD data, and partially from parameter estimation techniques,

and we noticed various deficiencies in the quality of the model.

Future work will address how to improve this issue, and

tracking performance in low gain control will be improved.

In order to demonstrate the usefulness of the LG-F/ID

controller in more realistic scenarios we ran the real robot

819

20 21 22 23 24 25 26
0.5

1

1.5

2

2.5

θ
K

F
E

time [s]

20 21 22 23 24 25 26
−1

−0.5

0

0.5

1

m
o

to
r

c
o

m
m

a
n

d
 [

N
m

]

time [s]

Fig. 5. Top: Tracking of the Right hind knee joint in a steady walk; Bottom:
The total motor torques τ (blue line) comprised of the feedforward τID (green
dashed) and the feedback command τF B (red dash-dotted). The feedforward
is the major contributor to the motor command most of the time and the
feedback torque is comparatively very low. The effects of the constraint
switches are clearly visible as they create discontinuities in τID .

over non-perceived scattered obstacles of 2-4cm height and a

non-perceived rock board (Fig. 4). In such terrain the HG-PD

controller fails while the LG-F/ID controller create enough

robustness for successful completion of the runs (see video

supplement or [15]). These results show that the efficiency of

ID/LG also holds on the real robot despite an imperfect model.

C. Joint space tracking results

In Figure 5, we show a representative example of the

tracking of the knee joint along with the total motor command

trade-off in terms of feedback command vs. feedforward

command. Typically, it can be seen that the total motor com-

mand is mostly accounted for by the feedforward contribution.

However, while in theory the feedback command should be

almost negligible, in the real robot we have a continued

clear contribution of the feedback controller. This is due to

the imperfect dynamics model of the robot, and, therefore,

the feedforward command is not able to track the desired

trajectory perfectly. It is worth noting that the floating-base

inverse dynamics controller has a graceful degradation despite

a rather imprecise model of the inverse dynamics parameters.

Other approaches, which require inversion of the rigid body

dynamics inertia matrix [6] can create significant problems in

face of modeling errors.

VI. CONCLUSION AND DISCUSSION

We have shown how to achieve floating-base inverse dynam-

ics control on arbitrary robots with multiple and dynamically

changing constraints. The controller has been applied to a

quadruped robot to implement an inverse dynamics and force

based controller to achieve robust and compliant locomotion

over rough, unperceived and moving terrain. We have intro-

duced a novel, simple and efficient way of computing a COG

path given a foothold sequence for a statically stable walk over

uneven terrain (i.e. varying step length and relative foothold

position).

We have shown that the combination of inverse dynamics

and force control greatly enhances the robustness against

non-perceived obstacles. Results in simulation and on a real

quadruped robot show the feasibility and effectivity of the

controllers.

Future work: Future work will show the application of

these control principles to other robots such as humanoid

robots in complex terrains and a combination with other tasks

such as manipulation, carrying payloads, etc. An additional

advantage of low gain control is increased safety – a crucial

design aspect for strong robots to operate among humans. Our

approach can help implementing controllers needed to improve

safety considerations in such scenarios.

ACKNOWLEDGMENTS

This research was supported in part by National Science

Foundation grants ECS-0325383, IIS-0312802, IIS-0082995,

ECS-0326095, ANI-0224419, the DARPA program on Learn-

ing Locomotion, NASA grant AC98-516, an AFOSR grant

on Intelligent Control, the ERATO Kawato Dynamic Brain

Project funded by the Japanese Science and Technology

Agency, and the ATR Computational Neuroscience Laborato-

ries. J.B. was supported by a prospective researcher fellowship

from the Swiss National Science Foundation.

REFERENCES

[1] U. Saranli, M. Buehler, and D. Koditschek, “RHex – a simple and highly
mobile hexapod robot,” International Journal of Robotics Research,
vol. 20, no. 7, pp. 616–631, 2001.

[2] T. McGeer, “Passive dynamic walking,” International Journal of

Robotics Research, vol. 9, pp. 62–82, 1990.
[3] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient Bipedal

Robots Based on Passive-Dynamic Walkers,” Science, vol. 307, no.
5712, pp. 1082–1085, 2005.

[4] M. Mistry, “The representation, learning, and control of dexterous motor
skills in humans and humanoid robots,” Ph.D. dissertation, University
of Southern California, 2009.

[5] L. Sciavicco and B. Siciliano, Modelling and Control of Robot Manip-

ulators. Springer, 2000.
[6] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal,

“Operational space control: A theoretical and emprical comparison,”
International Journal of Robotics Research, no. 6, pp. 737–757,
2008. [Online]. Available: http://www-clmc.usc.edu/publications/N/
nakanishi-IJRR2008.pdf

[7] M. Mistry, J. Nakanishi, G. Cheng, and S. Schaal, “Inverse kinematics
with floating base and constraints for full body humanoid robot control,”
in IEEE International Conference on Humanoid Robotics, 2008.

[8] R. Featherstone, Rigid Body Dynamics Algorithms. Springer, New York,
2007.

[9] M. Kalakrishnan, J. Buchli, and S. Schaal, “Learning locomotion on
rough terrain using terrain templates,” in The 2009 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems., 2009, in print.
[10] R. McGhee and A. Frank, “On the stability properties of quadruped

creeping gaits,” Mathematical Biosciences, vol. 3, no. 3–4, pp. 331–
351, 1968.

[11] P. Gonzales de Santos and E. J. Garcia, E., Quadrupedal Locomotion.
Springer London, 2006.

[12] J. Z. Kolter, M. P. Rodgers, and A. Y. Ng, “A control architecture for
quadruped locomotion over rough terrain,” in Proceedings IEEE Int.

Conference on Robotics and Automation, 2008, pp. 811–818.
[13] D. Pongas, M. Mistry, and S. Schaal, “A robust quadruped walking gait

for traversing rough terrain,” in International Conference on Robotics

and Automation (ICRA 2007), 2007, pp. 1474–1479.
[14] S. Schaal, “The sl simulation and real-time control software package,”

Tech. Rep., 2009. [Online]. Available: http://www-clmc.usc.edu/
publications/S/schaal-TRSL.pdf

[15] Videos available at http://www-clmc.usc.edu.

820

