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COMPLICATED COLORINGS, REVISITED

ASSAF RINOT AND JING ZHANG

Abstract. In a paper from 1997, Shelah asked whether Pr1(λ+, λ+, λ+, λ)
holds for every inaccessible cardinal λ. Here, we prove that an affirmative
answer follows from �(λ+). Furthermore, we establish that for every pair
χ < κ of regular uncountable cardinals, �(κ) implies Pr1(κ, κ, κ, χ).

1. Introduction

The subject matter of this paper is the following two anti-Ramsey coloring prin-
ciples:

Definition 1.1 (Shelah, [She88]). Pr1(κ, κ, θ, χ) asserts the existence of a coloring
c : [κ]2 → θ such that for every σ < χ, every pairwise disjoint subfamily A ⊆ [κ]σ

of size κ, and every τ < θ, there is (a, b) ∈ [A]2 such that c[a× b] = {τ}.

Definition 1.2 (Lambie-Hanson and Rinot, [LHR18]). U(κ, µ, θ, χ) asserts the
existence of a coloring c : [κ]2 → θ such that for every σ < χ, every pairwise
disjoint subfamily A ⊆ [κ]σ of size κ, and every τ < θ, there exists B ∈ [A]µ such
that, for every (a, b) ∈ [B]2, min(c[a× b]) ≥ τ .1

The importance of this line of study — especially in proving instances of Pr1(. . .)
and U(. . .) with a large value of the 4th parameter — is explained in details in
the introductions to [Rin14a, Rin14b, LHR18]. In what follows, we survey a few
milestone results, depending on the identity of κ.

◮ At the level of the first uncountable cardinal κ = ℵ1, the picture is complete:
In his seminal paper [Tod87], Todorčević proved that Pr1(ℵ1,ℵ1,ℵ1, 2) holds, im-
proving upon a classic result of Sierpiński [Sie33] asserting that Pr1(ℵ1,ℵ1, 2, 2)
holds. In 1980, Galvin [Gal80] proved that Pr1(ℵ1,ℵ1, θ,ℵ0) is independent of ZFC
for any cardinal θ ∈ [2,ℵ1]. Finally, a few years ago, by pushing further ideas of
Moore [Moo06], Peng and Wu [PW18] proved that Pr1(ℵ1,ℵ1,ℵ1, χ) holds for every
χ ∈ [2,ℵ0). As for the other coloring principle, and in contrast with Galvin’s result,
by [LHR18], U(ℵ1,ℵ1, θ,ℵ0) holds for any cardinal θ ∈ [2,ℵ1].

◮ At the level of the second uncountable cardinal, κ = ℵ2, a celebrated result of
Shelah [She97] asserts that Pr1(ℵ2,ℵ2,ℵ2,ℵ0) is a theorem of ZFC. Ever since, the
following problem remained open:

Open problem (Shelah, [She97, She19]). (1) Does Pr1(ℵ2,ℵ2,ℵ2,ℵ1) hold?
(2) Does Pr1(λ

+, λ+, λ+, λ) hold for λ inaccessible?
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1Note that Pr1(κ, κ, θ, χ) implies U(κ, 2, θ, χ). However, by [LHR21a, Theorem 3.3], it does

not imply U(κ, κ, θ, χ).
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In comparison, by [LHR18], U(λ+, λ+, θ, λ) is a theorem of ZFC for every infinite
regular cardinal λ and every cardinal θ ∈ [2, λ+].

◮ At the level of κ = λ+ for λ a singular cardinal, the main problem left open
has to do with the 3rd parameter of Pr1(. . .) rather than the 4th (see [She94a,
ES05, ES09, Eis10, Eis13a, Eis13b]). This is a consequence of three findings. First,
by the main result of [Rin12], for every singular cardinal λ and every cardinal
θ ≤ λ+, Pr1(λ

+, λ+, θ, 2) implies Pr1(λ
+, λ+, θ, cf(λ)). Second, by [RZ21a, §2], if

λ is the singular limit of strongly compact cardinals, then Pr1(λ
+, λ+, 2, (cf(λ))+)

fails, meaning the the first result cannot be improved. Third, by [RZ21a, §2],
Pr1(λ

+, λ+, 2, λ) outright fails for every singular cardinal λ.
The situation with U(. . .) is slightly better. An analog of the first result may be

found as [LHR18, Lemma 2.5 and Theorem 4.21(3)]. An analog of the second result
may be found as [LHR18, Theorem 2.14]. In contrast, by [LHR18, Corollary 4.15],
it is in fact consistent that U(λ+, λ+, θ, λ) holds for every singular cardinal λ and
every cardinal θ ∈ [2, λ+].

◮ At the level of a Mahlo cardinal κ, by [She94b, Conclusion 4.8(2)], the existence
of a stationary subset of Eκ

≥χ that does not reflect at inaccessibles entails that

Pr1(κ, κ, θ, χ) holds for all θ < κ. By [RZ21a, §5], the existence of nonreflecting a
stationary subset of Reg(κ) on which ♦ holds entails that Pr1(κ, κ, κ, κ) holds.

The situation with U(. . .) is analogous: By [LHR18, Theorem 4.23], the existence
of a stationary subset of Eκ

≥χ that does not reflect at inaccessibles entails that

U(κ, κ, θ, χ) holds for all θ < κ. By [LHR21b, §2], the existence of nonreflecting a
stationary subset of Reg(κ) entails that U(κ, κ, θ, κ) holds for all θ ≤ κ.

◮ At the level of an abstract regular cardinal κ ≥ ℵ2, we mention two key results.
First, by [Rin14b], for every regular cardinal κ ≥ ℵ2 and every χ ∈ Reg(κ) such
that χ+ < κ, the existence of a nonreflecting stationary subset of Eκ

≥χ entails that

Pr1(κ, κ, κ, χ) holds (this is optimal, by [LHR21a, Theorem 3.4], it is consistent
that for some inaccessible cardinal κ, Eκ

χ admits a nonreflecting stationary set, and

yet, Pr1(κ, κ, κ, χ
+) fails). Second, by [Rin14a], for every regular cardinal κ ≥ ℵ2

and every χ ∈ Reg(κ) such that χ+ < κ, �(κ) entails that Pr1(κ, κ, κ, χ) holds.
Here, the situation with U(. . .) is again better. By [LHR18, Corollaries 4.12

and 4.15] and [LHR21b, §4], the analogs of the two results are true even without
requiring “χ+ < κ”!

After many years without progress on the above mentioned Open Problem, in the
last few years, there have been a few breakthroughs. In an unpublished note from
2017, Todorčević proved that CH implies a weak form of Pr1(ℵ2,ℵ2,ℵ2,ℵ1), strong
enough to entail one of its intended applications (the existence of a σ-complete
ℵ2-cc partial order whose square does not satisfy that ℵ2-cc). Next, in [RZ21a, §6],
the authors obtained a full lifting of Galvin’s strong coloring theorem, proving that
for every infinite regular cardinal λ, Pr1(λ

+, λ+, λ+, λ) holds assuming the stick

principle |
•
(λ+). In particular, an affirmative answer to (1) follows from 2ℵ1 = ℵ2.

Then, very recently, in [She21], Shelah proved that for every regular uncountable
cardinal λ, Pr1(λ

+, λ+, λ+, λ) holds assuming the existence of a nonreflecting sta-

tionary subset of Eλ+

<λ. So, by a standard fact from inner model theory, a negative
answer to (1) implies that ℵ2 is a Mahlo cardinal in Gödel’s constructible universe.

The main result of this paper reads as follows:
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Theorem A. For every regular uncountable cardinal λ, if �(λ+) holds, then so
does Pr1(λ

+, λ+, λ+, λ). In particular, a negative answer to (1) implies that ℵ2 is
a weakly compact cardinal in Gödel’s constructible universe.

Thanks to the preceding theorem, we can now waive the hypothesis “χ+ < κ”
from [Rin14a, Theorem B], altogether getting a clear picture:

Theorem A’. For every pair χ < κ of regular uncountable cardinals, �(κ) implies
Pr1(κ, κ, κ, χ).

Now, let us say a few words about the proof. As made clear by the earlier
discussion, in the case that κ = χ+, it is easier to prove U(κ, κ, θ, χ) than proving
Pr1(κ, κ, θ, χ). Therefore, we consider the following slight strengthening of U(. . . ):

Definition 1.3. U1(κ, µ, θ, χ) asserts the existence of a coloring c : [κ]2 → θ such
that for every σ < χ, every pairwise disjoint subfamily A ⊆ [κ]σ of size κ, and every
ǫ < θ, there exists B ∈ [A]µ such that, for every (a, b) ∈ [B]2, there exists τ > ǫ
such that c[a× b] = {τ}.

Shelah’s proof from [She21] can be described as utilizing the hypothesis of his
theorem twice: first to get U1(λ

+, 2, λ+, λ), and then to derive Pr1(λ
+, λ+, λ+, λ)

from the latter. Here, we shall follow a similar path, building on the progress made
in [RZ21b, §5] with respect to walking along well-chosen �(κ)-sequences. We shall
also present a couple of propositions translating U1(. . .) to Pr1(. . .) and vice versa,
demonstrating that U1(κ, µ, θ, χ) is of interest also with θ < κ. For instance, it will
be proved that for every regular uncountable cardinal λ that admits a stationary set
not reflecting at inaccessibles (e.g., λ = ℵ1), U1(λ

+, 2, λ, λ) iff Pr1(λ
+, λ+, λ+, λ).

Thus, the core contribution of this paper reads as follows.

Theorem B. Suppose that χ ≤ θ ≤ κ are infinite regular cardinals such that
max{χ,ℵ1} < κ. If �(κ) holds, then so does U1(κ, 2, θ, χ).

2. Preliminaries

In what follows, χ < κ denotes a pair of infinite regular cardinals. Reg(κ) stands
for the set of all infinite and regular cardinals below κ. Let Eκ

χ := {α < κ |
cf(α) = χ}, and define Eκ

≤χ, E
κ
<χ, E

κ
≥χ, E

κ
>χ, E

κ
6=χ analogously. A stationary

subset S ⊆ κ is nonreflecting (resp. nonreflecting at inaccessibles) iff there exists
no α ∈ Eκ

>ω (resp. α a regular limit uncountable cardinal) such that S ∩ α is
stationary in α. For a set of ordinals a, we write ssup(a) := sup{α + 1 | α ∈ a},
acc+(a) := {α < ssup(a) | sup(a ∩ α) = α > 0}, acc(a) := a ∩ acc+(a) and
nacc(a) := a \ acc(a). For sets of ordinals that are not ordinals, a and b, we write
a < b to express that α < β for all α ∈ a and β ∈ b. For an ordinal σ and a set of
ordinals A, we write [A]σ for {B ⊆ A | otp(B) = σ}. In the special case that σ = 2
and A is either an ordinal or a collection of sets of ordinals, we interpret [A]2 as the
collection of ordered pairs {(a, b) ∈ A × A | a < b}. In particular, [κ]2 = {(α, β) |
α < β < κ}.

For the rest of this section, let us fix a C-sequence ~C = 〈Cα | α < κ〉 over κ,
i.e., for every α < κ, Cα is a closed subset of α with sup(Cα) = sup(α). The next
definition is due to Todorčević; see [Tod07] for a comprehensive treatment.

Definition 2.1 (Todorčević). From ~C, derive maps Tr : [κ]2 → ωκ, ρ2 : [κ]2 → ω,
tr : [κ]2 → <ωκ and λ : [κ]2 → κ, as follows. Let (α, β) ∈ [κ]2 be arbitrary.



4 ASSAF RINOT AND JING ZHANG

• Tr(α, β) : ω → κ is defined by recursion on n < ω:

Tr(α, β)(n) :=











β, n = 0

min(CTr(α,β)(n−1) \ α), n > 0 & Tr(α, β)(n− 1) > α

α, otherwise

• ρ2(α, β) := min{n < ω | Tr(α, β)(n) = α};
• tr(α, β) := Tr(α, β) ↾ ρ2(α, β);
• λ(α, β) := max{sup(CTr(α,β)(i) ∩ α) | i < ρ2(α, β)}.

Convention 2.2. From any coloring h : κ→ κ, derive a function trh : [κ]2 → <ωκ
via

trh(α, β) := 〈h(Tr(α, β)(i)) | i < ρ2(α, β)〉.

The next fact is quite elementary. See, e.g., [Rin14b, Claim 3.1.2] for a proof.

Fact 2.3. Whenever λ(γ, β) < α < γ < β < κ, tr(α, β) = tr(γ, β)a tr(α, γ).

We now recall the characteristic λ2(·, ·), a variation of λ(·, ·) having the property
that λ2(γ, β) < γ whenever 0 < γ < β < κ.

Definition 2.4 ([Rin14a]). Define λ2 : [κ]2 → κ via

λ2(α, β) := sup(α ∩ {sup(Cδ ∩ α) | δ ∈ Im(tr(α, β))}).

Fact 2.5 ([LHR18, Lemma 4.7]). Suppose that λ2(γ, β) < α < γ < β < κ.
Then tr(α, β) end-extends tr(γ, β), and one of the following cases holds:

(1) γ ∈ Im(tr(α, β)); or
(2) γ ∈ acc(Cδ) for δ := min(Im(tr(γ, β))).

Convention 2.6 ([RZ21b]). For every ordinal η < κ and a pair (α, β) ∈ [κ]2, let

ηα,β := min{n < ω | η ∈ CTr(α,β)(n) or n = ρ2(α, β)} + 1.

Definition 2.7 ([RZ21a, §3]). χ1(~C) stands for the supremum of σ + 1 over all
σ < κ satisfying the following. For every pairwise disjoint subfamily A ⊆ [κ]σ of
size κ, there are a stationary set ∆ ⊆ κ and an ordinal η < κ such that, for every
δ ∈ ∆, there exist κ many b ∈ A such that, for every β ∈ b, λ(δ, β) = η and
ρ2(δ, β) = ηδ,β.

Fact 2.8 ([RZ21a, §3]). If the two hold:

(ℵ) for all α < κ and δ ∈ acc(Cα), Cδ = Cα ∩ δ;
(i) for every club D ⊆ κ, there exists γ > 0 with sup(nacc(Cγ) ∩D) = γ,

then χ1(~C) = sup(Reg(κ)).

Definition 2.9 (Todorčević, [Tod87]). For a cardinal µ ≤ κ, �(κ,<µ) asserts the

existence of a sequence ~C = 〈Cα | α < κ〉 such that

(1) for every α < κ, Cα is nonempty collection of less than µ many closed
subsets C of α with sup(C) = sup(α);

(2) for all α < κ, C ∈ Cα and δ ∈ acc(C), C ∩ δ ∈ Cδ;
(3) there exists no club C in κ such that C ∩ α ∈ Cα for all α ∈ acc(C).

The special case of �(κ,<µ) with µ = 2 is denoted by �(κ).

Fact 2.10 (Hayut and Lambie-Hanson, [HLH17, Lemma 2.4]). Clause (3) of Def-
inition 2.9 is preserved in any κ-cc forcing extension, provided that µ < κ.
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3. Theorem B

Theorem 3.1. Suppose that χ ≤ θ ≤ κ are infinite regular cardinals such that
max{χ,ℵ1} < κ. If �(κ) holds, then so does U1(κ, 2, θ, χ).

Proof. Suppose that �(κ) holds. Then, by [RZ21b, Lemma 5.1], we may fix a

C-sequence ~C = 〈Cα | α < κ〉 satisfying the following:

(1) Cα+1 = {0, α} for every α < κ;
(2) for every club D ⊆ κ, there exists γ > 0 with sup(nacc(Cγ) ∩D) = γ;
(3) for every α ∈ acc(κ) and ᾱ ∈ acc(Cα), Cᾱ = Cα ∩ ᾱ;
(4) for every i < κ, {α < κ | min(Cα) = i} is stationary.

Note that, by Fact 2.8, χ1(~C) = sup(Reg(κ)). If θ < κ, then let µ := θ;
otherwise, let µ := χ. Derive a coloring h : κ→ µ via

h(α) :=

{

min(Cα), if min(Cα) < µ;

0, otherwise.

We shall walk along ~C. Define a coloring d : [κ]2 → µ via

d(α, β) := max(Im(trh(α, β))).

Claim 3.1.1. Suppose that α, β, γ are ordinals, and λ2(γ, β) < α < γ < β < κ.
Then Im(trh(α, β)) = Im(trh(α, γ)) ∪ Im(trh(γ, β)). In particular, d(α, β) =

max{d(α, γ), d(γ, β)}.

Proof. By Fact 2.5, one of the following cases holds:

◮ γ ∈ Im(tr(α, β)). In this case, tr(α, β) = tr(γ, β)a tr(α, γ), so we done.
◮ γ ∈ acc(Cδ) for δ := min(Im(tr(γ, β))). In this case, tr(α, β) = tr(δ, β)a

tr(α, δ), so that Im(trh(α, β)) = Im(trh(α, δ)) ∪ Im(trh(δ, β)). Since γ ∈
acc(Cδ), Clause (3) above and the definition of the function h together
imply that trh(α, δ) = trh(α, γ). In addition, tr(γ, β) = tr(δ, β)a〈δ〉, so
that Im(trh(γ, β)) = Im(trh(δ, β)) ∪ {h(δ)}. Since h(δ) ∈ Im(trh(α, δ)),
altogether,

Im(trh(α, γ)) ∪ Im(trh(γ, β)) = Im(trh(α, δ)) ∪ Im(trh(δ, β)). �

We are now ready to define the sought coloring c. If µ = θ, then let c := d, and
otherwise define c : [κ]2 → θ via

c(α, β) := max{ξ ∈ Im(tr(α, β)) | h(ξ) = d(α, β)}.

To see that c witnesses U1(κ, 2, θ, χ), suppose that we are given ǫ < θ, σ < χ and a
κ-sized pairwise disjoint subfamily A ⊆ [κ]σ; we need to find τ > ǫ and (a, b) ∈ [A]2

such that c[a× b] = {τ}. As σ < χ ≤ χ1(~C), we may fix a stationary subset ∆ ⊆ κ
and an ordinal η < κ such that, for every δ ∈ ∆, there exists b ∈ A with min(b) > δ
such that λ(δ, β) = η for every β ∈ b. Set η′ := max{η, ǫ}.

Consider the club C := {γ < κ | sup{min(a) | a ∈ A∩P(γ)} = γ}. For all γ ∈ C
and ε < γ, fix aγε ∈ A ∩ P(γ) with min(aγε ) > ε; as |aγε | < µ, τγε := sup{d(α, γ) |
α ∈ aγε} is < µ. Fix some stationary Γ ⊆ C ∩Eκ

6=µ along with τ0 < µ such that, for

every γ ∈ Γ, sup{ε < γ | τγε ≤ τ0} = γ.
By Clause (4), for each i < µ, Hi := {α < κ | h(α) = i} is stationary, so, fix δ ∈

∆∩
⋂

i<µ acc
+(Hi∩acc+(Γ\η′)). Pick b ∈ A with min(b) > δ such that λ(δ, β) = η

for every β ∈ b. As |b| < µ, τ1 := sup{d(δ, β) | β ∈ b} is < µ. If ǫ < µ, then pick
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ζ ∈ Hτ0+τ1+ǫ+1∩acc+(Γ\η′); otherwise, pick ζ ∈ Hτ0+τ1+1∩acc+(Γ\η′). Next, pick
γ ∈ Γ above max{λ2(ζ, δ), η′}. Finally, pick ε < γ above max{λ2(γ, ζ), λ2(ζ, δ), η′}
such that τγε ≤ τ0, and then set a := aγε .

Claim 3.1.2. Let α ∈ a and β ∈ b. Then:

(i) max{λ2(γ, ζ), λ2(ζ, δ), λ(δ, β), ǫ} < ε < α < γ < ζ < δ < β;
(ii) c(α, β) = c(γ, δ) > ǫ.

Proof. (i) This is clear, recalling that η′ = max{λ(δ, β), ǫ}.
(ii) From λ(δ, β) < α < δ < β and Fact 2.3, we infer that tr(α, β) = tr(δ, β)a

tr(α, δ), so that d(α, β) = max{d(δ, β), d(α, δ)}. By Clause (i) and Claim 3.1.1,

d(α, δ) = max{d(α, ζ), d(ζ, δ)} ≥ h(ζ) > τ1 ≥ d(δ, β).

Consequently, d(α, β) = d(α, δ) and c(α, β) = c(α, δ). By Clause (i) and Claim 3.1.1,
Im(trh(α, δ)) = Im(trh(α, γ) ∪ Im(trh(γ, δ)). As d(α, γ) ≤ τ0 < h(ζ) ≤ d(γ, δ), it
follows that d(α, δ) = d(γ, δ) and c(α, δ) = d(γ, δ). Altogether, c(α, β) = c(γ, δ).

Now, if θ < κ, then ǫ < θ = µ and c = d, so that c(α, β) = d(γ, δ) ≥ h(ζ) > ǫ.
Otherwise, c(α, β) ≥ min(Im(tr(α, β))) > α > ǫ. �

Set τ := c(γ, δ). Then τ > ǫ and c[a× b] = {τ}, as sought. �

Remark 3.2. The preceding proof makes it clear that the auxiliary coloring d wit-
nesses U1(κ, 2, µ, χ). By Fact 2.5, the coloring d is moreover closed in the sense
that, for all β < κ and i < θ, the set {α < β | c(α, β) ≤ i} is closed below β. So,
by [LHR18, Lemma 4.2], d witnesses U(κ, κ, µ, χ), as well.

4. Connecting U1 with Pr1

Throughout this section, χ < κ is a pair of infinite regular cardinals, and θ
is a regular cardinal ≤ κ. Let Aκ

χ denote the collection of all pairwise disjoint
subfamilies A ⊆ P(κ) such that |A| = κ and sup{|a| | a ∈ A} < χ. Given a
coloring c : [κ]2 → θ, for every A ⊆ P(κ), let Tc(A) be the set of all τ < θ such
that, for some (a, b) ∈ [A]2, c[a × b] = {τ}. The next definition appears (with a
slightly different notation) in Stage B in the proof of [She21, Theorem 1.1]:

Definition 4.1. For every coloring c : [κ]2 → θ, let

Fc,χ := {T ⊆ θ | ∃A ∈ A
κ
χ [Tc(A) ⊆ T ]}.

Proposition 4.2. Suppose that a coloring c : [κ]2 → θ witnesses U1(κ, 2, θ, χ), and
λ is some cardinal. Then:

(1) Fc,χ is a χ-complete uniform filter on θ;
(2) If every χ-complete uniform filter on θ is not weakly λ-saturated, then

Pr1(κ, κ, λ, χ) holds.

Proof. (1) It is clear that Fc,χ is upward-closed. To see that it is χ-complete,
suppose that we are given a sequence 〈Xi | i < δ〉 of elements of Fc,χ, for some
δ < χ. For each i < δ, fix Ai ∈ Aκ

χ such that Tc(Ai) ⊆ Xi. Pick A ∈ Aκ
χ such that,

for every a ∈ A, there is a sequence 〈ai | i < δ〉 ∈
∏

i<δ Ai such that a =
⋃

i<δ ai.
Then, Tc(A) ⊆

⋂

i<δ Tc(Ai) ⊆
⋂

i<δ Xi and hence the latter is in Fc,χ. Finally, since
c witnesses U1(κ, 2, θ, χ), for every A ∈ Aκ

χ and every ǫ < θ, Tc(A) \ ǫ is nonempty.
So Fc,χ consists of cofinal subset of θ. Since θ is regular, Fc,χ is uniform.
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(2) Suppose that no χ-complete uniform filter on θ is weakly λ-saturated. In
particular, by Clause (1), we may pick a map ψ : θ → λ such that that the preimage
of any singleton is Fc,θ-positive. Then ψ ◦ c witnesses Pr1(κ, κ, λ, χ). �

Corollary 4.3. Suppose that λ is a regular uncountable cardinal.
If λ admits a stationary set that does not reflect at regulars or if �(λ,<µ) holds

for some cardinal µ < λ, then the following are equivalent:

(1) Pr1(λ
+, λ+, λ+, λ);

(2) Pr1(λ
+, λ+, λ, λ);

(3) U1(λ
+, 2, λ, λ).

Proof. The implication (1) =⇒ (2) =⇒ (3) is trivial, and the fact that (2) =⇒
(1) is well-known (see, for instance, [KRS21, §6]). By the preceding proposition,
to see that (3) =⇒ (2), it suffices to prove that under our hypothesis on λ, no λ-
complete uniform filter on λ is weakly λ-saturated. Now, if λ is a successor cardinal,
then this follows from Ulam’s theorem [Ula30], and if λ is an inaccessible cardinal
admitting a stationary set that does not reflect at regulars, then this follows from
a theorem of Hajnal [Haj69]. Finally, if �(λ,<µ) holds for some cardinal µ < λ,
then this follows from [IR22, Theorem A]. �

Lemma 4.4. Suppose that λ is a regular uncountable cardinal and �(λ+, <λ) holds.
Then every λ-complete uniform filter on λ+ is not weakly λ-saturated.

Proof. Fix a �(λ+, <λ)-sequence ~C = 〈Cα | α < λ+〉. For each α < λ+, fix an
injective enumeration 〈Cα,i | i < |Cα|〉 of Cα.

Towards a contradiction, suppose that F is a λ-complete uniform filter on λ+

that is weakly λ-saturated. Since F is λ-complete, F is moreover λ-saturated.
Hence, P(λ+)/F is a λ-cc notion of forcing.

Let G be P(λ+)/F -generic over V . Then G is a uniform V -ultrafilter over λ+

extending F . By [For10, Propositions 2.9 and 2.14], Ult(V,G) is well-founded and
j : V →M ≃ Ult(V,G) satisfies crit(j) = λ.

Now, work in V [G]. Denote j(~C) by 〈Dα | α < j(λ+)〉. For every α < λ+, since
crit(j) = λ > |Cα|, it is the case that Dj(α) = j(Cα) = j“Cα. Since G is uniform,

γ := sup(j“λ+) is< j(λ+), as witnessed by the identity map id : λ+ → λ+. As V [G]

is a λ-cc forcing extension of V , cfV (γ) = cfV [G](γ) = λ+, so that cfM (γ) ≥ λ+.
Pick D ∈ Dγ .

Claim 4.4.1. A := j−1[acc(D)] is a cofinal subset of λ+.

Proof. Given ǫ < λ+, we recursively define (in V [G]) an increasing sequence 〈αn |
n < ω〉 of ordinals below λ+ such that:

(1) ǫ = α, and
(2) for all n < ω, (j(αn), j(αn+1)] ∩D 6= ∅.

Consider α∗ := supn<ω αn. Notice that cfV (α∗) < λ, since if cfV (α∗) ≥ λ, then

by the fact that V [G] is a λ-cc forcing extension of V we have ω = cfV [G](α∗) ≥ λ
which is impossible. As a result, sup j“α∗ = j(α∗) ∈ acc(D), which implies that α∗

is an element of A above ǫ. �

For each α ∈ A, D∩ j(α) ∈ Dj(α) = j“Cα, so we may pick some iα < λ such that
D ∩ j(α) = j(Cα,iα). Fix some i < λ for which A′ := {α ∈ A | iα = i} is cofinal
in λ+. For every (α, β) ∈ [A′]2, j(Cα,i) = D ∩ j(α) and j(Cβ,i) = D ∩ j(β), so, by
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elementarity, Cα,i = Cβ,i ∩ α. As A′ is cofinal in λ+, it follows that C :=
⋃

{Cα,i |
α ∈ A} is a club in λ+. Evidently, C ∩ α ∈ Cα for every α ∈ acc(C). However,
V [G] is a λ-cc forcing extension of V , contradicting Fact 2.10. �

We are now ready to prove Theorem A:

Corollary 4.5. Suppose that λ is a regular uncountable cardinal, and �(λ+) holds.
Then Pr1(λ

+, λ+, λ+, λ) holds, as well.

Proof. By Theorem 3.1, using (κ, θ, χ) := (λ+, λ+, λ), U1(λ
+, 2, λ+, λ) holds. So,

by Proposition 4.2 (using θ := λ+) and Lemma 4.4, Pr1(λ
+, λ+, λ, λ) holds. Then,

again by [KRS21, §6], Pr1(λ
+, λ+, λ+, λ) holds, as well. �
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