COMPLICATED COLORINGS, REVISITED

ASSAF RINOT AND JING ZHANG

Abstract

In a paper from 1997, Shelah asked whether $\operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{+}, \lambda^{+}, \lambda\right)$ holds for every inaccessible cardinal λ. Here, we prove that an affirmative answer follows from $\square\left(\lambda^{+}\right)$. Furthermore, we establish that for every pair $\chi<\kappa$ of regular uncountable cardinals, $\square(\kappa)$ implies $\operatorname{Pr}_{1}(\kappa, \kappa, \kappa, \chi)$.

1. Introduction

The subject matter of this paper is the following two anti-Ramsey coloring principles:

Definition 1.1 (Shelah, She88). $\operatorname{Pr}_{1}(\kappa, \kappa, \theta, \chi)$ asserts the existence of a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\sigma<\chi$, every pairwise disjoint subfamily $\mathcal{A} \subseteq[\kappa]^{\sigma}$ of size κ, and every $\tau<\theta$, there is $(a, b) \in[\mathcal{A}]^{2}$ such that $c[a \times b]=\{\tau\}$.

Definition 1.2 (Lambie-Hanson and Rinot, LLHR18]). $\mathrm{U}(\kappa, \mu, \theta, \chi)$ asserts the existence of a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\sigma<\chi$, every pairwise disjoint subfamily $\mathcal{A} \subseteq[\kappa]^{\sigma}$ of size κ, and every $\tau<\theta$, there exists $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that, for every $\left.(a, b) \in[\mathcal{B}]^{2}, \min (c[a \times b]) \geq \tau\right]^{1}$

The importance of this line of study - especially in proving instances of $\operatorname{Pr}_{1}(\ldots)$ and $\mathrm{U}(\ldots)$ with a large value of the $4^{\text {th }}$ parameter - is explained in details in the introductions to Rin14a, Rin14b, LHR18. In what follows, we survey a few milestone results, depending on the identity of κ.
\checkmark At the level of the first uncountable cardinal $\kappa=\aleph_{1}$, the picture is complete: In his seminal paper Tod87, Todorčević proved that $\operatorname{Pr}_{1}\left(\aleph_{1}, \aleph_{1}, \aleph_{1}, 2\right)$ holds, improving upon a classic result of Sierpiński Sie33 asserting that $\operatorname{Pr}_{1}\left(\aleph_{1}, \aleph_{1}, 2,2\right)$ holds. In 1980, Galvin Gal80] proved that $\operatorname{Pr}_{1}\left(\aleph_{1}, \aleph_{1}, \theta, \aleph_{0}\right)$ is independent of ZFC for any cardinal $\theta \in\left[2, \aleph_{1}\right]$. Finally, a few years ago, by pushing further ideas of Moore [Moo06], Peng and Wu [PW18] proved that $\operatorname{Pr}_{1}\left(\aleph_{1}, \aleph_{1}, \aleph_{1}, \chi\right)$ holds for every $\chi \in\left[2, \aleph_{0}\right)$. As for the other coloring principle, and in contrast with Galvin's result, by [LHR18], $\mathrm{U}\left(\aleph_{1}, \aleph_{1}, \theta, \aleph_{0}\right)$ holds for any cardinal $\theta \in\left[2, \aleph_{1}\right]$.

- At the level of the second uncountable cardinal, $\kappa=\aleph_{2}$, a celebrated result of Shelah She97] asserts that $\operatorname{Pr}_{1}\left(\aleph_{2}, \aleph_{2}, \aleph_{2}, \aleph_{0}\right)$ is a theorem of ZFC. Ever since, the following problem remained open:

Open problem (Shelah, She97, She19]). (1) Does $\operatorname{Pr}_{1}\left(\aleph_{2}, \aleph_{2}, \aleph_{2}, \aleph_{1}\right)$ hold?
(2) Does $\operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{+}, \lambda^{+}, \lambda\right)$ hold for λ inaccessible?

[^0]In comparison, by LHR18], $\mathrm{U}\left(\lambda^{+}, \lambda^{+}, \theta, \lambda\right)$ is a theorem of ZFC for every infinite regular cardinal λ and every cardinal $\theta \in\left[2, \lambda^{+}\right]$.

- At the level of $\kappa=\lambda^{+}$for λ a singular cardinal, the main problem left open has to do with the $3^{\text {rd }}$ parameter of $\operatorname{Pr}_{1}(\ldots)$ rather than the $4^{\text {th }}$ (see She94a, ES05, ES09, Eis10, Eis13a, Eis13b). This is a consequence of three findings. First, by the main result of Rin12, for every singular cardinal λ and every cardinal $\theta \leq \lambda^{+}, \operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{+}, \theta, 2\right)$ implies $\operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{+}, \theta, \operatorname{cf}(\lambda)\right)$. Second, by RZ21a, §2], if λ is the singular limit of strongly compact cardinals, then $\operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{+}, 2,(\operatorname{cf}(\lambda))^{+}\right)$ fails, meaning the the first result cannot be improved. Third, by [RZ21a, §2], $\operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{+}, 2, \lambda\right)$ outright fails for every singular cardinal λ.

The situation with $U(\ldots)$ is slightly better. An analog of the first result may be found as LHR18, Lemma 2.5 and Theorem 4.21(3)]. An analog of the second result may be found as [LHR18, Theorem 2.14]. In contrast, by [LHR18, Corollary 4.15], it is in fact consistent that $\mathrm{U}\left(\lambda^{+}, \lambda^{+}, \theta, \lambda\right)$ holds for every singular cardinal λ and every cardinal $\theta \in\left[2, \lambda^{+}\right]$.

- At the level of a Mahlo cardinal κ, by [She94b, Conclusion 4.8(2)], the existence of a stationary subset of $E_{\geq \chi}^{\kappa}$ that does not reflect at inaccessibles entails that $\operatorname{Pr}_{1}(\kappa, \kappa, \theta, \chi)$ holds for all $\theta<\kappa$. By [RZ21a, §5], the existence of nonreflecting a stationary subset of $\operatorname{Reg}(\kappa)$ on which \diamond holds entails that $\operatorname{Pr}_{1}(\kappa, \kappa, \kappa, \kappa)$ holds.

The situation with $\mathrm{U}(\ldots)$ is analogous: By [LHR18, Theorem 4.23], the existence of a stationary subset of $E_{\geq \chi}^{\kappa}$ that does not reflect at inaccessibles entails that $\mathrm{U}(\kappa, \kappa, \theta, \chi)$ holds for all $\theta<\kappa$. By LHR21b, §2], the existence of nonreflecting a stationary subset of $\operatorname{Reg}(\kappa)$ entails that $\mathrm{U}(\kappa, \kappa, \theta, \kappa)$ holds for all $\theta \leq \kappa$.

- At the level of an abstract regular cardinal $\kappa \geq \aleph_{2}$, we mention two key results. First, by Rin14b, for every regular cardinal $\kappa \geq \aleph_{2}$ and every $\chi \in \operatorname{Reg}(\kappa)$ such that $\chi^{+}<\kappa$, the existence of a nonreflecting stationary subset of $E_{\geq \chi}^{\kappa}$ entails that $\operatorname{Pr}_{1}(\kappa, \kappa, \kappa, \chi)$ holds (this is optimal, by LHR21a, Theorem 3.4], it is consistent that for some inaccessible cardinal $\kappa, E_{\chi}^{\kappa}$ admits a nonreflecting stationary set, and yet, $\operatorname{Pr}_{1}\left(\kappa, \kappa, \kappa, \chi^{+}\right)$fails). Second, by [Rin14a], for every regular cardinal $\kappa \geq \aleph_{2}$ and every $\chi \in \operatorname{Reg}(\kappa)$ such that $\chi^{+}<\kappa, \square(\kappa)$ entails that $\operatorname{Pr}_{1}(\kappa, \kappa, \kappa, \chi)$ holds.

Here, the situation with $\mathrm{U}(\ldots)$ is again better. By LHR18, Corollaries 4.12 and 4.15] and [LHR21b, §4], the analogs of the two results are true even without requiring " $\chi^{+}<\kappa$ "!

After many years without progress on the above mentioned Open Problem, in the last few years, there have been a few breakthroughs. In an unpublished note from 2017, Todorčević proved that CH implies a weak form of $\operatorname{Pr}_{1}\left(\aleph_{2}, \aleph_{2}, \aleph_{2}, \aleph_{1}\right)$, strong enough to entail one of its intended applications (the existence of a σ-complete \aleph_{2}-cc partial order whose square does not satisfy that \aleph_{2}-cc). Next, in RZ21a, §6], the authors obtained a full lifting of Galvin's strong coloring theorem, proving that for every infinite regular cardinal $\lambda, \operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{+}, \lambda^{+}, \lambda\right)$ holds assuming the stick principle $\dagger\left(\lambda^{+}\right)$. In particular, an affirmative answer to (1) follows from $2^{\aleph_{1}}=\aleph_{2}$. Then, very recently, in She21, Shelah proved that for every regular uncountable cardinal $\lambda, \operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{+}, \lambda^{+}, \lambda\right)$ holds assuming the existence of a nonreflecting stationary subset of $E_{<\lambda}^{\lambda^{+}}$. So, by a standard fact from inner model theory, a negative answer to (1) implies that \aleph_{2} is a Mahlo cardinal in Gödel's constructible universe.

The main result of this paper reads as follows:

Theorem A. For every regular uncountable cardinal λ, if $\square\left(\lambda^{+}\right)$holds, then so does $\operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{+}, \lambda^{+}, \lambda\right)$. In particular, a negative answer to (1) implies that \aleph_{2} is a weakly compact cardinal in Gödel's constructible universe.

Thanks to the preceding theorem, we can now waive the hypothesis " $\chi^{+}<\kappa$ " from Rin14a, Theorem B], altogether getting a clear picture:

Theorem A'. For every pair $\chi<\kappa$ of regular uncountable cardinals, $\square(\kappa)$ implies $\operatorname{Pr}_{1}(\kappa, \kappa, \kappa, \chi)$.

Now, let us say a few words about the proof. As made clear by the earlier discussion, in the case that $\kappa=\chi^{+}$, it is easier to prove $\mathrm{U}(\kappa, \kappa, \theta, \chi)$ than proving $\operatorname{Pr}_{1}(\kappa, \kappa, \theta, \chi)$. Therefore, we consider the following slight strengthening of $\mathrm{U}(\ldots)$:
Definition 1.3. $\mathrm{U}_{1}(\kappa, \mu, \theta, \chi)$ asserts the existence of a coloring $c:[\kappa]^{2} \rightarrow \theta$ such that for every $\sigma<\chi$, every pairwise disjoint subfamily $\mathcal{A} \subseteq[\kappa]^{\sigma}$ of size κ, and every $\epsilon<\theta$, there exists $\mathcal{B} \in[\mathcal{A}]^{\mu}$ such that, for every $(a, b) \in[\mathcal{B}]^{2}$, there exists $\tau>\epsilon$ such that $c[a \times b]=\{\tau\}$.

Shelah's proof from She21 can be described as utilizing the hypothesis of his theorem twice: first to get $\mathrm{U}_{1}\left(\lambda^{+}, 2, \lambda^{+}, \lambda\right)$, and then to derive $\operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{+}, \lambda^{+}, \lambda\right)$ from the latter. Here, we shall follow a similar path, building on the progress made in [RZ21b, §5] with respect to walking along well-chosen $\square(\kappa)$-sequences. We shall also present a couple of propositions translating $\mathrm{U}_{1}(\ldots)$ to $\operatorname{Pr}_{1}(\ldots)$ and vice versa, demonstrating that $\mathrm{U}_{1}(\kappa, \mu, \theta, \chi)$ is of interest also with $\theta<\kappa$. For instance, it will be proved that for every regular uncountable cardinal λ that admits a stationary set not reflecting at inaccessibles (e.g., $\left.\lambda=\aleph_{1}\right), \mathrm{U}_{1}\left(\lambda^{+}, 2, \lambda, \lambda\right)$ iff $\operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{+}, \lambda^{+}, \lambda\right)$. Thus, the core contribution of this paper reads as follows.
Theorem B. Suppose that $\chi \leq \theta \leq \kappa$ are infinite regular cardinals such that $\max \left\{\chi, \aleph_{1}\right\}<\kappa$. If $\square(\kappa)$ holds, then so does $\mathrm{U}_{1}(\kappa, 2, \theta, \chi)$.

2. Preliminaries

In what follows, $\chi<\kappa$ denotes a pair of infinite regular cardinals. $\operatorname{Reg}(\kappa)$ stands for the set of all infinite and regular cardinals below κ. Let $E_{\chi}^{\kappa}:=\{\alpha<\kappa \mid$ $\operatorname{cf}(\alpha)=\chi\}$, and define $E_{\leq \chi}^{\kappa}, E_{<\chi}^{\kappa}, E_{\geq \chi}^{\kappa}, E_{>\chi}^{\kappa}, E_{\neq \chi}^{\kappa}$ analogously. A stationary subset $S \subseteq \kappa$ is nonreflecting (resp. nonreflecting at inaccessibles) iff there exists no $\alpha \in E_{>\omega}^{\kappa}$ (resp. α a regular limit uncountable cardinal) such that $S \cap \alpha$ is stationary in α. For a set of ordinals a, we write $\operatorname{ssup}(a):=\sup \{\alpha+1 \mid \alpha \in a\}$, $\operatorname{acc}^{+}(a):=\{\alpha<\operatorname{ssup}(a) \mid \sup (a \cap \alpha)=\alpha>0\}, \operatorname{acc}(a):=a \cap \operatorname{acc}^{+}(a)$ and $\operatorname{nacc}(a):=a \backslash \operatorname{acc}(a)$. For sets of ordinals that are not ordinals, a and b, we write $a<b$ to express that $\alpha<\beta$ for all $\alpha \in a$ and $\beta \in b$. For an ordinal σ and a set of ordinals A, we write $[A]^{\sigma}$ for $\{B \subseteq A \mid \operatorname{otp}(B)=\sigma\}$. In the special case that $\sigma=2$ and \mathcal{A} is either an ordinal or a collection of sets of ordinals, we interpret $[\mathcal{A}]^{2}$ as the collection of ordered pairs $\{(a, b) \in \mathcal{A} \times \mathcal{A} \mid a<b\}$. In particular, $[\kappa]^{2}=\{(\alpha, \beta) \mid$ $\alpha<\beta<\kappa\}$.

For the rest of this section, let us fix a C-sequence $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ over κ, i.e., for every $\alpha<\kappa, C_{\alpha}$ is a closed subset of α with $\sup \left(C_{\alpha}\right)=\sup (\alpha)$. The next definition is due to Todorčević; see [Tod07] for a comprehensive treatment.
Definition 2.1 (Todorčević). From \vec{C}, derive maps $\operatorname{Tr}:[\kappa]^{2} \rightarrow{ }^{\omega} \kappa, \rho_{2}:[\kappa]^{2} \rightarrow \omega$, $\operatorname{tr}:[\kappa]^{2} \rightarrow{ }^{<\omega} \kappa$ and $\lambda:[\kappa]^{2} \rightarrow \kappa$, as follows. Let $(\alpha, \beta) \in[\kappa]^{2}$ be arbitrary.

- $\operatorname{Tr}(\alpha, \beta): \omega \rightarrow \kappa$ is defined by recursion on $n<\omega$:
$\operatorname{Tr}(\alpha, \beta)(n):= \begin{cases}\beta, & n=0 \\ \min \left(C_{\operatorname{Tr}(\alpha, \beta)(n-1)} \backslash \alpha\right), & n>0 \& \operatorname{Tr}(\alpha, \beta)(n-1)>\alpha \\ \alpha, & \text { otherwise }\end{cases}$
- $\rho_{2}(\alpha, \beta):=\min \{n<\omega \mid \operatorname{Tr}(\alpha, \beta)(n)=\alpha\}$;
- $\operatorname{tr}(\alpha, \beta):=\operatorname{Tr}(\alpha, \beta) \upharpoonright \rho_{2}(\alpha, \beta)$;
- $\lambda(\alpha, \beta):=\max \left\{\sup \left(C_{\operatorname{Tr}(\alpha, \beta)(i)} \cap \alpha\right) \mid i<\rho_{2}(\alpha, \beta)\right\}$.

Convention 2.2. From any coloring $h: \kappa \rightarrow \kappa$, derive a function $\operatorname{tr}_{h}:[\kappa]^{2} \rightarrow{ }^{<\omega} \kappa$ via

$$
\operatorname{tr}_{h}(\alpha, \beta):=\left\langle h(\operatorname{Tr}(\alpha, \beta)(i)) \mid i<\rho_{2}(\alpha, \beta)\right\rangle
$$

The next fact is quite elementary. See, e.g., Rin14b, Claim 3.1.2] for a proof.
Fact 2.3. Whenever $\lambda(\gamma, \beta)<\alpha<\gamma<\beta<\kappa$, $\operatorname{tr}(\alpha, \beta)=\operatorname{tr}(\gamma, \beta)^{\wedge} \operatorname{tr}(\alpha, \gamma)$.
We now recall the characteristic $\lambda_{2}(\cdot, \cdot)$, a variation of $\lambda(\cdot, \cdot)$ having the property that $\lambda_{2}(\gamma, \beta)<\gamma$ whenever $0<\gamma<\beta<\kappa$.
Definition 2.4 ([Rin14a]). Define $\lambda_{2}:[\kappa]^{2} \rightarrow \kappa$ via

$$
\lambda_{2}(\alpha, \beta):=\sup \left(\alpha \cap\left\{\sup \left(C_{\delta} \cap \alpha\right) \mid \delta \in \operatorname{Im}(\operatorname{tr}(\alpha, \beta))\right\}\right)
$$

Fact 2.5 ([LHR18, Lemma 4.7]). Suppose that $\lambda_{2}(\gamma, \beta)<\alpha<\gamma<\beta<\kappa$.
Then $\operatorname{tr}(\alpha, \beta)$ end-extends $\operatorname{tr}(\gamma, \beta)$, and one of the following cases holds:
(1) $\gamma \in \operatorname{Im}(\operatorname{tr}(\alpha, \beta))$; or
(2) $\gamma \in \operatorname{acc}\left(C_{\delta}\right)$ for $\delta:=\min (\operatorname{Im}(\operatorname{tr}(\gamma, \beta)))$.

Convention 2.6 (RZ21b]). For every ordinal $\eta<\kappa$ and a pair $(\alpha, \beta) \in[\kappa]^{2}$, let

$$
\eta_{\alpha, \beta}:=\min \left\{n<\omega \mid \eta \in C_{\operatorname{Tr}(\alpha, \beta)(n)} \text { or } n=\rho_{2}(\alpha, \beta)\right\}+1
$$

Definition 2.7 ([RZ21a, §3]). $\chi_{1}(\vec{C})$ stands for the supremum of $\sigma+1$ over all $\sigma<\kappa$ satisfying the following. For every pairwise disjoint subfamily $\mathcal{A} \subseteq[\kappa]^{\sigma}$ of size κ, there are a stationary set $\Delta \subseteq \kappa$ and an ordinal $\eta<\kappa$ such that, for every $\delta \in \Delta$, there exist κ many $b \in \mathcal{A}$ such that, for every $\beta \in b, \lambda(\delta, \beta)=\eta$ and $\rho_{2}(\delta, \beta)=\eta_{\delta, \beta}$.
Fact 2.8 (RZ21a, §3]). If the two hold:
(※) for all $\alpha<\kappa$ and $\delta \in \operatorname{acc}\left(C_{\alpha}\right), C_{\delta}=C_{\alpha} \cap \delta$;
($\beth)$ for every club $D \subseteq \kappa$, there exists $\gamma>0$ with $\sup \left(\operatorname{nacc}\left(C_{\gamma}\right) \cap D\right)=\gamma$, then $\chi_{1}(\vec{C})=\sup (\operatorname{Reg}(\kappa))$.

Definition 2.9 (Todorčević, Tod87). For a cardinal $\mu \leq \kappa, \square(\kappa,<\mu)$ asserts the existence of a sequence $\overrightarrow{\mathcal{C}}=\left\langle\mathcal{C}_{\alpha} \mid \alpha<\kappa\right\rangle$ such that
(1) for every $\alpha<\kappa, \mathcal{C}_{\alpha}$ is nonempty collection of less than μ many closed subsets C of α with $\sup (C)=\sup (\alpha)$;
(2) for all $\alpha<\kappa, C \in \mathcal{C}_{\alpha}$ and $\delta \in \operatorname{acc}(C), C \cap \delta \in \mathcal{C}_{\delta}$;
(3) there exists no club C in κ such that $C \cap \alpha \in \mathcal{C}_{\alpha}$ for all $\alpha \in \operatorname{acc}(C)$.

The special case of $\square(\kappa,<\mu)$ with $\mu=2$ is denoted by $\square(\kappa)$.
Fact 2.10 (Hayut and Lambie-Hanson, HLH17, Lemma 2.4]). Clause (3) of Definition 2.9 is preserved in any κ-cc forcing extension, provided that $\mu<\kappa$.

3. Theorem B

Theorem 3.1. Suppose that $\chi \leq \theta \leq \kappa$ are infinite regular cardinals such that $\max \left\{\chi, \aleph_{1}\right\}<\kappa$. If $\square(\kappa)$ holds, then so does $\mathrm{U}_{1}(\kappa, 2, \theta, \chi)$.
Proof. Suppose that $\square(\kappa)$ holds. Then, by RZ21b, Lemma 5.1], we may fix a C-sequence $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ satisfying the following:
(1) $C_{\alpha+1}=\{0, \alpha\}$ for every $\alpha<\kappa$;
(2) for every club $D \subseteq \kappa$, there exists $\gamma>0$ with $\sup \left(\operatorname{nacc}\left(C_{\gamma}\right) \cap D\right)=\gamma$;
(3) for every $\alpha \in \operatorname{acc}(\kappa)$ and $\bar{\alpha} \in \operatorname{acc}\left(C_{\alpha}\right), C_{\bar{\alpha}}=C_{\alpha} \cap \bar{\alpha}$;
(4) for every $i<\kappa,\left\{\alpha<\kappa \mid \min \left(C_{\alpha}\right)=i\right\}$ is stationary.

Note that, by Fact 2.8, $\chi_{1}(\vec{C})=\sup (\operatorname{Reg}(\kappa))$. If $\theta<\kappa$, then let $\mu:=\theta$; otherwise, let $\mu:=\chi$. Derive a coloring $h: \kappa \rightarrow \mu$ via

$$
h(\alpha):= \begin{cases}\min \left(C_{\alpha}\right), & \text { if } \min \left(C_{\alpha}\right)<\mu \\ 0, & \text { otherwise }\end{cases}
$$

We shall walk along \vec{C}. Define a coloring $d:[\kappa]^{2} \rightarrow \mu$ via

$$
d(\alpha, \beta):=\max \left(\operatorname{Im}\left(\operatorname{tr}_{h}(\alpha, \beta)\right)\right)
$$

Claim 3.1.1. Suppose that α, β, γ are ordinals, and $\lambda_{2}(\gamma, \beta)<\alpha<\gamma<\beta<\kappa$.
Then $\operatorname{Im}\left(\operatorname{tr}_{h}(\alpha, \beta)\right)=\operatorname{Im}\left(\operatorname{tr}_{h}(\alpha, \gamma)\right) \cup \operatorname{Im}\left(\operatorname{tr}_{h}(\gamma, \beta)\right)$. In particular, $d(\alpha, \beta)=$ $\max \{d(\alpha, \gamma), d(\gamma, \beta)\}$.

Proof. By Fact 2.5, one of the following cases holds:

- $\gamma \in \operatorname{Im}(\operatorname{tr}(\alpha, \beta))$. In this case, $\operatorname{tr}(\alpha, \beta)=\operatorname{tr}(\gamma, \beta)^{\wedge} \operatorname{tr}(\alpha, \gamma)$, so we done.
- $\gamma \in \operatorname{acc}\left(C_{\delta}\right)$ for $\delta:=m \min \left(\operatorname{Im}(\operatorname{tr}(\gamma, \beta))\right.$. In this case, $\operatorname{tr}(\alpha, \beta)=\operatorname{tr}(\delta, \beta)^{\wedge}$ $\operatorname{tr}(\alpha, \delta)$, so that $\operatorname{Im}\left(\operatorname{tr}_{h}(\alpha, \beta)\right)=\operatorname{Im}\left(\operatorname{tr}_{h}(\alpha, \delta)\right) \cup \operatorname{Im}\left(\operatorname{tr}_{h}(\delta, \beta)\right)$. Since $\gamma \in$ $\operatorname{acc}\left(C_{\delta}\right)$, Clause (3) above and the definition of the function h together imply that $\operatorname{tr}_{h}(\alpha, \delta)=\operatorname{tr}_{h}(\alpha, \gamma)$. In addition, $\operatorname{tr}(\gamma, \beta)=\operatorname{tr}(\delta, \beta)^{\wedge}\langle\delta\rangle$, so that $\operatorname{Im}\left(\operatorname{tr}_{h}(\gamma, \beta)\right)=\operatorname{Im}\left(\operatorname{tr}_{h}(\delta, \beta)\right) \cup\{h(\delta)\}$. Since $h(\delta) \in \operatorname{Im}\left(\operatorname{tr}_{h}(\alpha, \delta)\right)$, altogether,

$$
\operatorname{Im}\left(\operatorname{tr}_{h}(\alpha, \gamma)\right) \cup \operatorname{Im}\left(\operatorname{tr}_{h}(\gamma, \beta)\right)=\operatorname{Im}\left(\operatorname{tr}_{h}(\alpha, \delta)\right) \cup \operatorname{Im}\left(\operatorname{tr}_{h}(\delta, \beta)\right)
$$

We are now ready to define the sought coloring c. If $\mu=\theta$, then let $c:=d$, and otherwise define $c:[\kappa]^{2} \rightarrow \theta$ via

$$
c(\alpha, \beta):=\max \{\xi \in \operatorname{Im}(\operatorname{tr}(\alpha, \beta)) \mid h(\xi)=d(\alpha, \beta)\}
$$

To see that c witnesses $\mathrm{U}_{1}(\kappa, 2, \theta, \chi)$, suppose that we are given $\epsilon<\theta, \sigma<\chi$ and a κ-sized pairwise disjoint subfamily $\mathcal{A} \subseteq[\kappa]^{\sigma}$; we need to find $\tau>\epsilon$ and $(a, b) \in[\mathcal{A}]^{2}$ such that $c[a \times b]=\{\tau\}$. As $\sigma<\chi \leq \chi_{1}(\vec{C})$, we may fix a stationary subset $\Delta \subseteq \kappa$ and an ordinal $\eta<\kappa$ such that, for every $\delta \in \Delta$, there exists $b \in \mathcal{A}$ with $\min (b)>\delta$ such that $\lambda(\delta, \beta)=\eta$ for every $\beta \in b$. Set $\eta^{\prime}:=\max \{\eta, \epsilon\}$.

Consider the club $C:=\{\gamma<\kappa \mid \sup \{\min (a) \mid a \in \mathcal{A} \cap \mathcal{P}(\gamma)\}=\gamma\}$. For all $\gamma \in C$ and $\varepsilon<\gamma$, fix $a_{\varepsilon}^{\gamma} \in \mathcal{A} \cap \mathcal{P}(\gamma)$ with $\min \left(a_{\varepsilon}^{\gamma}\right)>\varepsilon$; as $\left|a_{\varepsilon}^{\gamma}\right|<\mu, \tau_{\varepsilon}^{\gamma}:=\sup \{d(\alpha, \gamma) \mid$ $\left.\alpha \in a_{\varepsilon}^{\gamma}\right\}$ is $<\mu$. Fix some stationary $\Gamma \subseteq C \cap E_{\neq \mu}^{\kappa}$ along with $\tau_{0}<\mu$ such that, for every $\gamma \in \Gamma$, $\sup \left\{\varepsilon<\gamma \mid \tau_{\varepsilon}^{\gamma} \leq \tau_{0}\right\}=\gamma$.

By Clause (4), for each $i<\mu, H_{i}:=\{\alpha<\kappa \mid h(\alpha)=i\}$ is stationary, so, fix $\delta \in$ $\Delta \cap \bigcap_{i<\mu} \operatorname{acc}^{+}\left(H_{i} \cap \operatorname{acc}^{+}\left(\Gamma \backslash \eta^{\prime}\right)\right)$. Pick $b \in \mathcal{A}$ with $\min (b)>\delta$ such that $\lambda(\delta, \beta)=\eta$ for every $\beta \in b$. As $|b|<\mu, \tau_{1}:=\sup \{d(\delta, \beta) \mid \beta \in b\}$ is $<\mu$. If $\epsilon<\mu$, then pick
$\zeta \in H_{\tau_{0}+\tau_{1}+\epsilon+1} \cap \operatorname{acc}^{+}\left(\Gamma \backslash \eta^{\prime}\right)$; otherwise, pick $\zeta \in H_{\tau_{0}+\tau_{1}+1} \cap \operatorname{acc}^{+}\left(\Gamma \backslash \eta^{\prime}\right)$. Next, pick $\gamma \in \Gamma$ above $\max \left\{\lambda_{2}(\zeta, \delta), \eta^{\prime}\right\}$. Finally, pick $\varepsilon<\gamma$ above $\max \left\{\lambda_{2}(\gamma, \zeta), \lambda_{2}(\zeta, \delta), \eta^{\prime}\right\}$ such that $\tau_{\varepsilon}^{\gamma} \leq \tau_{0}$, and then set $a:=a_{\varepsilon}^{\gamma}$.

Claim 3.1.2. Let $\alpha \in a$ and $\beta \in b$. Then:
(i) $\max \left\{\lambda_{2}(\gamma, \zeta), \lambda_{2}(\zeta, \delta), \lambda(\delta, \beta), \epsilon\right\}<\varepsilon<\alpha<\gamma<\zeta<\delta<\beta$;
(ii) $c(\alpha, \beta)=c(\gamma, \delta)>\epsilon$.

Proof. (i) This is clear, recalling that $\eta^{\prime}=\max \{\lambda(\delta, \beta), \epsilon\}$.
(ii) From $\lambda(\delta, \beta)<\alpha<\delta<\beta$ and Fact 2.3, we infer that $\operatorname{tr}(\alpha, \beta)=\operatorname{tr}(\delta, \beta)^{\wedge}$ $\operatorname{tr}(\alpha, \delta)$, so that $d(\alpha, \beta)=\max \{d(\delta, \beta), d(\alpha, \delta)\}$. By Clause (i) and Claim 3.1.1,

$$
d(\alpha, \delta)=\max \{d(\alpha, \zeta), d(\zeta, \delta)\} \geq h(\zeta)>\tau_{1} \geq d(\delta, \beta)
$$

Consequently, $d(\alpha, \beta)=d(\alpha, \delta)$ and $c(\alpha, \beta)=c(\alpha, \delta)$. By Clause (i) and Claim3.1.1 $\operatorname{Im}\left(\operatorname{tr}_{h}(\alpha, \delta)\right)=\operatorname{Im}\left(\operatorname{tr}_{h}(\alpha, \gamma) \cup \operatorname{Im}\left(\operatorname{tr}_{h}(\gamma, \delta)\right)\right.$. As $d(\alpha, \gamma) \leq \tau_{0}<h(\zeta) \leq d(\gamma, \delta)$, it follows that $d(\alpha, \delta)=d(\gamma, \delta)$ and $c(\alpha, \delta)=d(\gamma, \delta)$. Altogether, $c(\alpha, \beta)=c(\gamma, \delta)$.

Now, if $\theta<\kappa$, then $\epsilon<\theta=\mu$ and $c=d$, so that $c(\alpha, \beta)=d(\gamma, \delta) \geq h(\zeta)>\epsilon$. Otherwise, $c(\alpha, \beta) \geq \min (\operatorname{Im}(\operatorname{tr}(\alpha, \beta)))>\alpha>\epsilon$.

Set $\tau:=c(\gamma, \delta)$. Then $\tau>\epsilon$ and $c[a \times b]=\{\tau\}$, as sought.
Remark 3.2. The preceding proof makes it clear that the auxiliary coloring d witnesses $\mathrm{U}_{1}(\kappa, 2, \mu, \chi)$. By Fact 2.5, the coloring d is moreover closed in the sense that, for all $\beta<\kappa$ and $i<\theta$, the set $\{\alpha<\beta \mid c(\alpha, \beta) \leq i\}$ is closed below β. So, by LHR18, Lemma 4.2], d witnesses $\mathrm{U}(\kappa, \kappa, \mu, \chi)$, as well.

4. Connecting U_{1} with Pr_{1}

Throughout this section, $\chi<\kappa$ is a pair of infinite regular cardinals, and θ is a regular cardinal $\leq \kappa$. Let $\mathbb{A}_{\chi}^{\kappa}$ denote the collection of all pairwise disjoint subfamilies $\mathcal{A} \subseteq \mathcal{P}(\kappa)$ such that $|\mathcal{A}|=\kappa$ and $\sup \{|a| \mid a \in \mathcal{A}\}<\chi$. Given a coloring $c:[\kappa]^{2} \rightarrow \theta$, for every $\mathcal{A} \subseteq \mathcal{P}(\kappa)$, let $T_{c}(\mathcal{A})$ be the set of all $\tau<\theta$ such that, for some $(a, b) \in[\mathcal{A}]^{2}, c[a \times b]=\{\tau\}$. The next definition appears (with a slightly different notation) in Stage B in the proof of She21, Theorem 1.1]:

Definition 4.1. For every coloring $c:[\kappa]^{2} \rightarrow \theta$, let

$$
F_{c, \chi}:=\left\{T \subseteq \theta \mid \exists \mathcal{A} \in \mathbb{A}_{\chi}^{\kappa}\left[T_{c}(\mathcal{A}) \subseteq T\right]\right\}
$$

Proposition 4.2. Suppose that a coloring $c:[\kappa]^{2} \rightarrow \theta$ witnesses $\mathrm{U}_{1}(\kappa, 2, \theta, \chi)$, and λ is some cardinal. Then:
(1) $F_{c, \chi}$ is a χ-complete uniform filter on θ;
(2) If every χ-complete uniform filter on θ is not weakly λ-saturated, then $\operatorname{Pr}_{1}(\kappa, \kappa, \lambda, \chi)$ holds.

Proof. (1) It is clear that $F_{c, \chi}$ is upward-closed. To see that it is χ-complete, suppose that we are given a sequence $\left\langle X_{i} \mid i<\delta\right\rangle$ of elements of $F_{c, \chi}$, for some $\delta<\chi$. For each $i<\delta$, fix $\mathcal{A}_{i} \in \mathbb{A}_{\chi}^{\kappa}$ such that $T_{c}\left(\mathcal{A}_{i}\right) \subseteq X_{i}$. Pick $\mathcal{A} \in \mathbb{A}_{\chi}^{\kappa}$ such that, for every $a \in \mathcal{A}$, there is a sequence $\left\langle a_{i} \mid i<\delta\right\rangle \in \prod_{i<\delta} \mathcal{A}_{i}$ such that $a=\bigcup_{i<\delta} a_{i}$. Then, $T_{c}(\mathcal{A}) \subseteq \bigcap_{i<\delta} T_{c}\left(\mathcal{A}_{i}\right) \subseteq \bigcap_{i<\delta} X_{i}$ and hence the latter is in $F_{c, \chi}$. Finally, since c witnesses $\mathrm{U}_{1}(\kappa, 2, \theta, \chi)$, for every $\mathcal{A} \in \mathbb{A}_{\chi}^{\kappa}$ and every $\epsilon<\theta, T_{c}(\mathcal{A}) \backslash \epsilon$ is nonempty. So $F_{c, \chi}$ consists of cofinal subset of θ. Since θ is regular, $F_{c, \chi}$ is uniform.
(2) Suppose that no χ-complete uniform filter on θ is weakly λ-saturated. In particular, by Clause (1), we may pick a map $\psi: \theta \rightarrow \lambda$ such that that the preimage of any singleton is $F_{c, \theta}$-positive. Then $\psi \circ c$ witnesses $\operatorname{Pr}_{1}(\kappa, \kappa, \lambda, \chi)$.

Corollary 4.3. Suppose that λ is a regular uncountable cardinal.
If λ admits a stationary set that does not reflect at regulars or if $\square(\lambda,<\mu)$ holds for some cardinal $\mu<\lambda$, then the following are equivalent:
(1) $\operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{+}, \lambda^{+}, \lambda\right)$;
(2) $\operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{+}, \lambda, \lambda\right)$;
(3) $\mathrm{U}_{1}\left(\lambda^{+}, 2, \lambda, \lambda\right)$.

Proof. The implication $(1) \Longrightarrow(2) \Longrightarrow(3)$ is trivial, and the fact that $(2) \Longrightarrow$ (1) is well-known (see, for instance, KRS21, §6]). By the preceding proposition, to see that $(3) \Longrightarrow(2)$, it suffices to prove that under our hypothesis on λ, no λ complete uniform filter on λ is weakly λ-saturated. Now, if λ is a successor cardinal, then this follows from Ulam's theorem [Ula30], and if λ is an inaccessible cardinal admitting a stationary set that does not reflect at regulars, then this follows from a theorem of Hajnal Haj69. Finally, if $\square(\lambda,<\mu)$ holds for some cardinal $\mu<\lambda$, then this follows from [IR22, Theorem A].

Lemma 4.4. Suppose that λ is a regular uncountable cardinal and $\square\left(\lambda^{+},<\lambda\right)$ holds. Then every λ-complete uniform filter on λ^{+}is not weakly λ-saturated.

Proof. Fix a $\square\left(\lambda^{+},<\lambda\right)$-sequence $\overrightarrow{\mathcal{C}}=\left\langle\mathcal{C}_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$. For each $\alpha<\lambda^{+}$, fix an injective enumeration $\left.\left\langle C_{\alpha, i}\right| i<\left|\mathcal{C}_{\alpha}\right|\right\rangle$ of \mathcal{C}_{α}.

Towards a contradiction, suppose that F is a λ-complete uniform filter on λ^{+} that is weakly λ-saturated. Since F is λ-complete, F is moreover λ-saturated. Hence, $\mathcal{P}\left(\lambda^{+}\right) / F$ is a λ-cc notion of forcing.

Let G be $\mathcal{P}\left(\lambda^{+}\right) / F$-generic over V. Then G is a uniform V-ultrafilter over λ^{+} extending F. By For10, Propositions 2.9 and 2.14], $\operatorname{Ult}(V, G)$ is well-founded and $j: V \rightarrow M \simeq \operatorname{Ult}(V, G)$ satisfies $\operatorname{crit}(j)=\lambda$.

Now, work in $V[G]$. Denote $j(\overrightarrow{\mathcal{C}})$ by $\left\langle\mathcal{D}_{\alpha} \mid \alpha<j\left(\lambda^{+}\right)\right\rangle$. For every $\alpha<\lambda^{+}$, since $\operatorname{crit}(j)=\lambda>\left|\mathcal{C}_{\alpha}\right|$, it is the case that $\mathcal{D}_{j(\alpha)}=j\left(\mathcal{C}_{\alpha}\right)=j{ }^{"} \mathcal{C}_{\alpha}$. Since G is uniform, $\gamma:=\sup \left(j^{\prime \prime} \lambda^{+}\right)$is $<j\left(\lambda^{+}\right)$, as witnessed by the identity map id : $\lambda^{+} \rightarrow \lambda^{+}$. As $V[G]$ is a λ-cc forcing extension of $V, \operatorname{cf}^{V}(\gamma)=\operatorname{cf}^{V[G]}(\gamma)=\lambda^{+}$, so that $\mathrm{cf}^{M}(\gamma) \geq \lambda^{+}$. Pick $D \in \mathcal{D}_{\gamma}$.

Claim 4.4.1. $A:=j^{-1}[\operatorname{acc}(D)]$ is a cofinal subset of λ^{+}.
Proof. Given $\epsilon<\lambda^{+}$, we recursively define (in $V[G]$) an increasing sequence $\left\langle\alpha_{n}\right|$ $n<\omega\rangle$ of ordinals below λ^{+}such that:
(1) $\epsilon=\alpha$, and
(2) for all $n<\omega,\left(j\left(\alpha_{n}\right), j\left(\alpha_{n+1}\right)\right] \cap D \neq \emptyset$.

Consider $\alpha^{*}:=\sup _{n<\omega} \alpha_{n}$. Notice that $\mathrm{cf}^{V}\left(\alpha^{*}\right)<\lambda$, since if $\mathrm{cf}^{V}\left(\alpha^{*}\right) \geq \lambda$, then by the fact that $V[G]$ is a λ-cc forcing extension of V we have $\omega=\operatorname{cf}^{V[G]}\left(\alpha^{*}\right) \geq \lambda$ which is impossible. As a result, $\sup j " \alpha^{*}=j\left(\alpha^{*}\right) \in \operatorname{acc}(D)$, which implies that α^{*} is an element of A above ϵ.

For each $\alpha \in A, D \cap j(\alpha) \in \mathcal{D}_{j(\alpha)}=j$ " \mathcal{C}_{α}, so we may pick some $i_{\alpha}<\lambda$ such that $D \cap j(\alpha)=j\left(C_{\alpha, i_{\alpha}}\right)$. Fix some $i<\lambda$ for which $A^{\prime}:=\left\{\alpha \in A \mid i_{\alpha}=i\right\}$ is cofinal in λ^{+}. For every $(\alpha, \beta) \in\left[A^{\prime}\right]^{2}, j\left(C_{\alpha, i}\right)=D \cap j(\alpha)$ and $j\left(C_{\beta, i}\right)=D \cap j(\beta)$, so, by
elementarity, $C_{\alpha, i}=C_{\beta, i} \cap \alpha$. As A^{\prime} is cofinal in λ^{+}, it follows that $C:=\bigcup\left\{C_{\alpha, i} \mid\right.$ $\alpha \in A\}$ is a club in λ^{+}. Evidently, $C \cap \alpha \in \mathcal{C}_{\alpha}$ for every $\alpha \in \operatorname{acc}(C)$. However, $V[G]$ is a λ-cc forcing extension of V, contradicting Fact 2.10

We are now ready to prove Theorem A:
Corollary 4.5. Suppose that λ is a regular uncountable cardinal, and $\square\left(\lambda^{+}\right)$holds. Then $\operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{+}, \lambda^{+}, \lambda\right)$ holds, as well.

Proof. By Theorem 3.1] using $(\kappa, \theta, \chi):=\left(\lambda^{+}, \lambda^{+}, \lambda\right), \mathrm{U}_{1}\left(\lambda^{+}, 2, \lambda^{+}, \lambda\right)$ holds. So, by Proposition 4.2 (using $\theta:=\lambda^{+}$) and Lemma 4.4 $\operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{+}, \lambda, \lambda\right)$ holds. Then, again by [KRS21, §6], $\operatorname{Pr}_{1}\left(\lambda^{+}, \lambda^{+}, \lambda^{+}, \lambda\right)$ holds, as well.

Acknowledgments

The first author is partially supported by the European Research Council (grant agreement ERC-2018-StG 802756) and by the Israel Science Foundation (grant agreement 2066/18). The second author is supported by the Foreign Postdoctoral Fellowship Program of the Israel Academy of Sciences and Humanities and by the Israel Science Foundation (grant agreement 2066/18).

The main result of this paper was presented by the second author at the Israel Mathematical Union Annual Meeting special session in set theory and logic in July 2021. He thanks the organizers for the invitation and the participants for their feedback.

References

[Eis10] Todd Eisworth. Club-guessing, stationary reflection, and coloring theorems. Ann. Pure Appl. Logic, 161(10):1216-1243, 2010.
[Eis13a] Todd Eisworth. Getting more colors I. J. Symbolic Logic, 78(1):1-16, 2013.
[Eis13b] Todd Eisworth. Getting more colors II. J. Symbolic Logic, 78(1):17-38, 2013.
[ES05] Todd Eisworth and Saharon Shelah. Successors of singular cardinals and coloring theorems. i. Archive for Mathematical Logic, 44:597-618, 2005.
[ES09] Todd Eisworth and Saharon Shelah. Successors of singular cardinals and coloring theorems. ii. Journal of Symbolic Logic, 74:1287-1309, 2009.
[For10] Matthew Foreman. Ideals and generic elementary embeddings. In Handbook of set theory. Vols. 1, 2, 3, pages 885-1147. Springer, Dordrecht, 2010.
[Gal80] Fred Galvin. Chain conditions and products. Fund. Math., 108(1):33-48, 1980.
[Haj69] A. Hajnal. Ulam-matrices for inaccessible cardinals. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 17:683-688, 1969.
[HLH17] Yair Hayut and Chris Lambie-Hanson. Simultaneous stationary reflection and square sequences. J. Math. Log., 17(2):1750010, 27, 2017.
[IR22] Tanmay Inamdar and Assaf Rinot. Was Ulam right? II: Small width and general ideals. http://p.assafrinot.com/53, 2022. Preprint February 2022.
[KRS21] Menachem Kojman, Assaf Rinot, and Juris Steprans. Advances on strong colorings over partitions. http://p.assafrinot.com/49, 2021. Submitted April 2021.
[LHR18] Chris Lambie-Hanson and Assaf Rinot. Knaster and friends I: closed colorings and precalibers. Algebra Universalis, 79(4):Art. 90, 39, 2018.
[LHR21a] Chris Lambie-Hanson and Assaf Rinot. Knaster and friends II: The C-sequence number. J. Math. Log., 21(1):2150002, 54, 2021.
[LHR21b] Chris Lambie-Hanson and Assaf Rinot. Knaster and friends III: Subadditive colorings. http://p.assafrinot.com/36, 2021. Submitted June 2021.
[Moo06] Justin Tatch Moore. A solution to the L space problem. J. Amer. Math. Soc., 19(3):717736 (electronic), 2006.
[PW18] Yinhe Peng and Liuzhen Wu. A Lindelöf group with non-Lindelöf square. Adv. Math., 325:215-242, 2018.
[Rin12] Assaf Rinot. Transforming rectangles into squares, with applications to strong colorings. Adv. Math., 231(2):1085-1099, 2012.
[Rin14a] Assaf Rinot. Chain conditions of products, and weakly compact cardinals. Bull. Symb. Log., 20(3):293-314, 2014.
[Rin14b] Assaf Rinot. Complicated colorings. Math. Res. Lett., 21(6):1367-1388, 2014.
[RZ21a] Assaf Rinot and Jing Zhang. Strongest transformations. http://p.assafrinot.com/45, 2021. Submitted April 2021.
[RZ21b] Assaf Rinot and Jing Zhang. Transformations of the transfinite plane. Forum Math. Sigma, 9(e16):1-25, 2021.
[She88] Saharon Shelah. Successors of singulars, cofinalities of reduced products of cardinals and productivity of chain conditions. Israel Journal of Mathematics, 62:213-256, 1988.
[She94a] Saharon Shelah. Cardinal arithmetic, volume 29 of Oxford Logic Guides. The Clarendon Press, Oxford University Press, New York, 1994. Oxford Science Publications.
[She94b] Saharon Shelah. There are jonsson algebras in many inaccessible cardinals. In Cardinal Arithmetic, volume 29 of Oxford Logic Guides. Oxford University Press, 1994.
[She97] Saharon Shelah. Colouring and non-productivity of \aleph_{2}-cc. Annals of Pure and Applied Logic, 84:153-174, 1997.
[She19] S. Shelah. The colouring existence theorem revisited. Acta Math. Hungar., 159(1):1-26, 2019.
[She21] S. Shelah. Colouring of successor of regular, again. Acta Math. Hungar., 165(1):192202, 2021.
[Sie33] Waclaw Sierpiński. Sur un problème de la théorie des relations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2), 2(3):285-287, 1933.
[Tod87] Stevo Todorčević. Partitioning pairs of countable ordinals. Acta Math., 159(3-4):261294, 1987.
[Tod07] Stevo Todorcevic. Walks on ordinals and their characteristics, volume 263 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2007.
[Ula30] Stanislaw Marcin Ulam. Zur Masstheorie in der allgemeinen Mengenlehre. Uniwersytet, seminarjum matematyczne, 1930.

Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel.
URL: http://www.assafrinot.com
Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel.
URL: https://jingjzzhang.github.io/

[^0]: Date: Preprint as of February 16, 2022. For the latest version, visit http://p.assafrinot.com/52.
 2010 Mathematics Subject Classification. Primary 03E02; Secondary 03E35.
 ${ }^{1}$ Note that $\operatorname{Pr}_{1}(\kappa, \kappa, \theta, \chi)$ implies $\mathrm{U}(\kappa, 2, \theta, \chi)$. However, by LHR21a, Theorem 3.3], it does not imply $\mathrm{U}(\kappa, \kappa, \theta, \chi)$.

