COMPLICATED COLORINGS, REVISITED

ASSAF RINOT AND JING ZHANG

ABSTRACT. In a paper from 1997, Shelah asked whether $\Pr_1(\lambda^+, \lambda^+, \lambda^+, \lambda)$ holds for every inaccessible cardinal λ . Here, we prove that an affirmative answer follows from $\Box(\lambda^+)$. Furthermore, we establish that for every pair $\chi < \kappa$ of regular uncountable cardinals, $\Box(\kappa)$ implies $\Pr_1(\kappa, \kappa, \kappa, \chi)$.

1. INTRODUCTION

The subject matter of this paper is the following two anti-Ramsey coloring principles:

Definition 1.1 (Shelah, [She88]). $\Pr_1(\kappa, \kappa, \theta, \chi)$ asserts the existence of a coloring $c : [\kappa]^2 \to \theta$ such that for every $\sigma < \chi$, every pairwise disjoint subfamily $\mathcal{A} \subseteq [\kappa]^{\sigma}$ of size κ , and every $\tau < \theta$, there is $(a, b) \in [\mathcal{A}]^2$ such that $c[a \times b] = \{\tau\}$.

Definition 1.2 (Lambie-Hanson and Rinot, [LHR18]). $U(\kappa, \mu, \theta, \chi)$ asserts the existence of a coloring $c : [\kappa]^2 \to \theta$ such that for every $\sigma < \chi$, every pairwise disjoint subfamily $\mathcal{A} \subseteq [\kappa]^{\sigma}$ of size κ , and every $\tau < \theta$, there exists $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that, for every $(a, b) \in [\mathcal{B}]^2$, $\min(c[a \times b]) \geq \tau$.¹

The importance of this line of study — especially in proving instances of $Pr_1(...)$ and U(...) with a large value of the 4th parameter — is explained in details in the introductions to [Rin14a, Rin14b, LHR18]. In what follows, we survey a few milestone results, depending on the identity of κ .

▶ At the level of the first uncountable cardinal $\kappa = \aleph_1$, the picture is complete: In his seminal paper [Tod87], Todorčević proved that $\Pr_1(\aleph_1, \aleph_1, \aleph_1, 2)$ holds, improving upon a classic result of Sierpiński [Sie33] asserting that $\Pr_1(\aleph_1, \aleph_1, 2, 2)$ holds. In 1980, Galvin [Gal80] proved that $\Pr_1(\aleph_1, \aleph_1, \theta, \aleph_0)$ is independent of ZFC for any cardinal $\theta \in [2, \aleph_1]$. Finally, a few years ago, by pushing further ideas of Moore [Moo06], Peng and Wu [PW18] proved that $\Pr_1(\aleph_1, \aleph_1, \aleph_1, \chi)$ holds for every $\chi \in [2, \aleph_0)$. As for the other coloring principle, and in contrast with Galvin's result, by [LHR18], $U(\aleph_1, \aleph_1, \theta, \aleph_0)$ holds for any cardinal $\theta \in [2, \aleph_1]$.

► At the level of the second uncountable cardinal, $\kappa = \aleph_2$, a celebrated result of Shelah [She97] asserts that $\Pr_1(\aleph_2, \aleph_2, \aleph_2, \aleph_0)$ is a theorem of ZFC. Ever since, the following problem remained open:

Open problem (Shelah, [She97, She19]). (1) Does $Pr_1(\aleph_2, \aleph_2, \aleph_2, \aleph_1)$ hold? (2) Does $Pr_1(\lambda^+, \lambda^+, \lambda^+, \lambda)$ hold for λ inaccessible?

Date: Preprint as of February 16, 2022. For the latest version, visit http://p.assafrinot.com/52. 2010 Mathematics Subject Classification. Primary 03E02; Secondary 03E35.

¹Note that $Pr_1(\kappa, \kappa, \theta, \chi)$ implies $U(\kappa, 2, \theta, \chi)$. However, by [LHR21a, Theorem 3.3], it does not imply $U(\kappa, \kappa, \theta, \chi)$.

In comparison, by [LHR18], $U(\lambda^+, \lambda^+, \theta, \lambda)$ is a theorem of ZFC for every infinite regular cardinal λ and every cardinal $\theta \in [2, \lambda^+]$.

► At the level of $\kappa = \lambda^+$ for λ a singular cardinal, the main problem left open has to do with the 3rd parameter of Pr₁(...) rather than the 4th (see [She94a, ES05, ES09, Eis10, Eis13a, Eis13b]). This is a consequence of three findings. First, by the main result of [Rin12], for every singular cardinal λ and every cardinal $\theta \leq \lambda^+$, Pr₁($\lambda^+, \lambda^+, \theta, 2$) implies Pr₁($\lambda^+, \lambda^+, \theta, cf(\lambda)$). Second, by [RZ21a, §2], if λ is the singular limit of strongly compact cardinals, then Pr₁($\lambda^+, \lambda^+, 2, (cf(\lambda))^+$) fails, meaning the the first result cannot be improved. Third, by [RZ21a, §2], Pr₁($\lambda^+, \lambda^+, 2, \lambda$) outright fails for every singular cardinal λ .

The situation with U(...) is slightly better. An analog of the first result may be found as [LHR18, Lemma 2.5 and Theorem 4.21(3)]. An analog of the second result may be found as [LHR18, Theorem 2.14]. In contrast, by [LHR18, Corollary 4.15], it is in fact consistent that $U(\lambda^+, \lambda^+, \theta, \lambda)$ holds for every singular cardinal λ and every cardinal $\theta \in [2, \lambda^+]$.

• At the level of a Mahlo cardinal κ , by [She94b, Conclusion 4.8(2)], the existence of a stationary subset of $E_{\geq\chi}^{\kappa}$ that does not reflect at inaccessibles entails that $\Pr_1(\kappa, \kappa, \theta, \chi)$ holds for all $\theta < \kappa$. By [RZ21a, §5], the existence of nonreflecting a stationary subset of $\operatorname{Reg}(\kappa)$ on which \diamondsuit holds entails that $\Pr_1(\kappa, \kappa, \kappa, \kappa)$ holds.

The situation with $U(\ldots)$ is analogous: By [LHR18, Theorem 4.23], the existence of a stationary subset of $E_{\geq\chi}^{\kappa}$ that does not reflect at inaccessibles entails that $U(\kappa, \kappa, \theta, \chi)$ holds for all $\theta < \kappa$. By [LHR21b, §2], the existence of nonreflecting a stationary subset of $\operatorname{Reg}(\kappa)$ entails that $U(\kappa, \kappa, \theta, \kappa)$ holds for all $\theta \leq \kappa$.

• At the level of an abstract regular cardinal $\kappa \geq \aleph_2$, we mention two key results. First, by [Rin14b], for every regular cardinal $\kappa \geq \aleph_2$ and every $\chi \in \operatorname{Reg}(\kappa)$ such that $\chi^+ < \kappa$, the existence of a nonreflecting stationary subset of $E_{\geq\chi}^{\kappa}$ entails that $\operatorname{Pr}_1(\kappa, \kappa, \kappa, \chi)$ holds (this is optimal, by [LHR21a, Theorem 3.4], it is consistent that for some inaccessible cardinal κ , E_{χ}^{κ} admits a nonreflecting stationary set, and yet, $\operatorname{Pr}_1(\kappa, \kappa, \kappa, \chi^+)$ fails). Second, by [Rin14a], for every regular cardinal $\kappa \geq \aleph_2$ and every $\chi \in \operatorname{Reg}(\kappa)$ such that $\chi^+ < \kappa$, $\Box(\kappa)$ entails that $\operatorname{Pr}_1(\kappa, \kappa, \kappa, \chi)$ holds.

Here, the situation with U(...) is again better. By [LHR18, Corollaries 4.12 and 4.15] and [LHR21b, §4], the analogs of the two results are true even without requiring " $\chi^+ < \kappa$ "!

After many years without progress on the above mentioned Open Problem, in the last few years, there have been a few breakthroughs. In an unpublished note from 2017, Todorčević proved that CH implies a weak form of $\Pr_1(\aleph_2, \aleph_2, \aleph_2, \aleph_1)$, strong enough to entail one of its intended applications (the existence of a σ -complete \aleph_2 -cc partial order whose square does not satisfy that \aleph_2 -cc). Next, in [RZ21a, §6], the authors obtained a full lifting of Galvin's strong coloring theorem, proving that for every infinite regular cardinal λ , $\Pr_1(\lambda^+, \lambda^+, \lambda^+, \lambda)$ holds assuming the stick principle $\P(\lambda^+)$. In particular, an affirmative answer to (1) follows from $2^{\aleph_1} = \aleph_2$. Then, very recently, in [She21], Shelah proved that for every regular uncountable cardinal λ , $\Pr_1(\lambda^+, \lambda^+, \lambda^+, \lambda)$ holds assuming the existence of a nonreflecting stationary subset of $E_{<\lambda}^{\lambda^+}$. So, by a standard fact from inner model theory, a negative answer to (1) implies that \aleph_2 is a Mahlo cardinal in Gödel's constructible universe.

The main result of this paper reads as follows:

Theorem A. For every regular uncountable cardinal λ , if $\Box(\lambda^+)$ holds, then so does $\Pr_1(\lambda^+, \lambda^+, \lambda^+, \lambda)$. In particular, a negative answer to (1) implies that \aleph_2 is a weakly compact cardinal in Gödel's constructible universe.

Thanks to the preceding theorem, we can now waive the hypothesis " $\chi^+ < \kappa$ " from [Rin14a, Theorem B], altogether getting a clear picture:

Theorem A'. For every pair $\chi < \kappa$ of regular uncountable cardinals, $\Box(\kappa)$ implies $\Pr_1(\kappa, \kappa, \kappa, \chi)$.

Now, let us say a few words about the proof. As made clear by the earlier discussion, in the case that $\kappa = \chi^+$, it is easier to prove $U(\kappa, \kappa, \theta, \chi)$ than proving $Pr_1(\kappa, \kappa, \theta, \chi)$. Therefore, we consider the following slight strengthening of $U(\ldots)$:

Definition 1.3. $U_1(\kappa, \mu, \theta, \chi)$ asserts the existence of a coloring $c : [\kappa]^2 \to \theta$ such that for every $\sigma < \chi$, every pairwise disjoint subfamily $\mathcal{A} \subseteq [\kappa]^{\sigma}$ of size κ , and every $\epsilon < \theta$, there exists $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that, for every $(a, b) \in [\mathcal{B}]^2$, there exists $\tau > \epsilon$ such that $c[a \times b] = \{\tau\}$.

Shelah's proof from [She21] can be described as utilizing the hypothesis of his theorem twice: first to get $U_1(\lambda^+, 2, \lambda^+, \lambda)$, and then to derive $Pr_1(\lambda^+, \lambda^+, \lambda^+, \lambda)$ from the latter. Here, we shall follow a similar path, building on the progress made in [RZ21b, §5] with respect to walking along well-chosen $\Box(\kappa)$ -sequences. We shall also present a couple of propositions translating $U_1(\ldots)$ to $Pr_1(\ldots)$ and vice versa, demonstrating that $U_1(\kappa, \mu, \theta, \chi)$ is of interest also with $\theta < \kappa$. For instance, it will be proved that for every regular uncountable cardinal λ that admits a stationary set not reflecting at inaccessibles (e.g., $\lambda = \aleph_1$), $U_1(\lambda^+, 2, \lambda, \lambda)$ iff $Pr_1(\lambda^+, \lambda^+, \lambda^+, \lambda)$. Thus, the core contribution of this paper reads as follows.

Theorem B. Suppose that $\chi \leq \theta \leq \kappa$ are infinite regular cardinals such that $\max\{\chi,\aleph_1\} < \kappa$. If $\Box(\kappa)$ holds, then so does $U_1(\kappa, 2, \theta, \chi)$.

2. Preliminaries

In what follows, $\chi < \kappa$ denotes a pair of infinite regular cardinals. Reg (κ) stands for the set of all infinite and regular cardinals below κ . Let $E_{\chi}^{\kappa} := \{\alpha < \kappa \mid cf(\alpha) = \chi\}$, and define $E_{\leq\chi}^{\kappa}$, $E_{<\chi}^{\kappa}$, $E_{\geq\chi}^{\kappa}$, $E_{>\chi}^{\kappa}$, $E_{\neq\chi}^{\kappa}$ analogously. A stationary subset $S \subseteq \kappa$ is nonreflecting (resp. nonreflecting at inaccessibles) iff there exists no $\alpha \in E_{>\omega}^{\kappa}$ (resp. α a regular limit uncountable cardinal) such that $S \cap \alpha$ is stationary in α . For a set of ordinals a, we write $\operatorname{ssup}(a) := \operatorname{sup}\{\alpha + 1 \mid \alpha \in a\}$, $\operatorname{acc}^+(a) := \{\alpha < \operatorname{ssup}(a) \mid \operatorname{sup}(a \cap \alpha) = \alpha > 0\}$, $\operatorname{acc}(a) := a \cap \operatorname{acc}^+(a)$ and $\operatorname{nacc}(a) := a \setminus \operatorname{acc}(a)$. For sets of ordinals that are not ordinals, a and b, we write a < b to express that $\alpha < \beta$ for all $\alpha \in a$ and $\beta \in b$. For an ordinal σ and a set of ordinals A, we write $[A]^{\sigma}$ for $\{B \subseteq A \mid \operatorname{otp}(B) = \sigma\}$. In the special case that $\sigma = 2$ and \mathcal{A} is either an ordinal or a collection of sets of ordinals, we interpret $[\mathcal{A}]^2$ as the collection of ordered pairs $\{(a, b) \in \mathcal{A} \times \mathcal{A} \mid a < b\}$. In particular, $[\kappa]^2 = \{(\alpha, \beta) \mid \alpha < \beta < \kappa\}$.

For the rest of this section, let us fix a *C*-sequence $\vec{C} = \langle C_{\alpha} \mid \alpha < \kappa \rangle$ over κ , i.e., for every $\alpha < \kappa$, C_{α} is a closed subset of α with $\sup(C_{\alpha}) = \sup(\alpha)$. The next definition is due to Todorčević; see [Tod07] for a comprehensive treatment.

Definition 2.1 (Todorčević). From \vec{C} , derive maps $\text{Tr} : [\kappa]^2 \to {}^{\omega}\kappa, \, \rho_2 : [\kappa]^2 \to \omega,$ $\text{tr} : [\kappa]^2 \to {}^{<\omega}\kappa \text{ and } \lambda : [\kappa]^2 \to \kappa, \text{ as follows. Let } (\alpha, \beta) \in [\kappa]^2 \text{ be arbitrary.}$ • $\operatorname{Tr}(\alpha,\beta): \omega \to \kappa$ is defined by recursion on $n < \omega$:

$$\operatorname{Tr}(\alpha,\beta)(n) := \begin{cases} \beta, & n = 0\\ \min(C_{\operatorname{Tr}(\alpha,\beta)(n-1)} \setminus \alpha), & n > 0 \& \operatorname{Tr}(\alpha,\beta)(n-1) > \alpha\\ \alpha, & \text{otherwise} \end{cases}$$

- $\rho_2(\alpha, \beta) := \min\{n < \omega \mid \operatorname{Tr}(\alpha, \beta)(n) = \alpha\};$
- $\operatorname{tr}(\alpha,\beta) := \operatorname{Tr}(\alpha,\beta) \restriction \rho_2(\alpha,\beta);$
- $\lambda(\alpha,\beta) := \max\{\sup(C_{\operatorname{Tr}(\alpha,\beta)(i)} \cap \alpha) \mid i < \rho_2(\alpha,\beta)\}.$

Convention 2.2. From any coloring $h : \kappa \to \kappa$, derive a function $\operatorname{tr}_h : [\kappa]^2 \to {}^{<\omega}\kappa$ via

$$\operatorname{tr}_h(\alpha,\beta) := \langle h(\operatorname{Tr}(\alpha,\beta)(i)) \mid i < \rho_2(\alpha,\beta) \rangle.$$

The next fact is quite elementary. See, e.g., [Rin14b, Claim 3.1.2] for a proof.

Fact 2.3. Whenever $\lambda(\gamma,\beta) < \alpha < \gamma < \beta < \kappa$, $\operatorname{tr}(\alpha,\beta) = \operatorname{tr}(\gamma,\beta)^{-} \operatorname{tr}(\alpha,\gamma)$.

We now recall the characteristic $\lambda_2(\cdot, \cdot)$, a variation of $\lambda(\cdot, \cdot)$ having the property that $\lambda_2(\gamma, \beta) < \gamma$ whenever $0 < \gamma < \beta < \kappa$.

Definition 2.4 ([Rin14a]). Define $\lambda_2 : [\kappa]^2 \to \kappa$ via

 $\lambda_2(\alpha,\beta) := \sup(\alpha \cap \{\sup(C_{\delta} \cap \alpha) \mid \delta \in \operatorname{Im}(\operatorname{tr}(\alpha,\beta))\}).$

Fact 2.5 ([LHR18, Lemma 4.7]). Suppose that $\lambda_2(\gamma, \beta) < \alpha < \gamma < \beta < \kappa$.

Then $tr(\alpha, \beta)$ end-extends $tr(\gamma, \beta)$, and one of the following cases holds:

(1) $\gamma \in \operatorname{Im}(\operatorname{tr}(\alpha,\beta)); or$

(2) $\gamma \in \operatorname{acc}(C_{\delta})$ for $\delta := \min(\operatorname{Im}(\operatorname{tr}(\gamma, \beta))).$

Convention 2.6 ([RZ21b]). For every ordinal $\eta < \kappa$ and a pair $(\alpha, \beta) \in [\kappa]^2$, let

 $\eta_{\alpha,\beta} := \min\{n < \omega \mid \eta \in C_{\operatorname{Tr}(\alpha,\beta)(n)} \text{ or } n = \rho_2(\alpha,\beta)\} + 1.$

Definition 2.7 ([RZ21a, §3]). $\chi_1(\vec{C})$ stands for the supremum of $\sigma + 1$ over all $\sigma < \kappa$ satisfying the following. For every pairwise disjoint subfamily $\mathcal{A} \subseteq [\kappa]^{\sigma}$ of size κ , there are a stationary set $\Delta \subseteq \kappa$ and an ordinal $\eta < \kappa$ such that, for every $\delta \in \Delta$, there exist κ many $b \in \mathcal{A}$ such that, for every $\beta \in b$, $\lambda(\delta, \beta) = \eta$ and $\rho_2(\delta, \beta) = \eta_{\delta,\beta}$.

Fact 2.8 ([RZ21a, §3]). If the two hold:

(\aleph) for all $\alpha < \kappa$ and $\delta \in \operatorname{acc}(C_{\alpha}), C_{\delta} = C_{\alpha} \cap \delta;$

(**D**) for every club $D \subseteq \kappa$, there exists $\gamma > 0$ with $\sup(\operatorname{nacc}(C_{\gamma}) \cap D) = \gamma$,

then $\chi_1(\vec{C}) = \sup(\operatorname{Reg}(\kappa)).$

Definition 2.9 (Todorčević, [Tod87]). For a cardinal $\mu \leq \kappa$, $\Box(\kappa, <\mu)$ asserts the existence of a sequence $\vec{\mathcal{C}} = \langle \mathcal{C}_{\alpha} \mid \alpha < \kappa \rangle$ such that

- (1) for every $\alpha < \kappa$, C_{α} is nonempty collection of less than μ many closed subsets C of α with $\sup(C) = \sup(\alpha)$;
- (2) for all $\alpha < \kappa$, $C \in \mathcal{C}_{\alpha}$ and $\delta \in \operatorname{acc}(C)$, $C \cap \delta \in \mathcal{C}_{\delta}$;
- (3) there exists no club C in κ such that $C \cap \alpha \in \mathcal{C}_{\alpha}$ for all $\alpha \in \operatorname{acc}(C)$.

The special case of $\Box(\kappa, <\mu)$ with $\mu = 2$ is denoted by $\Box(\kappa)$.

Fact 2.10 (Hayut and Lambie-Hanson, [HLH17, Lemma 2.4]). Clause (3) of Definition 2.9 is preserved in any κ -cc forcing extension, provided that $\mu < \kappa$.

4

3. Theorem B

Theorem 3.1. Suppose that $\chi \leq \theta \leq \kappa$ are infinite regular cardinals such that $\max\{\chi,\aleph_1\} < \kappa$. If $\Box(\kappa)$ holds, then so does $U_1(\kappa, 2, \theta, \chi)$.

Proof. Suppose that $\Box(\kappa)$ holds. Then, by [RZ21b, Lemma 5.1], we may fix a *C*-sequence $\vec{C} = \langle C_{\alpha} | \alpha < \kappa \rangle$ satisfying the following:

- (1) $C_{\alpha+1} = \{0, \alpha\}$ for every $\alpha < \kappa$;
- (2) for every club $D \subseteq \kappa$, there exists $\gamma > 0$ with $\sup(\operatorname{nacc}(C_{\gamma}) \cap D) = \gamma$;
- (3) for every $\alpha \in \operatorname{acc}(\kappa)$ and $\bar{\alpha} \in \operatorname{acc}(C_{\alpha}), C_{\bar{\alpha}} = C_{\alpha} \cap \bar{\alpha};$
- (4) for every $i < \kappa$, $\{\alpha < \kappa \mid \min(C_{\alpha}) = i\}$ is stationary.

Note that, by Fact 2.8, $\chi_1(\vec{C}) = \sup(\operatorname{Reg}(\kappa))$. If $\theta < \kappa$, then let $\mu := \theta$; otherwise, let $\mu := \chi$. Derive a coloring $h : \kappa \to \mu$ via

$$h(\alpha) := \begin{cases} \min(C_{\alpha}), & \text{if } \min(C_{\alpha}) < \mu; \\ 0, & \text{otherwise.} \end{cases}$$

We shall walk along \vec{C} . Define a coloring $d: [\kappa]^2 \to \mu$ via

$$d(\alpha, \beta) := \max(\operatorname{Im}(\operatorname{tr}_h(\alpha, \beta))).$$

Claim 3.1.1. Suppose that α, β, γ are ordinals, and $\lambda_2(\gamma, \beta) < \alpha < \gamma < \beta < \kappa$. Then $\operatorname{Im}(\operatorname{tr}_h(\alpha, \beta)) = \operatorname{Im}(\operatorname{tr}_h(\alpha, \gamma)) \cup \operatorname{Im}(\operatorname{tr}_h(\gamma, \beta))$. In particular, $d(\alpha, \beta) = \max\{d(\alpha, \gamma), d(\gamma, \beta)\}$.

Proof. By Fact 2.5, one of the following cases holds:

- ▶ $\gamma \in \text{Im}(\text{tr}(\alpha,\beta))$. In this case, $\text{tr}(\alpha,\beta) = \text{tr}(\gamma,\beta)^{\uparrow} \text{tr}(\alpha,\gamma)$, so we done.
- ▶ $\gamma \in \operatorname{acc}(C_{\delta})$ for $\delta := \min(\operatorname{Im}(\operatorname{tr}(\gamma, \beta)))$. In this case, $\operatorname{tr}(\alpha, \beta) = \operatorname{tr}(\delta, \beta)^{\uparrow}$ $\operatorname{tr}(\alpha, \delta)$, so that $\operatorname{Im}(\operatorname{tr}_{h}(\alpha, \beta)) = \operatorname{Im}(\operatorname{tr}_{h}(\alpha, \delta)) \cup \operatorname{Im}(\operatorname{tr}_{h}(\delta, \beta))$. Since $\gamma \in$ $\operatorname{acc}(C_{\delta})$, Clause (3) above and the definition of the function h together imply that $\operatorname{tr}_{h}(\alpha, \delta) = \operatorname{tr}_{h}(\alpha, \gamma)$. In addition, $\operatorname{tr}(\gamma, \beta) = \operatorname{tr}(\delta, \beta)^{\uparrow}\langle\delta\rangle$, so that $\operatorname{Im}(\operatorname{tr}_{h}(\gamma, \beta)) = \operatorname{Im}(\operatorname{tr}_{h}(\delta, \beta)) \cup \{h(\delta)\}$. Since $h(\delta) \in \operatorname{Im}(\operatorname{tr}_{h}(\alpha, \delta))$, altogether,

$$\operatorname{Im}(\operatorname{tr}_h(\alpha,\gamma)) \cup \operatorname{Im}(\operatorname{tr}_h(\gamma,\beta)) = \operatorname{Im}(\operatorname{tr}_h(\alpha,\delta)) \cup \operatorname{Im}(\operatorname{tr}_h(\delta,\beta)).$$

We are now ready to define the sought coloring c. If $\mu = \theta$, then let c := d, and otherwise define $c : [\kappa]^2 \to \theta$ via

$$c(\alpha,\beta) := \max\{\xi \in \operatorname{Im}(\operatorname{tr}(\alpha,\beta)) \mid h(\xi) = d(\alpha,\beta)\}.$$

To see that c witnesses $U_1(\kappa, 2, \theta, \chi)$, suppose that we are given $\epsilon < \theta$, $\sigma < \chi$ and a κ -sized pairwise disjoint subfamily $\mathcal{A} \subseteq [\kappa]^{\sigma}$; we need to find $\tau > \epsilon$ and $(a, b) \in [\mathcal{A}]^2$ such that $c[a \times b] = \{\tau\}$. As $\sigma < \chi \leq \chi_1(\vec{C})$, we may fix a stationary subset $\Delta \subseteq \kappa$ and an ordinal $\eta < \kappa$ such that, for every $\delta \in \Delta$, there exists $b \in \mathcal{A}$ with $\min(b) > \delta$ such that $\lambda(\delta, \beta) = \eta$ for every $\beta \in b$. Set $\eta' := \max\{\eta, \epsilon\}$.

Consider the club $C := \{\gamma < \kappa \mid \sup\{\min(a) \mid a \in \mathcal{A} \cap \mathcal{P}(\gamma)\} = \gamma\}$. For all $\gamma \in C$ and $\varepsilon < \gamma$, fix $a_{\varepsilon}^{\gamma} \in \mathcal{A} \cap \mathcal{P}(\gamma)$ with $\min(a_{\varepsilon}^{\gamma}) > \varepsilon$; as $|a_{\varepsilon}^{\gamma}| < \mu$, $\tau_{\varepsilon}^{\gamma} := \sup\{d(\alpha, \gamma) \mid \alpha \in a_{\varepsilon}^{\gamma}\}$ is $< \mu$. Fix some stationary $\Gamma \subseteq C \cap E_{\neq\mu}^{\kappa}$ along with $\tau_0 < \mu$ such that, for every $\gamma \in \Gamma$, $\sup\{\varepsilon < \gamma \mid \tau_{\varepsilon}^{\gamma} \le \tau_0\} = \gamma$.

By Clause (4), for each $i < \mu$, $H_i := \{\alpha < \kappa \mid h(\alpha) = i\}$ is stationary, so, fix $\delta \in \Delta \cap \bigcap_{i < \mu} \operatorname{acc}^+(H_i \cap \operatorname{acc}^+(\Gamma \setminus \eta'))$. Pick $b \in \mathcal{A}$ with $\min(b) > \delta$ such that $\lambda(\delta, \beta) = \eta$ for every $\beta \in b$. As $|b| < \mu$, $\tau_1 := \sup\{d(\delta, \beta) \mid \beta \in b\}$ is $< \mu$. If $\epsilon < \mu$, then pick

 $\zeta \in H_{\tau_0+\tau_1+\epsilon+1} \cap \operatorname{acc}^+(\Gamma \setminus \eta')$; otherwise, pick $\zeta \in H_{\tau_0+\tau_1+1} \cap \operatorname{acc}^+(\Gamma \setminus \eta')$. Next, pick $\gamma \in \Gamma$ above $\max\{\lambda_2(\zeta, \delta), \eta'\}$. Finally, pick $\varepsilon < \gamma$ above $\max\{\lambda_2(\gamma, \zeta), \lambda_2(\zeta, \delta), \eta'\}$ such that $\tau_{\varepsilon}^{\gamma} \leq \tau_0$, and then set $a := a_{\varepsilon}^{\gamma}$.

Claim 3.1.2. Let $\alpha \in a$ and $\beta \in b$. Then:

(i) $\max\{\lambda_2(\gamma,\zeta),\lambda_2(\zeta,\delta),\lambda(\delta,\beta),\epsilon\} < \varepsilon < \alpha < \gamma < \zeta < \delta < \beta;$

(ii) $c(\alpha,\beta) = c(\gamma,\delta) > \epsilon$.

Proof. (i) This is clear, recalling that $\eta' = \max\{\lambda(\delta, \beta), \epsilon\}$.

(ii) From $\lambda(\delta,\beta) < \alpha < \delta < \beta$ and Fact 2.3, we infer that $\operatorname{tr}(\alpha,\beta) = \operatorname{tr}(\delta,\beta)^{\uparrow}$ $\operatorname{tr}(\alpha,\delta)$, so that $d(\alpha,\beta) = \max\{d(\delta,\beta), d(\alpha,\delta)\}$. By Clause (i) and Claim 3.1.1,

$$d(\alpha, \delta) = \max\{d(\alpha, \zeta), d(\zeta, \delta)\} \ge h(\zeta) > \tau_1 \ge d(\delta, \beta).$$

Consequently, $d(\alpha, \beta) = d(\alpha, \delta)$ and $c(\alpha, \beta) = c(\alpha, \delta)$. By Clause (i) and Claim 3.1.1, Im $(tr_h(\alpha, \delta)) = Im(tr_h(\alpha, \gamma) \cup Im(tr_h(\gamma, \delta)))$. As $d(\alpha, \gamma) \leq \tau_0 < h(\zeta) \leq d(\gamma, \delta)$, it follows that $d(\alpha, \delta) = d(\gamma, \delta)$ and $c(\alpha, \delta) = d(\gamma, \delta)$. Altogether, $c(\alpha, \beta) = c(\gamma, \delta)$.

Now, if $\theta < \kappa$, then $\epsilon < \theta = \mu$ and c = d, so that $c(\alpha, \beta) = d(\gamma, \delta) \ge h(\zeta) > \epsilon$. Otherwise, $c(\alpha, \beta) \ge \min(\operatorname{Im}(\operatorname{tr}(\alpha, \beta))) > \alpha > \epsilon$.

Set
$$\tau := c(\gamma, \delta)$$
. Then $\tau > \epsilon$ and $c[a \times b] = \{\tau\}$, as sought.

Remark 3.2. The preceding proof makes it clear that the auxiliary coloring d witnesses $U_1(\kappa, 2, \mu, \chi)$. By Fact 2.5, the coloring d is moreover *closed* in the sense that, for all $\beta < \kappa$ and $i < \theta$, the set $\{\alpha < \beta \mid c(\alpha, \beta) \leq i\}$ is closed below β . So, by [LHR18, Lemma 4.2], d witnesses $U(\kappa, \kappa, \mu, \chi)$, as well.

4. Connecting U_1 with Pr_1

Throughout this section, $\chi < \kappa$ is a pair of infinite regular cardinals, and θ is a regular cardinal $\leq \kappa$. Let $\mathbb{A}^{\kappa}_{\chi}$ denote the collection of all pairwise disjoint subfamilies $\mathcal{A} \subseteq \mathcal{P}(\kappa)$ such that $|\mathcal{A}| = \kappa$ and $\sup\{|a| \mid a \in \mathcal{A}\} < \chi$. Given a coloring $c : [\kappa]^2 \to \theta$, for every $\mathcal{A} \subseteq \mathcal{P}(\kappa)$, let $T_c(\mathcal{A})$ be the set of all $\tau < \theta$ such that, for some $(a, b) \in [\mathcal{A}]^2$, $c[a \times b] = \{\tau\}$. The next definition appears (with a slightly different notation) in Stage B in the proof of [She21, Theorem 1.1]:

Definition 4.1. For every coloring $c : [\kappa]^2 \to \theta$, let

$$F_{c,\chi} := \{ T \subseteq \theta \mid \exists \mathcal{A} \in \mathbb{A}^{\kappa}_{\chi} [T_c(\mathcal{A}) \subseteq T] \}.$$

Proposition 4.2. Suppose that a coloring $c : [\kappa]^2 \to \theta$ witnesses $U_1(\kappa, 2, \theta, \chi)$, and λ is some cardinal. Then:

- (1) $F_{c,\chi}$ is a χ -complete uniform filter on θ ;
- (2) If every χ -complete uniform filter on θ is not weakly λ -saturated, then $\Pr_1(\kappa, \kappa, \lambda, \chi)$ holds.

Proof. (1) It is clear that $F_{c,\chi}$ is upward-closed. To see that it is χ -complete, suppose that we are given a sequence $\langle X_i \mid i < \delta \rangle$ of elements of $F_{c,\chi}$, for some $\delta < \chi$. For each $i < \delta$, fix $\mathcal{A}_i \in \mathbb{A}^{\kappa}_{\chi}$ such that $T_c(\mathcal{A}_i) \subseteq X_i$. Pick $\mathcal{A} \in \mathbb{A}^{\kappa}_{\chi}$ such that, for every $a \in \mathcal{A}$, there is a sequence $\langle a_i \mid i < \delta \rangle \in \prod_{i < \delta} \mathcal{A}_i$ such that $a = \bigcup_{i < \delta} a_i$. Then, $T_c(\mathcal{A}) \subseteq \bigcap_{i < \delta} T_c(\mathcal{A}_i) \subseteq \bigcap_{i < \delta} X_i$ and hence the latter is in $F_{c,\chi}$. Finally, since c witnesses $U_1(\kappa, 2, \theta, \chi)$, for every $\mathcal{A} \in \mathbb{A}^{\kappa}_{\chi}$ and every $\epsilon < \theta$, $T_c(\mathcal{A}) \setminus \epsilon$ is nonempty. So $F_{c,\chi}$ consists of cofinal subset of θ . Since θ is regular, $F_{c,\chi}$ is uniform.

(2) Suppose that no χ -complete uniform filter on θ is weakly λ -saturated. In particular, by Clause (1), we may pick a map $\psi : \theta \to \lambda$ such that that the preimage of any singleton is $F_{c,\theta}$ -positive. Then $\psi \circ c$ witnesses $\Pr_1(\kappa, \kappa, \lambda, \chi)$.

Corollary 4.3. Suppose that λ is a regular uncountable cardinal.

If λ admits a stationary set that does not reflect at regulars or if $\Box(\lambda, <\mu)$ holds for some cardinal $\mu < \lambda$, then the following are equivalent:

- (1) $\Pr_1(\lambda^+, \lambda^+, \lambda^+, \lambda);$
- (2) $\operatorname{Pr}_1(\lambda^+, \lambda^+, \lambda, \lambda);$
- (3) $U_1(\lambda^+, 2, \lambda, \lambda)$.

Proof. The implication $(1) \implies (2) \implies (3)$ is trivial, and the fact that $(2) \implies$ (1) is well-known (see, for instance, [KRS21, §6]). By the preceding proposition, to see that $(3) \implies (2)$, it suffices to prove that under our hypothesis on λ , no λ complete uniform filter on λ is weakly λ -saturated. Now, if λ is a successor cardinal, then this follows from Ulam's theorem [Ula30], and if λ is an inaccessible cardinal admitting a stationary set that does not reflect at regulars, then this follows from a theorem of Hajnal [Haj69]. Finally, if $\Box(\lambda, <\mu)$ holds for some cardinal $\mu < \lambda$, then this follows from [IR22, Theorem A].

Lemma 4.4. Suppose that λ is a regular uncountable cardinal and $\Box(\lambda^+, <\lambda)$ holds. Then every λ -complete uniform filter on λ^+ is not weakly λ -saturated.

Proof. Fix a $\Box(\lambda^+, <\lambda)$ -sequence $\vec{\mathcal{C}} = \langle \mathcal{C}_{\alpha} \mid \alpha < \lambda^+ \rangle$. For each $\alpha < \lambda^+$, fix an injective enumeration $\langle C_{\alpha,i} \mid i < |\mathcal{C}_{\alpha}| \rangle$ of \mathcal{C}_{α} .

Towards a contradiction, suppose that F is a λ -complete uniform filter on λ^+ that is weakly λ -saturated. Since F is λ -complete, F is moreover λ -saturated. Hence, $\mathcal{P}(\lambda^+)/F$ is a λ -cc notion of forcing.

Let G be $\mathcal{P}(\lambda^+)/F$ -generic over V. Then G is a uniform V-ultrafilter over λ^+ extending F. By [For10, Propositions 2.9 and 2.14], Ult(V, G) is well-founded and $j: V \to M \simeq \text{Ult}(V, G)$ satisfies $\operatorname{crit}(j) = \lambda$.

Now, work in V[G]. Denote $j(\vec{C})$ by $\langle \mathcal{D}_{\alpha} | \alpha < j(\lambda^+) \rangle$. For every $\alpha < \lambda^+$, since $\operatorname{crit}(j) = \lambda > |\mathcal{C}_{\alpha}|$, it is the case that $\mathcal{D}_{j(\alpha)} = j(\mathcal{C}_{\alpha}) = j^*\mathcal{C}_{\alpha}$. Since G is uniform, $\gamma := \sup(j^*\lambda^+)$ is $< j(\lambda^+)$, as witnessed by the identity map id : $\lambda^+ \to \lambda^+$. As V[G] is a λ -cc forcing extension of V, $\operatorname{cf}^V(\gamma) = \operatorname{cf}^{V[G]}(\gamma) = \lambda^+$, so that $\operatorname{cf}^M(\gamma) \ge \lambda^+$. Pick $D \in \mathcal{D}_{\gamma}$.

Claim 4.4.1. $A := j^{-1}[\operatorname{acc}(D)]$ is a cofinal subset of λ^+ .

Proof. Given $\epsilon < \lambda^+$, we recursively define (in V[G]) an increasing sequence $\langle \alpha_n | n < \omega \rangle$ of ordinals below λ^+ such that:

(1) $\epsilon = \alpha$, and

(2) for all $n < \omega$, $(j(\alpha_n), j(\alpha_{n+1})] \cap D \neq \emptyset$.

Consider $\alpha^* := \sup_{n < \omega} \alpha_n$. Notice that $\operatorname{cf}^V(\alpha^*) < \lambda$, since if $\operatorname{cf}^V(\alpha^*) \ge \lambda$, then by the fact that V[G] is a λ -cc forcing extension of V we have $\omega = \operatorname{cf}^{V[G]}(\alpha^*) \ge \lambda$ which is impossible. As a result, $\sup j^*\alpha^* = j(\alpha^*) \in \operatorname{acc}(D)$, which implies that α^* is an element of A above ϵ .

For each $\alpha \in A$, $D \cap j(\alpha) \in \mathcal{D}_{j(\alpha)} = j^{*}\mathcal{C}_{\alpha}$, so we may pick some $i_{\alpha} < \lambda$ such that $D \cap j(\alpha) = j(\mathcal{C}_{\alpha,i_{\alpha}})$. Fix some $i < \lambda$ for which $A' := \{\alpha \in A \mid i_{\alpha} = i\}$ is cofinal in λ^{+} . For every $(\alpha, \beta) \in [A']^2$, $j(\mathcal{C}_{\alpha,i}) = D \cap j(\alpha)$ and $j(\mathcal{C}_{\beta,i}) = D \cap j(\beta)$, so, by

elementarity, $C_{\alpha,i} = C_{\beta,i} \cap \alpha$. As A' is cofinal in λ^+ , it follows that $C := \bigcup \{C_{\alpha,i} \mid \alpha \in A\}$ is a club in λ^+ . Evidently, $C \cap \alpha \in \mathcal{C}_{\alpha}$ for every $\alpha \in \operatorname{acc}(C)$. However, V[G] is a λ -cc forcing extension of V, contradicting Fact 2.10.

We are now ready to prove Theorem A:

Corollary 4.5. Suppose that λ is a regular uncountable cardinal, and $\Box(\lambda^+)$ holds. Then $\Pr_1(\lambda^+, \lambda^+, \lambda^+, \lambda)$ holds, as well.

Proof. By Theorem 3.1, using $(\kappa, \theta, \chi) := (\lambda^+, \lambda^+, \lambda)$, $U_1(\lambda^+, 2, \lambda^+, \lambda)$ holds. So, by Proposition 4.2 (using $\theta := \lambda^+$) and Lemma 4.4, $Pr_1(\lambda^+, \lambda^+, \lambda, \lambda)$ holds. Then, again by [KRS21, §6], $Pr_1(\lambda^+, \lambda^+, \lambda^+, \lambda)$ holds, as well.

Acknowledgments

The first author is partially supported by the European Research Council (grant agreement ERC-2018-StG 802756) and by the Israel Science Foundation (grant agreement 2066/18). The second author is supported by the Foreign Postdoctoral Fellowship Program of the Israel Academy of Sciences and Humanities and by the Israel Science Foundation (grant agreement 2066/18).

The main result of this paper was presented by the second author at the *Israel Mathematical Union Annual Meeting* special session in set theory and logic in July 2021. He thanks the organizers for the invitation and the participants for their feedback.

References

- [Eis10] Todd Eisworth. Club-guessing, stationary reflection, and coloring theorems. Ann. Pure Appl. Logic, 161(10):1216–1243, 2010.
- [Eis13a] Todd Eisworth. Getting more colors I. J. Symbolic Logic, 78(1):1–16, 2013.
- [Eis13b] Todd Eisworth. Getting more colors II. J. Symbolic Logic, 78(1):17–38, 2013.
- [ES05] Todd Eisworth and Saharon Shelah. Successors of singular cardinals and coloring theorems. i. Archive for Mathematical Logic, 44:597–618, 2005.
- [ES09] Todd Eisworth and Saharon Shelah. Successors of singular cardinals and coloring theorems. ii. Journal of Symbolic Logic, 74:1287–1309, 2009.
- [For10] Matthew Foreman. Ideals and generic elementary embeddings. In Handbook of set theory. Vols. 1, 2, 3, pages 885–1147. Springer, Dordrecht, 2010.
- [Gal80] Fred Galvin. Chain conditions and products. Fund. Math., 108(1):33–48, 1980.
- [Haj69] A. Hajnal. Ulam-matrices for inaccessible cardinals. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 17:683–688, 1969.
- [HLH17] Yair Hayut and Chris Lambie-Hanson. Simultaneous stationary reflection and square sequences. J. Math. Log., 17(2):1750010, 27, 2017.
- [IR22] Tanmay Inamdar and Assaf Rinot. Was Ulam right? II: Small width and general ideals. http://p.assafrinot.com/53, 2022. Preprint February 2022.
- [KRS21] Menachem Kojman, Assaf Rinot, and Juris Steprans. Advances on strong colorings over partitions. http://p.assafrinot.com/49, 2021. Submitted April 2021.
- [LHR18] Chris Lambie-Hanson and Assaf Rinot. Knaster and friends I: closed colorings and precalibers. Algebra Universalis, 79(4):Art. 90, 39, 2018.
- [LHR21a] Chris Lambie-Hanson and Assaf Rinot. Knaster and friends II: The C-sequence number. J. Math. Log., 21(1):2150002, 54, 2021.
- [LHR21b] Chris Lambie-Hanson and Assaf Rinot. Knaster and friends III: Subadditive colorings. http://p.assafrinot.com/36, 2021. Submitted June 2021.
- [Moo06] Justin Tatch Moore. A solution to the L space problem. J. Amer. Math. Soc., 19(3):717– 736 (electronic), 2006.
- [PW18] Yinhe Peng and Liuzhen Wu. A Lindelöf group with non-Lindelöf square. Adv. Math., 325:215–242, 2018.

- [Rin12] Assaf Rinot. Transforming rectangles into squares, with applications to strong colorings. Adv. Math., 231(2):1085–1099, 2012.
- [Rin14a] Assaf Rinot. Chain conditions of products, and weakly compact cardinals. Bull. Symb. Log., 20(3):293–314, 2014.
- [Rin14b] Assaf Rinot. Complicated colorings. Math. Res. Lett., 21(6):1367–1388, 2014.
- [RZ21a] Assaf Rinot and Jing Zhang. Strongest transformations. http://p.assafrinot.com/45, 2021. Submitted April 2021.
- [RZ21b] Assaf Rinot and Jing Zhang. Transformations of the transfinite plane. Forum Math. Sigma, 9(e16):1–25, 2021.
- [She88] Saharon Shelah. Successors of singulars, cofinalities of reduced products of cardinals and productivity of chain conditions. *Israel Journal of Mathematics*, 62:213–256, 1988.
- [She94a] Saharon Shelah. Cardinal arithmetic, volume 29 of Oxford Logic Guides. The Clarendon Press, Oxford University Press, New York, 1994. Oxford Science Publications.
- [She94b] Saharon Shelah. There are jonsson algebras in many inaccessible cardinals. In *Cardinal Arithmetic*, volume 29 of *Oxford Logic Guides*. Oxford University Press, 1994.
- [She97] Saharon Shelah. Colouring and non-productivity of ℵ₂-cc. Annals of Pure and Applied Logic, 84:153–174, 1997.
- [She19] S. Shelah. The colouring existence theorem revisited. Acta Math. Hungar., 159(1):1–26, 2019.
- [She21] S. Shelah. Colouring of successor of regular, again. Acta Math. Hungar., 165(1):192– 202, 2021.
- [Sie33] Wacław Sierpiński. Sur un problème de la théorie des relations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2), 2(3):285–287, 1933.
- [Tod87] Stevo Todorčević. Partitioning pairs of countable ordinals. Acta Math., 159(3-4):261– 294, 1987.
- [Tod07] Stevo Todorcevic. Walks on ordinals and their characteristics, volume 263 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2007.
- [Ula30] Stanislaw Marcin Ulam. Zur Masstheorie in der allgemeinen Mengenlehre. Uniwersytet, seminarjum matematyczne, 1930.

DEPARTMENT OF MATHEMATICS, BAR-ILAN UNIVERSITY, RAMAT-GAN 5290002, ISRAEL. *URL*: http://www.assafrinot.com

DEPARTMENT OF MATHEMATICS, BAR-ILAN UNIVERSITY, RAMAT-GAN 5290002, ISRAEL. URL: https://jingjzzhang.github.io/