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Abstract

Background: Network visualization and analysis tools aid in better understanding of complex biological systems.

Furthermore, to understand the differences in behaviour of system(s) under various environmental conditions

(e.g. stress, infection), comparing multiple networks becomes necessary. Such comparisons between multiple

networks may help in asserting causation and in identifying key components of the studied biological system(s).

Although many available network comparison methods exist, which employ techniques like network alignment and

querying to compute pair-wise similarity between selected networks, most of them have limited features with respect

to interactive visual comparison of multiple networks.

Results: In this paper, we present CompNet - a graphical user interface based network comparison tool, which allows

visual comparison of multiple networks based on various network metrics. CompNet allows interactive visualization of

the union, intersection and/or complement regions of a selected set of networks. Different visualization features

(e.g. pie-nodes, edge-pie matrix, etc.) aid in easy identification of the key nodes/interactions and their significance

across the compared networks. The tool also allows one to perform network comparisons on the basis of

neighbourhood architecture of constituent nodes and community compositions, a feature particularly useful

while analyzing biological networks. To demonstrate the utility of CompNet, we have compared a (time-series)

human gene-expression dataset, post-infection by two strains of Mycobacterium tuberculosis, overlaid on the

human protein-protein interaction network. Using various functionalities of CompNet not only allowed us to

comprehend changes in interaction patterns over the course of infection, but also helped in inferring the

probable fates of the host cells upon infection by the two strains.

Conclusions: CompNet is expected to be a valuable visual data mining tool and is freely available for

academic use from http://metagenomics.atc.tcs.com/compnet/ or http://121.241.184.233/compnet/

Background

Interaction networks are a convenient way of repre-

senting the complex nature of multi-component sys-

tems. Examples of such complex systems include

biological pathways, social interactions, financial mar-

kets, management systems, multiple modules in a

programming language, etc. Recent emergence of sys-

tems biology has brought biological networks into

focus. Such biological networks can be of various

types, ranging from protein-protein interactions, gene

regulatory networks, metabolic networks, microbe

co-occurrence and co-inhibitory networks, etc., and

can be investigated using appropriate network

analysis methods [1–10]. Depending on the type of

the network, variations may arise due to several

internal/external factors like inheritance/evolution,

environmental stress, infection, etc. Identification and

interpretation of these variations are therefore crucial

in understanding the respective biological system.

In addition to comparison of graph properties/metrics

in form of tables or charts, identifying and comprehend-

ing the patterns of variations across different networks

becomes several folds easier if provisions exist for visual

comparisons, such as creation of graph layouts, overlay-

ing of multiple networks, and interactive analysis of

graph components. Several currently available methods/

tools allow comparison of multiple interaction networks,

the majority of which focuses on network alignment,

querying, and sub-graph matching [11–14]. With
* Correspondence: sharmila.mande@tcs.com

Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., 54-B,

Hadapsar Industrial Estate, Pune 411 013, Maharashtra, India

© 2016 Kuntal et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Kuntal et al. BMC Bioinformatics  (2016) 17:185 

DOI 10.1186/s12859-016-1013-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-1013-x&domain=pdf
http://metagenomics.atc.tcs.com/compnet/
http://121.241.184.233/compnet/
mailto:sharmila.mande@tcs.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


increasing interests in systems biology, tools specialized

for analysis of complex metabolic networks (represented

in information rich graph formats like SBML) has also

been developed [15]. These tools employ different

algorithms to compute pair wise similarity between

selected networks/paths. Although some of these tools

like MIMO [15], have options for graphical visualization

of outputs, in general, the network alignment and query-

ing methods do not provide any dedicated module/

options for visual comparison of multiple networks

on a single canvas. On the other hand, there are several

network visualization tools available to researchers, which

enable easy computation and analysis of graph properties

for any given network [16, 17]. However, these network

visualization tools also have limitations pertaining to com-

parative visualization of multiple networks. Cytoscape

[18], the most popular visual platform for studying bio-

logical networks, has a limited number of plugins that

focus on comparing properties of multiple input networks

[19–22]. Although these tools/plugins are useful in their

own context, most of them have limitations with respect

to visual comparison of more than two input networks.

For example, although ‘network analyzer’ [16] provides

tabular summaries and charts/plots depicting the graph

properties of input networks, it does not allow draw-

ing or overlaying of multiple networks/graphs on a

canvas. Similarly, ‘Venn and Euler diagrams’ [23] and

‘Venndiagramgenerator’ [21] provide a comparison of dif-

ferent input networks in terms of constituent nodes, and

by definition have limitations pertaining to the number of

sets (networks) that can be visualized using such dia-

grams. Another Cytoscape plugin, ‘Pina4ms’ [24], though

enables comparison/overlay of multiple interaction net-

works, is not designed for generic use. This plugin only

allows comparison of a few predefined sets (or subsets) of

protein-protein interactions. Other plugins of Cytoscape

pertaining to network comparison are also mostly de-

signed for network alignment and querying [25–27]. The

above observations make it apparent that despite the avail-

ability of quite a few popular and comprehensive network/

graph analysis tools, there remains a need for a software

tool/platform that allows interactive visual comparison

and analysis of multiple biological networks at the same

time. In addition, the necessity for such a tool/platform

can be further justified considering that biological

networks exhibit certain characteristic features [28],

and may occasionally require appropriate specialized

comparison approaches apart from commonly used

network metrics.

In this paper we present CompNet - a user-friendly

GUI-based tool, which enables comparison of multiple

interaction networks that are provided in the form of

edge-lists, node-lists (to be overlaid on a background

network), or path-lists. The tool can be used for

overlaying and subsequent comparative visualization

(and analysis) of multiple networks. CompNet helps to

elucidate similarities/differences between the compared

networks using different network metrics and visualiza-

tions, appropriately designed to highlight the topology of

connections between the constituent nodes, differential

shortest paths, and community distributions. CompNet

intends to complement existing network analysis tools/

platforms and incorporates the methods/metrics/options

which would be used most frequently during multiple-

network comparisons. Any further analysis with other

user-preferred network analysis tools also becomes easy,

given the provisions of exporting the results and net-

works diagrams created using CompNet into user-

friendly output formats.

Implementation

CompNet has been developed using PerlTk and includes

several graph analysis functions from the R ‘igraph’ pack-

age (http://igraph.sourceforge.net). The tool allows easy

visualization of the union, intersection and/or comple-

ment regions of any selected set of networks. Different

visualization features (e.g. ‘pie-nodes’, ‘edge-pie’ matrix,

‘chart summary’, etc.) aid in easy identification of the

key nodes/interactions and their significance across the

compared networks. The option for hierarchical cluster-

ing of networks (trees) based on constituent nodes/

edges, using Jaccard similarity index, helps one to find the

relative similarity between selected networks. CompNet

neighbor similarity index (CNSI), a new metric for net-

work similarity, can be used for capturing the neighbor-

hood architecture of constituent nodes. Based on generic

network properties, community composition, and shortest

paths, a visual comparison of multiple networks using

CompNet enables one to obtain deeper biological insights.

Figure 1 provides a snapshot of the CompNet GUI and

highlights few of the salient features of this tool.

Networks may be imported in CompNet by providing

either (a) egde-lists, (b) path-lists or (c) a set of nodes to

be overlaid on a ‘background’ network (Additional file 1:

Figure S1). ‘Edge-list’ refers to a text file containing a list

of node pairs (each line containing a pair of nodes). An

edge is drawn in the displayed network between every

set of nodes forming a pair. Path-lists are similar input

files, where each of the lines in the input file contains

multiple nodes in a specific order (a path). Edges are

drawn in the network between every consecutive node

in a given path. The third option of overlaying nodes on

a background network essentially involves constructing a

network by selecting only the interconnections between

nodes of interest (‘overlaid nodes’) from a larger user

provide network (‘background network’).

CompNet allows identification of the union, intersec-

tion and exclusive edges amongst a selected set of
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networks using simple GUI operations. The ‘union’ op-

eration identifies (and displays) all the nodes and edges

which are included in any of the loaded/selected net-

works. In contrast, the ‘intersection’ operation compares

two or more selected graphs/networks to identify (and

display) only those nodes and edges which are com-

monly present in each of the selected networks. The

‘exclusive’ feature identifies and displays the nodes and

edges which are specific/exclusive to the selected net-

works. While rendering multiple networks on the canvas

each node is represented as a ‘pie’ with differently

coloured pie-slices corresponding to the source net-

works (Additional file 1: Figure S2). Hence, with a first

glance at the canvas, a user can easily ascertain the affili-

ations of the nodes to any of the depicted networks. An

array of other user friendly visualization options in

CompNet enables the user to study the distribution of

nodes/ edges across selected networks, communities and

sub-graphs (Additional file 1: Figures S3 and S4).

CompNet makes the comparison of multiple networks

convenient by providing a distribution of global graph prop-

erties like total nodes, total edges, density, clustering coeffi-

cient, average path length and diameter of the loaded

networks (Additional file 1: Figure S5). These metrics allow

to better understand how well connected are the compo-

nents of the analysed network and enable assessment of its

robustness and modularity [29]. A more detailed and flex-

ible comparison can be made on the basis of node-

specific properties like degree, centrality, betweenness,

closeness, eccentricity and coreness, with options to map

these specific graph properties as node sizes (proportion-

ally to the selected metric) (Additional file 1: Figures S6,

S7, S8, S9 and S10). Centrality measures are important in

understanding the key components of any network. Very

well connected nodes (which have a high degree values) in

a biological network are often functionally more import-

ant [30–32]. High betweenness, on the other hand, char-

acterizes nodes which lie in a significant number of paths

connecting different parts of the network [30–32].

For a similar set of networks, like those representing

time-series data or protein interactions from healthy ver-

sus diseased tissues/cells, the changes in shortest paths

might provide valuable insights in understanding the

biological mechanism [33]. CompNet allows the user to

identify such shortest paths from multiple networks with

ease, and visually trace/compare these paths (Additional

file 1: Figure S11). An unweighted breadth-first search is

used to calculated the shortest path between the source

and target nodes using the ‘igraph’ library [34]. Add-

itionally, shortest paths between multiple sets of sources

and targets can also be computed with CompNet by pro-

viding it with two separate files containing lists of sources

a

b

c

d

e

Fig. 1 (a) CompNet canvas displaying the union of eight protein-protein interaction networks. The names of nodes belonging to different

communities are marked with different colors. (b) The ‘pie-nodes’ representation enables to identify presence/absence of individual nodes across the

compared networks. (c) The cumulative community distribution plot (d) Bubble chart representing similarity between networks (e) Hierarchical tree

built using network similarity
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and targets. This feature can be utilized to perform short-

est path based analyses, similar to the ‘express path’ ana-

lyses study by Karim and coworkers [33].

CompNet allows assessment of statistical significance

of the network properties calculated for any network/

sub-network displayed on the CompNet canvas. Users

can evaluate whether the global network properties,

namely network diameter, network density, clustering

coefficient and average path length, are significantly dif-

ferent from background network. The background net-

work can either be the union of the networks under

comparison, or a user defined network. CompNet draws

a large number of random sub-networks from the speci-

fied background network, the sizes of each of these

random networks being equivalent to the size of the net-

work being assessed (query network). The size and the

number of random networks to be generated can also be

specified by the user. The graph properties for all these

‘similar sized’ random networks are then calculated and

properties of the query networks varying significantly

from these ‘background’ distributions are assessed with a

Z-test [35]. The results are displayed graphically with

associated p-values depicting the significance of any ob-

served variation(s). All the values can also be exported

as text files for further analysis.

CompNet detects ‘communities’ in the union network

(using standard ‘igraph’ library methods [34]) and colors

them distinctly, and lists them in the ‘Community’ tab in

a descending order of their size (Additional file 1:

Figures S12, S13 and S14). CompNet also incorporates

different methods to compute (and visualize) similarities

between multiple networks. Pairwise Jaccard similarities

[36] can be computed by considering the distribution of

nodes (Eq. 1) and edges (Eq. 2) in the compared net-

works. A greater number of shared nodes or edges be-

tween two networks will result in higher Jaccard index

values and imply a greater extent of similarity.

Jaccard Node similarity ¼
NodesA ∩ NodesB

NodesA ∪ NodesB
ð1Þ

Jaccard Edge similarity ¼
EdgesA ∩ EdgesB

EdgesA ∪ EdgesB
ð2Þ

Where ‘A’ and ‘B’ are the compared networks and the

similarity values are computed based on the set of

nodes/edges present in A and B.

CompNet incorporates a method for comparison of

neighborhood similarities of the constituent nodes

between the compared networks. CompNet neighbor

similarity index (CNSI) (Eq. 3) can be used for capturing

the neighborhood architecture of constituent nodes.

Two nodes (from two compared networks) are deemed

to be more similar if the lists of their immediate

neighbors overlap. An overall similarity score, cumulated

for all constituent nodes, is finally used to designate the

similarity between two compared networks.

CNSI ¼
XN

i¼1

f Ani ∩ f Bni

f Ani ∪ f Bni
ð3Þ

Where ni is the ‘i’th node in the union of compared

networks A and B (consisting of a total of N nodes), and

fni
A and fni

B are the first neighbors of ni in the networks

A and B respectively.

Based on the similarities computed between compared

networks, CompNet enables generating hierarchical clus-

tering diagrams (dendograms) [37] and bubble charts

(Additional file 1: Figure S15).

Results and discussions

Insights into Mycobacterium tuberculosis infection through

comparison of multiple biological interaction networks

using CompNet

Tuberculosis is currently a global health problem and

nearly a third of the world’s population is feared infected

with the causative Mycobacterium tuberculosis (Mtb).

However, active disease is not expressed in all infected

individuals. The choice between the alternate outcomes

(latent-infection/active-disease) is dictated by a complex

network of interactions in the host and the pathogen.

Moreover, different strains of Mtb have been observed

to elicit different types of responses in the human host.

Considering the multi-component nature of the human

immune response, adoption of a network comparison

based approach is expected to provide better insights

while analyzing different infection types/conditions. In a

previous study [33], a network based approach (using

shortest-path comparisons) was used for identifying key

regulatory nodes controlling host response during tuber-

culosis infection. We have used CompNet to re-analyze

the time-series micro-array datasets used in this study.

These datasets pertain to gene-expression of human

macrophages infected with two strains (H37Ra and

H37Rv) of M. tuberculosis. While the strain H37Rv is

known to avoid the host defensive mechanisms, thereby

causing persistent infection, the other strain H37Ra is an

attenuated avirulent strain. Various network comparison

approaches, implemented in CompNet, have been used

to identify key genes and biological processes that are

likely to play crucial roles during host response to Mtb

infection.

In the present analysis, the gene expression data of

human macrophages infected with H37Ra and H37Rv at

5 infection time-points (0, 8, 16, 48 and 90 h) were

downloaded from the supplementary material provided

by Karim and co-workers [33]. For every time-point,

only the significantly perturbed nodes (having |expression
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values| > =3, i.e. showing both highly positive as well as

negative perturbations) were filtered and obtained as ‘node

lists’. The human STRING (version 9.0) interaction net-

work [38], filtered with a stringent cut-off score of >900

(i.e. retaining only high confidence interactions), was

loaded as a background PPI network in CompNet. Upon

overlaying the node lists on this background, eight net-

works were obtained (the 0 h time-point was excluded

since it had no significantly perturbed genes). These net-

works depicted the progression of host cell responses

against infections by H37Ra and H37Rv strains of Mtb.

Overlaying differentially expressed genes on the host

protein-protein interaction network reveals a well

coordinated host-response mechanism

To build the host-response network(s) of infection by

the two strains H37Ra and H37Rv (abbreviated as ‘RA’

and ‘RV’ respectively), relevant human gene expression

data [33] corresponding to four post-infection (8, 16, 48

and 90 h) time-points were considered. The sets of

differentially expressed genes were identified for each

time-point. The host (human) protein-protein inter-

action (PPI) network was suitably modified to represent

a background network for overlaying the differentially

expressed genes. Individual interaction networks (RA8,

RA16, RA48, RA90, RV8, RV16, RV48 and RV90), repre-

senting only the most significantly perturbed interac-

tions (involving both up-regulated and down-regulated

genes), were thereby generated for each infection time-

point (Additional file 1: Figure S1). This was done to

ensure that the focus of the analysis was restricted to

highly ‘perturbed’ but ‘connected’ components in the

network, rather than the whole set of differentially regu-

lated genes. It is imperative that the connected nodes/

proteins in the PPI networks represent some biological

function brought about by the coordinated effort of mul-

tiple genes/proteins. It also needs to be considered here

that host response is not instantaneous, but a prolonged

and well orchestrated event. Genes/proteins perturbed at

one time-point can affect its neigbouring genes/proteins

(in the interaction network) at subsequent time-point(s).

Therefore a union of all the individual time-point and

infection-type specific networks consisting of perturbed

nodes (and their known inter-connections) was con-

structed to obtain an overall view of the host cell ma-

chinery responding to the infection. It may be noted

here, that although creation of such a ‘union’ network,

and subsequently drawing any inferences from its

analysis, may seem inappropriate (given the different

types of infections), it needs to be considered that each

of the connections in this ‘union’ network represent

‘known’ protein-protein interactions (high confidence in-

teractions from STRING) in the host cell. Creating a

‘union’ therefore allows not only to obtain an overall

view of the host response (independent of the infection-

type), but also to identify the sets of nodes/interactions

which lie in the interface of the two types of infection-

specific responses. Furthermore, finding communities/

modules and attributing potential functional roles to

them seems more appropriate in an expectedly ‘larger’

and ‘dense’ union network than in relatively ‘smaller’

infection-type/time-point specific networks. The contri-

bution of such communities/modules in host response

against/at a specific infection-type/time-point can subse-

quently be investigated by checking the affiliations of the

constituent nodes/edges to any of the ‘smaller networks’.

When the significantly up-regulated/down-regulated

genes were considered, a total of 358 nodes (representing

genes/proteins) connected by 609 edges (representing in-

teractions between the genes/proteins) were observed in

the union of all the networks (Additional file 1: Figure S2).

A closer look into the network statistics using CompNet

(see Methods) revealed that the union network had a sig-

nificantly (p < 0.05) higher network density (0.010) and

clustering coefficient (0.501) as compared to random net-

works of similar sizes (mean network density = 0.001,

mean clustering coefficient = 0.263 computed for 10,000

random networks), drawn from the same background net-

work. The average path length of the union network was

further observed to have a significantly high value of 5.808

(p <0.05), in contrast to what could be expected for a net-

work having similar size (mean of average path lengths of

10,000 random networks = 2.867). These results suggest

that the genes exhibiting perturbed expression during in-

fection are more densely connected to each other, than

any randomly chosen set of genes/proteins in the back-

ground (human) PPI network, thereby suggesting a well

coordinated host response mechanism during infection. A

detailed analysis of network properties, while cumulating

the infection type specific networks (across all time

points) into separate ‘union’ networks, was also per-

formed. These results also echoed the earlier observations

pertaining to significantly higher network density and

clustering co-efficient as compared to random networks

of similar sizes (Additional file 1: Table S1).

Indication of central nodes (genes) to be involved in

immune-regulation, cell proliferation and cell death

Additional file 1: Figures S6 and S7 shows the top 10

nodes, in terms of betweenness and degree, in the over-

all union network (containing both up-regulated and

down-regulated genes across four infection time-points

by the two Mtb strains). The colored stacks in the bar-

plots represent the qualitative presence of a gene/node

in the individual networks. The height of individual

stacks in the plot indicates the value of the selected

graph property (e.g., betweenness, degree, etc.). As evi-

dent from the figure, the B1RC5 gene was seen to have
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the highest betweenness as well as the highest degree

and was observed to be present in the networks corre-

sponding to 48 and 90 h post infection by both H37Ra

and H37Rv (i.e., RA48, RA90, RV48 and RV90). KCNJ11

and BUB1B were identified as the nodes having the sec-

ond highest values of betweenness and degree respect-

ively, and were found to be present in the networks

corresponding to the late infection time-point (90 h) for

both H37Ra and H37Rv infections. While the gene

KCNJ11 codes for a membrane protein, BIRC5 and

BUB1B are known to play active roles in promoting cell

proliferation, progression of mitosis and prevention of

apoptosis [39–43]. Interestingly, both BIRC5 and BUB1B

were observed to be significantly down-regulated during

the late infection stages (48th and 90th hour time-

points) in both H37Ra and H37Rv infected macro-

phages. This observation leads to the question as to

whether apoptosis could be the probable fate of both

types of infected cells. Results obtained during a subse-

quent community analysis (see next section) however in-

dicate that a higher rate of apoptosis is induced in case

of infection with H37Ra cells. When the H37Ra and

H37Rv infection specific host response networks were

separately analysed (i.e. one union network consisting

RA8, RA16, RA48, RA90, and another union network

consisting of RV8, RV16, RV48, RV90, respectively),

similar sets of central nodes (Additional file 1: Figure S8),

as compared to those found in the overall union network,

were identified. Genes like BIRC5, KCNJ11, INS-IGF,

SOCS3 and FOXA2 were observed to have high between-

ness in the union of host response networks against

H37Ra infection, and were present exclusively in the net-

works corresponding to later time points of infection.

These genes have been reported earlier to be associated in

inducing apoptosis [39–41, 44–46]. Furthermore, except

BIRC5, all of these genes were found to be upregulated

during H37Ra infection. BIRC5, as mentioned earlier, is a

negative regulator of apoptosis, and based on these obser-

vations it may be expected that a higher rate of apoptosis

is induced in case of infection with H37Ra cells. In con-

trast, a majority of central nodes identified in the union of

host response networks against H37Rv infection, which

includes CCNA2, BIRC5, CHEK1, CDC6 and E2F1, were

found to be downregulated during late infection time-

points. Given that these genes also have reported roles in

regulating apoptosis [39, 42, 47–50], the observations are

indicative of an alternate outcome of infection with

H37Rv as compared to H37Ra infection.

While analyzing the distribution of up-regulated and

down-regulated genes (nodes) in different host response

networks, up-regulation of 231 genes were found to be

exclusive to either H37Ra or H37Rv infected cells. In

contrast, only 25 of the down-regulated genes were

found to be exclusively present in either H37Ra or

H37Rv infected host response networks. Subsequently

host response networks consisting of significantly up-

regulated and down-regulated genes were separately

constructed and analysed. As expected (from the distri-

bution patterns of up-/down-regulated genes), the net-

works consisting of up-regulated host genes could

discriminate better between response to H37Rv and

H37Ra infections. Additional file 1: Figure S9 depict the

union of the ‘up-regulated’ host response networks (for

different time-points), highlighting the degree and be-

tweenness of individual nodes. The ‘pie-nodes’ represen-

tations also depict the association of each of the genes to

different infection time-points, thereby allowing easy

identification of time-point specific mediators (genes) of

host response. In contrast to the observation mentioned

in the previous paragraph, a new set of nodes having

high values of degree and betweenness were identified

(Additional file 1: Figure S10 represents the top 10 per-

turbed nodes). These genes included INS-IGF2 (an auto

antigen that causes auto immunity and cell death [44]),

SOCS3 (a suppressor of cytokine signaling [45]), CCR5

(known to be an important co-receptor for macrophage-

tropic virus, including HIV, facilitating entry into host

cells [51]), IFNG (having antiviral, immunoregulatory

and anti-tumor properties and a potent activator of mac-

rophages [52]) and IL17A (a pro-inflammatory cytokine

produced by activated T cells [53]). The stacks in the bar

plots (Additional file 1: Figure S10) and the coloured

slices of the pie-nodes (Additional file 1: Figure S9) fur-

ther indicate that most of the nodes from this new set

are exclusive to networks corresponding to infection by

the H37Ra strain. The genes INS-IGF2, SOCS3, CCR5,

IFNG and IL17A, known to be involved in immune re-

sponse, are found to be specific to the networks corre-

sponding to H37Ra infected cells. This observation

indicates stronger host response to infection by H37Ra

as compared to that by the H37Rv strain.

Community analysis reflects differences in host response

during progression of infection by virulent and avirulent

strains

Inferring the fate of infection from the expression levels

and connections between individual nodes in the net-

work may not be sufficient for a complete understanding

of the complex biological system. To get a deeper

insight, the analysis was further extended to detect

closely connected communities/modules in the union

network and subsequently analyze their functional par-

ticipation. A total of 65 such modules were identified

from the union network (consisting of both up-regulated

and down-regulated genes) using the ‘fast-greedy’ com-

munity detection algorithm (default option in CompNet)

[54]. The 3 largest communities, referred to as ‘C1’, ‘C2’

and ‘C3’ (Fig. 2), constituted of 142 nodes densely
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connected with 412 edges. Closely knit communities of

genes are expected to contribute to related biological

processes/pathways [55]. To investigate such functional

aspects of the identified communities, the constituent

nodes of C1, C2 and C3 were selected from the Comp-

Net canvas for performing an ontology enrichment study

(GO enrichment) using the DAVID tool [56, 57]. A for-

matted output showing the biological processes associ-

ated to the three communities is shown in (Additional

file 1: Table S2). While the nodes constituting commu-

nity C1 are mostly involved in regulation of cell cycle

and cell division, the other two communities (C2 and

C3) participate in various cellular signaling processes,

inflammation and chemotaxis (Fig. 2). Interestingly,

members of the community C3, in addition to cell sig-

naling, are also involved in processes like secretion, cell

death and apoptosis.

The cumulative community distribution profile, plot-

ted using CompNet, indicated some interesting results

(Additional file 1: Figure S12). For example, the number

of nodes/edges present in these communities varied sig-

nificantly across the individual networks (representing

the different time-points post-infection). The number of

‘differentially regulated’ nodes, constituting these

communities, steadily increased till the 48th hour time-

point for both H37Ra and H37Rv infected cells. For both

types of infection, the maximum perturbation at the

48th hour time-point was observed in community C1,

which was the largest community in the union network.

Additional file 1: Figure S13 depicts the intersecting

edges between the networks RA48 and RV48. As one

would expect, it was observed that a majority of the

intersecting edges belonged to the community C1. The

members of the community C1, when visualized as an

‘edge-pie’ matrix plot (depicting the edge distribution

across the networks), further revealed that almost all of

the interactions from community C1 for the 48th hour

time-point were common for both H37Ra and H37Rv

infected cells (Additional file 1: Figure S14). This obser-

vation can probably be attributed to some defense mech-

anism commonly employed by the human cell against

both H37Ra and H37Rv infection.

It was also interesting to note that the total number of

interactions involving differentially regulated genes sig-

nificantly reduced in H37Rv infected cells at the 90th

hour time-point. Only a slight increase in the number of

perturbed nodes in community C2 could be spotted for

H37Rv infected cells. In contrast, for the H37Ra infected

Fig. 2 The 3 largest communities in the union network, identified by CompNet. GO Biological process terms which were found to be enriched in

these communities are highlighted. The nodes/interactions in these communities correspond to some distinct, but related biological processes.

While the nodes constituting community C1 are mostly involved in regulation of cell cycle and cell division, the other two communities (C2 and

C3) participate in various cellular signaling processes, inflammation and chemotaxis. The members of the community C3, in addition to cell

signaling, are also involved in processes like secretion, cell death and apoptosis. (To avoid redundancy, some similar GO Biological process terms

are not shown in the figure)
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cells, the total number of interactions involving per-

turbed genes further increased at this late time-point

post-infection. Additional perturbations in the latter case

could also be identified in communities C2 and C3.

Increase in perturbations in the community C2, ex-

pected to be associated with enhanced activity of the cell

signaling and inflammation pathways, could be noticed

for infections by both H37Ra and H37Rv. However,

increased number of differentially regulated genes in com-

munity C3 was found to be exclusive to H37Ra infection.

As mentioned earlier, GO enrichment analysis indicated

that regulatory paths for several biological processes like

programmed cell death, apoptosis, and secretion were as-

sociated to this community. This observation seems to be

consistent with earlier studies which indicated that H37Ra

infection induces apoptosis to a much higher degree than

infection by the H37Rv strain [58–60].

The gradually increasing perturbations in case of

H37Ra infection probably pertains to the continued ef-

forts of the host cell towards neutralizing the avirulent

strain. On the other hand, the initial increase and subse-

quent reduction in the number of differentially regulated

genes, observed in case of H37Rv infection, probably

points at the pathogen evading the host defense systems,

thereby proceeding towards a persistent infection.

Inferring similarity between host response networks by

comparing node-neighbourhoods

CompNet incorporates a method for comparison of

multiple interaction networks on the basis of neighbour-

hood similarities of the constituent nodes. Two nodes

(from two compared networks) are deemed to be more

similar if the lists of their immediate neighbours overlap.

An overall similarity score (called CNSI or CompNet

neighbour similarity index), cumulated for all constitu-

ent nodes, is finally used to designate the overall similar-

ity between any two compared networks. The eight

networks corresponding to the different infection time-

points by H37Ra and H37Rv were compared using this

method. The results of the comparison, in the form

of a bubble chart and a dendogram (Additional file 1:

Figure S15), depicted grouping of the different networks

according to their similarities. At a first glance, the bubble

plot of ‘similarity profile’ between the networks showed

that the networks corresponding to the 48th hour time-

point post infection by both H37Ra and H37Rv had the

highest CNSI (represented by the largest bubble on the

chart). The dendogram placed the networks correspond-

ing to the late infection time-points (48 and 90 h post

infection) in a single separate cluster, indicating their

similarity as compared to the early infection time-points

(8 and 48 h). A closer look into this clustering also

revealed that while the host response at the 48th hour

time-point was similar for both types of infection, the

response for H37Ra infection at the 90th hour time-point

was well separated from other late infection time-points.

This observation could probably be attributed to the ag-

gravated host response to H37Ra infection at the 90th

hour time-point and is in line with the expected outcome.

In summary, a clear grouping of networks during early

and late infections is evident from the CNSI-based group-

ing of networks. Also, the distinct nature of the network

corresponding to 90th hour time-point post H37Ra infec-

tion probably pertains to the relatively intense host re-

sponse against the avirulent H37Ra strain.

The dataset used for the current case study had been

originally analysed by Karim and co-workers, using

‘express-path analysis’ [33], which essentially involved

identifying ‘shortest paths’ (in a gene-/protein-interaction

network) enriched with nodes (genes) showing the

most-perturbed gene-expression values. These paths

can be expected to control the alternate outcomes of

virulent/avirulent infections through gene-regulation/

protein-protein interaction events. This previous study

had identified the ‘Tyrosine kinase SRC regulon’ to play

an important role during Mycobacterial infections. The

shortest path finding/analysis feature of CompNet can be

used to easily replicate the ‘express-path analysis’ on the

chosen dataset. The current case-study aimed at analysing

the data from a different perspective, and to highlight how

different network characteristics (e.g. centralities, commu-

nity structures and neighbour similarities) when viewed in

combination with the gene-/protein-functions, can help

understand the infection outcomes. Since the perspectives

and approaches adopted in the current case-study differ

from the original ‘express-path’ analysis, the scope of

comparing results is limited. However, it may be

noted that the alternate outcomes of infection by

H37Ra and H37Rv strains could be successfully inferred

using both the earlier and the current approach. Further-

more, genes/proteins identified to be involved in host

response, using the two different approaches, were

observed to have similar functional profiles. For ex-

ample, Karim et al. [33] identified ‘immune responses’

and ‘gene regulation’ to be the major functional clas-

ses of genes showing discrete regulation between

H37Ra- and H37Rv-infected cells. In the current

case-study using CompNet, communities in the union

(host response) network, associated to ‘inflamation

pathways’, ‘cell signalling’, ‘secretion’, and ‘programmed

cell death’, were observed to be differentially contrib-

uting to the late time-point specific networks corre-

sponding to H37Ra and H37Rv infections.

Conclusions

The varying numbers of ‘connected perturbations’,

identified by CompNet, helped in ascertaining the key

components involved in host response against the

Kuntal et al. BMC Bioinformatics  (2016) 17:185 Page 8 of 11



avirulent H37Ra and the virulent H37Rv strains of M.

tuberculosis. The gradually increasing perturbations in

case of H37Ra infection probably pertains to the contin-

ued efforts of the host cell towards neutralizing the

avirulent strain. On the other hand, the initial increase

and subsequent reduction in the number of differentially

regulated genes, observed in case of H37Rv infection,

probably points at the pathogen evading the host

defense systems, thereby proceeding towards a persistent

infection. However, the observations made in this case

study pertain to only a selected subset of significantly

perturbed genes/interactions, and therefore require cau-

tious interpretation. The primary objective of the present

study was to demonstrate the ease with which multiple

network comparison (in this case pertaining to host re-

sponse at different infection time points against different

strains of M. tuberculosis) can be performed with Comp-

Net in order to draw biologically relevant inferences. In-

clusion of experimental data at more time-points as well

as with additional strains of Mtb (including MDR and

XDR strains) will be useful in similar network based

studies and likely to help in unraveling of newer per-

spectives on Mycobacterial infection.

CompNet is a user-friendly tool which allows

simultaneous visualization and comparison of multiple

networks. In addition to computing generic graph prop-

erties for individual networks, the tool allows multi-

graph comparisons and similarity based grouping of

networks. CompNet also allows visual identification and

selection of sub-graphs/communities of interest, enab-

ling a general user to work with and compare between

sufficiently complex and large networks. In this work we

have demonstrated how CompNet can be used to per-

form different analyses with multiple biological networks

in order to obtain meaningful insights. Inspite of having

several generic, as well as, specialized plug-ins for net-

work analysis, the popular network analysis platforms

like Cytoscape have limited user friendly options per-

taining to comparison/visualization of multiple networks

on the same canvas. CompNet intends to fill in this par-

ticular gap and make ‘multiple network comparisons’

easy. It may however be noted that the network analysis/

comparison operations, and most of the metrics com-

puted by CompNet, comprise only a subset of all pos-

sible network analysis methods. Encompassing all of

these methods/techniques into a single platform, being a

Herculean task, can be best addressed by community

supported development e.g. Cytoscape plugins. Given this,

CompNet only includes the methods/metrics/options

which would be used most frequently during multiple-

network comparisons, while keeping options open for the

user to export the networks/data from CompNet into

other user-preferred tools (like Cytoscape) for further ana-

lysis. It may be noted here that designing CompNet as a

Cytoscape-plugin has not been considered in order to

avoid dependency and portability issues associated with

Cytoscape (and Java) versions [61]. However we ac-

knowledge the ample number of visualization options

in Cytoscape along with its different useful plugins.

In view of this, CompNet provides options for easy

export of networks to Cytoscape compatible formats

(GML and edge-lists). CompNet is expected to be a valu-

able tool for biologists and other researchers working in

the field of visual data mining.
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