

Component-Based Design Approach for Multicore SoCs1

W. Cesário, A. Baghdadi, L. Gauthier, D. Lyonnard,
G. Nicolescu, Y. Paviot, S. Yoo, A.A. Jerraya

TIMA Laboratory, SLS Group
46, av. Félix Viallet

 38031 Grenoble Cedex - France
{Wander.Cesario,Ahmed.Jerraya}@imag.fr

M. Diaz-Nava
STMicroelectronics
AST Grenoble Lab

12, rue Jules Horowitz, BP217
38019 Grenoble Cedex - France

Mario.Diaznava@st.com

ABSTRACT
This paper presents a high-level component-based methodology
and design environment for application-specific multicore SoC
architectures. Component-based design provides primitives to
build complex architectures from basic components. This bottom-
up approach allows design-architects to explore efficient custom
solutions with best performances. This paper presents a high-level
component-based methodology and design environment for
application-specific multicore SoC architectures. The system
specifications are represented as a virtual architecture described
in a SystemC-like model and annotated with a set of configuration
parameters. Our component-based design environment provides
automatic wrapper-generation tools able to synthesize hardware
interfaces, device drivers, and operating systems that implement a
high-level interconnect API. This approach, experimented over a
VDSL system, shows a drastic design time reduction without any
significant efficiency loss in the final circuit.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED
SYSTEMS]: Microprocessor/microcomputer applications, Real-time
and embedded systems.

General Terms
Design, Experimentation, Standardization.

Keywords
Multicore System-on-Chip, Component-based design, HW/SW
interfaces abstraction.

1. INTRODUCTION
The ITRS roadmap [1] predicts that by 2004 70% of ASICs will
include at least one embedded instruction-set processor, which
means that most ASICs will be Systems-on-Chip (SoC). Some
existing designs confirm and strengthen this prediction, many
applications include several processors with different instruction-
sets: mobile terminals (e.g. GSM [2]), set-top boxes (e.g.

PNX8500 from Philips [3]), game processors (e.g. PlayStation2
from Sony [4]) and network processors [5]. Most system and
semiconductor houses are developing platforms involving several
cores (MCU, DSP, IP, etc) and sophisticated communication
interconnects (hierarchical bus, TDMA-based bus, point-to-point
connections and packet-routing switches) on a single chip. The
trend is moving now to interconnect standard components in the
same fashion performed for boards few years ago. This evolution
is creating several breaking points in the design process and new
challenges for the EDA industry:

1. Systems are the more and more complex: communication
cannot be specified manually at the register-transfer level (RTL)
as before without introducing many errors. At this level, bus
structures (data, address and control) and clock cycles need to be
detailed to verify logical and electrical constraints. However, this
level is not well adapted to check communication protocols
because this would be too much time consuming. By these
reasons, higher abstraction levels, to model and verify the
interconnection between components, are required to master the
complexity: reduce design time and errors.

2. SoCs will include many processors with different
instruction-sets to execute dedicated functions in order to increase
the flexibility of the whole system. The complexity of the code
will become higher than the hardware part and will require, in the
near future, several hundreds or thousands person-years [1]. This
software will not be programmed at the assembler level as today.

3. Complex, on-chip, hardware/software interfaces are required
to implement an application-specific communication interconnect.
The hardware (microprocessor interfaces, bank of registers,
memories) and software (drivers, operating systems) elements
required to perform the communication protocols need to be
adapted to the communication interconnect according to the type
of core.

This paper presents a systematic approach for the assembling of
application-specific SoC and the definition of a composition
model to abstract the interconnection between hardware (cores)
and software (tasks) components. Section 2 introduces the basic
concepts for complex SoC design and the component-based
approach. Section 3 details a new component-based specification
model and the design flow that enables multicore SoC design at a
higher level than RTL. Section 4 presents the application of this
flow onto the design of a VDSL circuit and the analysis of the
results. Finally, section 5 concludes this paper.

1 This research was partially funded by MEDEA+ project A508.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2002, June 10-14, 2002, New Orleans, Louisiana, USA.
Copyright 2002 ACM 1-58113-461-4/02/0006…$5.00.

2. BASICS: SYSTEM-ON-CHIP DESIGN
The expression SoC is used to designate an ASIC that combines
heterogeneous components (CPUs, DSPs, IPs, memories, buses,
etc.) on the same chip. This is similar to what we were used to see
on system boards.

2.1 SoC Architecture
The classic literature about multiprocessor systems provides all
the basic concepts used in this work [7][8], but it is too general to
be efficient for SoCs. Figure 1 shows a typical multicore SoC
architecture with heterogeneous processors and the on-chip
communication interconnect. A key difference with classic
computer architecture is that this model distinguishes (based on
their utilization) two kinds of processors (CPUs): those used to
run the end application and those dedicated to execute specific
functions that could have been designed in hardware. The
programming and interfacing of these two kinds of processors are
quite different, as we will explain later.

Communication interconnect

CPU core
(run application)

IP
(HW function,

memory)

Dedicated CPU
(DSP)

Figure 1. A typical multicore SoC architecture

Additionally, dedicated processors require application-specific
communications and memory schemes due to performance
optimization reasons. These specific architecture optimizations
are generally related to the application domain. For instance,
application-specific interfaces are required to respect tight
resource/performance constraints (e.g. area, power, runtime, etc.).

2.2 Software Organization
Each kind of embedded processor employs a different software
organization. The application software is generally organized as a
stack of layers on top of the hardware as shown in Figure 2a.

Application SW

Standard OS services

SW support package
(drivers)

Hardware

Functions realized in SW

Custom OS

Drivers

Hardware

(a) Application software stack (b) Functional software stack

Programming API Specific API

Figure 2. Software organization

The lowest software layer provides the drivers and the low-level
architecture controllers. This is also called the software support
package, and is generally provided by the SoC design team. The
upper layers, OS services and SW application layer are provided
by the application designer. The OS layer generally reuses an
existing embedded OS, which may be customized to the
application. The top layer is application-specific software that
may be designed using high-level languages and code generation
techniques. Application coding is not part of the SoC design and
will be omitted in the rest of this paper.

Presently, the software running on the dedicated processors is
written in Assembly/C. When multitasking and complex I/O are

required, specific code is provided to perform scheduling and to
manage I/O. This code is generally mixed with the functional
code, and there is no separated OS layer. This low-level
programming is one of the main bottlenecks in SoC design.
Additionally, this scheme lacks flexibility/portability and makes it
difficult to change the hardware part without a complete redesign.

One of the main contributions of this work is to consider higher-
level programming approach for dedicated software (often-called
firmware). Each dedicated CPU will use a software stack (see
Figure 2b). Of course, for code size and performance reasons, it
will not be realistic to use any existing generic OS as isolation
layer. In this case, a custom OS supporting an application-specific
program interface (API) is required. Custom OS design
automation is a new research area brought by SoC design [9].
With this scheme, both dedicated and application software can be
written independently from the hardware implementation.
Another benefit of this approach is that dedicated software can be
independent from hardware/software frontiers on architecture
components and OS choices. Finally, the main advantage of the
work presented in this paper is to allow this level of
flexibility/portability without any loss of performance.

2.3 SoC Design Methods
Currently, most SoC designs start at the RT-level for the hardware
interfaces and at the ISA level for the dedicated software
components. Validation of the overall design uses co-simulation
techniques that generally combine one hardware simulator and
one or several instruction-set simulators (ISS). As explained in
[10], two design automation approaches are competing to improve
productivity: top-down and bottom-up approaches. The most
popular top-down approaches are: synthesis from system level
models [11][12][13] and platform-based design [14][15]. These
approaches start with an architectural solution, target architecture
or architecture platform. In contrast, the bottom-up approach, also
called component-based design, starts with a set of components
and provides a set of primitives to build application-specific
architectures and communication APIs. The key idea of
component-based design is to increase the abstraction level when
designing component interconnections. Even if this approach does
not provide much help on automating the architecture exploration
phase, it may provide a considerable reduction of design time for
hardware/software communication refinement and component
integration, and facilitate IP reuse.

The key point in such a flow is the use of an abstract architecture
where communication is separated from the component on the
hardware side and from the functions on the software side. This
abstract architecture may be used by the software programmer as
an API. On the other side, the abstract architecture may use
hardware components through an abstract API. This is generally
called separation between communication and computation for
component-based design [15].

2.4 Component-based Approaches
In component-based SoC design [16], the goal is to enable the
integration of heterogeneous processors and communication
protocols by using abstract interconnections. Behavior and
communication must be separated in the system specification.
Thus, system communication can be described at a higher-level
and refined independently of the behavioral of system.

There are two component-based design approaches: usage of a
standard bus protocol [17] and usage of a standard component
protocol [18][19]. IBM defined a bus architecture called
CoreConnect that adopts the first approach [17]. To connect
heterogeneous components to the bus architecture, a wrapper is
designed to adapt the protocol of each component to CoreConnect
protocols. VSIA promotes the second approach with VCI and FI
as standard component protocols [18]. In this case, the designer
can choose a bus protocol and then design wrappers to
interconnect using this protocol. [20] also present methods for on-
chip network communication design in the case of multicore
SoCs. This paper introduces a new concept, called virtual
architecture, to cover both approaches listed above.

Recently, several commercial tools are trying to deal with the
component-based design concept. CoWare presents the tool N2C
[21], Cadence presents VCC (Virtual Component Codesign) [14],
Sonics presents Silicon Backplane µNetwork [19]. Still, designers
are not able to obtain significant reduction in system design cycle
and optimized multicore architectures. This is mainly due to the
non-separation of functional and application software and to the
non-availability of custom OS generation tools.

3. COMPONENT-BASED DESIGN
This section introduces a high-level system design methodology
for multicore SoC design using a communication refinement
approach for virtual components. The system is described as a set
of virtual components interconnected via channels. A virtual
component consists of a wrapper and an internal component (or
module). The internal component corresponds to a software task
or a hardware function. The wrapper adapts accesses from the
internal component to the external channels connected to the
virtual component. The internal component and external
channel(s) can be different in terms of: (1) communication
protocol, (2) abstraction level, and (3) specification language.
Depending on the difference, the functionality/structure of the
wrapper is determined and automatically generated.

3.1 Virtual Architecture Model
The virtual architecture, also called macro architecture, represents
a system as an abstract netlist of virtual components (see Figure
3). Each virtual component has a wrapper that is composed of a
set of virtual ports [22]. A virtual port has internal and external
ports. There could be an n to m (n and m are natural numbers)
correspondence between the internal and the external ports.
Internal and external ports are not directly connected because they
can use different communication protocols and/or transmit signals
at different abstraction levels. For this reason, in some cases the
wrapper will do a conversion between different internal/external
communication protocols and/or abstraction levels.

Virtual channels hide many details of communication protocols,
for instance, FIFO communication is realized using high-level
communication primitives (e.g. put and get). In our design flow,
the virtual architecture is described using an extension of
SystemC. Three new concepts are used:

1. virtual module: consists of a module and its wrapper;

2. virtual port: groups the corresponding internal and external
ports having a conversion relationship. A wrapper may be
composed of an hierarchy of several virtual ports;

3. virtual channel: grouping several channels having a logical
relationship (e.g. multiples nets belonging to the same
communication protocol).

blackbox

M1

M3

: configuration parameters

: wrapper

: module

: task : virtual port

: virtual channel

: virtual component

M2

Figure 3. The virtual architecture model

For system refinement, this model needs to be annotated with
architecture configuration parameters (e.g. protocol and physical
addresses of ports). This model is not synthesizable/executable
because the behavior of wrappers is not described. The main goal
of this design methodology is to generate automatically these
wrappers, in order to produce a detailed architecture that can be
both synthesized and simulated.

3.2 The Generic Architecture Model
When defining this model our goal was to have a generic model
where both computation and communication may be customized
to fit the specific needs of the application. For computation, we
may change the number and kind of components and, for
communication, we can select a specific communication scheme.
The architecture model is suitable to a wide domain of
applications; more details can be found in [24].

CPU1

HW/SW
wrapper

task1

HW
wrapper

Physical communication network

HW IP

Wrapper Wrapper

OS

taskn...

Figure 4. Generic architecture model for multicore SoC

We use a generic multicore SoC architecture where processors are
connected to communication networks via wrappers (see Figure
4). In fact, HW processors are separated from the physical
communication network by wrappers that act as communication
coprocessors or bridges. Such a separation is necessary to free the
processors from communication management and it enables
parallel execution of computation tasks and communication
protocols. Software tasks need also to be isolated from hardware
through an OS that plays the role of SW wrapper.

As shown in Figure 5, the wrapper is made of a software part and
a hardware part. On the hardware side, the internal architecture of
the wrapper consists of a processor adapter, a channel adapter,
and an internal bus. The number of channel adapters depends on
the number of channels that are connected to the corresponding
virtual module. On the software side, wrappers provide the

implementation of high-level communication primitives (API)
used in the software module and the drivers to control the
hardware. If required, the software wrapper will also provide
sophisticated OS services such as task scheduling and interrupt
management.

Processor adapter

CACA
ib_data

ib_it ib_enable
Task

schedule

Software
module

Task1() {...
_write(d);
yield2sched();

SW
wrapper

FIFO
write(…)

Yield
schedule ...

FIFOInt.I/O

Write
Reg(…)

API

services

drivers

(a) software wrapper (b) hardware wrapper

Figure 5. HW/SW wrapper architecture

3.3 Automatic Wrapper Generation
The overall view of our design environment is shown in Figure 6.
An initial internal model is obtained from a translation of the
extended SystemC specification, which is a virtual architecture
annotated with configuration parameters. There are three tools for
automatic wrapper generation: co-simulation wrapper generator,
hardware wrapper generator, and the software wrapper generator.
Details about these tools can be found in [9][23][24], only their
principle will be discussed here.

RTL Architecture

Virtual Architecture

custom OS
generation

HW wrapper
generation

Extended
SystemC

Executable
co-simulation

model

A

B

C

µP1

Communication interconnect

A B

µP2

C

SW wrapper SW wrapper.

HW wrapperHW wrapper

Co-simulation
wrapper

generation

Figure 6. Design environment for multicore SoC

The co-simulation wrapper generator [23] produces an executable
model that is used to validate the internal model. This executable
model is composed of a SystemC simulator that acts as a master
for other simulators. A variety of simulators can participate in this
co-simulation: SystemC, VHDL, Verilog, and Instruction-set
simulators. In the co-simulation wrapper library, there are
simulation adapters for the different simulators supported. There
are also channel adapters that implement all supported
communication protocols in different languages.

The software wrapper generator [9] produces operating systems
streamlined and pre-configured for the software module(s) that
run(s) on each target processor. It uses an operating system library
that is organized in three parts: APIs, communication/system

services, and device drivers. Each part contains elements that will
be used in a given software layer in the generated OS. This library
contains a dependency graph between services/elements that is
used to determine the minimal set of elements necessary to
implement a given OS service. This mechanism is used to keep
the size of the generated OS at a minimum, by avoiding inclusion
of unnecessary elements from the library.

The library used by the hardware wrapper generator [24] has two
parts: the processor library and the protocol library. All models
stored in this library are synthesizable; they are instantiated and
configured using the architecture configuration parameters. The
processor library contains processor adapters, template
architectures for processors, processor cores, local memories and
peripherals. For instance, the following configuration parameters
are used for processor adapter instantiation: port addresses,
number of interrupts and their priorities. The protocol library
contains channel adapters and communication network models.
Channel adapter configuration uses the following configuration
parameters: input/output type, master/slave operation, type of data
transmitted, buffer size, and interrupt parameters.

4. COMPONENT-BASED DESIGN OF A
VDSL APPLICATION
This section demonstrates the application of the high-level
component-based methodology using a VDSL application as a
design example.

4.1 The VDSL Modem Specification
The design we present in this section was taken from the
implementation of a VDSL modem using discrete components
[6]; the block diagram for this prototype implementation is shown
in Figure 7. The subset we will use in the rest of this paper is
shaded in Figure 7. It is composed of two ARM7s and part of the
datapath: the TX_Framer, described at the RT-level and was used
as a blackbox in this experiment.

Host PC

: Part redesigned as a multicore SoC

VDSL Modem
Processor

Constellation
Processor

VDSL Protocol
Processor

A
n

alo
g

F
ro

n
t-en

d

ATM
Layer

DSP ARM7RAM

I-M Di-M

BL-M V-M

BL-M: bit-loading memory
V-M: variance memory

I-M: interleaver memory
Di-M: de-interleaver memory

ASIC FPGA

FPGA

Digital
Front-end

ARM7

MCU2

MCU1

T
w

isted
-P

air
(copper line)

Figure 7. VDSL multicore SoC architecture

Despite all simplifications, the design of the selected subset
remains quite challenging. In fact, this application uses two
processors executing parallel tasks. The control over the three
modules of the specification is fully distributed. All three modules
act as masters when interacting with their environment.
Additionally, the application includes some multipoint
communication channels requiring sophisticated OS services.

4.2 VDSL Virtual Architecture
Figure 8 shows the virtual architecture model that captures the
VDSL specification. Modules VM1 and VM2 correspond to the
ARM7s on Figure 7 and module VM3 represents the TX_Framer
block (only the interface is known so it is represented as a
blackbox). The virtual architecture can be mapped onto different
architectures depending on the configuration parameters
annotated in modules, ports, and nets. For instance, the three
point-to-point connections (VC1, VC2, and VC3) between VM1
and VM2 can be mapped onto a bus or onto a shared memory if
the designer changes the configuration parameters placed on these
virtual channels and virtual ports.

M1 M2

T5

T7

T8

T6

T9

T4

T3

T1

VM1

T2

P2

VC1

VC2

VC3
.
.
.

SAP

.

.

.

.

.

.

M3

VM3 VM2

.

.

.

.

.

.

Figure 8. VDSL virtual architecture specification

4.3 Results
The manual design of a full VDSL modem requires several
person-years; the presented subset was estimated as a more than
five persons-year effort. When using this high-level component-
based approach, the overall experiment took only one person
during four months (not counting the effort to develop library
elements and debug design tools). This corresponds to a 15-fold
reduction in design effort. Running all wrapper generation tools
takes only a few minutes on a Linux PC 500 MHz, most of the
time was spent in writing the virtual architecture model with all
the necessary configuration parameters. The behavior of each task
was described using the SystemC C++ library [25].

Figure 9 shows the RTL architecture model obtained after
HW/SW wrapper generation: two ARM7 cores with their local
architectures, the TX_Framer block. Each hardware wrapper acts
as a communication co-processor for the ARM7, it contains an
ARM7 processor adapter that bridges the ARM7 local bus to the
communication adapters (CAs). There is a CA for each virtual
channel in the virtual architecture specification. For instance,
module VM1 reads test vectors from the environment through a
simple register using the Pooling CA, and communicates with
VM2 through asynchronous FIFOs using 3 HNDSHK CAs
(corresponding to virtual channels VC1, VC2, and VC3).

Each software wrapper (custom OS) is customized to the set of
tasks executed by the processor core. For example, software tasks
running on VM1 access the custom OS using an API composed of
two functions: Pipe for communication with VM2, and Signal to
modify the task scheduling on runtime. The custom OS contains a

round-robin scheduler (Sched) and resource management services
(Sync, IT). The driver layer contains low-level code to access the
CAs (e.g. Pipe LReg for the HNDSHK CA), and some low-level
kernel routines.

The hardware wrapper for processor VM2 includes a timer
module because task T5 (see Figure 8) must wait 10ms before
starting its execution. A hardware interrupt is generated by the
TIMER block, the task can configure this block using the Timer
API provided by the service access port SAP (see Figure 8). The
custom OS for VM2 provides a more complex API: the Direct
API is used to write/read to/from the configuration/status registers
inside the TX_Framer block; SHM and GSHM are used to manage
shared-memory communication between tasks.

Application code and generated OS are compiled and linked
together to execute on each ARM7 processor. The HW wrapper
can be synthesized using RTL synthesis. Table 1 presents the
results regarding the generated OSs. Part of the OS is written in
Assembly, it includes some low-level routines (e.g., context
switch and processor boot) that are specific to each processor.

Table 1. Results for OS generation

OS
results

of lines
C

of lines
Assembly

Code size
(bytes)

Data size
(bytes)

VM1 968 281 3829 500
VM2 1872 281 6684 1020

Context switch (cycles) 36
Latency for interrupt treatment (cycles) 59(OS) + 28(ARM7)
System call latency (cycles) 50
Resume of task execution (cycles) 26

If we compare the numbers presented in Table 1 with
configurable commercial embedded OSs, the results are still very
good. Generally, the minimum size for commercial OSs is around
4kbytes; but with this size, few of them could provide the
required functionality. Performance was also very good: context-
switch takes 36 cycles, latency for hardware interrupts is 59
cycles (plus 4 to 28 cycles needed by the ARM7 to react), latency
for system calls is 50 cycles, and task reactivation takes 26 cycles.

Table 2 shows the numbers obtained after RTL synthesis of the
HW wrappers using a CMOS 0.35µm technology. These results
are good because wrappers account for less than 5% of the
ARM7s core surface and have a critical path that corresponds to
less than 15% of the clock cycle for the 25MHz ARM7 processors
used in this case study.

Table 2. Results for the hardware wrapper generation

HW
interfaces

of
Gates

Critical path
delay (ns)

Max. freq.
(MHz)

VM1 3284 5.95 168
VM2 3795 6.16 162

Latency for read operation (clock cycles) 6
Latency for write operation (clock cycles) 2
Number of code lines (RTL VHDL) 2168

VM1

Signal
internal

Signal
LReg

Pipe
LReg

ITSync.Sched.

SignalPipe

VM2

ARM7
processor

core

Memory
(RAM/ROM)

Address
decoder

ARM7
processor

core

Memory
(RAM/ROM)

Address
decoder

IP
(Tx_Framer)

SHM
internal

Pipe
internal

Pipe
LReg

ITSync.Sched.

Direct

Timer
LReg

Signal
internal

Semaph
internal

Pipe
buffer

Direct
register

Pipe SHM GSHM Signal Timer

clock

reset

CSRS CK CS CKCK

data

address

HW
wrapper

data

add.

ctrl

data

add.

ctrl

test vector

data

add.

ctrl

HNDSHK 3
comm. adapter

data

add.

ctrl

CKPolling
comm. adapter

CKCK HNDSHK 1
comm. adapter

CK

ARM7 processor adapter
CK

CSRS CK CS

data

address

control

CK

data

address

control

CK

data

address

HW
wrapper

data

add.

ctrl

data

add.

ctrl

data

add.

ctrl

HNDSHK
1 CA

HNDSHK
3 CA

CK

data

add.

ctrl
Polling
CA

data

add.

ctrl
Polling
CA

data

add.

ctrl

data

add.

ctrl

FIFO
CA

CK

data

add.

ctrl

Polling
16 CA

CK

RS CK

CKCK

ARM7 processor adapter
CK

Wrapper bus

CSCS

Wrapper bus

CS

control

control

...

...

Polling
1 CA

CK

RS

ARM7 local bus

RS

ARM7 local bus

TIMER CKCK

......

VM3

Custom OS

Custom OS

address

control

address

control

data

address

control

data

address

control

data

data

Figure 9. Generated multicore SoC architecture

4.4 Evaluation
The results extracted from the RTL model show that our approach
can generate hardware/software interfaces and operating systems
that are as efficient as manually coded/configured ones. Wrappers
are build-up from library components so the HW/SW frontier in
wrapper implementation can be displaced. This choice is
transparent to the final user since everything that implements the
interconnect API (hardware interfaces and OS) is generated
automatically. Designers do not need to rewrite the application
code because the API does not change (only its implementation
does). Furthermore, correctness and coherence can be verified
inside tools and libraries against the API semantics without
having to impose fixed boundaries to the hardware/software
frontier (in contrast to standardized interfaces and buses).

5. CONCLUSION
This paper presented a high-level component-based methodology
and design environment for application-specific multicore SoC
architectures. The system specification is a virtual architecture
annotated with configuration parameters described in a SystemC-
like model. Our component-based design environment has
automatic wrapper-generation tools able to synthesize hardware
interfaces, device drivers, and operating systems that implement a
high-level interconnect API. Results show that wrappers
generated automatically by these tools have performances close to
the commercial/handcrafted equivalents.

6. REFERENCES
[1] ITRS, available at http://public.itrs.net/
[2] A. Nagari, et al., “A 2.7V 11.8 mW Baseband ADC with 72 dB

Dynamic Range for GSM Applications,” 21st Custom Integrated
Circuits Conference, San Diego, 1999.

[3] http://www.semiconductors.philips.com/platforms/nexperia/
[4] Oka and Suzuoki, “Designing and Programming the Emotion

Engine,” IEEE Micro, vol. 19:6, pp. 20-28, Nov/Dec 1999.
[5] P. Paulin, F. Karim, and P. Bromley, “Network Processors: A

Perspective on Market Requirements,” Proc. of DATE, 2001.
[6] M. Diaz-Nava, G.S. Okvist, “The Zipper prototype: A Complete and

Flexible VDSL Multi-carrier Solution”, ST Journal special issue
xDSL, September 2001.

[7] D.E. Culler, J. Pal Singh, “Parallel Computer Architecture,” Morgan
Kaufmann Publishers, 1999.

[8] D.A. Patterson , J.L. Hennessy, “Computer Organization and Design
- The Hardware/Software Interface,” Morgan Kaufmann Pub., 1998.

[9] L. Gauthier, S. Yoo, and A.A. Jerraya, "Automatic Generation and
Targeting of Application Specific Operating Systems and Embedded
Systems Software", IEEE TCAD, Vol. 20 Nr. 11, November 2001.

[10] K. Keutzer, “A Disciplined Approach to the Development of
Platform Architectures,” Synthesis and System Integration of Mixed
Technologies, Nara, Japan, October 18 - 19, 2001.

[11] R. Ernst, et al., “The COSYMA environment for hardware/software
cosynthesis of small embedded systems,” Microprocessors and
Microsystems, 1996.

[12] F. Balarin, et al., “Hardware-Software Co-design of Embedded
Systems: The POLIS approach,” Kluwer Academic Press, 1997.

[13] D. Gajski, et al., “SpecC Specification Language and Methodology,”
Kluwer Academic Publishers, 2000.

[14] Cadence Design Systems, Inc., Virtual Component Co-design:
http://www.cadence.com/products/vcc.html

[15] K. Keutzer, et al., “System-level design: orthogonalization of
concerns and platform-based design,” IEEE TCAD, Dec. 2000.

[16] M. Sgroi, et al., “Addressing the System-on-Chip Interconnect Woes
Through Communication-Based Design,” Proc. of 38th Design
Automation Conference, Las Vegas, June 2001.

[17] IBM Inc., Blue Logic Technology,
http://www.chips.ibm.com/bluelogic/

[18] Virtual Socket Interface Alliance, http://www.vsi.org.
[19] D. Wingard, “MicroNetwork-Based Integration for SOCs,” Proc. of

DAC, Las Vegas, June 2001.
[20] J. A. J. Leijten et al., “PROPHID : A Heterogeneous Multi-Processor

Architecture for Multimedia,” Proc. of ICCD, 1997.
[21] Coware Inc., N2C: http://www.coware.com/
[22] W.O. Cesário, et al., “Colif: A design representation for application-

specific multiprocessor SOCs,” IEEE Design & Test of Computers,
Vol.: 18, Issue: 5, pp. 8-20, Sept.-Oct. 2001.

[23] S. Yoo, G. Nicolescu, D. Lyonnard, A. Baghdadi, A. A. Jerraya, “A
Generic Wrapper Architecture for Multi-Processor SoC
Cosimulation and Design,” Int. Symposium on HW/SW Codesign
(CODES) 2001.

[24] D. Lyonnard, S. Yoo, A. Baghdadi, A. A. Jerraya, “Automatic
Generation of Application-Specific Architectures for Heterogeneous
Multiprocessor System-on-Chip,” Proc. of DAC, Las Vegas, 2001.

[25] OSCI: http://www.systemc.org/

