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ABSTRACT 
This paper presents a high-level component-based methodology 
and design environment for application-specific multicore SoC 
architectures. Component-based design provides primitives to 
build complex architectures from basic components. This bottom-
up approach allows design-architects to explore efficient custom 
solutions with best performances. This paper presents a high-level 
component-based methodology and design environment for 
application-specific multicore SoC architectures. The system 
specifications are represented as a virtual architecture described 
in a SystemC-like model and annotated with a set of configuration 
parameters. Our component-based design environment provides 
automatic wrapper-generation tools able to synthesize hardware 
interfaces, device drivers, and operating systems that implement a 
high-level interconnect API. This approach, experimented over a 
VDSL system, shows a drastic design time reduction without any 
significant efficiency loss in the final circuit. 

Categories and Subject Descriptors 
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED 
SYSTEMS]: Microprocessor/microcomputer applications, Real-time 
and embedded systems. 

General Terms 
Design, Experimentation, Standardization. 

Keywords 
Multicore System-on-Chip, Component-based design, HW/SW 
interfaces abstraction. 

1. INTRODUCTION 
The ITRS roadmap [1] predicts that by 2004 70% of ASICs will 
include at least one embedded instruction-set processor, which 
means that most ASICs will be Systems-on-Chip (SoC). Some 
existing designs confirm and strengthen this prediction, many 
applications include several processors with different instruction-
sets: mobile terminals (e.g. GSM [2]), set-top boxes (e.g. 

PNX8500 from Philips [3]), game processors (e.g. PlayStation2 
from Sony [4]) and network processors [5]. Most system and 
semiconductor houses are developing platforms involving several 
cores (MCU, DSP, IP, etc) and sophisticated communication 
interconnects (hierarchical bus, TDMA-based bus, point-to-point 
connections and packet-routing switches) on a single chip. The 
trend is moving now to interconnect standard components in the 
same fashion performed for boards few years ago. This evolution 
is creating several breaking points in the design process and new 
challenges for the EDA industry: 

1. Systems are the more and more complex: communication 
cannot be specified manually at the register-transfer level (RTL) 
as before without introducing many errors. At this level, bus 
structures (data, address and control) and clock cycles need to be 
detailed to verify logical and electrical constraints. However, this 
level is not well adapted to check communication protocols 
because this would be too much time consuming. By these 
reasons, higher abstraction levels, to model and verify the 
interconnection between components, are required to master the 
complexity: reduce design time and errors.   

2. SoCs will include many processors with different 
instruction-sets to execute dedicated functions in order to increase 
the flexibility of the whole system. The complexity of the code 
will become higher than the hardware part and will require, in the 
near future, several hundreds or thousands person-years [1]. This 
software will not be programmed at the assembler level as today. 

3. Complex, on-chip, hardware/software interfaces are required 
to implement an application-specific communication interconnect. 
The hardware (microprocessor interfaces, bank of registers, 
memories) and software (drivers, operating systems) elements 
required to perform the communication protocols need to be 
adapted to the communication interconnect according to the type 
of core.  

This paper presents a systematic approach for the assembling of 
application-specific SoC and the definition of a composition 
model to abstract the interconnection between hardware (cores) 
and software (tasks) components. Section 2 introduces the basic 
concepts for complex SoC design and the component-based 
approach. Section 3 details a new component-based specification 
model and the design flow that enables multicore SoC design at a 
higher level than RTL. Section 4 presents the application of this 
flow onto the design of a VDSL circuit and the analysis of the 
results. Finally, section 5 concludes this paper. 
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2. BASICS: SYSTEM-ON-CHIP DESIGN 
The expression SoC is used to designate an ASIC that combines 
heterogeneous components (CPUs, DSPs, IPs, memories, buses, 
etc.) on the same chip. This is similar to what we were used to see 
on system boards.  

2.1 SoC Architecture 
The classic literature about multiprocessor systems provides all 
the basic concepts used in this work [7][8], but it is too general to 
be efficient for SoCs. Figure 1 shows a typical multicore SoC 
architecture with heterogeneous processors and the on-chip 
communication interconnect. A key difference with classic 
computer architecture is that this model distinguishes (based on 
their utilization) two kinds of processors (CPUs): those used to 
run the end application and those dedicated to execute specific 
functions that could have been designed in hardware. The 
programming and interfacing of these two kinds of processors are 
quite different, as we will explain later. 

Communication interconnect

CPU core 
(run application)

IP 
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memory)

Dedicated CPU
(DSP)

 

Figure 1. A typical multicore SoC architecture 

Additionally, dedicated processors require application-specific 
communications and memory schemes due to performance 
optimization reasons. These specific architecture optimizations 
are generally related to the application domain. For instance, 
application-specific interfaces are required to respect tight 
resource/performance constraints (e.g. area, power, runtime, etc.).  

2.2 Software Organization 
Each kind of embedded processor employs a different software 
organization. The application software is generally organized as a 
stack of layers on top of the hardware as shown in Figure 2a. 
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Figure 2. Software organization 

The lowest software layer provides the drivers and the low-level 
architecture controllers. This is also called the software support 
package, and is generally provided by the SoC design team. The 
upper layers, OS services and SW application layer are provided 
by the application designer. The OS layer generally reuses an 
existing embedded OS, which may be customized to the 
application. The top layer is application-specific software that 
may be designed using high-level languages and code generation 
techniques. Application coding is not part of the SoC design and 
will be omitted in the rest of this paper. 

Presently, the software running on the dedicated processors is 
written in Assembly/C. When multitasking and complex I/O are 

required, specific code is provided to perform scheduling and to 
manage I/O. This code is generally mixed with the functional 
code, and there is no separated OS layer. This low-level 
programming is one of the main bottlenecks in SoC design. 
Additionally, this scheme lacks flexibility/portability and makes it 
difficult to change the hardware part without a complete redesign.  

One of the main contributions of this work is to consider higher-
level programming approach for dedicated software (often-called 
firmware). Each dedicated CPU will use a software stack (see 
Figure 2b). Of course, for code size and performance reasons, it 
will not be realistic to use any existing generic OS as isolation 
layer. In this case, a custom OS supporting an application-specific 
program interface (API) is required. Custom OS design 
automation is a new research area brought by SoC design [9]. 
With this scheme, both dedicated and application software can be 
written independently from the hardware implementation. 
Another benefit of this approach is that dedicated software can be 
independent from hardware/software frontiers on architecture 
components and OS choices. Finally, the main advantage of the 
work presented in this paper is to allow this level of 
flexibility/portability without any loss of performance.  

2.3 SoC Design Methods 
Currently, most SoC designs start at the RT-level for the hardware 
interfaces and at the ISA level for the dedicated software 
components. Validation of the overall design uses co-simulation 
techniques that generally combine one hardware simulator and 
one or several instruction-set simulators (ISS). As explained in 
[10], two design automation approaches are competing to improve 
productivity: top-down and bottom-up approaches. The most 
popular top-down approaches are: synthesis from system level 
models [11][12][13] and platform-based design [14][15]. These 
approaches start with an architectural solution, target architecture 
or architecture platform. In contrast, the bottom-up approach, also 
called component-based design, starts with a set of components 
and provides a set of primitives to build application-specific 
architectures and communication APIs. The key idea of 
component-based design is to increase the abstraction level when 
designing component interconnections. Even if this approach does 
not provide much help on automating the architecture exploration 
phase, it may provide a considerable reduction of design time for 
hardware/software communication refinement and component 
integration, and facilitate IP reuse. 

The key point in such a flow is the use of an abstract architecture 
where communication is separated from the component on the 
hardware side and from the functions on the software side. This 
abstract architecture may be used by the software programmer as 
an API. On the other side, the abstract architecture may use 
hardware components through an abstract API. This is generally 
called separation between communication and computation for 
component-based design [15]. 

2.4 Component-based Approaches 
In component-based SoC design [16], the goal is to enable the 
integration of heterogeneous processors and communication 
protocols by using abstract interconnections. Behavior and 
communication must be separated in the system specification. 
Thus, system communication can be described at a higher-level 
and refined independently of the behavioral of system. 



  

There are two component-based design approaches: usage of a 
standard bus protocol [17] and usage of a standard component 
protocol [18][19]. IBM defined a bus architecture called 
CoreConnect that adopts the first approach [17]. To connect 
heterogeneous components to the bus architecture, a wrapper is 
designed to adapt the protocol of each component to CoreConnect 
protocols. VSIA promotes the second approach with VCI and FI 
as standard component protocols [18]. In this case, the designer 
can choose a bus protocol and then design wrappers to 
interconnect using this protocol. [20] also present methods for on-
chip network communication design in the case of multicore 
SoCs. This paper introduces a new concept, called virtual 
architecture, to cover both approaches listed above. 

Recently, several commercial tools are trying to deal with the 
component-based design concept. CoWare presents the tool N2C 
[21], Cadence presents VCC (Virtual Component Codesign) [14], 
Sonics presents Silicon Backplane µNetwork [19]. Still, designers 
are not able to obtain significant reduction in system design cycle 
and optimized multicore architectures. This is mainly due to the 
non-separation of functional and application software and to the 
non-availability of custom OS generation tools.  

3. COMPONENT-BASED DESIGN 
This section introduces a high-level system design methodology 
for multicore SoC design using a communication refinement 
approach for virtual components. The system is described as a set 
of virtual components interconnected via channels. A virtual 
component consists of a wrapper and an internal component (or 
module). The internal component corresponds to a software task 
or a hardware function. The wrapper adapts accesses from the 
internal component to the external channels connected to the 
virtual component. The internal component and external 
channel(s) can be different in terms of: (1) communication 
protocol, (2) abstraction level, and (3) specification language. 
Depending on the difference, the functionality/structure of the 
wrapper is determined and automatically generated. 

3.1 Virtual Architecture Model 
The virtual architecture, also called macro architecture, represents 
a system as an abstract netlist of virtual components (see Figure 
3). Each virtual component has a wrapper that is composed of a 
set of virtual ports [22]. A virtual port has internal and external 
ports. There could be an n to m (n and m are natural numbers) 
correspondence between the internal and the external ports. 
Internal and external ports are not directly connected because they 
can use different communication protocols and/or transmit signals 
at different abstraction levels. For this reason, in some cases the 
wrapper will do a conversion between different internal/external 
communication protocols and/or abstraction levels.  

Virtual channels hide many details of communication protocols, 
for instance, FIFO communication is realized using high-level 
communication primitives (e.g. put and get). In our design flow, 
the virtual architecture is described using an extension of 
SystemC. Three new concepts are used:  

1. virtual module: consists of a module and its wrapper; 

2. virtual port: groups the corresponding internal and external 
ports having a conversion relationship. A wrapper may be 
composed of an hierarchy of several virtual ports;  

3. virtual channel: grouping several channels having a logical 
relationship (e.g. multiples nets belonging to the same 
communication protocol).  
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: virtual component
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Figure 3. The virtual architecture model 

For system refinement, this model needs to be annotated with 
architecture configuration parameters (e.g. protocol and physical 
addresses of ports). This model is not synthesizable/executable 
because the behavior of wrappers is not described. The main goal 
of this design methodology is to generate automatically these 
wrappers, in order to produce a detailed architecture that can be 
both synthesized and simulated. 

3.2 The Generic Architecture Model 
When defining this model our goal was to have a generic model 
where both computation and communication may be customized 
to fit the specific needs of the application. For computation, we 
may change the number and kind of components and, for 
communication, we can select a specific communication scheme. 
The architecture model is suitable to a wide domain of 
applications; more details can be found in [24]. 
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Figure 4. Generic architecture model for multicore SoC 

We use a generic multicore SoC architecture where processors are 
connected to communication networks via wrappers (see Figure 
4). In fact, HW processors are separated from the physical 
communication network by wrappers that act as communication 
coprocessors or bridges. Such a separation is necessary to free the 
processors from communication management and it enables 
parallel execution of computation tasks and communication 
protocols. Software tasks need also to be isolated from hardware 
through an OS that plays the role of SW wrapper. 

As shown in Figure 5, the wrapper is made of a software part and 
a hardware part. On the hardware side, the internal architecture of 
the wrapper consists of a processor adapter, a channel adapter, 
and an internal bus. The number of channel adapters depends on 
the number of channels that are connected to the corresponding 
virtual module. On the software side, wrappers provide the 



  

implementation of high-level communication primitives (API) 
used in the software module and the drivers to control the 
hardware. If required, the software wrapper will also provide 
sophisticated OS services such as task scheduling and interrupt 
management.  
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Figure 5. HW/SW wrapper architecture 

3.3 Automatic Wrapper Generation 
The overall view of our design environment is shown in Figure 6. 
An initial internal model is obtained from a translation of the 
extended SystemC specification, which is a virtual architecture 
annotated with configuration parameters. There are three tools for 
automatic wrapper generation: co-simulation wrapper generator, 
hardware wrapper generator, and the software wrapper generator. 
Details about these tools can be found in [9][23][24], only their 
principle will be discussed here. 
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Figure 6. Design environment for multicore SoC 

The co-simulation wrapper generator [23] produces an executable 
model that is used to validate the internal model. This executable 
model is composed of a SystemC simulator that acts as a master 
for other simulators. A variety of simulators can participate in this 
co-simulation: SystemC, VHDL, Verilog, and Instruction-set 
simulators. In the co-simulation wrapper library, there are 
simulation adapters for the different simulators supported. There 
are also channel adapters that implement all supported 
communication protocols in different languages. 

The software wrapper generator [9] produces operating systems 
streamlined and pre-configured for the software module(s) that 
run(s) on each target processor. It uses an operating system library 
that is organized in three parts: APIs, communication/system 

services, and device drivers. Each part contains elements that will 
be used in a given software layer in the generated OS. This library 
contains a dependency graph between services/elements that is 
used to determine the minimal set of elements necessary to 
implement a given OS service. This mechanism is used to keep 
the size of the generated OS at a minimum, by avoiding inclusion 
of unnecessary elements from the library.  

The library used by the hardware wrapper generator [24] has two 
parts: the processor library and the protocol library. All models 
stored in this library are synthesizable; they are instantiated and 
configured using the architecture configuration parameters. The 
processor library contains processor adapters, template 
architectures for processors, processor cores, local memories and 
peripherals. For instance, the following configuration parameters 
are used for processor adapter instantiation: port addresses, 
number of interrupts and their priorities. The protocol library 
contains channel adapters and communication network models. 
Channel adapter configuration uses the following configuration 
parameters: input/output type, master/slave operation, type of data 
transmitted, buffer size, and interrupt parameters.  

4. COMPONENT-BASED DESIGN OF A 
VDSL APPLICATION 
This section demonstrates the application of the high-level 
component-based methodology using a VDSL application as a 
design example. 

4.1 The VDSL Modem Specification 
The design we present in this section was taken from the 
implementation of a VDSL modem using discrete components 
[6]; the block diagram for this prototype implementation is shown 
in Figure 7. The subset we will use in the rest of this paper is 
shaded in Figure 7. It is composed of two ARM7s and part of the 
datapath: the TX_Framer, described at the RT-level and was used 
as a blackbox in this experiment. 
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Figure 7. VDSL multicore SoC architecture  

Despite all simplifications, the design of the selected subset 
remains quite challenging. In fact, this application uses two 
processors executing parallel tasks. The control over the three 
modules of the specification is fully distributed. All three modules 
act as masters when interacting with their environment. 
Additionally, the application includes some multipoint 
communication channels requiring sophisticated OS services. 



  

4.2 VDSL Virtual Architecture  
Figure 8 shows the virtual architecture model that captures the 
VDSL specification. Modules VM1 and VM2 correspond to the 
ARM7s on Figure 7 and module VM3 represents the TX_Framer 
block (only the interface is known so it is represented as a 
blackbox). The virtual architecture can be mapped onto different 
architectures depending on the configuration parameters 
annotated in modules, ports, and nets. For instance, the three 
point-to-point connections (VC1, VC2, and VC3) between VM1 
and VM2 can be mapped onto a bus or onto a shared memory if 
the designer changes the configuration parameters placed on these 
virtual channels and virtual ports.  
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Figure 8. VDSL virtual architecture specification  

4.3 Results 
The manual design of a full VDSL modem requires several 
person-years; the presented subset was estimated as a more than 
five persons-year effort. When using this high-level component-
based approach, the overall experiment took only one person 
during four months (not counting the effort to develop library 
elements and debug design tools). This corresponds to a 15-fold 
reduction in design effort. Running all wrapper generation tools 
takes only a few minutes on a Linux PC 500 MHz, most of the 
time was spent in writing the virtual architecture model with all 
the necessary configuration parameters. The behavior of each task 
was described using the SystemC C++ library [25].  

Figure 9 shows the RTL architecture model obtained after 
HW/SW wrapper generation: two ARM7 cores with their local 
architectures, the TX_Framer block. Each hardware wrapper acts 
as a communication co-processor for the ARM7, it contains an 
ARM7 processor adapter that bridges the ARM7 local bus to the 
communication adapters (CAs). There is a CA for each virtual 
channel in the virtual architecture specification. For instance, 
module VM1 reads test vectors from the environment through a 
simple register using the Pooling CA, and communicates with 
VM2 through asynchronous FIFOs using 3 HNDSHK CAs 
(corresponding to virtual channels VC1, VC2, and VC3).  

Each software wrapper (custom OS) is customized to the set of 
tasks executed by the processor core. For example, software tasks 
running on VM1 access the custom OS using an API composed of 
two functions: Pipe for communication with VM2, and Signal to 
modify the task scheduling on runtime. The custom OS contains a 

round-robin scheduler (Sched) and resource management services 
(Sync, IT). The driver layer contains low-level code to access the 
CAs (e.g. Pipe LReg for the HNDSHK CA), and some low-level 
kernel routines.  

The hardware wrapper for processor VM2 includes a timer 
module because task T5 (see Figure 8) must wait 10ms before 
starting its execution. A hardware interrupt is generated by the 
TIMER block, the task can configure this block using the Timer 
API provided by the service access port SAP (see Figure 8). The 
custom OS for VM2 provides a more complex API: the Direct 
API is used to write/read to/from the configuration/status registers 
inside the TX_Framer block; SHM and GSHM are used to manage  
shared-memory communication between tasks.  

Application code and generated OS are compiled and linked 
together to execute on each ARM7 processor. The HW wrapper 
can be synthesized using RTL synthesis. Table 1 presents the 
results regarding the generated OSs. Part of the OS is written in 
Assembly, it includes some low-level routines (e.g., context 
switch and processor boot) that are specific to each processor.  

Table 1. Results for OS generation 

OS 
results 

# of lines 
C  

# of lines 
Assembly  

Code size 
(bytes) 

Data size 
(bytes) 

VM1 968 281 3829 500 
VM2 1872 281 6684 1020 

Context switch (cycles) 36 
Latency for interrupt treatment (cycles) 59(OS) + 28(ARM7) 
System call latency (cycles) 50 
Resume of task execution (cycles)  26 

 
If we compare the numbers presented in Table 1 with 
configurable commercial embedded OSs, the results are still very 
good. Generally, the minimum size for commercial OSs is around 
4kbytes; but with this size, few of them could provide the 
required functionality. Performance was also very good: context-
switch takes 36 cycles, latency for hardware interrupts is 59 
cycles (plus 4 to 28 cycles needed by the ARM7 to react), latency 
for system calls is 50 cycles, and task reactivation takes 26 cycles.  

Table 2 shows the numbers obtained after RTL synthesis of the 
HW wrappers using a CMOS 0.35µm technology. These results 
are good because wrappers account for less than 5% of the 
ARM7s core surface and have a critical path that corresponds to 
less than 15% of the clock cycle for the 25MHz ARM7 processors 
used in this case study. 

Table 2. Results for the hardware wrapper generation 

HW 
interfaces 

# of 
Gates 

Critical path  
delay (ns) 

Max. freq. 
(MHz) 

VM1 3284 5.95 168 
VM2 3795 6.16 162 

Latency for read operation (clock cycles) 6 
Latency for write operation (clock cycles) 2 
Number of code lines (RTL VHDL) 2168 
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Figure 9. Generated multicore SoC architecture
 

4.4 Evaluation 
The results extracted from the RTL model show that our approach 
can generate hardware/software interfaces and operating systems 
that are as efficient as manually coded/configured ones. Wrappers 
are build-up from library components so the HW/SW frontier in 
wrapper implementation can be displaced. This choice is 
transparent to the final user since everything that implements the 
interconnect API (hardware interfaces and OS) is generated 
automatically. Designers do not need to rewrite the application 
code because the API does not change (only its implementation 
does). Furthermore, correctness and coherence can be verified 
inside tools and libraries against the API semantics without 
having to impose fixed boundaries to the hardware/software 
frontier (in contrast to standardized interfaces and buses). 

5. CONCLUSION 
This paper presented a high-level component-based methodology 
and design environment for application-specific multicore SoC 
architectures. The system specification is a virtual architecture 
annotated with configuration parameters described in a SystemC-
like model. Our component-based design environment has 
automatic wrapper-generation tools able to synthesize hardware 
interfaces, device drivers, and operating systems that implement a 
high-level interconnect API. Results show that wrappers 
generated automatically by these tools have performances close to 
the commercial/handcrafted equivalents.  
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