
Journal of Computing and Information Technology - CIT 13, 2005, 4, 321-327 321

Component-based Development
Process and Component Lifecycle

Ivica Crnkovic1, Stig Larsson2 and Michel Chaudron3

1Mälardalen University, Västerås, Sweden
2ABB Corporate Research, Västerås, Sweden
3Technical University Eindhoven, Eindhoven, The Netherlands

In recent years component-based development has be-
come an established approach. Component-based Soft-
ware Engineering �CBSE� that deals with the entire
lifecycle of component-based products has been focused
on technologies related to design and implementation
of software components and systems built from soft-
ware components. The experience has shown that pure
technologies alone are not enough. A CBSE approach
requires certain changes in development and life cycle
processes. However, very few CBSE works, either
research or practical, have addressed these topics. This
paper describes principle differences of component-based
and non- component based processes. Also we give an
overview of a case study from a company that applies
component-based approach.

Keywords: component-based software engineering, life-
cycle processes.

1. Introduction

Component-based approach has in last years
shown considerable success inmany application
domains. Distributed and web-based systems,
desktop and graphical applications are typi-
cal examples of domains in which component-
based approach has been very successful. In
these domains the general-purpose component
technologies, such as COM, .NET, EJB, J2EE
are used.

There is, however, very little development pro-
cesses knowledge specific to component-based
development.

This paper describes the characteristics of
component-based processes, the reasons for this,
and the differences fromanon-component-based
development process. From a case study it
shows that component-based approach provides
specific solutions in organization of a company.

The rest of the paper is organized as follows.
Section 2 gives an overview of development
processes. Section 3 discusses some basic char-
acteristics of component-based approach and il-
lustrates component-based activities in the “V”
development process model. We illustrate a
component-based development approach in an
industrial case study in section 4. Finally, sec-
tion 5 concludes the paper.

2. Basic Characteristic
of Lifecycle Process Models

Lifecycle processes include all activities of a
product or a system during its entire life, from
the business idea for its development, through
its usage and its completion of use. Differ-
ent models have been proposed and exploited
in software engineering, and different models
have exhibited their �in�abilities to efficiently
govern all activities required for a successful
development and use of products. We can dis-
tinguish two main groups of models: Sequential
and evolutionary. The sequential models define
a sequence of activities in which one activity
follows after a completion of the previous one.
Evolutionary models allow performance of sev-
eral activities in parallel without requirements
on a stringent completion of one activity to be
able to start with another one. Well known ex-
ample of sequential models is waterfall model,
or V model, and of evolutionary models, it-
erative and incremental development, or spiral
model.



322 Component-based Development Process and Component Lifecycle

Independently of the model type we can iden-
tify the basic activities present in any lifecycle
process model. These activities are the follow-
ing:

Requirements analysis and specification. The
system’s services, constraints and goals are es-
tablished �i.e. a specification of what the system
is supposed to do�.

System and software design. An overall sys-
tem and software architecture is established. A
detailed design follows the overall design. Soft-
ware design includes identifying and describing
the fundamental software systems abstractions
and their relationships.

Implementation and unit testing. The for-
malization of the design in an executable way,
which can be composed of smaller units. Test-
ing of the units follows their implementation.

System integration. The system units are inte-
grated.

System verification and validation. Correct-
ness of the complete system is verified and the
system is validated with respect to the require-
ments.

Operation support and maintenance. A set
of activates that are required for the expected
performance of the system.

Disposal. A disposal activity, often forgotten
in many lifecycle models, includes the phasing-
out of the system, i.e. a possible replacement by
another system or a complete termination.

Not all models are suitable for all types of sys-
tem lifecycles. Usually large systems, which
include many stakeholders and whose develop-
ment lasts a long period, prefer using sequential
models. The systems which use new technolo-
gies are smaller and to which the time to market
is important, usually explore evolutionary mod-
els that are more flexible and can show some
results much earlier than sequential models.
These models can be applied in a component-
based development, but require adaptation to
the principles of component-based approach.

3. Component-Based Lifecycle
Process Models

CBSE addresses challenges similar to those en-
countered elsewhere in software engineering.

Many of the methods, tools and principles of
software engineering used in other types of sys-
tem will be used in the same or similar way
in CBSE. There is, however, one difference;
CBSE specifically focuses on questions related
to components and in that sense it distinguishes
the process of “component development” from
that of “system developmentwith components”.

3.1. Building Systems from Components

Themain idea of the component-based approach
is building systems from pre-existing compo-
nents. This assumption has several consequences
for the system lifecycle. First, the develop-
ment processes of component-based systems
are separated from development processes of
the components; the components should already
have been developed and possibly used in other
products when the system development process
starts. Second, a new separate process will ap-
pear: Finding and evaluating the components.
Third, the activities in the processes will be dif-
ferent from the activities in non- component-
based approach; for the system development the
emphasis will be on finding the proper compo-
nents and verifying them,and for the component
development, design for reuse will be the main
concern.

There is a difference in requirements and busi-
ness ideas in these two cases and different ap-
proaches are necessary. Components are built to
be used and reused in many applications, some
possibly not yet existing, in some possibly un-
foreseen way

System development with components is fo-
cused on the identification of reusable entities
and relations between them, beginning from the
system requirements and from the availability
of already existing components �1��4�. Much
implementation effort in system development
will no longer be necessary, but the effort re-
quired in dealing with components: locating
them, selecting those most appropriate, testing
them, etc. will increase �6�.

We do not only recognize different activities in
the two processes, but also find that many of
these activities can be performed independently



Component-based Development Process and Component Lifecycle 323

of each other. In reality, the processes are al-
ready separate as many components are devel-
oped by third parties, independently of the sys-
tem development. Even components being de-
veloped internally in an organizationwhich uses
these very same components, are often treated
as separate entities developed separately.

Let us discuss these differences in more detail.
Figure 1 shows a V development model adapted
to component-based approach.

We use V model as this model is widely used in
many organizations — typically large organiza-
tion building complex long-life products, such
as cars or robots. In thismodel the process starts
in a usual way by requirements engineering and
requirements specification, followed by system
specification. In a non-component-based ap-
proach the process would continue with the unit
design, implementation and test. Instead of per-
forming this activities that often are time and
efforts consuming, we simply select appropri-
ate components and integrate them in the sys-
tem. However, two problems appear here which
break this simplicity: �i� It is not obvious that
there is any component to select, and �ii� the se-
lected component only partially fits our overall
design. The first fact shows that we must have
a process for finding components. This process
includes activities for finding the components,
and then the component evaluation. The second
fact indicates for a need of component adapta-
tion and testing before it can be integrated into
the system. And of course there must be a pro-
cess of component development, this being in-
dependent of the system development process.

Figure 1 also shows a simplified and idealized
process. Its assumption is that the components
selected and used are sufficiently close to the
units identified in the design process, so that the
adaptation process requires �significantly� less
efforts than the units’ implementation. Further,
it does not consider what happens in the main-
tenance process; what happens if a system mal-
functions due to a problem that has occurred in
a component, or due to incompatibilities of the
components. This indicates that the component-
based approach is not only limited to the devel-
opment process, or part of the development pro-
cess, but to the entire lifecycle. At a very early
stage, in the Requirements and Design phases,

Fig. 1. V development process for CBD.

the system requirements engineers and system
architects must be aware about the availability
of already existing components.

A more realistic process is shown in Figure 2.
Let us look at the activities in different phases
of the development process in more detail.

Requirements analysis and specification. In
this phase one important activity is to analyze
the possibility of realizing the solutions that will
meet these requirements. In a component-based
approach this implies that it is necessary to ana-
lyze whether these requirements can be fulfilled
with available components. This means that the
requirements engineers must be aware of the
components that can possibly be used. Since
it is not likely that appropriate components can
always be found, there is a risk that the new
components have to be implemented. To keep
with component-based approach �and utilize its
advantages� one possibility is to negotiate the
requirements and modify them to be able to use
the existing components.

Fig. 2. A detailed V development process for CBD.



324 Component-based Development Process and Component Lifecycle

System and software design. Similar to the re-
quirements specification phase the system spec-
ification and design are strongly related to the
availability of the components. The potential
components are complying with a particular
component model. One could assume that it
would be possible to use components imple-
mented in different component technologies,
but in practice it is very difficult to achieve inter-
operability between different component mod-
els. Particular component model requires a par-
ticular architectural framework, and the appli-
cation is supposed to use this framework. This
has a direct impact on architectural decisions.
For example, if the component model requires
a client-server architecture style, it is obvious
that the application will use that style and not
another one �for example pipe-filter�. This will
put limitations on the system design. Also,
other properties of components can have a di-
rect influence on the design decisions. For this
reason the design process is tightly connected
to the availability of the components.

Implementation andunit testing. When build-
ing component-based system, an ideal case is
to build an application by direct integration
of components, i.e. connecting components di-
rectly. The “glue code” is a code that spec-
ifies this connection. In practice the role of
the glue code will also include adaptation of
the components, and even implementation of
new functions. In an ideal case the compo-
nents themselves are already built and tested.
However, the component tests in isolation are
not sufficient. Often, design units will be im-
plemented as assemblies of several components
and possibly a glue code. These assemblies
must be tested separately since an assembly of
correct components may be incorrect, although
the components themselves are correct �3�.

System Integration. The integration process
includes integration of standard infrastructure
components that build a component framework
and the application components. The integra-
tion of a particular component into a system
is called a component deployment. Unlike the
entire system integration, a component deploy-
ment is a mechanism for integration of partic-
ular components — it includes download and
registering of the component.

System verification and validation. The stan-
dard test and verification techniques are used
here. A specific problem for component-based
approach is location of error, especially when

components are of “black box” type and de-
livered from different vendors. Typically, a
component can exhibit an error, but the cause
of the malfunction lies in another component.
Contractual interfaces play an important role in
checking the proper input and output from com-
ponents. These interfaces enable a specification
of input and output and checking the correctness
of data.

Operation support and maintenance. The
maintenance process includes some steps that
are similar to the integration process: A new or
modified component is deployed into the sys-
tem. Also, it may be necessary to change the
glue code. In most of the cases an existing
component will be modified or a new version of
the same component will be integrated into the
system. Once again, new problems caused by
incompatibility between components, or by bro-
ken dependencies, may occur. This means that
the system must be verified �either formally, or
by simulation, or by testing�.

In comparison with a non-component-based ap-
proach, in a component-based development pro-
cess there are significantly less efforts in pro-
gramming, but the verification and testing re-
quire considerably more efforts. The verifica-
tion activity is repeated in several phases, with
slightly different goals:

� Verifying component in isolation;

� Verifying components in an assembly;

� Verifying the system when a component has
been deployed into the system.

3.2. Building Reusable Components

The process of building components can fol-
low an arbitrary development process model.
However, any model will require certain mod-
ification to achieve the goals; in addition to
the demands on the component functionality,
a component is built to be reused. Reusabil-
ity implies generality and flexibility, and these
requirementsmay significantly change the com-
ponent characteristics. For example there might
be a requirement for portability, and this re-
quirement could imply a specific imple- menta-
tion solution �like choice of programming lan-
guage, implementation of an intermediate level
of services, programming style, etc.�. The gen-
erality requirements imply often more function-
ality and require more design and development



Component-based Development Process and Component Lifecycle 325

efforts andmore qualified developers. The com-
ponent development will require more efforts
in testing and specification of the components.
The components should be tested in isolation,
but also in different configurations. Finally, the
documentation and delivery will require more
efforts since the extended documentation is very
important for increasing understanding of the
component. An example of extended compo-
nent specification can be found in ROBOCOP
component model �5�; a component is speci-
fied by a row of modules: executable model,
functional model, simulation model, resource
model, etc. Each model includes a correspond-
ing documentation.

4. Industrial Case of
Component-Based Process Model

We give here a short overview of a case study: a
process model used in a large international con-
sumer electronics company. The case study was
performed by four researchers in intensive inter-
views with different stakeholders of the devel-
opment projects: system architects, component
architects, developers, project leaders, the man-
agement, the quality assurance and test people,
and principal specialists.

The development divisions of the company are
placed in four different countries and they pro-
duce numerous products with different vari-
ants and models. The company has adopted
component-based development using product-
line architecture. The component model is in-
ternally developed and most of the tools are in-
ternally developed. The reason for that are spe-
cific requirements of the domain: low resource
usage, high availability, and soft real-time re-
quirements.

The component model follows the basic prin-
ciples of CBSE: The components are specified
by interfaces which distinguish “require” from
“provide” interfaces. In addition to functional
specification, the interface includes additional
information; interaction protocols, timeliness
properties, and the memory usage. The com-
ponent model enables a smooth evolution of the
components as it allows existence of multiple
interfaces. The model has a specific charac-
teristic; it allows hierarchical compositions: a
composite component is treated as a standard
component and it can be further integrated in

another component. The components are also
developed internally, but their development is
separated from the development of the products.

The product-line architecture identifies the ba-
sic architectural framework. The product archi-
tecture is shown in Figure 3.

The product architecture is a layered architec-
ture which includes �i� operating system, �ii�
the component framework which is an inter-
mediate level between domain-specific services
and operating, �iii� core components which are
included in all product variants, and �iv� appli-
cation components that are usually different for
different product variants.

Complementary to this horizontal layering there
is a vertical structuring in form of subsystems.
Subsystems are also related to organizational
structures; they are responsible for development
and maintenance of particular components. The
overall process is designed as shown in Figure 4.

Fig. 3. Product software architecture.

Fig. 4. Overall development process.



326 Component-based Development Process and Component Lifecycle

In the overall process there are three sets of
independent parallel processes: �i� An overall
architecture and platform development process
are responsible for delivering newplatforms and
basic components, �ii� subsystem development
processeswhich deliver a set of components that
provide different services, and �iii� the product
development process which is basically an in-
tegration process. This process arrangement
makes it possible to deliver new products ev-
ery six months, while the development of sub-
system components takes typically between 12
and 18 months. The specific feature of these
projects is that all deliverables have the same
form. A deliverable is a software package de-
fined as a component. Two main documents
belong to every deliverable: component inter-
face specification and component sheet; the first
document describing the interconnection, the
second describing the component internals.

Although the overall development and produc-
tion is successful, the process suffers from sev-
eral drawbacks. The most serious is late dis-
covery of errors, due to interface or architec-
tural mismatches, insufficient specifications of
semantics of the components, or due to inappro-
priate interfaces. Also, the problems related to
encapsulation of a service in components often
occur; due to functional overlaps, or some re-
quirements affecting the architecture, it is diffi-
cult to decide in which components a particular
function will be implemented. All these prob-
lems indicate that it is difficult to perform the
processes independently; negotiation between
different subsystems and agreement in many
technical details between different teams are
necessary. For this reason the processes are
not completely separated. They are distributed
among several projects and there is an overall
project that coordinates them all.

The processes have a strong support in the
project and organization structure �see Figure
5�.

The system architect and the management have
overall responsibilities for requirements, poli-
cies, product line architecture, products visions
and long term goals. The project architect has
a responsibility for the overall project which re-
sults in a line of products. He�she coordinates
the architectural design of the product family
and subsystems. The test and quality-assurance

Fig. 5. Project organization structure.

�QA� managers have similar role in their do-
mains: to ensure coordination and compatibil-
ity of tests and quality processes. Subsystem
architects provide the designs of their subsys-
tems and coordinate the design decisions with
other subsystems. Each subsystem has a test
team and a QA manager whose responsibility
is the quality of delivered subsystem compo-
nents. The integration team which works in
delivery projects is represented by a product
architect, QA and test managers who coordi-
nate the activities with other projects. We can
observe that project teams have many “non-
productive” stakeholders. This is in line with
the component-based approach — more efforts
must be put on overall architecture and testing,
and less on the implementation itself. Develop-
ment processes in our case are manly of an evo-
lutionary model. The platform, the subsystems
and the products are developed in several itera-
tions until the desired functionality and quality
are achieved. This requires synchronizations of
iterations.

5. Conclusion

A component-based approach cannot be fully
utilized if development processes and even de-
velopment organizations are not adopted ac-
cording to basic principles of CBSE. Since this
approach aims for increased reusability of exist-
ing components, the efforts for implementations
decrease, and the efforts for system verification
increase. This requires adjustments of the de-
velopment processes.



Component-based Development Process and Component Lifecycle 327

By an industrial case study we have pointed out
the difficulties to achieve a complete separa-
tion of the development processes of systems
from the components, as well as the need for
a project organization which puts more empha-
sis on architectural issues and on system and
components verification.

6. Acknowledgments

The authors would like to thank Chritiene Aarts
for his enormous help in organizing the inter-
views and all the interviewees who took their
valuable time for the interviews.

References

�1� L. BASS, P. CLEMENTS AND R. KAZMAN, Software
Architecture in Practice, Addison Wesley, 1998.

�2� V. BORGHOFF, R. PARESI, �editors�, Information
Technology forKnowledgeManagement,NewYork:
Springer Verlag; 1998.

�3� IVICA CRNKOVIC AND MAGNUS LARSSON �editors�,
Building Reliable Component-Based Software Sys-
tems, Artech House Publishers, ISBN 1-58053-327-
2, 2003.

�4� D. GARLAN, R. ALLEN AND J. OCKERBLOOM, Ar-
chitectural Mismatch: Why Reuse is so Hard, IEEE
Software, Vo. 12, issue 6, 1995.

�5� ITEA project, ROBOCOP-Robust Open Com-
ponent Based Software Architecture for Con-
figurable Devices Project http���www�hitech�
projects�com�euprojects�robocop.

�6� M. MORISIO, C. B. SEAMAN, A. T. PARRA, V. R.
BASIL, S. E. KRAFT AND S. E. CONDON, Investi-
gating and Improving a COTS-Based Software
Development Process, In Proceedings , 22nd ICSE,
ACM Press, 2000.

Recived: June, 2005.
Accepted: October, 2005.

Contact address:

Ivica Crnkovic
Mälardalen University

Västerås
Sweden

ivica�crnkovic�mdh�se

Stig Larsson
ABB Corporate Research

Västerås
Sweden

stig�bm�larsson�se�abb�com

Michel Chaudron
Technical University Eindhoven

Eindhoven
The Netherlands

IVICA CRNKOVIC is a professor of industrial software engineering at
Mälardalen University where he is the administrative leader of the
software engineering laboratory and the scientific leader of the in-
dustrial software engineering research. His research interests include
component-based software engineering, software configuration man-
agement, software development environments and tools, as well as
software engineering in general. Professor Crnkovic received an M.Sc.
in electrical engineering in 1979, an M.Sc. in theoretical physics in
1984, and a Ph.D. in computer science in 1991, all from the University
of Zagreb, Croatia.

MICHEL R. V. CHAUDRON is an assistant professor at the Eindhoven
University of Technology and a researcher in the System Architecture
and Networking group. His research interests include software archi-
tecture, empirical software engineering and component-based software
engineering. He received his MSc and his PhD from the Universiteit
Leiden and worked as a consultant in traffic and transport telematics.

STIG LARSSON is responsible for the product development process im-
provement initiative at ABB.He has occupied different development and
management positions in ABB for the last 20 years. His professional
interest is in product development processes and software architecture.
He received his MSc in electrical engineering from the Royal Institute
of Techonoloy in Stockholm.


