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Abstract

Background: A component-based approach is introduced for fast and flexible

solution of parameter-dependent symmetric eigenproblems.

Methods: Considering a generalized eigenproblem with symmetric stiffness and mass

operators, we start by introducing a “σ -shifted” eigenproblem where the left hand side

operator corresponds to an equilibrium between the stiffness operator and a weighted

mass operator, with weight-parameter σ > 0. Assuming that σ = λn > 0, the nth real

positive eigenvalue of the original eigenproblem, then the shifted eigenproblem

reduces to the solution of a homogeneous linear problem. In this context, we can

apply the static condensation reduced basis element (SCRBE) method, a domain

synthesis approach with reduced basis (RB) approximation at the intradomain level to

populate a Schur complement at the interdomain level. In the Offline stage, for a library

of archetype subdomains we train RB spaces for a family of linear problems; these linear

problems correspond to various equilibriums between the stiffness operator and the

weighted mass operator. In the Online stage we assemble instantiated subdomains

and perform static condensation to obtain the “σ -shifted” eigenproblem for the full

system. We then perform a direct search to find the values of σ that yield singular

systems, corresponding to the eigenvalues of the original eigenproblem.

Results: We provide eigenvalue a posteriori error estimators and we present various

numerical results to demonstrate the accuracy, flexibility and computational efficiency

of our approach.

Conclusions: We are able to obtain large speed and memory improvements

compared to a classical Finite Element Method (FEM), making our method very suitable

for large models commonly considered in an engineering context.

Keywords: Eigenproblems; Domain synthesis; Reduced basis; A Posteriori error

estimation

Background

In structural analysis, eigenvalue computation is necessary to find the periods at which a

structure will naturally resonate. This is especially important for instance in building engi-

neering, to make sure that a building’s natural frequency does not match the frequency

of expected earthquakes. In the case of resonance, a building can endure large deforma-

tions and important structural damage, and possibly collapse. The same considerations

apply to automobile and truck frames, where it is important to avoid resonance with the

engine frequencies. Eigenproblems also appear when considering wind loads, rotating
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machinery, aerospace structures; in some cases it is also desirable to design a structure

for resonance, like certain microelectromechanical systems.

With improvement in computer architecture and algorithmic methods, it is now pos-

sible to tackle large-scale eigenvalue problems with millions of degrees of freedom;

however the computations are still heavy enough to preclude usage in a many-query

context, such as interactive design of a parameter-dependent system. In this paper, we

present an approach for fast solution of eigenproblems on large systems that present a

component-based structure – such as building structures.

For the numerical solutions of partial differential equations (PDE) in component-based

systems, several computational methods have been introduced to take advantage of the

component-based structure. The main idea of these methods is to perform domain

decomposition, and to use a common model order reduction for each family of similar

components. The first and classical approach is the component mode synthesis (CMS)

as introduced in [1,2]: it uses the eigenmodes of local constrained eigenvalue problems

for the approximation within the interior of the component and static condensation to

arrive at a (Schur complement) system associated with the coupling modes on the inter-

faces or ports. One drawback of the CMS approach is the rather slow convergence of

eigenmodal expansions. In contrast the reduced basis element (RBE) method [3] employs

a reduced basis expansion [4] within each component or subdomain and Lagrange mul-

tipliers to couple the local bases and hence compute a global solution of the considered

parameter dependent partial differential equation for each admissible parameter. The

RBE method thus profits from the fact that RB approximations yield a rapid and in many

cases exponential convergence [5].

A combination of RB methods and domain decomposition approaches has for instance

also been considered in [6,7]. Similarly RB methods have been employed in the frame-

work of a multi-scale finite element method to construct local reduced spaces for the

approximation of fine-scale features on the coarse grid elements in [8,9], where the latter

corresponds to the “components” in the RBE method.

In [10], a static condensation RBE (SCRBE) approach is developed for elliptic problems.

It brings together ideas of CMS and RBE by considering standard static condensation at

the interdomain level and then RB approximation at the intradomain level. In an Offline

stage performed once, the RB space for a particular component is designed to reflect all

possible function variations on the component interfaces (which we shall denote “ports”);

components are thus completely interchangeable and interoperable. During the Online

stage, any system can be assembled from multiple instantiations of components from a

predefined library; we can then compute the system solution for different values of the

component parameters in a prescribed parameter domain. TheOnline stage of the SCRBE

ismuchmore flexible than both theOnline stage for the standard RBmethod, in which the

system is already assembled and only parametric variations are permitted, and the Online

stage of the classical (non-static-condensation) RBEmethod, in which the RB intradomain

spaces already reflect anticipated connectivity.

In this paper, we present an extension of the SCRBE to eigenproblems. The new aspects

are the following. First, the SCRBE normally takes advantage of linearity, which is lost

when considering eigenproblems. Hence we begin by reformulating the eigenproblem

using a shift σ of the spectrum in order to recover a linear problem. Finding the eigenval-

ues is then performed at a higher level: using a direct search method, we find the values
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of the shift σ that correspond to singular systems. Second, we provide a posteriori error

estimators of the eigenvalues, not only with respect to RB approximations but also in the

context of port reduction.

In the context of CMS approaches for eigenproblems, out method provides some

important features: treatment of parameter-dependent systems (as explained above),

optimal convergence, and port reduction. The classical CMS only achieves a polynomial

convergence rate [11,12] with respect to the number of eigenmodes used at the intrado-

main level. This can be improved to an infinite convergence rate by using overlapping

components [12], but at the expense of losing simplicity and flexibility of component

connections. Our method somehow provides an optimal trade-off since it retains the

interface treatment of classical CMS – allowing flexibility of component connections –

while achieving an exponential convergence rate with respect to the size of RB spaces at

the intradomain level.

We also provide port reduction so as to increase even more the speed up. Recent CMS

contributions consider several port economizations (or interface reduction strategies):

an eigenmode expansion (with subsequent truncation) for the port degrees of freedom

is proposed in [11,13]; an adaptive port reduction procedure based on a posteriori error

estimators for the port reduction is proposed in [14]; and an alternative port reduction

approach, with a different bubble function approximation space, is proposed for time-

dependent problems in [15]. We can not directly apply CMS port reduction concepts in

the parameter-dependent context, as the chosen port modes must be able to provide a

good representation of the solution for any value of the parameters. In this paper, we

adapt to parameter-dependent eigenproblems a port approximation and a posteriori error

bound framework introduced in [16] for parameter-dependent linear elliptic problems.

The paper proceeds as follows. In Section ‘Formulation’, we present the general eigen-

problem and its shifted formulation; we then describe the static condensation procedure.

In Section ‘Reduced basis static condensation system’, we add reduced basis approxi-

mations and develop a posteriori error estimators for the eigenvalues with respect to

the corresponding values obtained by the “truth” static condensation of Section ‘Formu-

lation’. In section ‘Port reduction’, we introduce port reduction and provide as well a

posteriori error estimators for the eigenvalues. In Section ‘Computational aspects’, we

give an overview of the computational aspects of the method. This section somehow

brings together all of the previous sections in a compact presentation, and we suggest the

reader to often go back to Section ‘Computational aspects’ in order to get a higher level

description of the method. Finally, in Section ‘Results and discussion’, we present numer-

ical results to illustrate the computational efficiency of the approach. We first consider

simple bridge structures for which we examine the error estimates. We finish with an

industrial scale example to show the method’s potential to tackle large systems.

Methods

Formulation

Problem statement

We suppose that we are given an open domain � ⊂ R
d , d = 1, 2 or 3, with boundary ∂�.

We then let X denote the Hilbert space

X ≡
{
v ∈ H1(�) : v|∂�D = 0

}
,
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where ∂�D ⊂ ∂� is the portion of the boundary on which we enforce homogeneous

Dirichlet boundary conditions. We suppose that X is endowed with an inner product

(·, ·)X and induced norm ‖ · ‖X . Recall that for any domainO in R
d,

H1(O) ≡
{
v ∈ L2(O) : ∇v ∈ (L2(O))d

}
,

where L2(O) ≡
{
vmeasurable overO :

∫

O

v2 finite

}
.

Furthermore, let Y ≡ L2(�).

We now introduce an abstract formulation for our eigenvalue problem. For any μ ∈ D,

let a(·, ·;μ) : X × X → R, and m(·, ·;μ) : X × X → R denote continuous, coercive,

symmetric bilinear form with respect to X and Y, respectively. We suppose that XN ⊂ X

is a finite element space of dimension N . Given a parameter μ ∈ D ⊂ R
P, where D is

our parameter domain of dimension P, we find the set of eigenvalues and eigenvectors

(λ(μ),u(μ)), where λ(μ) ∈ R>0 and u(μ) ∈ XN satisfy

a(u(μ), v;μ) = λ(μ)m(u(μ), v;μ), ∀v ∈ XN , (1)

m(u(μ),u(μ);μ) = 1. (2)

We assume that the eigenvalues λn(μ) are sorted such that 0 < λ1(μ) ≤ λ2(μ) . . . ≤
λN (μ), and to each eigenvalue λn(μ) we associate a corresponding eigenvector un(μ).

We can have multiplicities greater than one and hence we can have equal succes-

sive eigenvalues λn(μ) = · · · = λn+k(μ) but each associated to linearly independent

eigenvectors.

The parametric dependence of the problem usually takes the form of variable PDE coef-

ficients or variable geometry. For instance, in linear elasticity, the vector μ can contain

the different Young’s modulus values of different subdomains, as well as the parameters

of some mapping function describing the geometrical variability.

We now define a surrogate eigenvalue problem that will be convenient for subsequent

developments. For a given “shift factor” σ ∈ R≥0, we modify (1), (2) such that for any

μ ∈ D, we find τ(μ, σ) ∈ R and χ(μ, σ) ∈ XN that satisfy

B(χ(μ, σ), v;μ; σ) = τ(μ, σ)a(χ(μ, σ), v;μ), ∀v ∈ XN , (3)

a(χ(μ, σ),χ(μ, σ);μ) = 1. (4)

Here

B(w, v;μ; σ) ≡ a(w, v;μ) − σm(w, v;μ) (5)

is our “shifted” bilinear form. Note that we change the bilinear form on the right hand

side fromm(·, ·) to a(·, ·), which corresponds to a different norm. This choice is motivated

by error estimation, presented later in the paper, as it permits to derive relative error

estimates for the eigenvalue λn(μ).

We also sort the set of eigenvalues such that τ1(μ, σ) ≤ τ2(μ, σ) . . . ≤ τN (μ, σ) – note

that due to the shift the first eigenvalues can now be negative. It is clear that χn(μ, σ) =
1√

λn(μ)
un(μ) for any σ ∈ R, so we shall henceforth write χn(μ). Also

τn(μ, σ) =
λn(μ) − σ

λn(μ)
, (6)
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so that

τn(μ, σ) > 0, if 0 ≤ σ < λn(μ), (7)

τn(μ, σ) = 0, if σ = λn(μ), (8)

τn(μ, σ) < 0, if σ > λn(μ), (9)

for n = 1, . . . ,N .

Remark 2.1. The reason for introducing the surrogate eigenvalue problem (3) is that when

the condition (8) is achieved, the right hand side of (3) vanishes and we can consider the

left hand side in isolation as a linear problem to which we apply the SCRBE method, as

described in the following sections. Two points have to be make clear about the parameter

σ :

• σ is meant to approximate a given eigenvalue λn(μ) of the original eigenproblem (1)

by virtue of property (8),

• the value for which σ = λn(μ) will be automatically determined by a direct search

algorithm as presented in Section ‘Eigenvalue computation’.

Static condensation

We now move to the component level. We suppose that the system domain is natu-

rally decomposable into I interconnected parametrized components. Each component i

is associated with a subdomain �i, where

� =
I⋃

i=1

�i, �i ∩ �i′ = ∅, for i �= i′ .

We now introduce the notion of “port” that is commonly used in the literature related

to CMS methods. A port corresponds to the interface shared by two components that

are connected together. When looking at the global system, we will describe the ports as

global, whereas when considering a single component, we will describe the ports as local.

We say that components i and i′ are connected at global port p if �i ∩ �i′ = Ŵp �= ∅,
where 1 ≤ p ≤ nŴ and nŴ is the total number of global ports in the system. We also

say that γ
j
i = Ŵp and γ

j′

i′ = Ŵp are local ports of components i and i′ respectively, where

1 ≤ j ≤ n
γ
i is the total number of local ports in component i. Figure 1 shows an example

of a three component system, with the corresponding global and local port definitions.

Figure 1 An example of system composed of three components, of indices 1, 2 and 3, corresponding to the

subdomains �1 ,�2 ,�3 . This system has two global ports of indices 1 and 2, corresponding to the interfaces

Ŵ1 = �1 ∩ �2 and Ŵ2 = �2 ∩ �3 . Component 1 has one local port γ 1
1 = Ŵ1 , component 2 has two local

ports γ 1
2 = Ŵ1 and γ 2

2 = Ŵ2 , and component 3 has one local port γ 1
3 = Ŵ2 .
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We assume that the FE space XN conforms to our components and ports, hence we

can define the discrete spaces XN
i and ZN

p that are simply the restrictions of XN to com-

ponent i and global port p. For given i, let XN
i;0 denote the “component bubble space” —

the restriction of XN to �i with homogeneous Dirichlet boundary conditions on each

γ
j
i , 1 ≤ j ≤ n

γ
i ,

XN
i;0 ≡

{
v|�i : v ∈ XN ; v|

γ
j
i
= 0, 1 ≤ j ≤ n

γ
i

}
.

We denote by N Ŵ
p the dimension of the port space ZN

p associated with global port p,

and we say that the global port p has N Ŵ
p degrees of freedom (dof). For each component

i, we denote by k′ a local port dof number, and Ki the total numbers of dof on its local

ports, such that 1 ≤ k′ ≤ Ki. We then introduce the map Pi(k
′) = (p, k) which associate

a local port dof k′ in component i to its global port representation: global port p and dof

k, 1 ≤ k ≤ N Ŵ
p .

To formulate our static condensation procedure we must first introduce the basis func-

tions for the port space ZN
p as {ζp,1, · · · , ζp,NŴ

p
}. The particular choice for these functions

is not important for now, but it becomes critical when dealing with port reduction – we

refer to Section ‘Port reduction’. For a local port dof number k′ such that Pi(k
′) = (p, k),

we then introduce the interface function ψ i
k′ ∈ XN

i , which is the harmonic extension of

the associated port space basis function into the interior of the component domain �i,

and satisfies
∫

�i

∇ψ i
k′ · ∇v = 0, ∀v ∈ XN

i;0 , (10)

ψ i
k′ =

{
ζp,k on Ŵp

0 on γ
j
i �= Ŵp, 1 ≤ j ≤ n

γ
i .

(11)

We show in Figure 2 an example of port basis functions and interface functions.

Figure 2 Top row, an example of 4 port basis functions for a 2D square port. Bottom row, the corresponding

interface functions in a beam component with the square port at one end.
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If components i and j are connected, then for each matching local port dofs ki and kj

such that Pi(ki) = Pj(kj) = (p, k), we define the global interface function �p,k ∈ XN as

�p,k =

⎧
⎪⎨
⎪⎩

ψ i
ki

on �i

ψ
j
kj

on �j

0 elsewhere.

(12)

We will now develop an expression for χn(μ) which just involves dof on the ports by

virtue of elimination of the interior dof given that σ = λn(μ) – starting from (13) to finally

arrive at (18). Let us suppose that we set σ = λn(μ) (for some n) so that the right-hand

side of (3) vanishes. Then, for χn(μ) ∈ XN we have

B(χn(μ), v;μ; σ) = 0, for all v ∈ XN .

We then express χn(μ) ∈ XN in terms of “interface” and “bubble” contributions,

χn(μ) =
I∑

i=1

bi(μ, σ) +
nŴ∑

p=1

NŴ
p∑

k=1

Up,k(μ, σ)�p,k , (13)

where the Up,k(μ, σ) are interface function coefficients corresponding to the port p, and

bi(μ, σ) ∈ XN
i;0 . Here χn is independent of σ , but we shall see shortly that we will need bi

and Uk,p to be σ -dependent in general.

We then restrict to a single component i to obtain

Bi(χn(μ), v;μ; σ) = 0, for all v ∈ XN
i;0 , (14)

where Bi(w, v;μ; σ) ≡ ai(w, v;μ) − σmi(w, v;μ), and where ai and mi indicate the

restrictions of a andm to �i, respectively. Substitution of (13) into (14) leads to

Bi(bi(μ, σ), v;μ; σ) +
Ki∑

k=1

UPi(k)(μ, σ)Bi(ψi,k , v;μ; σ) = 0, (15)

for all v ∈ XN
i;0 .

It can be shown from linearity of the above equation that we can reconstruct bi(μ, σ) as

bi(μ, σ) =
Ki∑

k=1

UPi(k)(μ, σ)bi,k(μ, σ),

where bi,k(μ, σ) ∈ XN
i;0 satisfies

Bi(bi,k(μ, σ), v;μ; σ) = −Bi(ψi,k , v;μ; σ), ∀v ∈ XN
i;0 . (16)

Let (λi,n(μ),χi,n(μ)) ∈ R × XN
i;0 denote an eigenpair associated with the n local

eigenproblem

ai(χi,n(μ), v;μ) = λi,n(μ)mi(χi,n(μ), v;μ), ∀v ∈ XN
i;0 , (17)

then, since

inf
v∈XN

i;0

Bi(v, v;μ; σ)

‖v‖2X,i
= inf

v∈XN
i;0

ai(v, v;μ) − σmi(v, v;μ)

‖v‖2X,i

≥ inf
v∈XN

i;0

ai(v, v;μ) − σmi(v, v;μ)

mi(v, v;μ)
inf

v∈XN
i;0

mi(v, v;μ)

‖v‖2X,i

= (λi,1(μ) − σ) inf
v∈XN

i;0

mi(v, v;μ)

‖v‖2X,i
,
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the bilinear form Bi(·, ·;μ; σ) is coercive on XN
i;0 if σ < λi,1(μ), where λi,1(μ) is the small-

est eigenvalue of (17). Hence (16) has a unique solution under this condition. Note that

we expect that λi,1(μ) > λ1(μ), and even λi,1(μ) > λn(μ) for n = 2 or 3 or 4 — of course

in practice the balance between λn and λi,n′ will depend on the details of a particular

problem.

Now for 1 ≤ k ≤ N Ŵ
p and each p, let

p,k(μ, σ) = �p,k +
∑

i,k′s.t.Pi(k′)=(p,k)

bi,k′(μ, σ),

and let us define the “skeleton” space XS(μ, σ) as

XS(μ, σ) ≡ span{p,k(μ, σ) : 1 ≤ p ≤ nŴ , 1 ≤ k ≤ N Ŵ
p }.

This space is of dimension nsc =
∑nŴ

p=1N
Ŵ
p .

Remark 2.2. Note that the interface functions are intermediate quantities that are com-

pleted with bubble functions. Although the interface functions are the result of a simple

harmonic lifting with the homogeneous Laplace operator, the subsequent bubble functions

are computed based on the problem-dependent a and m bilinear forms, hence they capture

the possible heterogeneities intrinsic to the problem. Hence the skeleton space XS(μ, σ) is

suitable for approximation.

We restrict (13) to a single component i to see that for σ = λn(μ) we obtain

χn(μ)|�i =
Ki∑

k=1

UPi(k)(μ, σ)
(
bi,k(μ, σ) + ψi,k

)
.

This then implies

χn(μ) =
nŴ∑

p=1

NŴ
p∑

k=1

Up,k(μ, σ) p,k(μ, σ) ∈ XS(μ, σ). (18)

Then, for σ = λn(μ) and μ ∈ D, we are able to solve for the coefficients Up,k(μ, σ)

from the static condensation eigenvalue problem on XS(μ, σ): find χn(μ) ∈ XS(μ, σ),

such that

B(χn(μ), v;μ; σ) = 0, ∀v ∈ XS(μ, σ), (19)

a(χn(μ),χn(μ);μ) = 1. (20)

We now relax the condition σ = λn(μ) to obtain the following problem: For σ ∈
[ 0, σmax] and μ ∈ D, find (τn(μ, σ),χn(μ, σ)) ∈ (R,XS(μ, σ)), such that

B(χn(μ, σ), v;μ; σ) = τn(μ, σ)a(χn(μ; σ), v;μ), ∀v ∈ XS(μ, σ), (21)

a(χn(μ, σ),χn(μ, σ);μ) = 1. (22)

It is important to note that this new eigenproblem (21) (22) differs from (3) (4) in two

ways: first, we consider a subspace XS(μ, σ) of XN , and as a consequence τn(μ, σ) ≥
τn(μ, σ); second, the subspace XS(μ, σ), unlike XN , depends on σ , and furthermore only

for σ = λn does the subspace XS(μ, σ) reproduce the eigenfunction χn(μ). We now show

Proposition 2.1. Suppose σ < λi,1(μ) for each 1 ≤ i ≤ I to ensure that the static

condensation is well-posed.
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(i) τn(μ, σ) ≥ τn(μ, σ), n = 1, . . . , dim(XS(μ, σ)),

(ii) τn(μ, σ) = 0 if and only if σ = λn(μ),

(iii) σ = λn(μ) if and only if there exists some n′ such that τn′(μ, σ) = 0.

Proof.

(i) The case n = 1 follows from the Rayleigh quotients

τ1(μ, σ) = inf
w∈XN

B(w,w;μ; σ)

a(w,w;μ)
, (23)

and

τ 1(μ, σ) = inf
w∈XS (μ,σ)

B(w,w;μ; σ)

a(w,w;μ)
, (24)

and fact that XS(μ, σ) ⊂ XN .

For n > 1, the Courant-Fischer-Weyl min-max principle [17] states that for an

arbitrary n-dimensional subspace of XN , Sn, we have

ηn(μ, σ) ≡ max
w∈Sn

B(w,w;μ; σ)

a(w,w;μ)
≥ τn(μ, σ). (25)

Let Sn ≡ span{χm(μ, σ),m = 1, . . . , n} ⊂ XS(μ, σ). Then ηn(μ, σ) = τn(μ, σ),

and the result follows.

(ii) This equivalence is due to (8).

(iii) (⇐) Suppose σ = λn(μ) for some n, then by construction χn(μ, σ) ∈ XS(μ, σ).

Since the same operator B appears in both (19) and (21), it follows that χn(μ, σ) is

also eigenmode for (21), (22) with corresponding eigenvalue 0. That is, for some n′,

τn′(μ, σ) = 0 is an eigenvalue of (21), (22).

(⇒) Suppose τn′(μ, σ) = 0 for some index n′. Then χn′(μ, σ) satisfies (19), (20), or

equivalently, (3), (4) for τn(μ, σ) = 0. From part (ii) of this Proposition, this implies

that σ = λn(μ).

Remark 2.3. Regarding our method, the main result is 2.1(iii), which informs on how to

recover eigenvalues of the original problem (3), (4) from the shifted and condensed prob-

lem (21), (22): we look for the values of σ such that (21), (22) has a zero eigenvalue. Note

that in 2.1(iii), the equivalence between τn′(μ, σ) = 0 and σ = λn(μ) possibly happens for

n′ �= n. In practice though, we always have n′ = n and there is a one-to-one correspon-

dence between the original problem and the shifted and condensed system which make the

eigenvalues much easier to track. We are not able to demonstrate that n′ = n in all cases,

but assuming that property, we can demonstrate some stronger properties (see 4) that we

will use to derive error estimates.
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To assemble an algebraic system for the static condensation eigenproblem, we insert

(18) into (21), (22) to arrive at

nŴ∑

p=1

NŴ
p∑

k=1

Up,k(μ, σ)B(p,k(μ, σ), v;μ; σ)

= τ(μ, σ)

nŴ∑

p=1

NŴ
p∑

k=1

Up,k(μ, σ)a(p,k(μ, σ), v;μ; σ), ∀v ∈ XS , (26)

nŴ∑

p=1

NŴ
p∑

k=1

Up,k(μ, σ)a(p,k(μ, σ),p,k(μ, σ);μ; σ) = 1. (27)

We now define our local stiffness and mass matrices A
i(μ, σ),Mi(μ, σ) ∈ R

Ki×Ki for

component i, which have entries

A
i
k′,k(μ, σ) = ai(ψi,k + bi,k(μ, σ),ψi,k′ + bi,k′(μ, σ);μ),

M
i
k′,k(μ, σ) = mi(ψi,k + bi,k(μ, σ),ψi,k′ + bi,k′(μ, σ);μ),

for 1 ≤ k, k′ ≤ Ki. We may then assemble the global system with matrices

B(μ, σ),A(μ, σ) ∈ R
nsc×nsc , of dimension nsc =

∑nŴ

p=1N
Ŵ
p : given a σ ∈ R and μ ∈ D, we

consider the eigenproblem

B(μ, σ)V(μ, σ) = τ(μ, σ)A(μ, σ)V(μ, σ), (28)

V(μ, σ)TA(μ, σ)V(μ, σ) = 1, (29)

where

B(μ, σ) ≡ A(μ, σ) − σM(μ, σ). (30)

As explained above, in order to find the eigenvalues of the original problem (3), (4), we

need to find the values of σ for which (28), (29) has a zero eigenvalue. When performing

this search, for each new value of σ that is considered, we need to perform the assembly

of the static condensation system (28), which involves many finite element computa-

tions at the component level in order to get the bubble functions (16), and is potentially

costly. Note that we also need to reassemble (28) when the parameters μ of the problem

change. In order to dramatically reduce the computational cost of this assembly, we will

use reduced order modeling techniques as described in the next Sections ‘Reduced basis

static condensation system’ and ‘Port reduction’.

Reduced basis static condensation system

Reduced basis bubble approximation

In the static condensation reduced basis element (SCRBE) method [10], we replace the FE

bubble functions bi,k(μ, σ) with reduced basis approximations. These RB approximations

are significantly less expensive to evaluate (following an RB “offline” preprocessing step)

than the original FE quantities, and hence the computational cost associated with the

formation of the (now approximate) static condensation system is significantly reduced.

We thus introduce the RB bubble function approximations

b̃i,k(μ, σ) ≈ bi,k(μ, σ) (31)
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for a parameter domain (μ, σ) ∈ D×[ 0, σmax], where

σmax = ǫσ min
μ∈D

min
1≤i≤I

λi,1(μ). (32)

Here ǫσ (< 1) is a “safety factor” which ensures that we honor the condition σ < λi,1(μ)

for all 1 ≤ i ≤ I. Next, we let

̃p,k(μ, σ) = �p,k +
∑

i,kis.t.Pi(ki)=(p,k)

b̃i,ki(μ, σ),

and define our RB static condensation space X̃S(μ, σ) ⊂ XN as

X̃S(μ, σ) = span{̃p,k(μ, σ) : 1 ≤ p ≤ nŴ , 1 ≤ k ≤ N Ŵ
p }.

(Note that X̃S(μ, σ) �⊂ XS(μ, σ)).

Remark 3.1. As opposed to CMS where the static condensation space is built from

local component natural modes, the RB static condensation space X̃S(μ, σ) is built from

RB bubbles that can accommodate for any global mode shape thanks to their (μ, σ)

parametrization. The only restriction is due to condition (32) which means that we only

ensure to capture global modes for which the wavelength is typically greater than a

component’s size.

We then define the RB eigenproblem: given (μ, σ) ∈ D×[ 0, σmax], find the eigenpairs

(̃τn(μ, σ), Ṽn(μ, σ)) that satisfy

B̃(μ, σ )̃V(μ, σ) = τ̃ (μ, σ )̃A(μ, σ )̃V(μ, σ), (33)

Ṽ(μ, σ)T Ã(μ, σ )̃V(μ, σ) = 1, (34)

where B̃(μ, σ), Ã(μ, σ) are constructed component-by-component from

Ã
i
k′,k(μ, σ) = ai(ψi,k + b̃i,k(μ, σ),ψi,k′ + b̃i,k′(μ, σ);μ), (35)

M̃
i
k′,k(μ, σ) = mi(ψi,k + b̃i,k(μ, σ),ψi,k′ + b̃i,k′(μ, σ);μ), (36)

for 1 ≤ k, k′ ≤ Ki, and where

B̃
i(μ, σ) ≡ Ã

i(μ, σ) − σ M̃
i(μ, σ). (37)

Reduced basis error estimator

We now consider error estimation for our RB approximations. In order to derive error

estimates, we will use Hypothesis A.1 which is related to Remark 2.3, and reads

σ = λn(μ) ⇔ τn(μ, σ) = 0.

Note that this hypothesis is solely used for error estimation, the computational method

itself does not rely on this assumption.

First, since X̃S(μ, σ) ⊂ XN , by the same argument as part (i) of Proposition 2.1, we have

Corollary 3.1.

τ̃n(μ, σ) ≥ τn(μ, σ), n = 1, 2, . . . , nsc. (38)
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We define the residual ri,k(·;μ, σ) : XN
i;0 → R for 1 ≤ k ≤ Ki, and 1 ≤ i ≤ I as

ri,k(v;μ, σ) = −Bi(ψi,k + b̃i,k(μ, σ), v;μ, σ), ∀v ∈ XN
i;0 ,

and the error bound [4]

‖bi,k(μ, σ) − b̃i,k(μ, σ)‖X,i ≤ �̃i,k(μ, σ) =
Ri,k(μ, σ)

αLB
i (μ, σ)

,

where

Ri,k(μ, σ) = sup
v∈XN

i;0

ri,k(v;μ, σ)

‖v‖X,i

is the dual norm of the residual, and αLB
i (μ, σ) is a lower bound for the coercivity constant

αi(μ, σ) = inf
w∈XN

i;0

Bi(w,w;μ, σ)

‖w‖2X,i
,

that can be derived by hand for simple cases, or computed using a successive constraint

linear optimization method [18].

We now assume that Hypothesis A.1 holds. Suppose we have found σn, the n
th “shift”

such that B̃(μ, σn) has a zero eigenvalue, i.e. we have τ̃n(μ, σn) = 0. Then our RB-based

approximation to the nth eigenvalue is λ̃n(μ) = σn. We will now develop a first order error

estimator for τn(μ, σn). We have

B(μ, σn)V(μ, σn) = τn(μ, σn)A(μ, σn)V(μ, σn),

and hence with B(μ, σn) ≡ B̃(μ, σn) + δB(μ, σn), A(μ, σn) ≡ Ã(μ, σn) + δA(μ, σn),

V(μ, σn) ≡ Ṽ(μ, σn) + δV(μ, σn), we obtain

(B̃(μ, σn) + δB(μ, σn))(̃V(μ, σn) + δV(μ, σn)) =
τn(μ, σn)(̃A(μ, σn) + δA(μ, σn))(̃V(μ, σn) + δV(μ, σn)). (39)

Expansion of the above expression yields

B̃(μ, σn)δV(μ, σn) + δB(μ, σn)̃V(μ, σn) + δB(μ, σn)δV(μ, σn) =
τn(μ, σn)(̃A(μ, σn)̃V(μ, σn) + Ã(μ, σn)δV(μ, σn)+
δA(μ, σn)̃V(μ, σn) + δA(μ, σn)δV(μ, σn)), (40)

where the identity B̃(μ, σn)̃V(μ, σn) = 0 has been employed. We then multiply through

by Ṽ(μ, σn)
T and note that

Ṽ(μ, σn)
T
B̃(μ, σn)δV(μ, σn) = δV(μ, σn)

T
B̃(μ, σn)̃V(μ, σn) = 0,

Ṽ(μ, σn)
T
Ã(μ, σn)̃V(μ, σn) = 1

and neglect higher order terms to obtain

τn(μ, σn) ≈ Ṽ(μ, σn)
TδB(μ, σn)̃V(μ, σn). (41)

We then have the following bound

|̃V(μ, σn)
TδB(μ, σn)̃V(μ, σn)|

≤
I∑

i=1

Ki∑

k=1

I∑

j=1

Kj∑

l=1

|̃VPi(k)(μ, σn)|�̃i,k(μ, σn)�̃j,l(μ, σn)|̃VPj(l)(μ, σn)|

≡ �̃(μ, σn). (42)



Vallaghé et al. AdvancedModeling and Simulation in Engineering Sciences  (2015) 2:7 Page 13 of 30

From Proposition 2.1 part (iii), we can only infer eigenvalues of (1),(2) when τn(μ, σ) =
0, hence (42) does not give us a direct bound on the error of λ̃n(μ). However, with the

assumption that �̃(μ, σn) → 0 in the limit as N → ∞, we see that τn(μ, σn) → 0 and

hence asymptotically we have that λ̃n(μ) converges to λn(μ). Moreover, we can develop

an asymptotic error estimator. From Proposition A.1, we have

τn(μ, λ̃n(μ)) ≈ τn(μ, λn(μ)) + (λ̃n(μ) − λn(μ))
∂τn(μ, λn(μ))

∂σ

=
λn(μ) − λ̃n(μ)

λn(μ)
. (43)

Combining (42) and (43) gives the following asymptotic (relative) error estimator

|λn(μ) − λ̃n(μ)|
λn(μ)

� �̃(μ, σn). (44)

Port reduction

Empirical mode construction

In practice, for the basis functions of the port space ZN
p , we use a simple Laplacian

eigenmode decomposition, corresponding to the eigenfunctions ζp,k of the following

eigenproblem

∫

Ŵp

∇ζp,k · ∇v = �p,k

∫

Ŵp

ζp,kv, ∀v ∈ ZN
p , 1 ≤ k ≤ N Ŵ

p . (45)

We can truncate the Laplacian eigenmode expansion in order to reduceN Ŵ
p – often with-

out any significant loss in accuracy of the method. However, we can obtain better results

by tailoring the port basis functions to a specific class of problems. A strategy for the

construction of such empirical port modes is presented in [16]. We briefly describe this

strategy here and refer the reader to [16] for further detail.

A key observation is that, in a system of components, the solution on any given interior

global port is “only” influenced by the parameter dependence of the two components that

share this port and the solution on the non-shared ports of these two components. We

shall exploit this observation to explore the solutionmanifold associated with a given port

through a pairwise training algorithm.

Algorithm 1 Pairwise training (two components connected at global port Ŵp)

Spair = ∅.
for n = 1, . . . ,Nsamples do

Assign random parameters σ ∈[ 0, σmax] and μi ∈ Di to component i = 1, 2

(note the value of σ is the same for both components).

On all non-shared ports, assign random boundary conditions.

Solve B(u(μ, σ), v;μ; σ) = 0, ∀v ∈ XS(μ, σ)

Extract solution u|Ŵp on shared port.

Subtract the average and add to snapshot set:

Spair ← S ∪
(
u|Ŵp −

1

|Ŵp|

∫

Ŵp

u|Ŵp

)
.

end for
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To construct the empirical modes we first identify groups of local ports on the compo-

nents which may interconnect; the port spaces for all ports in each such group must be

identical. For each pair of local ports within each group (connected to form a global port

Ŵp), we execute Algorithm (1): we sample this I = 2 component system many (Nsamples)

times for random (typically uniformly or log-uniformly distributed) parameters over the

parameter domain and for random boundary conditions on non-shared ports. For each

sample we extract the solution on the shared port Ŵp; we then subtract its average and

add the resulting zero-mean function to a snapshot set Spair. Note that by construction all

functions in Spair are thus orthogonal to the constant function.

Upon completion of Algorithm 1 for all possible component connectivity within a

library, we form a larger snapshot set Sgroup which is the union of all the snapshot sets

Spair generated for each pair. We then perform a data compression step: we invoke proper

orthogonal decomposition (POD) [19] (with respect to the L2(Ŵp) inner product). The

output from the POD procedure is a set of mutually L2(Ŵp)-orthonormal empirical modes

that have the additional property that they are orthogonal to the constant mode.

Note that each POD compression step is done on a possibly large dataset of vectors,

but for vectors of small size equal to the number of dofs of a given 2D port (for example

the square port in Figure 3). Hence the POD procedure described here is computationally

cheap, unlike POD for datasets of full 3D solution fields.

Port-reduced system

In practice we use SCRBE – RB approximations for the bubble functions – but as we

will see in the result section, the error introduced by RB approximation is very small and

negligible compared to the error due to port reduction. As a consequence, we describe

the port reduction procedure starting from the “truth” static condensation system (28),

but we will in practice apply the port reduction to the SCRBE system (33). We recall that

on port p the full port space is given as

ZN
p =

{
ζp,1, · · · , ζp,NŴ

p

}
. (46)

Figure 3 The component library: a beam (left) and a connector (right). Components can connect at square

ports shown in red. All ports have the same shape and same discretization: a square of side 1 with square

mesh cells of side 0.2. The size of the archetype beam is 1 × 1 × 5 with cubic mesh cells with side edges of

length 0.2. The connector is a combination of several cubes with side edges of length 1, such that its length is

3 along each of the three principal axis. The connector mesh is refined at the joints between the cubes where

we expect higher stresses.
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For each port, we shall choose a desired port space dimension nA,p such that 1 ≤ nA,p ≤
N Ŵ

p . We shall then consider the basis functions ζk , 1 ≤ k ≤ nA,p, as the active port modes

(hence subscript A); we consider the nI,p = N Ŵ
p − nA,p remaining basis functions ζk ,

nA,p +1 ≤ k ≤ N Ŵ
p , as inactive (hence subscript I). Note that span{ζp,1, . . . , ζp,nA,p} ⊆ ZN

p .

We then introduce

nA ≡
nŴ∑

p=1

nŴ
A,p, nI ≡

nŴ∑

p=1

nŴ
I,p, (47)

as the number of total active and inactive port modes, respectively; and nSC = nA + nI is

the total number of port modes in the non-reduced system.

Next, we assume a particular ordering of the degrees of freedom in (28): we first order

the degrees of freedom corresponding to the nA active system port modes and then by

the degrees of freedom corresponding to the nI inactive system port modes. Wemay then

interpret (28) as
[

BAA(μ, σ) BAI(μ, σ)

BIA(μ, σ) BII(μ, σ)

]
V(μ, σ) = τ(μ, σ)

[
AAA(μ, σ) AAI(μ, σ)

AIA(μ, σ) AII(μ, σ)

]
V(μ, σ), (48)

where the four blocks in the matrices correspond to the various couplings between active

and inactive modes; note that BAA(μ) ∈ R
nA×nA and that BII(μ) ∈ R

nI×nI . Our port-

reduced approximation τ̂ (μ, σ) shall be given as the solution to the nA × nA system

BAA(μ, σ)VA(μ, σ) = τ̂ (μ, σ)AAA(μ, σ)VA(μ, σ),

VA(μ, σ)TAAA(μ, σ)VA(μ, σ) = 1 (49)

in which we may discard the (presumably large) BII(μ, σ) and AII(μ, σ) blocks; however

the BIA(μ, σ)-block is required later for residual evaluation in the context of a posteriori

error estimation.

Port reduction error estimator

We put a ·̂ on top of all the port reduced quantities. In this section only we will use

Hypothesis A.1 in order to derive error estimates, but note that the port reduction proce-

dure does not require this assumption. Suppose we have found σn such that τ̂n(μ, σn) = 0

with eigenvector of size nSC in the non-reduced space

V̂n(μ, σn) =
[

VA,n(μ, σn)

0

]
.

We can expand V̂n(μ, σn) in terms of the eigenvectors Vm(μ, σn) of the non reduced

space

V̂n(μ, σn) =
nSC∑

m=1

αm(μ, σn)Vm(μ, σn).

Since τ̂n(μ, σn) = 0, we can reasonably assume that |τn(μ, σn)| = min
1≤m≤nSC

|τm(μ, σn)|.
We now look at the following residual

B(μ, σn)̂Vn(μ, σn) =
nSC∑

m=1

αm(μ, σn)B(μ, σn)Vm(μ, σn)

=
nSC∑

m=1

αm(μ, σn)τm(μ, σn)A(μ, σn)Vm(μ, σn),
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so using the A(μ, σn) orthogonality of the Vm(μ, σn) we obtain

‖B(μ, σn)̂Vn(μ, σn)‖2A(μ,σn)−1

=
nSC∑

m=1

|τm(μ, σn)|2‖αm(μ, σn)A(μ, σn)Vm(μ, σn)‖2A(μ,σn)−1

≥ |τn(μ, σn)|2
nSC∑

m=1

‖αm(μ, σn)A(μ, σn)Vm(μ, σn)‖2A(μ,σn)−1

= |τn(μ, σn)|2‖
nSC∑

m=1

αm(μ, σn)A(μ, σn)Vm(μ, σn)‖2A(μ,σn)−1

= |τn(μ, σn)|2,

where we use the Euclidean norm derived from the A(μ, σn)
−1 scalar product. We thus

obtain the following error bound

�̂(μ, σn) ≡ ‖B(μ, σn)̂Vn(μ, σn)‖A(μ,σn)−1 ≥ |τn(μ, σn)|.

Finally, we recover an error estimator for the eigenvalue λn(μ) of the original eigen-

problem. Assuming λ̂n(μ) is close to λn(μ), we can then use Proposition A.1 as in (43),

and we get the relative error estimator

|λn(μ) − λ̂n(μ)|
λn(μ)

� �̂(μ, σn).

It is important to note that �̂(μ, σn) will only decrease linearly in the residual, whereas

the actual eigenvalue error is expected to decrease quadratically in the residual. This is

due to the fact that port reduction can be viewed as a Galerkin approximation over a

subspace of the skeleton space XS(μ, σ), and in that framework several a priori and a

posteriori error results demonstrate the quadratic convergence of the eigenvalue [20]. As

a consequence the effectivity of the error estimator �̂(μ, σn) is expected to degrade as

nA,p gets larger.

Note that

B(μ, σn)̂Vn(μ, σn) =
[

0

BIA(μ, σn)VA,n(μ, σn)

]
,

and so the computation of the residual requires the additional assembly of BIA(μ, σn),

which does not generate an important extra computation since in practice we will con-

sider nA ≪ nI. On the contrary, the computation of the norm ‖ · ‖A(μ,σn)−1 requires the

assembly and inversion of A(μ, σn), the full Schur complement stiffness matrix, which

would potentially eliminate any speed-up obtained by the port reduction. This compu-

tational issue is resolved by using an upper bound for ‖ · ‖A(μ,σn)−1 which is based on a

non-conforming version A
′(μ, σn) of the stiffness operator and a parameter independent

preconditioner: the former permits online computation of small matrix inverses locally
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on each component, and the latter allows us to precompute non-reduced matrices and

their Cholesky decompositions in an offline stage. The entire procedure is described in

detail in [16].

Computational aspects

In this section, we summarize the main steps of the method from a computational point

of view. There are two clearly separated stages. The “Offline” stage involves heavy pre-

computations and is performed only once. The “Online” stage corresponds to the actual

solution of the eigenproblem and can be performed many times for various parameters

μ and different eigenvalue targets. The “Online” computations are very fast thanks to

our approach and allow to solve eigenproblems in a many query context such as model

optimization or design.

Offline computations

In the Offline stage, we already have some knowledge about the class of eigenproblems

we will have to solve. We know the bilinear forms a andm corresponding to the stiffness

and mass operators. We have a predefined library of archetype components that will be

allowed to be connected together at compatible ports to form bigger systems that will

be considered in the Online stage. See Figure 3 for an example of library, and Figure 6

for an example of system obtained from component assembly. Note that each archetype

component in the library is allowed to have some parametric variability.

For each port type corresponding to a possible connection between archetype compo-

nents, we perform the following computations:

• Compute a set of port modes, possibly empirical modes as described in

Section ‘Empirical mode construction’.

For each archetype component, we perform the following computations:

• Compute the harmonic extension of the port modes inside the archetype component

reference domain to get the interface functions.

• For each interface function, compute a reduced basis space for the bubble Eq. 16.

Each RB space is tuned for the stiffness and mass operators, as well as the component

parametric variability and the shift σ variability.

• Precompute some component quantities used in (35), (36), that will be ready in the

Online stage for system assembly.

Online stage

System assembly In the Online stage, we form a component assembly by instantiating

I components from our library of archetype components, and connecting them together.

Several instantiated components can correspond to the same archetype component, but

with possibly different parameter values. Each instantiated component i has a set of

parameter values μi, and the whole system has a set of parameters μ = ∪i=1..Iμi. We also

define a value of σ for the whole system.

For each instantiated component i, we perform the following computations:

• Compute the RB approximations of the bubble functions for parameter values (μi, σ).

• Compute the component stiffness and mass matrices (35), (36).

At the system level, we perform the following computations:
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• Assemble the system (33) for parameter values (μ, σ), using the component

matrices (35), (36) previously computed for each instantiated component.

Eigenvalue computation At this point, we now need to find the values of σ for which

the system (33) has a zero eigenvalue. We proceed by fixing an eigenvalue number n and

we then follow Algorithm 2 with tolerance δ ≪ 1.

Algorithm 2

Pick an initial value for σ

Assemble the system (33) for (μ, σ) following Section ‘System assembly’

Compute the nth eigenvalue τ̃n(μ, σ) of (33).

while |̃τn(μ, σ)| > δ do

Pick a new value of σ following a search method (Brent)

Reassemble the system (33) for (μ, σ)

Recompute τ̃n(μ, σ)

end while

Return σ

Applying this algorithm for n = 1, 2, 3, . . . we can recover the first eigenvalues of the

component assembly. In practice Brent’s method [21] applied to the search of σ such that

τ̃n(μ, σ) = 0 converges in about 10 iterations, and there is only a single root for the

function σ �→ τ̃n(μ, σ).

Once an approximation λ̃n(μ) = σ of the eigenvalue has been found, we obtain an asso-

ciated eigenvector following (33). Note that we use a standard eigensolver from the SLEPc

library [22] as a black box, hence we have no control on the eigenvector computation,

especially when the eigenvalue multiplicity is two or more.

Remark 5.1. The parametric dependence comes into play in the Online stage when the RB

bubble functions are computed, as they depend on (μ, σ). As a consequence, the resulting

shifted system depends on (μ, σ), and also its eigenvalues τ̃n(μ, σ). The vector of param-

eters μ is chosen by the user for the whole system (material properties of the different

components, geometry), while σ is automatically updated at each step of Algorithm 2: as

a result, the RB bubble functions have to be recomputed at each step of Algorithm 2. In

the end though, we obtain an approximation λ̃n(μ) that depends only on μ, the “natural”

parameters of the original system. The user is then free to modify the system by choosing a

different vector of parameters μ′, and restart Algorithm 2.

Results and discussion

Linear elasticity

We consider linear elasticity in a non-dimensional form: we nondimensionalize space

with respect to a length d0 which will correspond to the beam width in the following,

we nondimensionalize the Young’s modulus E with respect to a reference value E0, and

we nondimensionalize time with respect to
√

ρd0
E0

, where ρ is the mass density. The non

dimensional linear elasticity free vibration equation then reads

−AU =
∂2U

∂t2
, (50)
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where A is a linear second order differential operator in space and U(x, t) is the dis-

placement vector. Assuming that the free vibration solution is of the form U(x, t) =
u(x)cos(ωt), the problem is equivalent to solving the eigenproblem

Au = ω2u. (51)

In variational form, the operatorA corresponds to the bilinear form [4]

a(w, v;μ) ≡
∫

�(μ)

Cijkl(μ)ǫij(w)ǫkl(v) (52)

where we assume summation on repeated indices; a(·, ·;μ) is defined on the

space of admissible displacements V =
{
v = (v1, v2, v3)|vi ∈ H1(�(μ)); vi = 0

on Ŵ0(μ) ⊂ ∂�(μ)}, and ǫij(v) = 1
2 (∂ivj + ∂jvi). We will consider piecewise isotropic

materials, in which case the coefficients Cijkl(μ) are functions of only two parameters at a

given point in space: Poisson’s ratio ν and Young’s modulus E. In the following we always

fix ν = 0.3, and allow E to vary, hence E is part of the vector of parameters μ. More

precisely, the parametric dependence reads

Cijkl(μ) =
Eν

(1 + ν)(1 − 2ν)
δijδkl +

E

2(1 + ν)
(δikδjl + δilδjk).

We also define the mass bilinear form

m(w, v;μ) ≡
∫

�(μ)

wivi. (53)

Note that there is also a μ dependency coming from the possible geometrical variations,

hence the notation �(μ). If we define a mapping function φμ such that �(μ) = φμ(�ref),

for a reference domain �ref, then the mass bilinear form could also read:

m(w, v;μ) ≡
∫

�ref

(wi ◦ φμ) · (vi ◦ φμ)|Jac(φμ)|, (54)

and a similar expression could be obtained for the stiffness bilinear form a(·, ·;μ).

The eigenproblem in variational form finally reads: find λ(μ) ∈ R>0 and u(μ) ∈ V such

that

a(u(μ), v;μ) = λ(μ)m(u(μ), v;μ), ∀v ∈ V , (55)

m(u(μ),u(μ);μ) = 1. (56)

Note that λ(μ) = ω2(μ) – the eigenvalue is the frequency squared.

Simple component library

We consider a linear elasticity library of two components shown in Figure 3: a beam and

a connector. The FE hexahedral meshes are shown in Figure 3, and in all the following

we use first order approximation with trilinear elements. The components can connect at

square ports of dimension 1× 1 withN Ŵ
p = 3× 36 = 108 degrees of freedom. The beam

has two parameters: the Young’s modulus E ∈[ 0.5, 2] and the length scaling s ∈[ 0.5, 2],
where the beam is of length 5s. The connector has one parameter, the Young’s modulus

E ∈[ 0.5, 2]. Finally, for the shift parameter σ , we consider the range [ 0, 0.01], based on the

fact that the local minimum eigenvalues of the two components are larger than 0.01 for

the previous E and s parameter ranges. For each component, we build RB bubble spaces of

size N = 10 using a Greedy algorithm [23], for the parameter ranges previously defined.

See [4] for a detailed example of reduced basis applied to linear elasticity. We also per-

form a pairwise training for the component pair beam-connector to build empirical port
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modes as described in Section ‘Empirical mode construction’; and we build a parameter

independent preconditioner (necessary for the computation of �̂) using parameter values

E = 0.5 and s = 0.5.

Simple beam

We first present a simple example where we compare with beam theory to demonstrate

that the FE resolution is adequate and that we capture the different modes. We connect

eight beam components together, corresponding to a system with a vector of parameters

μ of dimension 16. By using the same values of s = 1 and E = 1 for all beam components

– or equivalently μ = 1 ∈ R
16 – we obtain a system corresponding to a uniform beam of

square section, with thickness d = 1 and length L = 40, and Young’s modulus E = 1. As

boundary conditions, we clamp this beam on both ends.

Table 1 presents the first eight eigenvalues obtained by different methods: Euler

Bernoulli model [24], Timoshenko model [24], global FEM and SCRBE with and with-

out port reduction (in which the beam is constructed as the concatenation of eight beam

components). The eigenvalues (which we recall are the frequencies squared) are quite

small as the beam is of large aspect ratio. The SCRBE results are obtained by connecting

eight beam components together with length parameter s = 1, using RB spaces of size

N = 10; no port reduction corresponds to nA,p = N Ŵ
p = 108, and for port reduction

we use nA,p = 20 active port modes. The global FEM results are obtained using a global

mesh corresponding to eight beam component meshes stitched together, hence SCRBE

and FEM are based on the same mesh and FE resolution.

We first observe that SCRBE does capture all the eigenvalues with their multiplicity:

the eigenvalues corresponding to bending modes have double multiplicity because of the

symmetry of the beam square section. We only report distinct eigenvalues in Table 1

but we show in Figure 4 the two non-collinear modes recovered by SCRBE for the first

Table 1 Eigenvalues for a clamped-clamped uniform beam of square section, with

thickness d = 1 and length L = 40

λ1 λ2 λ3 λ4

Euler Bernoulli 1.6294e-05 1.2381e-04 4.7583e-04 1.3003e-03

Timoshenko 1.6204e-05 1.2224e-04 4.6524e-04 1.2560e-03

Global FEM 1.6612e-05 1.2489e-04 4.7327e-04 1.2708e-03

SCRBE nA,p = 108 1.6612e-05 1.2489e-04 4.7327e-04 1.2708e-03

SCRBE nA,p = 20 1.6612e-05 1.2489e-04 4.7327e-04 1.2708e-03

�̃ 1.4418e-06 2.0695e-07 7.9612e-08 9.6913e-08

�̂ 5.5488e-03 7.3845e-03 8.4207e-03 7.4811e-03

λ5 λ6 λ7 λ8

Euler Bernoulli — 2.9016e-03 5.6603e-03 —

Timoshenko — 2.7622e-03 5.2991e-03 —

Global FEM 2.0732e-03 2.7775e-03 5.2916e-03 6.1912e-03

SCRBE nA,p = 108 2.0732e-03 2.7775e-03 5.2916e-03 6.1912e-03

SCRBE nA,p = 20 2.0732e-03 2.7775e-03 5.2916e-03 6.1912e-03

�̃ 5.4576e-09 4.1418e-07 1.0262e-06 8.8249e-09

�̂ 3.3180e-02 8.3262e-03 8.9995e-03 4.7761e-03

The estimators �̃ and �̂ correspond to relative errors. Note that we have eigenvalues of multiplicity two due to the

symmetry of the beam square section but we only report distinct eigenvalues in this table.
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Figure 4 Two non-collinear eigenmodes corresponding to the first eigenvalue of double multiplicity.

eigenvalue. Regarding the beam models (Euler Bernoulli and Timoshenko), we observe

that they do not capture some eigenvalues; these correspond to torsional modes that

are not taken into account in Euler Bernoulli and Timoshenko models which consider

only bending displacement. Note that for a beam with a square section, the bending and

torsion is decoupled and the eigenmodes are either pure bending or pure torsion (see

Figure 5). For the modes that are pure bending (λ1, λ2, λ3, λ4, λ6, λ7), we observe a good

agreement between all methods. Note that it is well known that Euler Bernoulli is better

for long wavelength and/or slender beams; Timoshenko is better for shorter wavelength

and/or shorter beams. Not surprisingly, the FE (and SCRBE) eigenvalues are closer to

Euler Bernoulli for lower modes and closer to Timoshenko for higher modes. The SCRBE

(with or without port reduction) and global FEM give results that have an actual relative

difference less than 10−4. For the SCRBE without port reduction, we also give the relative

error estimate �̃ in Table 1, which corresponds to the relative error between the SCRBE

and the “truth” static condensation: it is at most 10−6, which confirms that the error intro-

duced by RB is negligible. For the SCRBE with port reduction and nA,p = 20, the relative

error estimate is �̂ and corresponds to the relative error between SCRBE with and with-

out port reduction: it is about 10−2, which overestimates the actual relative error, but

nonetheless indicates a very good agreement between SCRBE eigenvalues with and with-

out port reduction. We also observe that the SCRBE does capture all the torsional modes.

Note finally that the SCRBE eigenvalues are obtained using a root finding algorithm: in

practice we set the tolerancea to 10−10 as this is a couple orders of magnitude smaller

Figure 5 Eigenmodes for the fourth (pure bending) and fifth (pure torsion) eigenvalues.
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than the RB relative error estimator �̃, thus making the root finding error negligible with

respect to RB error (and also port reduction error).

Bridge structure

We are now ready to consider larger systems with more complicated connections which

will better exercise the RB and port reduction capabilities. Towards this end, we consider

a system of 30 components, corresponding to a bridge structure. It is composed of 22

beam components and 8 connectors, hence the vector of parameters μ for this system is

of dimension 52.

We first set the vector of parameters μ such that E = 0.5 and s = 1 for all compo-

nents, and we show in Figure 6 the second and third eigenmodes for the corresponding

system. In the following, we will provide systematic analysis of the RB and port reduction

convergence and also performance of the a posteriori error estimates.

We first show in Figure 7 the convergence of the first eigenvalue with respect to the size

N of the RB spaces used for bubble approximations. Note that we did not compute the

eigenvalue with the “truth” static condensation, because it would be very computation-

ally intensive, hence the reference value for λ is the value obtained with a global FEM,

denoted λFE
b. We observe that we obtain exponential convergence, hence we provide a

significant improvement compared to standard CMS approaches. We also observe that

the RB relative error estimator �̃ is accurate – it overestimates the actual error by at most

one order of magnitude; moreover, for a sufficiently large N, the RB relative error estima-

tor �̃ is very small, hence justifying the fact that we can neglect the error due to RB error

approximation when introducing port reduction.

We now fix N = 10 and consider port reduction. We show in Figure 8 the convergence

of the first eigenvalue with respect to the number of port modes, for both the regular

Laplacian modes and the empirical modes: the advantage obtained with the empirical

modes is obvious, and we also observe that �̂ does not converge as fast as the true error,

which is due to the fact that it is only a linear function of the norm of the residual, as

explained in Section ‘Port reduction error estimator’.

Finally, we briefly illustrate some component parametric variations made possible with

SCRBE. We show in Figure 9 the third eigenmode for different parameter variations: we

can modify some of the beam lengths (Figure 9a), or we can make one half of the bridge

stiffer than the other (Figure 9b).

Figure 6 A bridge structure: all of the “open ports” of beam components are clamped. The second and third

displacement eigenmodes are shown.
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Figure 7 First eigenvalue convergence with respect to the size N of RB spaces.

Industrial example

In this last section, we apply our approach to a large industrial structure. In the following,

we will first focus on computational performance (without using the error estimators that

have already been presented in the previous section), and then we will illustrate the para-

metric variability offered by our approach. Note that we will now consider linear elasticity

in its dimensional form.

We consider here the shuttle part of a shiploader. A shiploader is a large structure (sim-

ilar to a crane) used by mining companies to transport the minerals from trucks on the

Figure 8 First eigenvalue convergence with respect to the number nA,p of active port modes: blue

corresponds to Laplacian eigenmodes (“Lap”), red corresponds to empirical modes (“Emp”). The reference

eigenvalue λ̃ is the one obtained for nA,p = N Ŵ
p = 108.



Vallaghé et al. AdvancedModeling and Simulation in Engineering Sciences  (2015) 2:7 Page 24 of 30

Figure 9 Illustration of some variations of the vector of parameters μ for the bridge system. We show the

third eigenmode for two different configurations. (a) For the middle beams, s = 0.7; for the beams adjacent

to the middle beams, s = 1.3; for all other beams and all support beams, s = 1; and E = 0.5 everywhere. (b)

In the first half of the bridge E = 2, in the second half E = 0.5, and all the beams are of size s = 1.

ground onto ships on the water. The shuttle is a subpart of the shiploader that can slide in

and out, in order to vary the length and height of the structure, to accommodate for vary-

ing shapes and sizes of the incoming ships. The shuttle is comparable to the lattice boom

of a crane, and has a frame structure composed of a series of intermeshing steel rods,

reinforced with some panels on the sides. The shuttle structure is shown in Figures 10

and 12.

The first goal of this section is to show the computational advantage of our method with

respect to a classical Finite Element Method. The shuttle structure has a mesh composed

of 430 000 nodes, and as a consequence the corresponding linear elasticity eigenproblem

has 1.3 million degrees of freedom – we use first order elements and tetrahedral meshes.

We show a part of the mesh for one of the components of the shuttle in Figure 11. For

now, we consider the shuttle to be made of steel (Young’s modulus is 200 GPa and mass

density is 7850 kg.m−3) and we impose clamping in four shuttle locations (at the bottom,

in the back and the middle of the structure) corresponding to the case where the shuttle

Figure 10 The shuttle structure (in the middle). Individual components used in our approach are showed

separately around the assembled structure. Note that we instantiate the two truss components multiple

times in order to assemble the shuttle structure.
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Figure 11 The shuttle is clamped at the locations indicated by the locks in the left picture. The next two

pictures correspond to the first and fifth computed eigenmodes: we show the displacements superimposed

on a translucid view of the original structure.

would slide halfway out of the complete shiploader structure. These clamping locations

are indicated by the “lock” icons in Figure 12, where we also show the displacement for

the first and fifth eigenmodes.

To solve the eigenproblem with SCRBE, we used RB spaces of dimension 20 on aver-

age for the bubble approximations, and we used on average 15 empirical modes for each

port at which components connect. The final Schur system is of size 1200, to be com-

pared with the size of the original FE system which is 1.3 million. We report in Table 2

the first five natural frequencies (square root of the eigenvalues) obtained both with FE

and SCRBE. We observe a very good relative error of at most 2%, despite the dramatic

dimension reduction performed by SCRBE. With respect to computational time, SCRBE

improves on FE by a factor 700, which is very significant and allows for quasi real-time

computations. Another important gain for SCRBE is on memory usage: it requires only

100 MB to solve an eigenproblem that requires 12 GB with FE. It means that very large

structures that are out of reach for FE can be considered with SCRBE. For instance, if

we were to consider the full shiploader, there would be about 6 millions degrees of free-

dom, and solving the eigenproblem with FE would not be possible on a regular desktop

machine due to memory limitations, whereas it would be handled easily with SCRBE.

Figure 12 The tetrahedral mesh for one component of the shuttle.
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Table 2 Comparison between SCRBE and FE

Global FEM SCRBE Relative error

Frequency 1 2.526 Hz 2.532 Hz 0.3%

Frequency 2 2.775 Hz 2.792 Hz 0.6%

Frequency 3 4.984 Hz 5.028 Hz 0.9%

Frequency 4 6.597 Hz 6.688 Hz 1.4%

Frequency 5 7.372 Hz 7.501 Hz 1.7%

RAM usage 12 GB 100 MB

Solving time 350 s 0.5 s

For the finite element eigen solver, we used the Krylov-Schur method with a shift and invert transformation, and the

MUMPS [25] parallel sparse direct LU solver for matrix inversions, with 4 CPUs.

The second andmost important goal of this section is to show the parametric advantage

of our method with respect to CMS. We demonstrated that SCRBE has a computational

advantage relative to FE, but the same decrease in computational time could in theory be

obtained with CMS. One crucial advantage of SCRBE with respect to CMS (in addition to

convergence rate) is its flexibility with respect to parameter variations. Thanks to the RB

approximations at the component level, we can modify the component parameters and

directly recompute the eigenproblem solution “Online”. In the case of CMS, any change

of the component parameters (especially geometrical) would require some “Offline” work

to recompute the modal decomposition of each component, hence precluding its use in

a many query context with parametric variability. Although we did not implement the

CMS method for direct comparison as we did for FE previously, we hope the following

examples of Online parametric variations will convince the reader of the crucial advantage

of SCRBE with respect to CMS.

We first describe the overall parametric variability of the shuttle assembly in Table 3

and Figure 13. Note that in the following we refer many times to “pre-bent” trusses: they

correspond to components for which the geometry is bent in its initial state, as opposed

to the bending shown with the eigenmode shapes. These pre-bent trusses can represent

structures that have deformed over time, or in the case of buckling. The pre-bent truss

component has two parameters v and h for vertical and horizontal pre-bending, and the

mapping function for the pre-bending deformation reads

Table 3 The parametric variability of each component used in the shuttle assembly

Component type Number of parameters Parameters and ranges

Young’s modulus (frame, panel) ∈[ 60, 220]GPa
Side panel 4 Mass density (frame, panel) ∈[ 1000, 8000] kg.m−3

Young’s modulus ∈[ 60, 220]GPa
Truss joint 2 Mass density ∈[ 1000, 8000] kg.m−3

Young’s modulus ∈[ 60, 220]GPa
Diagonal truss 4 Mass density ∈[ 1000, 8000] kg.m−3

Length, shear

Young’s modulus ∈[ 60, 220]GPa
Mass density ∈[ 1000, 8000] kg.m−3

Vertical pre-bending v ∈[−1.5, 1.5]

Horizontal truss 4 Horizontal pre-bending h ∈[−1, 1]

In total, the full shuttle has a vector of parameters μ of dimension 136.
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Figure 13 Horizontal truss with pre-bending geometrical variability. Left: horizontal pre-bending. Right:

vertical pre-bending.

(x, y, z) �→
(
x, y + v −

vx2

l2
, z + h −

hx2

l2

)

where the truss component is centered at the origin, has his main axis along the x

coordinate, and is of length 2l.

In total, the shuttle has 122 material parameters (Young’s modulus and mass densities)

and 14 geometrical parameters (horizontal and vertical pre-bending of the horizontal

trusses) that can be varied independently – the vector of parameters μ for this system is

of dimension 136.We report in Table 4 the first and fifth natural frequencies of the shuttle

for various choices of parameters.

We observe almost no change in the frequencies when the shuttle is either all steel

or all aluminium. This is because the homogeneous Young modulus and mass density

can be factored out of the stiffness and mass matrices, and the ratio between these two

quantities is almost the same for steel and aluminium. On the opposite, if we mix both

materials, as in the case of a steel frame and aluminium panels, then the natural fre-

quencies significantly change. Now if we pre-bend the horizontal trusses, we observe

that the first frequency is unchanged whereas the fifth frequency is affected. This is

because the first eigenmode corresponds to a bending along the principal axis of the

shuttle, and does not involve any deformation of the horizontal trusses, whereas the

fifth eigenmode corresponds to a lateral bending which involves some horizontal trusses

(see Figure 12).

Using CMS, we could still vary some material parameters (if homogeneous at the

component level) but we could not vary geometrical parameters of a given component

“Online”. Regarding the previous examples, we could probably switch from all steel to all

aluminium with CMS without affecting much the accuracy (and the natural frequencies

would not change much anyway), but the two other cases would not be possible without

Table 4 The first and fifth natural frequencies of the shuttle for various configurations

Shuttle configuration First natural frequency Fifth natural frequency

Pristine, all steel 2.53 Hz 7.50 Hz

Pristine, steel frame, aluminium panels 3.13 Hz 8.10 Hz

Pristine, all aluminium 2.54 Hz 7.51 Hz

Pre-bent trusses, all steel 2.53 Hz 7.07 Hz

For steel, the Young’s modulus is 200 GPa and the mass density is 750 kg.m−3 . For aluminium, the Young’s modulus is 69

GPa and the mass density is 2700 kg.m−3 . For the pre-bent trusses case, we used maximal horizontal and vertical

pre-bending parameters for all the horizontal trusses.
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some new “Offline” computations. In order to better illustrate the geometrical variability

offered by the SCRBE method, we will consider the pre-bent truss component in isola-

tion from the rest of the shuttle, since the full shuttle structure is not much affected by

a local geometrical variation. We show in Figure 14 an assembly of two pre-bent trusses

clamped on both sides, for various geometrical parameters, and we report in Table 5

the first natural frequency computed both with SCRBE and FE. We can see that the

SCRBE method captures very well the first natural frequency despite large geometrical

variations.

Conclusions

We extended the SCRBE approach – originally introduced for parametrized linear

problems – to parametrized symmetric eigenproblems, in order to analyze large-scale

component-based structures. Thanks to the component-interior reduced basis and the

port reduction, we are able to compute fast accurate approximations for any component

parameter values, as well as providing a posteriori error estimates.

We presented an application to a large structure – a shiploader shuttle used in min-

ing – in the context of three-dimensional linear elasticity. Compared to a finite element

method, we obtain a speed up of 700 and a reduction of 120 in memory consump-

tion. We are also able to explore the parametric variability of the shuttle – a vector μ

of dimension 136 – and recompute the solution at the same speed for every new value

of μ.

We obviously presented a limited number of cases, but the parametric variability of the

shuttle, to which we can add variable clamping conditions, allows to consider thousands

of designs, and in very little time thanks to the computational speed of SCRBE. Moreover,

the small memory requirements of the method would allow to consider even larger struc-

ture, such as a full shiploader model. For these reasons we think our method can be very

valuable in an engineering context where design optimization andmulti-scenario analysis

of large models is common practice.

Endnotes
aThe tolerance applies to τ̃n(μ, σ) = 0, hence it corresponds to a relative tolerance for

λ̃n(μ).
bThe global FEM eigenvalue is not expected to be exactly the same as what would be

obtained with FE static condensation – in theory they should be the same, but the

different computational paths lead to different numerical results – hence it explains why
|λFE−̃λ|

λFE
does not converge to zero, and why �̃ gets smaller than |λFE−̃λ|

λFE
for N big enough.

Figure 14 A system composed of two pre-bent truss components, clamped on both extremities. The

geometrical parameters are varied, from left to right: no pre-bending, horizontal pre-bending, vertical

pre-bending, simultaneous horizontal and vertical pre-bending.
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Table 5 The first natural frequency for the system composed of two pre-bent truss

components (steel)

No pre-bending Horizontal pre-bending Vertical pre-bending Horizontal and vertical
pre-bending

SCRBE 12.608 Hz 11.868 Hz 12.246 Hz 11.553 Hz

FE 12.606 Hz 11.852 Hz 12.241 Hz 11.534 Hz

Appendix A

Properties used for error estimates

Hypothesis A.1. σ = λn(μ) if and only if τn(μ, σ) = 0

Lemma A.1. We have that

∂τn(μ, σ)

∂σ
= −

1

λn(μ)
, (57)

for each n = 1, 2, . . . ,N .

Proof. We set v = χn(μ) in (3), to obtain

B(χn(μ),χn(μ);μ; σ) = τn(μ, σ)a(χn(μ),χn(μ);μ) = τn(μ, σ), (58)

where we employed (4) in the last equality above. We note that χn(μ) is independent of

σ , and differentiate with respect to σ to obtain

∂τn(μ, σ)

∂σ
=

∂

∂σ
B(χn(μ),χn(μ);μ; σ)

=
∂

∂σ
[a(χn(μ),χn(μ);μ) − σm(χn(μ),χn(μ);μ)]

= −m(χn(μ),χn(μ);μ)

= −
1

λn(μ)
m(un(μ),un(μ);μ) = −

1

λn(μ)
.

However, the result does not apply to τn(μ, σ): we cannot apply the argument from the

proposition to (21), (22) since in general χn(μ, σ) depends on σ . We can still state the

following

Proposition A.1. Assuming that τn(μ, ·) is differentiable at λn(μ) and Hypothesis A.1

holds, then

∂τn(μ, λn)

∂σ
= −

1

λn(μ)
.

Proof. We know that τn(μ, λn(μ)) = τn(μ, λn(μ)) = 0, ∂τn(μ,σ)
∂σ

= − 1
λn(μ)

and

τn(μ, σ) ≥ τn(μ, σ). So we have

∀h < 0,
τn(μ, λn(μ) + h)

h
≤ −

1

λn(μ)
,

∀h > 0,
τn(μ, λn(μ) + h)

h
≥ −

1

λn(μ)
,

Since τn(μ, ·) is differentiable at λn(μ), we have

∂τn(μ, λn(μ))

∂σ
= lim

h→0−

τn(μ, λn(μ) + h)

h
= lim

h→0+

τn(μ, λn(μ) + h)

h
= −

1

λn(μ)
.
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