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Abstract—This paper presents a framework for component-
based face alignment and representation that demonstrates im-
provements in matching performance over the more common
holistic approach to face alignment and representation. This
work is motivated by recent evidence from the cognitive science
community demonstrating the efficacy of component-based facial
representations. The component-based framework presented in
this paper consists of the following major steps: (i) landmark
extraction using Active Shape Models (ASM), (ii) alignment and
cropping of components using Procrustes Analysis, (iii) repre-
sentation of components with Multi-Scale Local Binary Patterns
(MLBP), (iv) per-component measurement of facial similarity,
and (v) fusion of per-component similarities. We demonstrate
on three public datasets and an operational dataset consisting
of face images of 8,000 subjects, that the proposed component-
based representation provides higher recognition accuracies over
holistic-based representations. Additionally, we show that the
proposed component-based representations: (i) are more robust
to changes in facial pose, and (ii) improve recognition accuracy
on occluded face images in forensic scenarios.

Index Terms—face recognition, component-based face repre-
sentation, feature extraction, active shape model

I. INTRODUCTION

Studies in cognitive science suggest that both global and

local features are utilized for face perception and recogni-

tion [1], [2], [3], [4], [5], [6], [7]. However, despite these

findings, research in automated face recognition has seen a

disproportionate amount of attention spent developing sys-

tems that use holistic face descriptors to represent a face

image. For example, holistic face representations such as

densely sampled feature descriptors (e.g. Local Binary Pat-

terns (LBP) [8], Scale Invariant Feature Transforms (SIFT)

descriptors [9], biologically inspired features (BIF) [10]) and

appearance-based (or pixel-based) representations [11], [12],

[13] are commonly used in automated face recognition [14].

However, studies involving face recognition with component-

based representations (i.e., representations that extract features

per specific facial components1) are found at a much lower

frequency in the literature, despite their demonstrated use in

human face processing (see 1 for illustration of methods). Even

methods which compute similarity measures at specific facial
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1Facial components are specific regions of the face, such as the nose, eyes,
eyebrows, and mouth.

landmarks, such as elastic bunch graph matching (EBGM)

[15], do not operate in a per-component manner.

The discourse in cognitive science and psychology contin-

ues to argue about the precise roles of holistic, configural and

component information in human face perception. However,

evidence points to the presence of all three in human face

perception [16], [17], [18], [2], [1], [19], [4], [3], [5], [6], [20],

[7]. The earliest paradigms providing support for component

processing created faces comprised of sets of components and

then asked subjects to make decisions about whether faces

were the “same” or “different”. Experimental results showed

that the number of components by which the two images

differed predicted subjects’ reaction times [1], [16], [2]. These

results suggest a part-by-part processing of the face. Smith

and Nielsen confirmed the presence of component processing

using a slightly different matching paradigm comprised of

schematic line drawings of faces presented with a delay of

one or four seconds [17]. More recently, Schwaninger, et

al. (2007) concluded that humans exhibit the capability to

recognize faces based on information drawn from isolated

features (i.e. components) [3]. In fact, Gold, et al. [21]

present evidence supporting the idea that face processing is

the result of the integration of individual component pro-

cessing. They compare human component integration with

an optimal Bayesian integrator that is based on component

recognition performance. The comparison demonstrates that

humans perform no better and perhaps slightly worse than the

prediction of the Bayesian framework [21]. This means that

for the purposes of human face recognition, holistic processing

provides no improvement over an integration of the individual

components of the face. Additional behavioral studies of

humans have shown that certain facial components (i.e. the

face outline, eyes and mouth) are more useful for perceiving

faces than other components and, similarly, the upper face is

more useful than the lower face [18], [22]. Moreover, humans

have shown an increased capacity to determine an identity

through a caricature sketch2 than a true portrait of a face,

which also suggests the importance of certain components

of the face over others [23], [24]. Finally, investigations into

the neural and physiological mechanisms of face processing

suggest a system comprised of processes that include both

holistic and face part (component) processing [7], [5].

As demonstrated by the literature in cognitive science, there

is a high likelihood of the presence of component processing

in human face perception. Yet, despite this strong evidence,

2Caricatures are drawings in which certain facial components and attributes
are exaggerated beyond a realistic appearance.

1



2

!"#$%&#'()* %+',)-!)#.*&$(//'),* $!/$!0!)#%#'()*

0'-'+%$'#1*-!%02$!.*

320'()*4567*869:6;<;=>?*

3%&!*'-%,!*
@6AB>C8*DB=E*,A6FGA*%ABH;9<;=*

&69:6;<;=IJG><K*DB=E*/<7I&69:6;<;=*%ABH;9<;=*

+G;K9G7L>*

+G;K9G7L>*.*!M<*+68GC6;*

/<7I&69:6;<;=*%ABH;9<;=*N*

&76::B;H*

3G8<*)679GABOGC6;*

P*
0Q9*65*0867<>*3Q>B6;*

,%++!$1*

Fig. 1. Outline of the per-component alignment performed to yield the proposed component-based representations. This work demonstrates the value of
representing faces in a per-component manner. When compared to a globally aligned holistic representation, and other representations found in the literature,
the component-based representation offers strong accuracy improvements in a number of face recognition scenarios.

computer vision and biometrics literature in face recognition

has focused heavily on holistic processing in which repre-

sentations are derived from globally aligned faces (we call

these holistic representations). Furthermore, the handful of

studies in automated face recognition that have approached

face recognition from the standpoint of component-based

processing are generally limited in their approach [25], [26],

[15], [27], [28], [29], [30], [31] (see Table I for a summary

of a selection of these methods). For example, many of

these methods use raw pixel-based representations, which

have proven to be less robust feature representations [14].

Moreover, many of the previous methods roughly extract

their facial components by cropping predefined regions of

globally aligned face images, instead of using more precise

methods that rely on facial landmark locations. Another similar

line of research involves block-based representations, which

break the face into blocks and create individual classifiers

for each block and finally fuse the individual classifiers [32],

[33]. While this paradigm is similar to a component-based

representation, in this case the faces are again globally aligned

and the blocks fail to take advantage of the concentration

of information in components due to their arbitrary nature.

Despite few contemporary component-based approaches to

face recognition, a number of recent studies have addressed

periocular recognition3, and have shown considerable success

in identifying a person by the periocular region of the face

alone [34], [35], [36]. These results bode well for modern

approaches to component processing of the face.

Based on (i) the strong evidence of component processing in

human face perception, and (ii) the lack of mature component-

based methods in automated face recognition research, a more

3Periocular recognition involves the identification of persons based on the
eyes and the local region of the face surrounding the eyes.

thorough investigation of the role of component-based process-

ing in automated face recognition is warranted. In the same

way that the field of cognitive science continues to investigate

the precise roles of component and holistic processing in

human face perception, automated face recognition algorithms

also need to explore the role that component processing could

have in leading to improved face recognition algorithms.

This work seeks to expand on the previous methods in

component-based automated face recognition. Using facial

components that are precisely extracted through automatically

detected facial landmarks, we demonstrate that descriptors

computed from these individually aligned components result in

higher recognition accuracies than descriptors extracted using

the more common approach of dense sampling from globally

aligned faces. Both of these approaches to face recognition are

detailed and compared in Figure 1. In addition to providing

a component-based framework, we also demonstrate that:

(i) component-based representations are relatively robust to

changes in orientation, (ii) such representations are also useful

in the presence of known occlusions, and (iii) the recognition

accuracies have the potential to be further enhanced by learn-

ing algorithms.

This work is a study on feature representations, and not

a study on learning algorithms. While we do demonstrate in

Section III that the proposed component-based representations

can be improved by performing statistical feature extrac-

tions, the component-based representations are not tied to

any specific learning algorithm. Because the component-based

representations are able to consistently improve recognition

accuracy when compared to the commonly employed holistic

and block-based feature representations, any learning-based

method should benefit from the proposed component-based

representations.
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The remainder of this paper is organized as follows. In

Section II we detail our approach for aligning and extract-

ing features from different facial components. In Section III

we discuss an approach to learning per-component feature

extractions. In Section IV the results of experiments using

component-based representations of frontal view face images

are discussed. Results from experiments on face images with

orientation changes and occlusions are also detailed and dis-

cussed. Finally, in Section V, the results are summarized and

some practical applications of the proposed representation are

discussed.

II. COMPONENT EXTRACTION AND REPRESENTATION

In order to align, crop and extract a feature vector from the

facial components, the following three steps are performed:

1) Extraction of facial landmarks

2) Per-component alignment (and cropping) using Pro-

crustes Analysis

3) Representation of components using Local Binary Pat-

terns

This section will provide details regarding how each of these

steps was performed.

A. Landmark Detection

The first step in aligning the facial components is to extract

a predefined set of 76 anthropometric landmarks4. For each

of the facial components (i.e., the eyebrows, eyes, nose, and

mouth), a subset of these anthropometric landmarks provides a

general outline of the component (see Figure 2). In this section,

we detail a method for automatic extraction of landmarks.

Given the variability in facial appearances, as well as

the variability caused by pose and expression changes, the

extraction of facial landmarks is often a difficult task. The use

of Active Shape Models (ASM) [38] is a common approach

for determining the location of facial landmarks. Due to

the structural constraints afforded by the face, ASM model-

based detection is able to handle minor variations in pose

and expression. However, ASMs are sensitive to the initial

placement of landmarks prior to the iterative updating of model

parameters. If this initial placement is not closely aligned to

the true landmark locations, then the ASM may converge on

an inaccurate set of landmarks. To help mitigate this problem,

a small subset of more stable landmarks (i.e., the center of the

two eyes and the tip of the nose) can first be detected before

applying the ASM.

Using PittPatt’s Face Recognition SDK [39], we first auto-

matically detected the center of the two eyes, and the center

of the nose. Because these three landmarks are also present

in the ASM, we initialized the ASM landmarks by (i) solving

the affine transformation from these three ASM points to the

corresponding PittPatt detected points, and (ii) applying this

transformation to the set of 76 ASM landmarks (representing

the mean face in the model). The result of this step is an initial

placement of facial landmarks that is well suited to correctly

4Facial anthropometry is the science around the measurement of the human
face.

converge on the proper locations. Indeed, we found this step (i)

greatly improves the accuracy of landmark detection, and (ii)

eliminates all failure to converge cases. Using this approach,

the only cases where landmark extraction failed were when

PittPatt was not able to detect the eyes and nose (this occurs

at a frequency of roughly 1 in 1, 000 faces for the neutral

frontal view).

The ASM implementation used was provided through the

Stasm open source software [40].

B. Alignment and Cropping

Once the facial landmarks have been detected, each facial

components can then be aligned. Component alignment was

performed using Procrustes analysis [41], which finds the

rigid transformation that minimizes the mean squared error

between two ordered sets of coordinates. This step eliminates

variations in translation, scale, and rotation, which allows for

a more accurate similarity measure between facial components

than previous techniques which used pre-defined cropping

boundaries.

For a given component (e.g., the mouth), let Pi =
(px

1
, px

2
, · · · , pxn, p

y
1
, py

2
, · · · , pyn)

T be the set of n landmark

points for the i-th image. For a given image, let pxj , p
y
j be the

x and y-coordinates of the j-th landmark point. Further, let

pj = (pxj , p
y
j ). Procrustes analysis (or alignment) is performed

by:

• Removing the translational component for each image

by subtracting the mean of the landmarks (i.e., pi ←

pi −
1

n

�n

i=1
pi).

• Normalizing the scale for each image by dividing the

concatenated vector of points Pi by its L2 norm (i.e.,

Pi ← Pi/||Pi||2).

• Removing rotational differences by using least squares

minimization to solve for the rotation matrix based on

the angle θi that minimizes the difference between Pi

and a reference set of points P (P can simply be the

first image).

After performing Procrustes analysis on each component

in each face image, we obtain rotation, translation and scaling

parameters. Using these parameters, the facial components can

be rigidly aligned.

Cropping is accomplished by creating a bounding box

around the aligned landmarks. Consider the face on an xy-

plane. The bounding box is created by first finding the hori-

zontal cropping boundaries from the minimum and maximum

x values. The vertical cropping boundaries are determined

based on a ratio of the crop width (in order to maintain the

images aspect ratio). A small pixel border around each set

of landmarks is used to improve the subsequent descriptor

extraction.

Upon completion of these steps, the components are scaled

to the following sizes (and ratios):

• Eyebrows - 29x142

• Eyes - 29x156

• Nose - 114x161

• Mouth - 82x142
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TABLE I
A SUMMARY OF THE PREVIOUS STUDIES ON COMPONENT-BASED AUTOMATED FACE RECOGNITION.

Description Component
Extraction
Method

Components Used Component
Alignment

Component
Representation

Face Database

Template Matching [25] Rigid∗ Eyes (including
eyebrows), nose, mouth

none Pixel representation,
locally normalized pixel
representation, gradient,
and Laplacian

Private database (47
subjects, 188 images)

Elastic Bunch Graphing
Matching (EBGM) [15]

EBGM
(object-adapted
grid)

N/A EBGM
(object-adapted
grid)

Gabor wavelet
coefficients

FERET (250 subjects,
1500 images); Bochum
(108 subjects, 650
images)

Component-Based LDA
Method with Component
Bunches [27]

Rigid∗ L. eye, R. eye, nose, R.
mouth, L. mouth

none Pixel representation FERET (70 subjects per
experiment, 140 images
in experiment 1, 420
images in experiment 2)

Component-Based
Cascade LDA [28]

Rigid∗ 4 overlapped regions
(from the whole face)

none Pixel representation FERET (1,196 subjects,
2197 images)

Component-Based LDA
Face Description [31]

Rigid∗ Set 1: 14 components
across whole face;
Set 2: 5 components
(eyebrows- forehead, L.
eye- eyebrow, R. eye-
eyebrow, L. nose- mouth,
R. nose- mouth)

none Pixel representation Extended Version 1
MPEG-7 (635 subjects,
3175 images); Altkom
(80 subjects, 1200
images); XM2VTS
(MPEG-7) (295 subjects,
2950 images); FERET
(875 subjects, 4000
images); Banca
(MPEG-7) (52 subjects,
520 images)

Framework for High
Resolution Face
Recognition [29]

Rigid∗ L. eye, R. eye, nose,
mouth, forehead skin,
cheek skin, irregularities

none Pixel representation Private database (200
subjects, 1600 images);
XM2VTS (295 subjects,
1180 images)

Part-Based Face
Recognition [30]

Rigid∗ 10 components (focused
on regions with
eyebrows, eyes, nose,
mouth)

none Local Binary Patterns Near Infrared (1000
subjects, 10,000 images)

Component-Based Face
Identification using 3D
models [26]

Reference points
on 3D head
models

14 learned components 3D Morphable
Models

Histogram equalized gray
values

3D face database (100
subjects, 6,843 images)
[37]; Private database (10
subjects, 30 images)

∗ “Rigid” denotes the component extraction using a rigid alignment of the eyes (i.e., planar rotation and scaling), followed by component cropping using
predefined cropping boundaries

These sizes were determined by tuning the size of the pixel

border and horizontal cropping boundary per-component.

The same method for per-component Procustes alignment

can also be applied to the entire set of facial landmarks.

Thus, the entire set of facial landmarks is used for a single,

global alignment of the face. Referred to as holistic Pro-

custes alignment, our experiments will compare this more

common alignment technique to the proposed component-

based alignment. The mean components from both holistic (or

global) Procustes alignment and the proposed per-component

alignment are shown in Figure 3. Qualitatively, we see the per-

component alignment results in a more precise alignment of

each facial component (see Figure 3 (c)). In turn, this approach

will allow us to better understand the value of component-

based representations. For example, we will demonstrate in

Section IV that despite the common belief that the eyes

are the most accurate facial component in automated face

recognition, the mouth component offers nearly the same

recognition accuracy when properly aligned.

We originally applied the technique of aligning facial com-

ponents to study identical twins [42] and facial carvings [43].

However, these earlier studies were focused on determining

the distinctiveness of each component with respect to twins

and carvings. They did not consider whether or not this tech-

nique resulted in improved recognition accuracy over holistic

representations. The subsequent experiments in the paper

will demonstrate that per-component face representations do

indeed offer a significant improvement in recognition accuracy
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Landmark  

Extraction  

Alignment  

and  

Cropping  

Fig. 2. The process for extracting facial components. Using automatically
detected landmarks, each facial component is individually aligned using
Procustes analysis. In this paper we demonstrate the value of using this
per-component alignment instead of the more common approach of globally
aligning the entire face.

(a) (b)

(c)

Fig. 3. Comparison of the mean mouth component image from (a) performing
the proposed per-component alignment method, and (b) cropping using glob-
ally aligned faces. The poor alignment of certain components using globally
aligned faces is observed from the mean globally aligned face (c). While most
previous component-based methods extract facial components using globally
aligned faces, this work aligns each facial component individually resulting
in better representations, as shown in (a).

over the more commonly applied holistic and block-based

representations.

C. Representation

Once each facial component has been aligned, we extract a

Multi-Scale Local Binary Patterns (MLBP) feature representa-

tion from each component. MLBP is the combination of Local

Binary Patterns (LBP) [8] descriptors with different radii, and

it is generally more effective for face recognition than LBP

alone. MLBP and LBP descriptors have been successfully used

in holistic-based approaches to automated face recognition by

representing regions of the face with a descriptor that encodes

the facial structure and shape [44].

Each facial component is divided into regions of d x d

pixels overlapping by m pixels (m < d). Within each region,

a histogram of LBP values is derived from comparisons at

each pixel. The LBP value, V, calculated at each pixel is

0  

0   1  

0  

0  

1  

1  

1  

13  

12   30  

7  

22  

45  

75  

35  27  

Value  =  01111000  =  120  

Fig. 4. Computing LBP value at each pixel

TABLE II
PARAMETERS USED IN MULTI-SCALE LOCAL BINARY PATTERNS

REPRESENTATION

Eyebrows Eyes Nose Mouth

Region Size 8x8 8x8 16x16 16x16

Amount Overlap 4 4 8 8

# Sample Points 8 8 8 4

computed using comparisons to P neighboring sample points

at a radius of length R: VPR =
�P−1

p=0
s(gp − gc)2

p where

gp represents the gray value at each of the p surrounding

pixels, gc represents the gray value at the center, and s(x) = 1
if x ≥ 0 and 0, otherwise (see Figure 4). This creates a

histogram of dimensionality 2P , though this can be further

reduced by mapping LBP values without “uniform patterns”

to the same value. A uniform pattern is an LBP binary string

which produces 2 or fewer bitwise transitions [44]. The MLBP

representation concatenates two or more LBP desriptors of an

image patch at different radius lengths.

The choice of parameters (i.e. region size, d; amount of

overlap, m; number of sampling points, P; radius, R; and the

use of uniform binary patterns) were tuned per-component. All

components use the radii combination, r = 1 and r = 3 and

employ uniform binary patterns. Table II provides details of

the remaining parameters used for each component.

III. COMPONENT-BASED DISCRIMINANT ANALYSIS

Linear Discriminant Analysis (LDA) was first used in

face recognition on pixel representations of faces by Bel-

humeur, et al. [45], and has become a common feature

extraction/reduction technique in face recognition. The goal of

LDA is to maximize the between subjects variance, Sb, and

minimize the within subjects variance, Sw, by solving the gen-

eralized eigenvalue problem: Sb ·Ψ = Λ ·Sw ·Ψ . However, as

facial representations have grown increasingly more complex,

improved LDA methods have been developed to address the

problem of high feature dimensionality in comparison to the

size of the training set (e.g. random sampling LDA (RS-LDA)

[46], direct LDA (D-LDA) [47] and regularized LDA (R-

LDA) [48]). By partitioning the face into components, the high

dimensionality problem is alleviated to some extent, however

RS-LDA is still employed to further address these concerns.

The RS-LDA approach requires the following steps for

training. First, the feature space is randomly sampled into k
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TABLE III
PARAMETERS USED IN RANDOM SAMPLING LDA

Eyebrows Eyes Nose Mouth

% Features Sampled 0.5 0.5 0.5 0.5

# of Subjects 250 500 250 250

% Variance Retained .98 .95 .95 .95

# Subspaces 25 7 25 7

subspaces, with each subspace sampling a fraction s (0 < s <
1) of the available features. For each of the k random sample

spaces, principal components analysis is performed in order

to retain e percent of the variance. Finally, k LDA subspaces

are learned from each of the PCA representations. Using these

trained subspaces, images can then be sampled into each of the

k random feature subspaces, projected into the corresponding

PCA and LDA subspaces; each of the k subspace vectors can

then be concatenated into a final feature vector. In addition

to feature sampling, RS-LDA also performs bagging on the

training subjects. That is, for each set of the k random samples,

ns subjects from the training set are randomly sampled from

the n total subjects available (ns < n).

As discussed, RS-LDA has the following set of parameters:

the percentage of the original set of features to be sampled

during each stage (s), the number of subjects to use during

each stage (ns), the percentage of variance retained in each

stage (e), and the number of subspaces (k). As before, these

parameters are tuned per component. See Table III for the

parameter values used in this work.

Our use of RS-LDA in conjunction with the component-

based representation is to demonstrate the ability to improve

this representation with statistical learning. The component-

based representation is not tied to this particular discrimi-

native subspace technique, and instead the component-based

representation can conceivably be improved with any learning-

based technique.

IV. EXPERIMENTAL RESULTS

The following experiments were designed in order to ex-

plore the effectiveness of component-based representation in

face recognition. The primary baseline for these experiments is

a holistic face representation. As discussed, the term “holistic

representation” in this paper refers to densely sampled MLBP

feature descriptors from globally aligned face images, which

is one of the most common approaches in face recognition

research.

In this work, face images are aligned in two different

manners. The first alignment method is the common approach

of alignment using the centers of the two eyes. The face is

geometrically normalized using the eye locations to (i) perform

planar rotation so the angle between the eyes is 0 degrees, (ii)

scale the face so the inter-pupillary distance (IPD) between

eyes is 48 pixels, and (iii) crop the face to 128x128 pixels.

The second alignment method performs Procrustes alignment

on the full set of facial landmarks using the same procedure

that is performed on each facial component (see Section II).

Again the Procrustes-based method scales the face in order to

achieve an IPD of 48 pixels.

Once each face is geometrically normalized using these

two global alignment methods, MLBP feature descriptors are

densely sampled from patches of size 12x12 across the face,

with an overlap of 6 pixels. The parameters used for both

the alignment and the MLBP descriptors have been optimized

in a number of previous studies by our research group. Our

prior research has relied on such holistic representations, and

these parameters represent our best practices [49]. It is also

important to note that we are not able to improve the accuracy

of this holistic representation by increasing the size (or IPD)

of the face image.

A block-based representation was also used as a baseline

as it has appeared in recent research in face recognition [32],

[33]. In this representation the face is aligned using Procrustes

alignment on the full set of facial landmarks and then broken

into 3x3 blocks. Each individual block can then be treated as

a component to complete the rest of the representation and

recognition processes.

A. Component Representations

This section contains experiments conducted to investigate

the advantages of component-based representations, as op-

posed to the popular holistic representations. The experiments

intend to isolate the recognition accuracy up to the feature

representation stage, before any additional statistical learn-

ing (e.g. RS-LDA) is conducted. This deliberate decision to

isolate the feature representation stage of face recognition is

consistent with the primary goals and focus of this paper, to

provide novel and improved feature representation techniques.

These experiments were conducted on a large scale database of

frontal face images from the Pinellas County Sheriff’s Office

(PCSO), and unconstrained face images from the Labeled

Faces in the Wild (LFW) [50] dataset.

1) Component Representations - PCSO Database: The

PCSO dataset utilized for this experiment is comprised of pairs

of frontal view images of nearly 16,000 subjects, each with

one probe image and one gallery image (resulting in a total of

32,000 images). These images were randomly selected from

a larger image dataset of 1.5 million operational face images

from the PCSO. For our purposes, the dataset was partitioned

into two non-overlapping subsets: (i) a training set of 8,000

subjects, and (ii) a test set of 8,000 subjects. The training set is

not used in experiments that did not require training. For each

set, roughly 10 subjects were removed because their probe or

gallery image failed to enroll with the PittPatt SDK eye finder.

The component representations were created using the

method outlined in Section II and their similarity was mea-

sured using the cosine similarity measure. Sum fusion was

used to combine the component similarities after z-score

normalization. Figure 5 displays the performance of the raw

component representations. The True Accept Rate (TAR) at

a fixed False Accept Rate (FAR) of 1% for each individual

component is as follows: Eyebrows - 67.72%, Eyes - 66.63%,

Nose - 65.16%, Mouth - 64.83%. The TAR of the fused result

is 83.19%.
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Fig. 6. Component-Based and Holistic Performance (ROC)

Figure 6 compares the accuracy of the proposed fused

component representation to the more commonly employed

holistic representation. If the face images are globally aligned

using only the eye locations, then the holistic, densely sampled

MLBP features result in a TAR (at FAR=1.0%) of 63.78%.

If the face images are globally aligned using all the facial

landmarks5, then the TAR of the holistic representation im-

proves to 76.88%. The block-based representation results in

a TAR of 71.90%. In all these baseline cases the recognition

accuracies are significantly lower than the 83.19% accuracy

achieved using the proposed per-component representation.

5The same points used for individual components are combined in global
Procrustes alignment to create the set of points used to align the entire face.

2) Component Representations - LFW Database: The LFW

dataset utilized for this experiment is comprised of 6,000

image pairs (12,000 images). The dataset has been partitioned

into 10 folds as per the standard LFW protocol described in

[50]. While this protocol makes provisions for training and

testing sets, only the testing sets are used since there is no

training required for this experiment. The feature represen-

tation methods are applied on each individual fold and their

results are averaged to produce the results listed in Table IV.

The component representations were generated using the

same procedure described in Section IV-A1. In addition to

the holistic methods previously outlined (global eye alignment

and Procrustes alignment), the LFW Database provides images

aligned via commercial alignment and funneling. The holistic

representation method was applied to this prealigned images

to compare our method to other methods of alignment. Fur-

thermore, the block-based representation method described in

IV-A1 is also employed to provide an additional comparison.

Roughly 15 subjects per fold of 600 subjects were removed

because their probe or gallery image failed to enroll.

The results of this experiment are listed in Table IV (TAR

at FAR = 10%). The performance on the LFW database

is significantly lower than that of PCSO, which is due to

the unconstrained nature of the LFW database. However, the

performance of the fused components from the component-

based method (31.39% TAR at FAR=10%) is observed to be

higher than the performance of alternate holistic and block-

based methods. This is consistent with the findings on the

PCSO database.

The holistic representation, which is aligned using the two

eye locations, has a higher accuracy on the LFW dataset

than the Procrustes aligned holistic representation. This differs

from the PCSO dataset, where the Procrustes aligned holistic

method had a markedly higher accuracy than the eye-aligned

holistic. These results suggests that the unconstrained nature

of the LFW database introduces errors into the automated

landmark extraction process. Thus, while the component-based

representation still achieves the highest accuracy when com-

pared to the baseline representations, improving automated

landmark extraction should further improve the effectiveness

of the component-based representation on unconstrained face

images.

3) Discussion: The superior performance of the fused

components over the baseline representations is likely due to

several factors. One of these factors is that the local alignment

of each facial component can more accurately measure the

similarity of the most identifiable regions of a face. Similarly,

the focus on these more identifiable areas of the face (i.e.

the eyebrows, eyes, nose and mouth), highlights the facial

regions with the highest degree of inter-person variability.

The portions of the face that are left out, such as the cheek

and forehead areas contain considerably less discriminative

information. Another facet to consider is that the parameters of

MLBP descriptors can be tuned to each individual component,

allowing for a better description of each individual component

and thus of the face overall.

While the component-based representation resulted in im-

proved recognition accuracies over the globally aligned holis-



8

TABLE IV
COMPONENT-BASED AND HOLISTIC RESULTS FOR LFW DATABASE

(FALSE ACCEPT RATE AT 10%)

Region TAR at FAR = 10%

Eyebrows 29.55%

Eyes 26.31%

Nose 24.37%

Mouth 23.59%

Fused 30.93%

Holistic 29.20 %

Holistic + Procrustes Alignment 28.94%

Holistic + Commercial Alignment 21.01%

Holistic + Funneling Alignment 21.22%

Block-Based 27.78%

Probe   Holistic  

Impostor  

Ground  Truth  

Fig. 7. Examples of face images from the PCSO database in which good
performance was obtained by the component-based method proposed in this
paper and poor performance was obtained by a globally aligned holistic
method.

tic representation, as shown in Figure 6, the fusion of these two

representations yielded the best accuracy (a TAR of 85.24%

at FAR=1.0%). Thus, there is complementary information pro-

vided by component-based and holistic facial representations.

Figure 7 displays face images in which the component-

based method performed well while the holistic method per-

formed poorly. The holistic impostors provide a relatively

good overall face match, but, especially in the case of the

woman, the overall face shape and hair appears to have had

a profound effect on the match. Similarly, Figure 8 displays

face images in which the holistic method performed well while

the component-based method performed poorly. Comparing

individual components, there does appear to be a similarity,

especially in the bottom example in which the impostor is a

woman even though the subject is a man.

An interesting result in these experiments is the accuracy

of the eyebrow and eye components. While they outperform

the nose and mouth, they only do marginally better. However,

in cognitive science and automated face recognition literature,

the eyes and/or eyebrows have generally been regarded as the

most useful component for recognition, while the nose and

mouth are regarded as being less informative [18], [22], [29],

[49].

A few considerations may explain our findings that the

Probe   Fused  

Components  

Impostor  

Ground  Truth  

Fig. 8. Examples of face images from the PCSO database in which good
performance was obtained by the globally aligned holistic method and poor
performance was obtained by the component-based method proposed in this
paper.

mouth and nose provide a similar level of discriminative

information as the eyes and eyebrows. The first is a significant

improvement in the alignment and cropping using ASM and

Procrustes analysis, particularly for the nose and mouth. In

previous works [25], [27], [28], [31], [29], [30], [26], the align-

ment was performed globally based on eye locations instead of

locally per component (see Figure 3 for the difference between

these two approaches). Due to the eye-based alignment, the

previous works reported significantly lower performance for

the nose and mouth components than what was achieved

with per-component alignment shown here. With the local

alignment method, components that are farther from the eyes

can be more accurately aligned.

A second contributing factor to the relatively even per-

formance of the eye and eyebrow regions and the nose and

mouth regions has to do with the cropping boundaries of

the components. Consider the eyes and eyebrows components

extracted by our method in Figure 2. In comparison to

previous component-based methods (e.g. [31], and Figure 9),

our components are smaller (i.e. the “eyes” component does

not include the eyebrows and the “eyebrows” component is

tightly cropped such that it does not include the forehead or

the eyes). The performance gap between the tightly cropped

eyes and the eyes containing eyebrow regions is shown in

Figure 10, demonstrating how the superiority of the “eye”

region can be restored by cropping in a similar fashion as

previous studies (see Figure 11 for example of larger cropping

region). However, the goal of this paper is to explore the use of

components. As components, the eyes and eyebrows do nearly

as well as the larger eye region but contribute a greater weight

to the overall component framework as two components than

they would as one.

B. RS-LDA

The following experiments were conducted to demonstrate

that the component-based approach to representing faces can

be further enhanced through learning algorithms. Both exper-

iments measure the component-based method using RSLDA

discriminative subspaces to boost performance. The first exper-
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Fig. 9. An example of the global eye cropping from [31].
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Fig. 10. Comparison of the recognition accuracy for differently sized eye
components. The “Eye Region” refers to the eye and eyebrow area shown in
Figure 11 while the “Eyes” refers to a component consisting of solely the
tightly cropped eyes shown in Figure 2.

Fig. 11. Large cropping boundaries around the eyes is one factor for previous
studies concluding that the eye component is more informative than the nose
and mouth. Unlike the eye cropping shown here, if the eyebrows are removed
from the cropping of the eyes then the recognition accuracy is generally
similar to nose and mouth components which have been locally aligned.

TABLE V
COMPONENT-BASED PERFORMANCE AFTER RS-LDA TRAINING (FALSE

ACCEPT RATE AT 1.0%).

Region FAR = 1%

Eyebrows 79.36%

Eyes 83.20%

Nose 84.31%

Mouth 74.17%

Fused 94.84%

Holistic 90.43%

iment uses the PCSO database and the second leverages the

FERET database in order to make comparisons to previous

results for other local feature-based methods.

1) PCSO: The PCSO dataset described in Section IV-A1

was utilized for this experiment. RS-LDA subspaces were

learned using the training set (set 1), and then applied on

the testing set (set 2) as outlined in Section III. The similarity

between the extracted component features was measured using

the cosine similarity. The components were combined using

sum fusion of the component similarities after z-score normal-

ization. Figure 12 displays the performance of each individual

component, the fused component performance, and the holistic

performance. The TAR at FAR = 1.0% was: Eyebrows -

79.36%, Eyes - 83.20%, Nose - 84.31%, Mouth - 74.17%,

Fused - 94.84% (see Table V for a summary). This is compared

to the holistic performance of 90.43% using the RS-LDA

algorithm on the holistic representation in the same manner

detailed in [49]. The accuracy of 94.84% is significantly higher

than 83.19% when the component-based representation did not

go through RS-LDA training. As discussed previously, while

RS-LDA was utilized for this experiment, the learning method

was chosen simply to demonstrate the viability of applying

learning algorithms to the feature representation proposed by

this work. This work leaves open the problem of studying the

most appropriate learning algorithms for component represen-

tations. The authors believe that effective learning methods for

component-based descriptors (such as R-LDA [48], RS-LDA

[46], and ERE [51]) should be explored in future work.

2) FERET: The FERET dataset [52] is utilized as described

in Section 5.1.1 of [53]. The dataset is comprised of 1,194

persons (2,388 images, 2 images Fa/Fb per person). There are

two experiments based on this dataset: the first (FERET 1a)

divides the dataset into a training set of 250 subjects and a

testing set of 944 subjects; the second (FERET 1b) divides

the dataset into a training set of 497 subjects and a testing

set of 697 subjects. The component-based method is applied

as described in section IV-B1. Table VI reports the rank 1

accuracy of each individual component, the fused component

performance and the performance of other methods reported in

[53] (rank 1 accuracy is used here as opposed to ROC curves

in order to compare directly with the methods tested in [53]).

For both the smaller and larger training sets the component-

based method outperforms other methods, including other

local feature-based methods for both the smaller and larger

training sets.
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TABLE VI
COMPONENT-BASED PERFORMANCE (RANK-1 ACCURACY) AFTER RS-LDA TRAINING ON FERET DATABASE.

Experiment Eyebrows Eyes Nose Mouth Fused PCA* LDA* ERE* SIFT* PFD-SIFTM* PFDM*

FERET 1a 99.68% 85.38% 99.89% 77.86% 100% 83.16% 89.72% 94.81% 93.33% 97.67% 97.88%

FERET 1b 100% 85.94% 99.85% 79.20% 100% 85.80% 96.41% 97.13% 94.41% 98.42% 98.71%

*Results reported in [53]
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Fig. 12. Component-Based Performance (ROC) after RS-LDA training on
PCSO database.

C. Robustness to Changes in Facial Pose

State of the art automated face recognition performs well

in controlled situations, that is, when factors like illumination,

pose, expression and occlusion are eliminated. However, when

such variates cannot be constrained, automated face recog-

nition algorithms generally exhibit a decrease in recognition

accuracy. We demonstrate in this section and in Section IV-D

that the component-based approach has the potential to be

very useful in the presence of occlusions and changes in

facial pose. In addition to the holistic representations used

for previous experiments, the PittPatt Multi-Pose [39] and

FaceVACS [54] commercial off the shelf (COTS) face recog-

nition systems were also used for comparison. We also find

that the component-based method performs largely the same

as the holistic methods in the presence of changes in facial

expression though the fusion of holistic and component-based

representations can result in a boost in accuracy.

The following experiment explores the robustness of the

component-based approach for varying pitch values6. The

FERET database (with n = 200 subjects) was used for this

experiment [52]. In addition to the frontal view images for

200 subjects, the FERET database provides 8 additional face

images at different pitch values: ±15◦, ±25◦, ±40◦, ±60◦.

Facial landmarks are extracted automatically and used for

6Pitch rotation refers to rotations performed about the y-axis or specifically
in the case of faces, rotations performed by twisting the head to look left or
right.

alignment as described in Section II. The component-based

approach is compared to both the holistic approach with global

eye alignment and the holistic approach with global Procrustes

alignment. As before, the cosine similarity metric and sum

score fusion of z-score normalized similarities was used in all

cases. The recognition accuracies on this multi-pose dataset

are displayed in Table VII. For each pose, only subjects that

enrolled with both PittPatt and FaceVACS were used in all

cases. Thus, the number of subjects n varies in the extreme

poses.

For small changes in pose (close to pitch value 0◦) the

performances of the commercial systems, the holistic ap-

proaches, and the component-based approaches are essentially

the same. However, for large changes in pose, each individual

component alone outperforms the holistic approaches, with the

exception of the nose (see Table VII and Figure 13). Given

the drastic difference in the appearance of the nose in the

side versus frontal face view, the low performance of the nose

is to be expected. We also observe relatively asymmetrical

performance (e.g., difference in accuracies between poses of

+60 and -60) but this is likely due to slight imprecision in

the actual pitch values of the subject’s face and the recorded

values (i.e., there is noise in the exact pose of the face).

As for the commercial systems, PittPatt’s multi-pose face

recognition system has traditionally been the strongest for

pose variation and that is also evident in our results. PittPatt

provides the best individual performance on face recognition

for extreme poses, followed by the proposed technique of

fused components. When fusing PittPatt and the proposed

component-based representation (using sum of scores fusion),

the recognition accuracy improved to over 78% for ±60◦

pitch values. This performance is significantly higher than

the performance of PittPatt alone, indicating additional and

complementary discriminating information is captured in the

proposed component-based representation. Overall, the use

of a component-based face representation shows tremendous

potential to help decrease the within-subject variation caused

by changes in pose.

There is some difficulty in automatically detecting land-

marks for the extreme poses variations. The previous results

are presented for those images which can be commonly en-

rolled between our holistic and component-based approaches,

and the commercial systems, FaceVACS and PittPatt (see Table

VII). We will address these issues from a forensic recognition

perspective in Section IV-F.

D. Robustness to Occlusion

A distinct advantage of the proposed component-based rep-

resentation is in forensic recognition scenarios, where analysts
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-‐        -‐   -‐   -‐      60     

Fig. 13. Recognition accuracies (TAR at FAR=1%) on multi-pose images from the FERET dataset. The more traditional approach of performing holistic
face alignment results in severely degraded recognition accuracy as the pose of the face changes. By contrast, the proposed component-based approach
remains relatively robust across pose variations. Without leveraging any training data, the proposed component-based method even surpasses one of the
most accurate commercial face recognition systems, FaceVACS. When fusing the component-based representation with PittPatt’s commercial face recognition
system, state-of-the-art accuracies are achieved.

TABLE VII
RECOGNITION ACCURACIES (TAR AT FAR=1%) ACROSS POSE VARIATIONS.

Pitch
Value

n

sub-
jects

Holistic
Global
Alignment

Holistic
Procrustes
Alignment

Eyebrows Eyes Nose Mouth Fused
Com-
ponents

Fused Com-
ponents w/o
Nose

FaceVACS PittPatt PittPatt+
Fused
Components

+60◦ 141 3.31% 9.45% 22.69% 12.43% 6.37% 36.30% 40.00% 52.16% 8.60% 58.53% 78.39%

+40◦ 199 17.32% 45.06% 51.81% 45.07% 21.52% 79.41% 82.20% 85.37% 69.10% 95.59% 99.62%

+25◦ 200 62.33% 87.15% 81.68% 85.35% 59.63% 90.48% 98.09% 97.83% 99.68% 98.91% 100.00%

+15◦ 200 93.88% 99.24% 93.88% 93.71% 98.01% 93.77% 99.50% 98.11% 100.00% 99.81% 100.00%

−15◦ 200 99.53% 98.86% 98.18% 94.50% 98.08% 92.95% 100.00% 99.23% 100.00% 100.00% 100.00%

−20◦ 200 72.94% 91.98% 83.97% 84.05% 66.83% 89.48% 96.86% 97.80% 98.22% 97.25% 99.87%

−40◦ 198 20.41% 44.79% 47.03% 52.95% 20.22% 67.45% 74.04% 79.99% 58.62% 90.04% 97.01%

−60◦ 174 7.55% 5.86% 16.01% 22.03% 5.75% 40.33% 34.70% 46.72% 5.41% 64.39% 87.21%

submit face queries and examine retrieval results [55]. In this

section we will consider the case of face occlusions, which

many criminals use to evade identification. When representing

faces using facial components, an analyst could simply choose

to omit occluded facial regions.

The robustness of the component-based approach to occlu-

sion was explored using a subset of the AR database (with n =
136 subjects) [56]. The AR database contains frontal views of

faces under varying expression, illumination and occlusion.

Frontal views under occlusion (i.e. faces wearing sunglasses

and faces wearing scarves) were utilized in this experiment.

The frontal view faces were represented using a holistic

approach with global eye alignment, a holistic approach with

global Procrustes alignment and the proposed component-

based approach. Again, we used the cosine similarity metric

to compare facial representations. The individual components

in the component-based approach were combined using sum

of scores fusion but did not include occluded components (i.e.

for faces wearing sunglasses, fusion is only done for nose and

mouth and for faces wearing scarves, fusion is only done for

eyebrows, eyes and nose). As discussed above, this replicates

a common scenario in forensic face recognition, where an

analyst would be able to provide the missing information (in

this case the location of the occlusion) to improve face retrieval

accuracy.

Table VIII provides a summary of the recognition results

for the proposed component-based and holistic approaches

excluding images that fail to enroll. The column labelled

n indicates the number of images which were successfully

enrolled. Because matching for the fused component-based
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TABLE IX
OCCLUSION: COMPARISON OF COMPONENT-BASED APPROACH TO TWO

COMMERCIAL SYSTEMS (TAR AT FAR=1%)

Occlusion Type n Fused Components FaceVACS PittPatt

Wearing Sunglasses 63 72.77% 20.66% 15.53%

Wearing Scarf 111 97.43% 99.11% 89.86%

approach is based on components that are not occluded, we

observe a marked increase in performance over the holistic

approach, especially for the faces wearing sunglasses. Notably,

in the case of the sunglasses, the performance of the mouth

alone outperforms the fused performance of the nose and

mouth. This result is likely due to the fact that the presence

of the sunglasses near the nose actually decreases the quality

of the landmark extraction. However, in forensic applications,

automatic extraction of these landmarks is not essential - if

a person’s face is occluded in a way that interferes with

landmark extraction for visible components, law enforcement

personnel could mark these landmarks manually and likely

produce an improved annotation (see Section IV-F for further

discussion). Manual annotation is also a mitigating procedure

for those face images for which automatic extraction of facial

components fails. Table IX displays results for our component-

based approach in comparison to commercial systems for

face recognition on commonly enrolled images. Because the

images must be successfully enrolled in both the commer-

cial system and our component-based system, the number

of available subjects to make this comparison is somewhat

reduced. The proposed component-based approach achieves

accuracies similar to PittPatt and FaceVACS on faces occluded

by a scarf. However, the fused component approach for faces

with sunglasses improves accuracy nearly fourfold over the

commercial systems. This result continues to demonstrate the

potential of the component-based system in the presence of

occlusion although further validation may be necessary given

the relatively small number of commonly enrolled subjects.

E. Facial Expression

This experiment investigates the robustness of the

component-based approach to facial expression using a subset

of the AR database (n = 136 subjects) [56]. As previously

described, the AR database contains frontal views under

varying expression, illumination and occlusion. The neutral

images were used as the gallery and the images with varied

expressions (smile, anger, and scream) were used as the probe

set. As before, each image was represented using a holistic

approach with global eye alignment, a holistic approach with

global Procrustes alignment and the proposed component-

based approach. In each of the experiments 2-3 images were

removed due to ASM extraction failure. The cosine similarity

metric was used to measure the similarity between repre-

sentations. All four components were fused together using

sum of scores fusion. Table X provides a summary of the

results. The fused component method performs comparably to

the holistic methods for the given expressions (smile, anger,

and scream). Fusing together the component-based similarities

with the holistic global alignment results in a very slight

boost to performance for smile and anger, which are already

near 100% TAR at FAR = 1%. However, for the scream

expression this fusion results in a 10% boost in the TAR.

Though the component-based method is comparable or slightly

worse than the holistic methods for facial expressions, these

results indicate that the component-based method might be

leveraged in addition to the holistic method in order to boost

the overall accuracy of a face recognition method.

F. Manual Landmark Annotation to Mitigate Poor/Failed Au-

tomated Landmark Detection

One of the weaknesses of the proposed algorithm is that it

hinges on the ability to detect and align individual components

of the face. The results displayed in Sections IV-C and

IV-D demonstrate that in the presence of occlusion and pose

variations, ASM sometimes fails to converge on a set of facial

landmarks, or results in highly inaccurate landmarks. This

was true especially for sunglasses occluding the eyes and

poses with pitch values of ±40◦ and ±60◦. In the case of

inaccurate facial landmarks the matches are very poor, and

in the case of landmark detection failure, recognition cannot

be performed. In order for the component-based approaches

to be robust under various types of noise, a process for

addressing these failures and inaccuracies is crucial. In typical

forensic applications of face recognition, automatic extraction

of landmarks is preferred but not mandatory; an analyst could

be easily trained to manually annotate the landmarks for the

images in which automatic detection fails [55]. This section

will demonstrate that the use of manual landmarks is a viable

procedure when automatic detection fails.

For occlusion it was determined that the automatic landmark

detection was consistently poor especially near the occlusions.

Thus, for this occlusion experiment, we utilized the same three

images (neutral frontal, with sunglasses, and with scarf) from

the 136 subjects in the AR database as in Section IV-D. Some

images are missing for the 136 subjects, resulting in 135

gallery neutral frontal images, 135 images with sunglasses

and 136 images with scarves. The automatically detected

landmarks were used for all of the neutral frontal views as

ASM is extremely effective for these cases. All images with

occlusions caused by sunglasses or a scarf were manually an-

notated to produce sets of landmarks. After the automatically

detected landmarks and the manually generated landmarks are

produced, the procedure continues beginning at the alignment

step as previously outlined in Section II.

Using these manual annotations there is a small performance

decline for images occluded by a scarf, 91.85% compared

to 95.59% (TAR at FAR=1%). However, there is a marked

improvement for the face images occluded by sunglasses,

93.84% compared to 72.19% (see Tables VIII and XI). This

boost in performance demonstrates the viability of manual

annotation for probe images in a component-based system.

Furthermore, the performance on the sunglasses occluded

images in comparison to commercial face recognition systems

(see Table IX) is the overwhelming evidence in support of

value of properly aligned components in face recognition.
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TABLE VIII
ROBUSTNESS TO OCCLUSION (TAR AT FAR=1%) IN THE FERET DATABASE

Occlusion Type n subjects Holistic
Global
Alignment

Holistic
Procrustes
Alignment

Eyebrows Eyes Nose Mouth Fused
Components

Wearing Sunglasses 102 36.39% 44.75% 1.04%∗ 5.68%∗ 40.37% 85.30% 72.34%

Wearing Scarf 117 92.19% 70.74% 89.57% 91.50% 90.95% 0.85%∗ 96.67%

∗ These components were not included in fusion.

TABLE X
FACIAL EXPRESSION (TAR AT FAR=1%) IN THE AR DATABASE

Expression n subjects Fused Components Holistic Global Alignment Holistic Procrustes Alignment Holistic Global Alignment + Fused

Smile 134 98.60% 99.18% 98.03% 99.20%

Anger 133 99.27% 99.33% 100% 100%

Scream 133 74.36% 75.22% 71.06% 86.10%

TABLE XI
OCCLUSION: MANUAL ANNOTATION (TAR AT FAR=1%) IN FERET DATABASE

Occlusion Type Holistic Global Alignment Holistic Procrustes Alignment Eyebrows Eyes Nose Mouth Fused Components

Wearing Sunglasses 56.29% 53.22% 3.92%∗ 2.45%∗ 66.38% 93.98% 95.00%

Wearing Scarf 94.35% 90.19% 91.52% 94.59% 84.93% 1.71%∗ 97.30%

∗ These components were not included in fusion.

Facial component extraction for extreme pose variations is

very successful for the FERET database except for the extreme

poses at pitch values of ±40◦ and ±60◦. In general, when the

automatic extraction procedure succeeds on a face image with

an extreme pose the localization of the inner components is

acceptable, but the outer face landmarks (denoting the face

outline) are not. For our purposes it is sufficient for only the

inner landmarks to be accurate because these are the landmarks

which both the holistic and component approaches utilize (i.e.,

alignment is based solely on these inner landmarks). However,

extraction does fail in the cases where PittPatt fails to detect

the eyes and nose. In these failure to enroll cases we manually

marked the landmarks. Once the automatic landmarks (for

faces that are properly enrolled) and manual landmarks (for

failure to enroll faces) have been extracted, the verification

procedure described in Section IV-C was then repeated for all

face images at pitch values of ±40◦ and ±60◦ (see Table XII).

We observe a comparable performance in this experiment

using a combination of manually annotated and automatically

extracted landmarks. That is, the faces that we needed to

manually annotate matched with the same accuracy as those

faces where automatic landmark extraction was successful.

This result supports the viability of manual annotation for

face images under pose variation, and, thus, for forensic face

recognition applications. There are some differences between

the matching performance for the face images at ±60◦ pitch,

though we would expect them to be largely symmetrical. This

could be due in large part to the fact that the automatic

extraction failed for face images at +60◦ pitch significantly

more (approximately double) than at −60◦ pitch. Thus, manual

annotation is performed on significantly more of these images,

thereby causing differences in performance. However, we

observe that this increased manual annotation for the +60◦

face images does not decrease performance but appears to

have improved the performance. This asymmetrical enrollment

failure may be due to differences within the image set or biases

in the automatic extraction method that favor one orientation

over the other.

V. CONCLUSIONS

Motivated by studies in cognitive science literature, the

main objective of this work is to demonstrate the poten-

tial of component-based representations in automated face

recognition. In the previous studies on this topic, the diffi-

culties in extracting individual facial components prevented

the effective use of component-based approaches in automatic

face recognition. However, using more precise approaches

for face alignment, it is possible to effectively align and

extract such components. Indeed, face recognition accuracies

using our proposed component-based representations greatly

exceed the accuracy using similar holistic (or globally aligned)

representations. Further, we demonstrated the effectiveness

of the proposed component-based approach when addressing

facial occlusions and variations in orientation.

There are a number of practical advantages of component-

based approaches to face recognition. The use of face recog-

nition systems by law enforcement agencies is not a fully

automated endeavor for all scenarios [55]. The ability to ex-

clude certain facial components and more generally to analyze

the per-component similarity in face comparisons could be
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TABLE XII
POSE VARIATION: MANUAL ANNOTATION (TAR AT FAR=1%) IN AR DATABASE

Pitch
Value

Holistic Global
Alignment

Holistic Procrustes
Alignment

Eyebrows Eyes Nose Mouth Fused
Components

Fused Components
w/o Nose

+60◦ 3.31% 9.16% 18.74% 11.99% 7.16% 35.21% 47.03% 55.55%

+40◦ 17.26% 41.38% 51.24% 49.66% 21.17% 78.11% 84.33% 85.94%

−40◦ 20.16% 40.58% 46.25% 52.91% 19.81% 66.71% 75.26% 78.44%

−60◦ 7.51% 9.63% 16.74% 26.91% 6.80% 40.46% 31.75% 45.71%

extremely useful to law enforcement personnel and biometric

analysts. As previously demonstrated, it might allow the user

of the system to exclude the eyes when a person is wearing

sunglasses, or the mouth when they are wearing a scarf (for

example). Furthermore, if the automated landmark extraction

fails or is not ideal for the desired components, a user could

mark components manually resulting in an improved set of

landmarks.

Having demonstrated the improvement in recognition accu-

racy yielded from component-based representations, a viable

future research topic is a dedicated study on how to best tailor

learning-based methods to component-based representations.

While existing algorithms can readily be applied to these

representations (as we demonstrated using RS-LDA), nuances

of this representation may afford further performance increases

by specially tailored learning algorithms.

In conclusion, we have demonstrated the potential of

component-based alignment and representations towards im-

proving automated face recognition algorithms. Given similar

evidence in the cognitive science domain, it is important

that component-based face representations be considered as

a viable strategy in designing automated face recognition

systems.
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