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COMPONENT-BY-COMPONENT CONSTRUCTION
OF GOOD LATTICE RULES

I. H. SLOAN AND A. V. REZTSOV

Abstract. This paper provides a novel approach to the construction of good
lattice rules for the integration of Korobov classes of periodic functions over
the unit s-dimensional cube. Theorems are proved which justify the construc-
tion of good lattice rules one component at a time – that is, the lattice rule
for dimension s+ 1 is obtained from the rule for dimension s by searching
over all possible choices of the (s+ 1)th component, while keeping all the ex-
isting components unchanged. The construction, which goes against accepted
wisdom, is illustrated by numerical examples. The construction is particularly
useful if the components of the integrand are ordered, in the sense that the
first component is more important than the second, and so on.

1. Introduction

Lattice rules (see [5], [9], [12]) are equal weight rules invented for the integration
of periodic functions over the s-dimensional unit cube. While lattice rules vary
greatly in their efficiency, theorems have been known for many years that assert the
existence of “good” lattice rules. These are rules which in a certain sense integrate
with guaranteed high accuracy periodic functions whose Fourier coefficients decay
in a suitable way. The essence of such existence theorems is that they are not
constructive; thus good rules are almost always found by searches (see for example
[10], [3], [8], [7] and for other references [6]). The limitation of this approach
is that the cost of an exhaustive search (for an N -point rule, with N fixed)
grows exponentially with the dimension s; thus in practice searches carried out for
significant values of s and N have to be restricted in some way.

In this paper we present theoretical results which show that good lattice rules can
be constructed one component at a time. The results may be thought surprising,
since it is generally accepted that knowledge of a good lattice rule in s dimensions
does not help in finding a good rule in s + 1 dimensions. Niederreiter (see p.
987 of [9]) expresses the prevailing view when he says “The task of finding good
lattice points is complicated by the fact that their coordinates depend strongly
on the dimensions. Thus, simplistic schemes such as taking a good lattice point
(g1, . . . , gs) in dimension s and searching for an integer gs+1 so as to get a
good lattice point (g1, . . . , gs, gs+1) in dimension s+ 1 are, as a rule, doomed to
failure.”
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264 I. H. SLOAN AND A. V. REZTSOV

Yet Theorem 2.1 below, which is the basic result of this paper, uses precisely
the construction cautioned against in that quotation to construct lattice rules of
guaranteed good quality in any number of dimensions.

In Section 2 the problem setting is established, and Theorem 2.1 stated. Theorem
2.1 is then proved in Section 3. In Section 4 we demonstrate that for 1 ≤ s ≤ smax

(with smax ≥ 2 chosen arbitrarily) the lattice rules constructed component by
component through Theorem 2.1 are good lattice rules in the classical sense, with
coefficients that depend on smax . The main result is Theorem 4.1.

In Section 5 we carry out numerical experiments based on Theorem 2.1. At
the same time, for comparison we carry out searches based on the proposal by
Korobov (see Chapter 3 of [5] or equation (6.90) of [6]) for limiting the search
vectors g = (g1, g2, . . . , gs) to vectors of the form g = (1, g, g2, . . . , gs−1) modulo
N . The cost of the s-dimensional search in the Korobov case is O(sN2) , or
O(s2N2) for the total search cost for all dimensions up to s . The cost of the
latter is exactly the same as the cost of the algorithm based on the second part of
Theorem 2.1. Generally the computed worst-case error is found to be smaller for
the algorithm in Theorem 2.1 than for the Korobov construction when s is large.

Lattice rules obtained by the present component-by-component algorithm may
be particularly valuable if the user knows that for the integrand under consideration
the first coordinate is more important than the second, the second than the third,
and so on. This is because the error bounds in Theorems 2.1 and 4.1 hold simul-
taneously for all s up to the dimension of the particular integral. Thus the error
bounds hold for all the principal projections obtained by omitting one or more of
the later coordinates of the integrand. This notion is successfully tested in Section
5 by applying the lattice rules to a simple product of 1-variable functions in which
the successive factors become increasingly smooth.

2. The setting and the basic result

The problem is to approximate the integral

If =
∫

[0,1]s
f(x) dx =

∫ 1

0

. . .

∫ 1

0

f (x1, . . . , xs) dx1 . . . dxs(1)

by rank-1 lattice rules (see [9], [12]), that is, by rules of the form

QN(g) f =
1
N

N−1∑
j=0

f

({
j

N
g
})

,(2)

with N > 0 . Here g = g(s) is an s-dimensional integer vector that does not
have N as a factor, and by {x} = { (x1, . . . , xs) } we denote the vector whose
jth component is the fractional part {xj} of xj , for j = 1, 2, . . . , s.

The function f is assumed to belong to a Korobov class E
(s)
α , defined as

follows (see also [5], [12]): for α > 1 and s = 1, 2, 3, . . . E
(s)
α consists of all

functions f whose Fourier coefficients satisfy∣∣∣f̂ (h)
∣∣∣ =

∣∣∣f̂ (h1, . . . , hs)
∣∣∣ ≤ 1(

h̄1h̄2 · · · h̄s
)α ,(3)

where for an arbitrary integer h

h̄ := max (1, |h|) .(4)
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It is well known that

QN (g)f − If =
′∑

h∈Zs
h·g≡0 mod N

f̂ (h) ,(5)

where the prime indicates that the term h = 0 is to be omitted from the sum.
Thus for f ∈ E(s)

α the worst-case error is

P
(s)
α,N (g) :=

′∑
h∈Zs

h·g≡0 mod N

1(
h̄1h̄2 · · · h̄s

)α .(6)

There is at least one member of E
(s)
α for which this worst-case error is achieved,

namely, f
(s)
α , where

f (s)
α (x) :=

∑
h∈Zs

e2πih·x(
h̄1h̄2 · · · h̄s

)α ,(7)

since from (5) and (6) we have

P
(s)
α,N (g) = QN (g)f (s)

α − 1.(8)

For α an even integer f
(s)
α can be written explicitly as a product of polynomials

of degree α , making this an easy way of computing P
(s)
α,N (g) . For example, for

α = 2 it is known (see Section 4.2 of [12]) that

f
(s)
2 (x) =

s∏
j=1

F2 (xj) ,(9)

where

F2(x) = 1 + 2π2

(
x2 − x+

1
6

)
.(10)

The lattice rule (2) is clearly unchanged if to any component of g is added a
multiple of N . Moreover, it is of little value to choose a component of g to be a
multiple of N , since the corresponding coordinate of {jg/N} in that case always
has the value zero. Thus it is sensible to choose each component of g from the
restricted set

ZN := {z ∈ Z; 1 ≤ z ≤ N − 1} .(11)

Equivalently, we choose g from the tensor product

ZsN := ZN × ZN · · · × ZN︸ ︷︷ ︸
s times

.(12)

Korobov established (see Chapter 2 of [5]) that for each s ≥ 1 and α > 1
and each prime number N there exist g ∈ ZsN and real numbers D(s, α) and
η(s, α) such that

P
(s)
α,N (g) ≤ D(s, α)

(logN)η(s,α)

Nα
.(13)

Sequences of vectors g = g(N) for which (13) holds are traditionally called good
lattice points. It is known (see [1], [9]) that sequences exist for which η(s, α) ≤
α(s− 1) . On the other hand Sharygin [11] showed that η(s, α) is at least s− 1 .
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266 I. H. SLOAN AND A. V. REZTSOV

In the present work, as in [2], we establish bounds of the form (13) indirectly ,
by first obtaining, in the following theorem, bounds of the form

P
(s)
α,N (g) ≤ G(s, α)

Nα/β
(14)

for arbitrary α ≥ β > 1 . We then deduce bounds of the form (13) in Section 4.
The first part of the following theorem asserts, in effect, the existence of infinite-

dimensional lattice rules, all of whose principal projections have desirable error
bounds. The second part of the theorem shows that rules of this kind can be
constructed component by component.

As usual the zeta function is defined by

ζ(β) :=
∞∑
k=1

1
kβ

(15)

for β > 1.

Theorem 2.1. i) For arbitrary β > 1 and prime N , with N ≥ 2ζ(β) + 1 ,
there exists a sequence (gj)

∞
j=1 , with gj ∈ ZN , such that for all s ≥ 1 and all

α ≥ β

P
(s)
α,N (g1, . . . , gs) ≤

( 1 + 2ζ(β))sα/β

Nα/β
.(16)

ii) The members gj of a sequence (gj)
∞
j=1 satisfying (16) can be determined

recursively, by setting g1 = 1 and taking gs+1 ∈ ZN to be the least value of
g ∈ ZN that minimizes P

(s+1)
β,N (g1, . . . , gs, g) .

3. Proof of Theorem 2.1

We first establish some notation. For β > 1 and W a nonempty subset of
ZsN , we denote by M

(s)
β,N (W) the mean of P

(s)
β,N (g) over g ∈W , that is,

M
(s)
β,N (W) :=

1
|W|

∑
g∈W

P
(s)
β,N (g) .(17)

For the case W = ZsN an explicit expression for this mean was obtained by Disney
and Sloan [2] (see Section 4.5 of [12]), namely,

M
(s)
β,N (ZsN ) =

( 1 + 2ζ(β))s

N
− 1 +

N − 1
N

(
1− 2ζ(β)

1−N1−β

N − 1

)s
.(18)

In the next lemma we obtain a similar explicit expression for the mean over a
smaller set: for any given g(s) = (g1, . . . , gs) ∈ ZsN define W(s+1)

(
g(s)

)
⊂ Zs+1

N

by

W(s+1)
(
g(s)

)
= W(s+1) (g1, . . . , gs) := {(g1, . . . , gs, gs+1) : gs+1 ∈ ZN} ,(19)

a set of cardinality
∣∣W(s+1)

(
g(s)

)∣∣ = |ZN | = N − 1 . For the mean over
W(s+1)

(
g(s)

)
we find:
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Lemma 3.1. Let β > 1 , s ≥ 1 , and g(s) ∈ ZsN , and let N be prime. Then

(20) M
(s+1)
β,N

(
W(s+1)

(
g(s)

))
=

(1 + 2ζ(β))s+1

N
− 1

+
(

1− 2ζ(β)
1−N1−β

N − 1

)(
P

(s)
β,N

(
g(s)

)
− (1 + 2ζ(β))s

N
+ 1
)
.

Proof. It follows from (8), on separating out the j = 0 term in the quadrature
sum (2), that

P
(s)
β,N

(
g(s)

)
=

1
N
f

(s)
β (0) +

1
N

N−1∑
j=1

f
(s)
β

({
j

N
g(s)

})
− 1

=
( 1 + 2ζ(β))s

N
− 1 + S

(s)
β,N

(
g(s)

)
,(21)

where

S
(s)
β,N(g) :=

1
N

N−1∑
j=1

f
(s)
β

({
j

N
g
})

.(22)

Since the first two terms in (21) are independent of g(s) , it follows from (17) and
(19), on replacing s by s+1 and g by g(s+1) =

(
g(s), gs+1

)
and then averaging

over gs+1 , that

M
(s+1)
β,N

(
W(s+1)

(
g(s)

))
=

( 1 + 2ζ(β))s+1

N
− 1

+
1

N − 1

∑
gs+1∈ZN

S
(s+1)
β,N

((
g(s), gs+1

))
.(23)

Now the last term can be written as

1
N − 1

N−1∑
gs+1=1

1
N

N−1∑
j=1

f
(s+1)
β

({
j

N

(
g(s), gs+1

)})

=
1

N − 1

N−1∑
gs+1=1

1
N

N−1∑
j=1

∑
h(s)∈Zs

∑
hs+1∈Z

e2πi j h(s)·g(s)/N(
h̄1h̄2 · · · h̄s

)β e2πi j hs+1 gs+1/N

h̄βs+1

=
1
N

N−1∑
j=1

∑
h(s)∈Zs

e2πi j h(s)·g(s)/N(
h̄1h̄2 · · · h̄s

)β Tβ,N(j) ,

(24)

where

Tβ,N(j) :=
1

N − 1

N−1∑
gs+1=1

∞∑
hs+1=−∞

e2πi j hs+1 gs+1/N

h̄βs+1

=
∞∑

h=−∞

1
N − 1

N−1∑
g=1

e2πi j h g/N

h̄β
.(25)
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On separating out the terms in which h is a multiple of N in the last expression
we find, as in [2] (see also Section 4.5 of [12]), that for j = 1, . . . , N − 1

Tβ,N(j) =
∞∑

k=−∞

1
N − 1

N−1∑
g=1

1(
Nk
)β

+
∞∑

h=−∞
h 6≡0 mod N

1
h̄β

1
N − 1

(
N−1∑
g=0

(
e2πi j h /N

)g
− 1

)

=
∞∑

k=−∞

1(
Nk
)β − ∞∑

h=−∞
h 6≡0 mod N

1
h̄β

1
N − 1

=
(

1 +
2ζ(β)
Nβ

)
− 1
N − 1

(
1 + 2ζ(β) − 1− 2ζ(β)

Nβ

)
= 1− 2ζ(β)

1 −N1−β

N − 1
,(26)

which, crucially for the remainder of the argument, is independent of j . Putting
the results together, we find

M
(s+1)
β,N

(
W(s+1)

(
g(s)

))
=

( 1 + 2ζ(β))s+1

N
− 1 + Tβ,N(1)

1
N

N−1∑
j=1

f
(s)
β

(
jg(s)

N

)

=
( 1 + 2ζ(β))s+1

N
− 1

+ Tβ,N(1)
(
QN

(
g(s)

)
f

(s)
β − 1

N
f

(s)
β (0)

)
,(27)

which from (26), (8) and (7) is equivalent to the desired result.

From Lemma 3.1 follows easily:

Corollary 3.2. Let β > 1 and s ≥ 1 , and let N be a prime number satisfying
N ≥ 2ζ(β) + 1. If g(s) ∈ ZsN is such that

P
(s)
β,N

(
g(s)

)
≤ ( 1 + 2ζ(β))s

N
,(28)

then there exists an integer gs+1 ∈ ZN such that

P
(s+1)
β,N

(
g(s), gs+1

)
≤ ( 1 + 2ζ(β))s+1

N
.(29)

Proof. Because N ≥ 2ζ(β) + 1, it follows easily that

0 ≤ 1− 2ζ(β)
1 −N1−β

N − 1
≤ 1 .(30)

Given the hypothesis (28), the result in Lemma 3.1 together with (30) yields the
upper bound

M
(s+1)
β,N

(
W(s+1)

(
g(s)

))
≤ ( 1 + 2ζ(β))s+1

N
− 1 + 1 =

( 1 + 2ζ(β))s+1

N
.(31)
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Since M
(s+1)
β,N

(
W(s+1)

(
g(s)

))
is the mean of P (s+1)

β,N

(
g(s), gs+1

)
over gs+1 ∈ ZN

(see (17) and (19) ), it follows that there must exist gs+1 ∈ ZN such that

P
(s+1)
β,N

(
g(s), gs+1

)
≤ M

(s+1)
β,N

(
W(s+1)

(
g(s)

))
≤ ( 1 + 2ζ(β))s+1

N
,(32)

proving the corollary.

Now we turn to the proof of Theorem 2.1. For s = 1 , β > 1 and g ∈ ZN it
is easily seen from (6) that

P
(1)
β,N (g) =

2ζ(β)
Nβ

≤ 1 + 2ζ(β)
N

.(33)

Then Corollary 3.2 yields by induction

P
(s)
β,N

(
g(s)

)
≤ ( 1 + 2ζ(β))s

N
, s ≥ 1,(34)

if the components of g(s) are determined as in part ii) of the Theorem 2.1.
The inequality (34) gives the desired result in part i) of Theorem 2.1 for the

case α = β . To complete the proof of Theorem 2.1 it only remains to prove the
bound (16) for α > β . This follows immediately from (34) together with the next
result.

Lemma 3.3. Let β > 1 , and let N be a prime number. If g(s) ∈ ZsN and
α ≥ β , then

P
(s)
α,N

(
g(s)

)
≤
(
P

(s)
β,N

(
g(s)

))α/β
.(35)

Proof. As noted in [12] (see the proof of Proposition 4.7), this follows from (6)
together with Jensen’s inequality (see [4], Theorem 19), which states that, for every
sequence of positive numbers (aj) ,(∑

apj

)1/p

≤
(∑

aqj

)1/q

(36)

if 0 < q ≤ p .

The proof of Theorem 2.1 is now complete.

4. Good lattice points

Because the parameter β in Theorem 2.1 must exceed 1, it might be thought
that the error bound from that theorem is inherently larger (and hence worse) than
the bound (13) required for the method of good lattice points. In Theorem 4.1
we show that this is not so, by establishing that for any prescribed α > 1 and
maximum dimension smax , the bound in Theorem 2.1 with an appropriate β
(fixed for the whole interval 1 ≤ s ≤ smax but depending on N ) is bounded
above by an expression of the good lattice point form (13). In other words, the
sequence of vectors g(s) = (g1, . . . , gs) , constructed one component at a time from
Theorem 2.1 with the specified value of β , is a classical sequence of good lattice
points in the space E

(s)
α , for each s = 1, . . . , smax .

Theorem 4.1. i) Let α > 1 and let smax ≥ 2 be a fixed positive integer, and let
N be a prime number satisfying

N > esmax
α
α−1 .(37)
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270 I. H. SLOAN AND A. V. REZTSOV

There exists a finite sequence (gj)
smax
j=1 such that for any s satisfying 1 ≤ s ≤

smax

P
(s)
α,N (g1, . . . , gs) ≤ D (s, α)

(logN)s α

Nα
,(38)

where

D (s, α) :=
(

3
smax

)sα
esmax α .(39)

ii) The sequence (gj)
smax
j=1 can be constructed as in part i) of Theorem 2.1, with

β given by

β :=
logN

logN − smax
.(40)

Proof. For each N satisfying (37) there exists a unique β such that 1 < β < α
and

N = esmax
β
β−1 ,(41)

which is equivalent to (40).
The definition of the zeta function yields the bound

ζ(β) =
∞∑
k=1

1
kβ

< 1 +
∫ ∞

1

1
xβ

dx =
β

β − 1
=

logN
smax

.(42)

From (42) and the fact that e2u > 2u+1 for u > 1 , we find that for smax ≥ 2
there follows

N > 2ζ(β) + 1 .(43)

Thus from Theorem 2.1 there exists a sequence (gs)
∞
s=1 satisfying (16) for all s ≥ 1 ,

and therefore in particular for 1 ≤ s ≤ smax . It only remains to prove that the
right-hand side of (16) is bounded by the right-hand side of (38) for 1 ≤ s ≤ smax .

Now because 1/β = 1− (β − 1)/β , we can write, using (40),

N−α/β = N−α eα logN (β−1
β ) = N−α eαsmax .(44)

The next stage is to estimate ( 1 + 2ζ(β))s α/β . From ζ(β) > 1 together with
β > 1 and (42) we find

(1 + 2ζ(β))s α/β < (3ζ(β))sα <
(

3
logN
smax

)sα
.(45)

Collecting (44) and (45), we obtain from (16)

P
(s)
α,N (g1, . . . , gs) ≤

3sα eαsmax (logN)s α

ss αmaxN
α

, s = 1, . . . , smax ,(46)

proving part i) of Theorem 4.1. Part ii) of the theorem follows from the construc-
tion of the sequence (gs)

∞
s=1 used in the proof.

Remark 4.2. Notwithstanding the classical liking for inequalities of the form (38),
the proof of Theorem 4.1 makes it clear that the right-hand side of (38) under
the condition (37) is actually larger than the bound (16) with the same s and
β . It should also be recognised that the condition (37), which forces the number
of points N to grow exponentially with smax , makes Theorem 4.1 of limited
practical applicability.
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5. Numerical experiments

The (nonterminating) algorithm in the latter part of of Theorem 2.1 can be easily
implemented for β = 2 by using (8) with α replaced by β = 2 , because by (9)
and (10) f

(s)
2 is available as a product of 1-dimensional quadratic functions; in

practice it does not seem feasible to implement the algorithm for β < 2 .
For given N and β = 2 , the precise algorithm is to compute successively

g1, g2, g3, . . . , where gs+1 ∈ ZN is the smallest minimizer of P (s+1)
2,N (g1, . . . , gs, g)

with respect to g .
In Table 1 we show for N = 1223 the components gs computed by the above

algorithm, together with the values of P ∗2,N = P
(s)
2,N (g1, . . . , gs) . Also shown by

comparison are the values of

B∗2,N := min
{
P

(s)
2,N

(
1, k, k2, . . . , ks−1

)
: k = 2, . . . , N − 1

}
,(47)

together with the minimizer k ; for s ≤ 10 these results agree with those obtained
by Haber [3]. The quantities M

(s)
2,N (ZsN ) in Table 1 are the averages of P

(s)
2,N (g)

over ZsN (see (18)).
Except for some relatively small values of s , the worst-case errors P ∗2,N in

Table 1 from the algorithm in Theorem 2.1 are generally somewhat smaller than

Table 1. For N = 1223 , the numbers g2, g3, . . . are those
found by the algorithm of Theorem 2.1 with β = 2 , and P ∗2,N

are the corresponding values of P
(s)
2,N (1, g1, g2, . . . , gs) . The op-

timal Korobov vectors (determined separately for each s ) are(
1, k, k2, . . . , ks−1

)
and the corresponding values of P

(s)
2,N are

denoted by B∗2,N .

s gs P ∗2,N B∗2,N k M
(s)
2,N (ZsN)

2 468 1.316e-4 1.316e-4 468 8.861e-3
3 263 4.837e-3 4.520e-3 377 5.569e-2
4 589 6.544e-2 6.835e-2 113 2.654e-1
5 18 5.923e-1 5.734e-1 69 1.174e+0
6 72 3.594e+0 3.519e+0 122 5.079e+0
7 108 1.786e+1 1.805e+1 25 2.184e+1
8 36 8.075e+1 8.465e+1 200 9.376e+1
9 36 3.509e+2 3.810e+2 202 4.023e+2
10 36 1.514e+3 1.570e+3 611 1.726e+3
11 36 6.524e+3 7.170e+3 35 7.404e+3
12 36 2.810e+4 3.116e+4 35 3.176e+4
13 36 1.210e+4 1.348e+5 35 1.363e+5
14 36 5.209e+5 5.826e+5 35 5.845e+5
15 36 2.242e+6 2.504e+6 35 2.507e+6
16 36 9.651e+6 1.076e+7 63 1.076e+7
17 36 4.154e+7 4.614e+7 35 4.614e+7
18 36 1.787e+8 1.980e+8 35 1.980e+8
19 36 7.689e+8 8.492e+8 268 8.492e+8
20 36 3.308e+9 3.643e+9 63 3.643e+9
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the Korobov worst-case errors B∗2,N , while for large s the latter are similar to

the means M
(s)
2,N .

An observation from Table 1 is that beyond s = 8 the components of g found
by the algorithm of Theorem 2.1 are unchanging. This is a seemingly characteristic
feature seen also for other values of N .

The values of error in Table 1 for the larger values of s are seen to be considerably
bigger than 1. However it is well known, and confirmed by the next example , that
this does not necessarily mean that the lattice rules themselves are not useful.

In the Introduction we speculated that lattice rules obtained by the algorithm
of Theorem 2.1 may be particularly useful if the first component of f is in some
sense more important than the second, and so on. As our second experiment we
test this idea by looking for the quadrature error for F ∈ E(s)

2 given by the simple
product

F (x) =
s∏
j=1

(
1 +

2π2

j2

(
x2 − x+

1
6

))
,(48)

in which the integral always equals 1, but in the jth factor 1+2π2
(
x2 − x+ 1

6

)
/j2

the second term (which expresses the departure from the mean value 1) is reduced
by the factor 1/j2 for j = 1, . . . , s when compared to (9)–(10). In Table 2 we
show the quadrature error |QN (g(s))F − I F | = |QN(g(s))F − 1|, with g(s) given
by the second column of Table 1, and then for comparison also by the optimal
Korobov vectors from Table 1.

The component-by-component results in the third column of Table 2 are indeed
seen to be significantly better than the Korobov results for almost all values of

Table 2. Quadrature errors for the function F defined by (48).
Vectors g(s) = (1, g2, . . . , gs) and g(s)

k =
(
1, k, . . . , ks−1

)
are

given in Table 1.

s gs P
(s)
2,N

(
g(s)

)
P

(s)
2,N

(
g

(s)
k

)
k

2 468 3.455e-5 3.455e-5 468
3 263 1.982e-4 2.081e-4 377
4 589 5.148e-4 6.407e-4 113
5 18 1.112e-3 1.612e-3 69
6 72 1.966e-3 2.979e-3 122
7 108 2.791e-3 7.516e-3 25
8 36 3.946e-3 6.627e-3 200
9 36 5.326e-3 4.916e-2 202
10 36 6.750e-3 2.089e-1 611
11 36 8.134e-3 9.190e-2 35
12 36 9.443e-3 9.241e-2 35
13 36 1.066e-2 9.270e-2 35
14 36 1.180e-2 9.284e-2 35
15 36 1.284e-2 9.296e-2 35
16 36 1.381e-2 8.555e-3 63
17 36 1.470e-2 9.312e-2 35
18 36 1.552e-2 9.319e-2 35
19 36 1.628e-2 1.985e-2 268
20 36 1.699e-2 8.964e-3 63
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s . In some exceptional cases (e.g., s = 20 ) the Korobov construction performs
particularly well for the function F . It seems reasonable to regard such cases
as accidental, given that neither algorithm has been optimised for the particular
function F .

The technical report [13] includes in an appendix numerical results analogous to
Table 1 for other prime numbers N, from N = 373 to N = 7919 . The broad
conclusions are similar to those above.
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