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One of the most fundamental concepts in systems theory is

the basic definition of a dynamic system.

may be defined as an interconnection of entities (which we

A dynamic system
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shall call "components") causally related in time. It seems
equally natural and basic, therefore, to characterize the
system's behavior in terms of cont£ibutions from each of the
system's building blocks--"components.® The performance of
the dynamic system is gquite often evaluated in terms of some
performance metric we choose to call the "cost function V.
The cost function might represent the system energy or a norm
of the output errors over some interval of time. Concerning
the physical or mathematical components of the system, it is
only natural then to ask question CC; "what fraction of the
overall system cost ¥ is due to each component of the system?"
This chapter is devoted to a precise answer to question CC
and to several applications of the mathematical machinery de-
veloped for answering the gquestion. Such an analysis will be
called component cost analysis (CCA). Conceptually, it is

easy to imagine several uses for CCA.

(a) Knowledge of the magnitude of each component's con-
tribution to the system performance can be used to suggest
which components might be redesigned if betéer performance is
needed. By redesigning so as to reduce the cost associated
with these "critical" components (those with larger contribu-
tions to system performance), one is following a "cost-
balancing” strategy for system design. Thus, CCA can be use-
ful in system design strategies.

(b) Knowledge of the magnitude of each component's
contribution to the system performance can be used to predict
the performance degradation in the event of a failure of any

component. Thus, CCA can be useful in failure mode analysis.

A
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(c) Knowledge of the magnitude of each component's
contribution to the performance of a higher order model of the
system can be used to decide which.éomponcntl to delete from
the model to produce lower order models. Thus, CCA can be
use¢ful in model reduction.

(d) Alternately, if one defines the components to include
each dynamical elemeut of a linear feedback controller, the
knowledge of the magnitude of each component's contribution to
the closed-loop system performance can be used to determine
which dynamical elements of the cont;oller to delete so as to
cause the smallest change in performance which respect to the
performance of the high-order controller. Thus, CCA can be
useful in the design of low-order controllers that meet on-

line controller software limitations.

This chapter will focus on possibility (c) in some detail.

This notion of using a performance metric is basic in the
most well-developed and simplest problem of optimal control:
the linear quadratic problem. However, one of the fundamental
deficiencies of modern control theory is ité absolute reliance
on the fidelity of the mathematical model of the underlying
physical system, which is essentially infinte dimensional.
Many "failures" of modern control applications are due to
modeling errors. Thus, theories that can more systematically
relate the modeling problem and the control problem are sorely
needed since these two problems are not truly leparable, al-
though most practice and theory presently treat them as

separable. This chapter presents one such unifying theory and

can be viewed as an application chapter in the sense tl. it

is concerned with making the linear quadratic theory more

. o -



practical. Thus, the proposed insights into the behavior of
dynamic systems are available within the standard mathematical
tools of linear gquadratic and lineir quadratic Gaussian (LQG)
theories [6). Hence, the contributions of CCA lie not in the
development of new mathematical theories, but in the presenta-
tion of cost decomposition procedures that readily reveal the
*price®™ of system components. A similar notion of "pricing"
of system components is a common strategy in operations re-
search and mathematical programming problems such as Dantzig-
Wolfe decomposition and the dual aléorithm by Benders [1,2].
However, such useful notions of pricing seem not to have found
their way into common control practice. This paper calls
attention to the manner in which such notions can be used in
dynamic systems. The mathematical details are quite different
from the pricing of the static models of operations research,
but the concepts are similar.

The concepts of CCA evolved in a series of presentations
{3-5]. However, these introductory papers left unanswered the
most important questions of stability, the best choice of co-
ordinates, and development of the theory of minimal realiza-
tions with respect to quadratic performance metrics. This
chapter, therefore, presents a complete theory for CCA and, in
addition, develops the theory of minimal realizations with

respect to quadratic performance metrics.
IXI. COMPONENT DESCRIPTIONS

The entities that compose dynamic systems are herein
labeled "components."” To illustrate the flexibility iu the

definition of components consider example 1.
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Bzxample 1. Let the vertical motion of a throttlable
rocket be éescrihed by

mv = f - mg, (la)
where m is the assumed constant mass, g is the gravitational
constant, and £ is the rocket thrust that is regqgulated by a
fuel valve with the dynamics

£=af +u ‘ (1b)

for a given command u. Thus, for the system

v 0 l/m]/v -1 0})/g

. 1= + ’ (2)

f 0 a J\f 0 1lJ\u
the vehicle dynamice (la) with state v might be chosen as one
system component, and the valve dynamice (1lb) with state £
might be chosen as another component. In this case one might
wish to ascertain the relative contribution of the dynamics of

the vehicle and the dynamics of the valve in the overall

system performance metric
1) (T ,2 =2
V=g .I; £7(t)dt + [v(T) - v]72, (3)

where T is thc terminal time at which the velocity v(T) = V is
desired.

Alternatively, one may define components of (2) in any
transformed set of coordinates of (2). For example, one might
wish to know the relative contribution in (3) of the modal
coordinates of (2), in which case the system components are q;

and q, described by

VR e Y P
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As described in the Introduction, "component cost analysis" -

(cca), is the procedure developed fof answering question CC
for any choice of component definitions. In the special case
where the components are modal coordinates, the proced.ure is
called "modal cost analysis™ (MCA) [4]). It is possible to use
CCA with any choice of component definitions including the
"balanced" coordinates of Moore [7], the "output-dacoupled”

coordinates used in Tse et al. [8), etc. For any choice of
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Fig. 1. Component definitions.
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coordinates the n components may be described in the form

n
n,-
x; = 2 Aijxj + Di"' X, € R i,
i=1

n .
y= z ijj.
=1

(5)

For notational convenience, we shall later need to differ-
entiate between the definitions of coordinates, components,
and subsystems. These distinctions can best be introduced via
example. A certain system has state.x. Let the symbols X,
Xy xi all represent partitions of the state vector to various
levels of detail. The scalars Xy i =1,..., N, will be

i, i=1,..., n, will

n

called coordinates. The vectors Xy € R
N
€ R i

be called the states of the components and X, , i=1,...,

8, will be called the states of the subsystems. Then for

n=3, 8 =2, N

Xy ] ] B B
X2 n s
3 xl xl N = Zniu z“i.
i=] im]
X
"
X = |mmmre- 2 |ecnem- ® | —m——— ’ (6)
: *2
..... X2
* X
] L] L
N n 8
coordi- compo- sub-
nates nents systems

As an example of component definitions, consider Fig. 1,
where dynamic elements Xio i=1,... 12, and their inter-

connections are described. Each of these dynamic elements

ORIGINAL PAGE IS l
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(selected a pricri by the analyst) with state Xq0 iml,..., 12
is called & component O0f the system. Eowever, esach component
may have additional dynamical variakles Xpr Xgresss called

coordinates. This coordinate view of the system is the miero-

. scopic view of the system, whereas, the view of certain col-

lections of components, called subsystem» is the maoroscopic

view of v..e system. For the example in Fa . 1, see from (6)

that
xl X4 .
X3 Xe
(%))
x8 x10
X, = v X5 = Xy )
X9

Of course, when the analyst chooses n, = 1l and Ni = 1, there

is no distinction between coordinate, component, and subsystem,
III. CONCEPTS OF COST DECOMPOSITION

In our preliminary discussions, we presume that the linsgar

system model

Xx = A(t)x + D(t)w, x ¢ R® (8a)

y=clt)x, yeRS werd (8b)

n
having components x; e R i exists for the purpose of accurately

modeling the outputs y(t) over the interval 0 < t < T. To
make this notion more precise, we construct the performance

metric

1 T
V(T) = T E J; Y(t)dt + Y(T)},

ve) & flyer )12 o) & yTmorye, (9)
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where 0(t) and Q(T) are positive definite and symmetric, and
where the expected value operator I is needed if either the
initial condition x(0) or the disturbance w is random. The
basic idea of component cost decomposition is illustrated by
the following example.

Example 2. The quadratic function of x ¢ Rz given by

T 2 2
v 8 xTox = xj0y) + x)xp01, + xpx)0yp *+ %509, (10)
may be decomposed into costs due to components Xy and Xy by

defining the component cost by

1 a3V

2
" é L X1Q)1 * X%20; 50 (11a)

(8}

Bax_v_ X, = "§°2z + %X%)0y 0. (11b)

v. A
2 2

(N [

Hence, the total cost is the sum of the component costs

n
1 v
V- 2 Yir Vi T3 e T (12)

where n = 2 in this example.

To extend this component cost concept to the systems (8)
and (9), we must first specify the character of the excita-
tions of (8). The situation is now separately described for

deterministic and stochastic inputs,

A. CONPONENT COSTS FOR STOCBASTIC SYSTENS

Let any inputs w(t) that are correlated with time or state
be described by a Gauss-Markov model.

We will assume, however, in order to simplify notation,
that w(t) in (8) is a zero-mean white noise process with in-
tensity W(t) > 0 and that x(0) has covariance x(0) 2 0.

The first definition follows the lead provided by (10)-
(12).
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Definition 2. The component cost vy for the ith compo-
nent of (5) and (8) with respact to the performance metric (9)
is defined by ’

T
1 Y (t) Y (T
Vi('l') A n E{ 0 '53?1—('9' xi(t)dt + Eﬁ,— xi(l‘)}. {13)

Two important properties of the component costs Vi(T) are

(a) the superposition property of component costs

n
VM = Y VM, (14)
{=1 :

(b) the component cost formula

1 T 1 T
V. (T) = tr XC ' QCdt + X(T)IC(T)IQ(T)C(T) ' (15)
i T 0 ii

where X is the state covariance satisfying
3 T T
X = AX + XA” + DWD", X(0) = Xo, (16)

and {-}ii denotes the n; x n, matrix corresponding to the

position of x4 in x.

These results allow one to examine individual component
contributions in a variety of situations involving (i) speci-
fied times T, {ii) specified time intervals t ¢ [0, T], and
(i1i) time-varying systems. Examples of situation (i) in-
cludes circumstances in which the system goes through
*critical® times T, and at thisz time it is required to have
more precise knowledge about the dynamical interactions of ¢he
system components than at other times. Some critical times in

engineering problems include

(il1) spacecraft reentry time T,
(i2) time of rendezvous T of two spacecraft,

(13) critical times T in a nuclear reactor,

s i sttt e 1
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(i4) switch-in or switch-out time T of a power substation
in a larger power network, and

(15) time T of maximum dynamic pressure of an aircraft or

rocket.

Examples of situation (ii) include finite-time control

problems:

(141) air-to-air rmissile intercept; quidance of a rocket
to orbital insertion,
(112) rapid repositioning of a flexible space vehicle,

(113) a finite *ime industrial process.

Examples of the time-varying cituation (iii) are cnamon and
will not be enumerated.

For time-invariant systems with T + », (9) and (15)

simplify to
V(e)= 1im EY(t) = r X(»)CTac, (17)
toe
1 Y (t)
V,(»)= 1lim E x,(t) (18a)
i 2z tow SxiltS i
= trix(=)cToc),, {18b)

where X(=) exists if and only if the disturbable (controllable)
modes of (A, D) are stable, and X(=) is the positive definite
solution of

T

0 = AX(=) + X(=)AT + DwD (19)

if (A, D) is a disturbable pair [6].

B. COMPONENT COSTS FOP DETERNINISTIC SYSTENS

If all disturbances are written in differential equation

form ( 8) without the noise w, and with speciried
initial conditions, then we may simplify the form of (8)
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and (9) to
X = Ax, x(0) = Xgr Y = Cx, (20)
1 T
V(T) = - f Y(t)dt + Y(T)}, (21)
0

and (16) becomes

T
- 1 Y (t) Y (T)
where (15) still holds except that (16) is now replaced by

X = AX + XAT, x(0) & x(0)x7(0), (23)
which has nontrivial solutions X(t), t € [0, T], for finite T.

Examplé 3. A finite-time deterministic problem.

For the example (2), find the component costs for vehicle
and actuator components v(t) and f(t), if T = 1000, m = 1,
a=-<-1, v=100, v(0) = 0, £(0). =0, g = 9.8, and u = 1 is a
step input. The deterministic model of the inputs augmented
to (2) yields (20), where

0 1/m -1 v - -100
A=10 a 1/9.81, ¥

£ ¢ x(0) = o I
0o 0 0 g 9.8
Putting (3) into the form (20) leads to
C(t) = {0 1 0], Q(t) =1, 0< t<T
S(T) = (1 0 0], Q(T) = 1.
Solving (15), subject to (23), yields for (22),

v, (T) = 7.92 x 104, V,(T) = 1.00, V,(T) = 0,

where Vl(T)/V(T) = 0.9999 is the fraction of the cost associ-
ated with vehicle dynamics, V,(T)/V(T) = 1.27 x 107> is the

fraction of the cost associated with actuator dynamics, and
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V3(T)/V(T) = 0 is the fraction of the cost due to the biases
in the system (gravity). Clearly the vehicle dynamics domi-

nate the performance.

C. INFINITE-TIME DETERMINISTIC PROBLENS

In the limit T + =, (21) yields V(T) = 0 if A is asymp-
totically.stable. Hence, a different performance metric and
component cost definition is required for the special case of
infinite~-time deterministic problems. An appropriate cost

function for this case is
A -]
VD(“) =]; Y(t)dt, (24)

which leads to

Vple) = xgxxo, 0 = KA + ATK + CToC, (25)

where K exists if and only if the observable modes of (A, C)

are stable, and K is positive definite if (A, C) is observable.
Here the component cost VDi associated with component i is de-
fined as the net effect of the excitation of the ith component
state Xg. Hence, in this case the excitation is xi(O) and the

component cost is defined by

V.. () n

1 D _ T
Ypi(® = 7 oy %1(0) = PREHCLAEN
3=1

(26)

T
tr[Kx(0)x (O)Iii.

where K satisfies (28).

The remainder of this chapter will focus on the stochastic
problem rather than the deterministic problem of Section III.C.
This means that the "output-induced®™ component costs (18) will
be of interest, rather than the "input-induced" definitions of

(26). The reader can find details of an ipput—induced
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component cost for stochastic systems in [5), which, for
deterministic problems, is based upon (26), and for the sto-
chastic problem

v = sf Y(t)dt, % = Ax, Ex(0)xT(0) = X(0), (27)
0

lS] utilizes the stochastic version of the component cost
definition (26) whose calculation is

Vi = tr[KX(O)]ii- (28)
For the stochastic problem

V = 1im EY(t), % = Ax+ Dw, Ew(t)wi(t) = Ws(t - 1)

t+o

y=cx, v&jy)2 (29)

[S] utilizes the input-induced component cost definition

1., . aY A
v. 8L 1in g w., w, 2D.w (30)
i 2 t §wi i’ i i

whose calculation is

v, = tr(xowo"in. (31)

The input-induced definitions (30) of_component costs Vi
represent the effect in Vv of excitations of component i,
whereas the output-induced definitions (13) and (18) represent
the total contributions of Xy in v in the presence of all ex-
citations. The latter and more recent definition seems to be
a much more complete notion of the contribution of component
x4 in the system cost while the system is subject to all its
natural environmental disturbances. Hence, this chapter will
present a theory only for output-induced definitions of com-
ponent cost, although the same procedures could be used to

work out a corresponding theory for the input-induced case.

To further simplify the presentation, only time-invariant
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systems with infinite terminal time T will be treated in de-
tail. The application of the concepts to the finite-time case

will be straightforward.

IV. BASIC THEOREMS OF COMPONENT COST
ANALYSIS FOR MODEL REDUCTION
Given the time-invariant linear system

X =Ax + Dw, vy = Cx, (32)

v = lnm Ellye) |3, @>0 (33)
40

with components described by (5), and with 2ero-mean white
noise disturbances w(t) with intensity W, then the value of
. i
n.:
component i whose state is X; € R ! has been shown in previous

sections to be
vV, = trixcTCl ;, 0 = AX + XAT + DWD' (34)

and LA is called the ith component cost. The fractional part
of the ith component's contribution to V is Vi/V, where

V= 2?31 vy This component cost information (34) might be
useful to guide system redesigns, failure mode analysis, and
model reductions as mentioned in the Introduction. 1In the
context of model reduction there may be considerable freedom
in the selection of coordinates before model reduction begins.
That is to say the definition of components is up to the
analyst. For any selected componert definition, the model re-
duction scheme proposed is simply to disc¢ard (truncate) some
of the component equations (5). Suppose the component index i
belongs to the set R(i e R) corresponding to the retained com-

ponents x., and 1 ¢ 7 denotes the set of indices associated
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with the truncated (deleted) component equations. The reduced
model is

-~ ~ r
xR = ARxR + DRw, Xp € R
(35)

X
Y = CpXps, n. = 2 ny

where AR is composed of the set {i ¢ R} of columns and rows of
A, Dy is composed of the set {i ¢ R} of rows of D, and Cr is
composed of the set {i € R} of columns of C. The set R is de-
termined by those r integers (here denoted generically by 1,
2,..., r) associated with the r largest component costs

Vi2Vy2 Va2 ceee 2V 2V 3 2c27V. (36)

The CCA algorithm for model reduction is therefore character-
ized by these two basic steps:

The Basie CCA model reduction algorithm

I. Compute component costs Vi by (34) and rank according
to (36).

II. Delete the n - r components associated with the n - r
smallest component costs. The resulting model is (35).

The remainder of the chapter seeks to characterize various
mathematical properties of this CCA algorithm. This is clearly
necessary since it is not apparent at this point whether the
CCA algorithm produces "good"” reduced models. To address this
question of model error, we shall define a model error index @
in Section VI. But first a brief review of modal coordinates

is in order.



V. MODAL COST ANALYSIS (MCA)

There is an important case in which the input- and output-
induced definition of component costs yield the same result,
and this case is summarized below.

Proposition 1., Consider system (29) where x4 is the ith
modal coordinate and assume for convenience that A has
distinct eigenvalues. Hence, A is diagonal. Then the CCA
algorithm will produce the same reduced model, whether the
output-induced or the input-induced modal cost definitions,
(18a) ors (30), respectively, are used.

Proof. To prove this result we must show that the compo-~
nent costs as computed by (18b) and (31) are identical if Aij
in (5) has the property Aij = Aiaij' First we shall show that

for all real ki'
* *
Vi = [XC QC)ii = [KDWD ]ii for all i =1,..., n, (37)
where X and K satisfy

* * *®
0= XA + AX + DWD , D = complex conjugate
transpose :
(38)

=T
® *

. 0=KA+AKS+ CQC, (39)
when Aij = Aiaij' The complex notation * is required due to
the complex matrices A, D, and C. It is well known [6] that
the total cos: is the same by either calculation V = tr XC.QC

or V = tr KDWD*, but the issue here is whether g¢ach modal cost

(37) is the same. Denoting the ith row of D by d; and the ith

column of C by Sy the solutions of (38) and (39), respec-~

tively, are

* by
xij = -dinj/(Ai + j)' {40)
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Kij - -cchj/( gt Aj)‘—— e (41)

¥We also remark that mode i is observable (disturbable) if and
only if ci(di) is not zero. Use (40) and {(4l1l) to obtain,

respectively,
. . n [ d c' ]
(xcocl, = -agw > | —d-Joec, (42)
ii i A, 4+ i
=1 i sl '
nf c d‘ ]
A, + A

i=1{"4i i y

Since the complex number on the right-hand side of (42) is the
conjugate of the complex number on the right-hand side of (43),
(37) is therefore verified for the special case of real eigen-
values of A, For a particular complex eigenvalue xi, let

Mgl ™ Xi' Equations (42) and .(43) show that the component
cost of any Xy associated with a complex eigenvalue Ai will be
a complex number and that the component cost of X441 COrre-
sponding to the eigenvalue A, , = Xi will be the complex con-
jugate of V;. That is V; , = Vi and vV, have the same norm.
Hence, replacing V; by IVil in the CCA (presently MCA) trunca-
tion rule (36), the MCA model reduction algorithm would always
truncate modal components so that complex conjugate pairs of
eigenvalues are truncated. Note also that in the case of
proposition 1, n; = 1 and for a complex conjugate pair

Ai+1 = Xi, it is true that
Viep * Vi = 2ReV;. \ (44)

Hence, the total cost V is real, and the sum of the modal cost

of any two modal components associated with complex conjugate

&



I ORIGINAL PAGE IS /7 |

OF POOR QUALITY

pairs of eigenvalues will be real. The proof is concluded by

noting that complex conjugates are truncated in pairs and from

the fact
- % -,

we conclude that for a complex pair

L ] *®
Vi *+ Viyp = IXCQCIy, + [XC QC)4 44

* *
= [KDWD ]ii + [KDWD ]i"'l,i-"l‘ (46)

Hence the same modes will be truncated by either definition of
modal cost. 4

Under special conditions the modal costs (42) and (43)
simplify greatly.

Proposition 2. If either (a), (b), or (c¢) holds:

(a) d;de =0, i3 (disturbance decoupled modes);

(b) c;ch = 0, ig] (output decoupled modes);

(c) (Reki/ImAi) arbitrarily small, and vy ¥ ”j (lightly
damped modes) ;

then the modal costs of a linear system are given by
toc.diwa
c;Qc
- kit A S ! 2 2

Voy Bvy+ 7, =2 g2 1 — - - gy lleg gl llge (47)
which holds for either the input-induced definition (30) or
the output-induced definition of modal cost and where V is de-
fined by (29). 1If Ai is real, then the ;th modal cost is
v B v,.

The proof of parts (a) and (b) follow immediately from
(42) and (43). The proof of part (c) is given in [5]). &
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Examples of case (c¢) in proposition 2 appear in [5] and
{17]) where NCA is applied to systems of order up to 200. It
should be noted that since the MCA fsrmula- (47) are explicit
[hence, the linear matrix Eq. (38) does not have to be solved
numerically], the MCA algorithm may be applied to any system
for which modal data are available. It will subsequently be
shown that modal coordinates might not be the best coordinates
in which to perform model truncation. However, much insight
is available from (47) indicating that modal costs are con-
posed of the product of three properties of a mode: (1) time

constant, (2) observability norm, and (3) disturbability norm.

VI. MODEL ERROR INDICES

Having a reduced model (35), we now turn our attention to
the definition and calculation of a convenient measure of

"model error™ when comparing the reduced model (35) with the

evaluation model (32).

Definition 2. The errors associated with model (35)
produced by the CCA algorithm are measured by the model error
index

1

¢k glw-vpl, (48)
where VR ie the performance metric associated with (35). If
the disturbable modes of (AR, DR) are stable, then

V. = tr X,Cl0C 0 = AX, + X AL + D_WD. (49)

R XRCRCR’ rR*r * *x R"PR’
and V is the performance metric associated with the "evalua-

tion” model (32), as given by (33).

Of course, VR can be computed only after model reduction.

The information available g priori will be called the predic-

ted model error index Q.
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Definition 3. The predicted model error index is defined
by

R - 091, (50)
where
Vg & v, iR (51)

From (36), (50), and (51), it follows also that
A=310), P8y, ier7, (52)

and

V'VR+VT.

(53)
When applying the model error index Q to the reduction of the
closed-loop system (to reduce controllers rather than models),
Q plays a role similar to the "suboptimality index" of Siljak
[14]. Note also that the @ chosen here (48) is the difference
in the norms of y and ¥, whereas the model error index chosen
in [5] is the norm of the difference y - ¥. This choice (48)
is primarily motivated by the controller reduction problem
where V. represents the performance using the reduced control-

R

ler. 1In that problem V_ > V since V_ represents the sub-

R R
optimal controller perfromance. Since Vr is minimized if Q is
minimized, the difference of norms represented by (48) is a
more logical choice for controller reductiun. This paper now
focuses on the prerequisite problem of model reduction where
all the essential mathematical results are derived for subse-
guent application to controller reduction.

For the model reduction problem, the model error index (48)
would be a meaningless index if the parameters of the reduced

model (AR, DR' CR) were arbitrary, since in this case param-

eters can always be found to make Q = 0, Reasonableness is

2/




e

l

added to the problem, however, by the fact that the search for
small Q@ is subjected to the parameters (AR, Dpr CR), which are
constrained to bs a transformed sub-;t of the original system
parameters (A, D, C). We now continue with this model reduc-
tion problem.

The questions that naturally arise and are to be answered

in the seguel are

(QI) Under what conditions is the predicted model error
index § exact (@ = Q)7 )
(QII) Under what conditions is the model error index Q
zero?
(QIII) Under what conditions is the model error index Q
minimized by the CCA algorithm?
(QIV) Given that A is stable, under what conditions is
the reduced model produced by CCA stable?
VII. COST-EQULVALENT REALIZATIONS ANC MINIMAL
REALIZATIONS W1TH RESPECT TO COST
Toward the development of the mathematical macainery
required to answer questions (QI)-(QIV), we introduce the
following definitions.
Definition 4. Cost-equivalent realisations
Let {AR, DR' Cpe xR(O)' HR} characterize the partial
realization (35) and let {A, D, C, X(0), W)} characterize the
evaluation model ("complete" realization) (32). The partial
realization is said to be cost-equivalent if ¢ = 0.
Definition §. Minimal cost-equivalent realiszations
With respect to the given components (5), the partial
realization (35) is said to be a minimal cost-equivalent

realization if r is the smallest integer for which Q@ = 0.

IR sk R
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To simplify our bookkeeping, let us assume that the com-
ponents (5) are arranged in order of their component costs and

define
xg b (..., Xgreedds 4 €R, (S4a)
x.'i.' g (..., Xjeeedd, den (S4b)

Then (32) may be written in the form

(*n) AR 2 ("n) Dgp
X MAMr  Ap | \X*p Dy '

y = [Cq c'rl("n>
Xp

Let X as defined by (34) be likewise partitioned in the manner

% e
Y %)

Due to symmetry of X, the partitioned form of the linear equa-

X (56)

tion (34) using /(55) and (56) yields three linear equations of

smaller dimensions. Two of these equations are

A ” T ”~ ”~ T 'r

0 = ApXpp + XpqAq + AppXy + XpAqp + DgWDy, (57a)
T T .T T

0 = ATQT + XTAT + ATRRRT + RRTATR + D WD,. (57b)

The remaining equation in in is subtracted from (49) to yield

0 = Ag¥y + TphAg + ApaRpn + Rl (57c)
where Yﬁ 4 iR - Xg.




o

[

ORIGINAL PAGE 1S
OF POOR QUALITY
A. ANSWERS TO QUESTIONS QI, QII, AND QIII
Using the above symbols, questior. QI can now be answered.
Proposition 3. The predicted model error index ¢ is

exact in the sense § = Q under any of tha following conditions:
P T
) 1f er(Xchoc, + ﬁRTcTocR) -0and v2 vy (58a)
T o T T
(b) if tr ii°n°°n + tr 2X,C0C, + tr 3ﬁm.c,rocR

= 0 and V < Vpi (58b)

(c) if ﬁnr - 0;

(a) 1t X is unobservable;
(e) if Xy is undisturbable,

Proof. Noting (49) and (50), it follows that the proof
requires that 9R = Vo it v> Ve and requires that 2v = Vp *+ GR

"

il v « VR' To show that vR = Vk when (58a) holds, we first

write from (34), using (55) and (56),

s T s T s T
- tr{(ii + X )Clac, + %_.claoc } (59)
Xg) CRQCR + XppCrlCpRy-
Now subtract (49) from (59) to obtain (58a) directly. To

prove (58b), write, using (34), (55), and (56€),
v = tr X.cToc. + 2 tr X..cTac. + tr X.CiaC (60)
RCRCR RTCTICR XopCpQCop-

Substitute (60) into 2V = V_ + DR, using (49, and (59) to get

R
2(tx R.C0Cy + tr 2R .CTOC, + tr RTc:ocT)

- tr xac:ocR + tr in°§°°n + tr inrc:ocn, (61)
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which reduces to (58b). To prove (c), set iur = 0 in (57¢c) to
obtain ii = 0, Purthermore since ﬁnr = 0, we have from (60)
and (49)

T 1 T
V-Vpe=tr Stncn_ocR 4+ tr RTcTQcT - tr X,Co2Cp

= tr ¥ Crocy + tr Xycioc, = tr Kcroc,
Now, since the state covariance X is at least positive semi-
definite (6], X, > 0 and hence V 2 Vo - Hence, (58a) is
applicable, and this proves (c). To prove (d), one may with-
out loss of generality assume ART - O'and CT = 0 since X is
unobservable. This yields from (57c) X, = 0, which immediately
leads to (58), since C,r = 0, To prove (e), assume Xn is un-

disturbable (i.e., set App = 0, Dy = 0). This yields from

T
(57a) and (57b) R, = 0, R, = 0, and (57c) yields X, = 0.
Hence, condition (58) is again satisfied. ¢

It may be crmforting to know that the predicted model
error index is accurate, but the initial issue of the "best"”
choice of coordinates and components is still unresolved.
That is, some choice of coordinates may lead to smaller model
error indices than other choices, even though the predicted
model error index may be exact for each choice. Before we try
to resolve the guedtion of the best set of coordinates, we
shall define the limiting case where the reduced model is
"perfect.” Thus, the following result answers question QII.

Proposition 4. The partial realizaiion (35) is a cost-

equivalent realization of (32) under either of these

conditions:
(a) 4if and only if

tr i'nc:ocR + tr 2iRTc$an + tr iTc;ocT = 0; (62)
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(b) if X is unobservable;
(c) if X is undisturbable.

Proof. From (58), it follows that proof of (a) relies
upon a ﬁroof that v = Vp if (62) holds. Subtract (49) from
(60) to get (62) directly. To prove (b) we rely on the proof
of theorem 3, which showed that X, = 0 if x, is unobservable
and that C, = 0 may be assumed. The conditions ii.- 0, Cp =
lead to satisfaction of (62). To prove (c), note from the
proof of theorem 3 that i% =0, ﬁT =0, iRT = 0 if x, is un-
disturbable. These substitutions in (62) conclude the
proof. #

Having answered questions QI and QII, it is now pogsible
to provide an answer to QIII. This answer is-summarized by
proposition 5.

Proposition §. Given a specified r and the components
(5}, which satisfy proposition 3 (§ = Q), the model error in-
dex Q is minimized by the CCA algorithm.

Proof. Since § = ¢ the model error index is given by
(52). Among the set of {Vi, i = 1, 2,... n}, the Vo in (52)
is composed (by definition) of the n - r smallest subset of
Vis, according to (35). Hence, 5 cannot be decreased by any
other choice of r components from the given set of n compo-
nents (5). #%

We must not read too much into proposition 5. It only
guarantees that there are not better r choices of the given n
components. The a priori choices of component definitions
that can be made are infinite. In any model truncation prob-

lem these three factcrs are important:

(a) choice of coordinates,




.-t“

{(b) choice of a truncation criterion, and
(c) choice of an evaluation criterion for the reduced

model.

In CCA, the best choice (a) has not yet been determined,
choice (b) is given by (36) and (52), and choice (c) is given
by (48). One suggestion for choice (a) is introduced in the
next section. It should be noted, however, that depending
upon the question being addressed, the analyst may not have a
choice of coordinates. 1In this case the results of Section
VII.A apply, but the coordinate transformation of Section

VII.B will not be permitted.

B. COST-DECOUPLED COMPONENTS

The previous section describes CCA ror any given choice of
components, and this flexibility is important for the analysis
of component costs using physical components. However, in
model reduction the analyst may be free to choose the refer-
ence coordinates and may not be restricted to the analysis of
physical components. The component costs for some choices of
components (i.e., choices associated with the underlying co-
ordinate transformations) are more convenient to interpret
than others. As an example of possible confusion, note that
even though the sum of component costs Vi is positive (14), an

individual Vv, defined by (15) or (34) can be negative. All

i
theorems of previous sections are still valid, but one might
obtain better re”iced models by using absolute value signs
around each Vi in (36). Clearly, such issues need not be of
concern if ull Vi are proven to be nonnegative. The cost-

decoupled components to be defined ia this section will prove

to have this property.

a7
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It may also be observed from the basic ideas of (l11), froa the
general component cost formula (15), and from the steady-state
cases of (18) and (34), that the coﬁ;onent costs V1 and Vj are
not generally independent. That is, the ith component cost

vy is influenced by component j. This presents no problem for
the in situ component cost analysis for purposes other than
model reduction. But for model reduction such dependence be-
tween Vi and Vj leads to errors in the predicted model gquality
index a, since in this case the deletion of component j also
modifies the cost of the retained comhonent i. This nuisance
can be removed by choosing components that have indepeqdent
costs. Thus, the motivation for such component choices is to
gain the property @ = Q of proposition 3. For the purposes of

1 to be each coordi-

this section, define the components x; € R
nate of the cost-decoupled state xy. Hence n, = 1 for all i
in this case. From part (c) of proposition 3, it is clear
that uncorrelated components (i.e., xij = 0, 1 # j) yield the
property @ = Q. An additional property is added to obtain the
"cost-decoupled" coordinates defined as follows.

Definttion 6. The "cost-decoupled" coordinates of a
linear system are any coordinates for which the covariance X
and the state weighing CTQC are both diagonal matrices.

A convenient choice of cost-decoupled coordinates may be
computed as follows. Let {x°, X°, C°, A°, D°} represent an
original set of coordinates and data, and let {x, X, C, A, D}

represent the transformed data according to the transformation

T

x® = ©x, 0 = X°A°T 4 A°X°® + D°WD°T, (63a)
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wvhere 6 = exey and ex, ey satisfy

T -
X® = Bxﬂx (63b)

TnoT, 2T
e A o o - A .
y © Eyfly,  0,C°70QC%6, = E AES (63c)

Note that Bx is the square root of the covariance matrix X°.
The nonsingular diagonal matrix ﬂy is arbitrary. The ortho-
normal matrix of eigenvectors of G:CTQCGx is EY and the corre-
sponding eigenvalues (which are_also singular values [9] since

the matrix is symmetric) are elements of the diagonal matrix

2
A .
b 4
In cost-decoupled coordinates, the system (32) is trans-
formed by
= o~ 1lg=lae
A= Gy Gx A exey, (64a)
-1.-1 '
D= ey ex D°, (64b)
C = c°exey. (64c)

The calculation of the steady-state covariance matrix of a

stable system in cost-decoupled coordinates reveals that
x = 02 (65)

and the stcte weighting matrix [CT QC} in the performance

metric

v = lim Ellylls = er xcToc
£ >0

is
T 2,2
= Q°A°.
c'Qc vy (66)
Hence from (65) and (66 ),
k

T _ T.T
v = tr XCTQC = tr AZY = .21 Ailexc ocex], (67a)
i=
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wvhere Ai[-] denotes eigenvalue of [*], and the summation is
only up to k, since there are only k nonzero eigenvalues of
egcrocex, since rank C = k. Note that the component costs in

cost-decoupled coordinates are
T.T
v, = xilexc chx], (67b)
vwhich leads to this simple interpretation of cost-decoupled
coordinates and component costs: In coordinates (components)
that are uncorrelated (xij = 0) and output decoupled ([CTQC]ij

= 0), the component costs are the eigenvaluesAof the state-

weighting matrix. In view of (67a) which holds for any Qy, there

seems to be no disadvantage in the choice ny = I, although a
different choice for Qy will be chosen in Section VII.D for
convenient comparisons with the work of others. Temporarily,

we choose ny = I.

The useful properties of cost-decoupled coordinates are
now summarized in the following proposition.

Proposition 6, In cost-decoupled coordinates, the full-

order model (55) has the following properties:

(1) Vi > 0 (the component costs are all nonnegative);

(2) AR has no eigenvalue in the open right half plane;
(3) AR is asymptotically stable if and only if the pair

(AR, Dp) is disturbable.
Proof. Claim (1) follows immediately from (67b) since
T.T
v, = Ai[exc chx] 2 0. (68)

To prove claim (2) and (3), partition (65) (with ny = I) as

(69a)

e
[
]
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This reveals that iRT = 0, Hence, writing the partioned form
of (34), partitioned compatibly with (55), yields
T T

0= AR + AR + DRVDR' (69b)
T T

0 = Apg * Apq + DgWDq, (65¢)

0= A,}' + A+ DTWD$. (69d)

Either (AR, DR) is disturbable or not. If (AR, DR) is distur-
bable, then the state covariance of (35) from (69b) is
T

T
o A *
Xy =f0 e Fp wn'reAR at = I (69e)

R R

and the finiteness of Xp guarantees asymptotic stability of
AR(xR would not be bounded for unstable AR under the disturb-
ability assumption). This proves the "if" part of claim (3).
If (AR, DR) is not disturbable then there exists an ortho-

normal transformation

T
T
Xp (70a)
TT
2
to take the system (35) to the controllable conical form

Ay Aafl™ D,

= + w, (70b)
22J1*2

31
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Where (All, Dl) is completely disturbable. Now (69b) becomes

0= A'fl L W nlwn'f, ; (71a)

0 =a,,, (71b)

0 T |
= A3, + Ay,. (71c)

The eigenvalues of AR are those of All a%d 322. Since (All,

At
Dl) is disturbable and 4; e 1 DlWDg eAllt

must lie in the open left-hand half plane

dt = I < =, the
eigenvalues of All
by reasons mentioned zbove. The eigenvalues of A22 must lie
on the imaginary axis since A22 is skew-symmetric (Azz = -Agz).
Hence, no eigenvalues of Ap can lie in the right-hand half
Plane but there are eigenvalues with zero real parts. This
proves claim (2). Moreover this proves that AR is not asymp-

totically stable if (AR, DR) is not disturbable, the “only if"

part of claim (3). #

Proposition 7, If the CCA algorithm using cost-decoupled
coordinates produces a disturbable pair (AR, DR) then the fol-

lowing properties hold:

(1) a = @ (the predicted model error index is exact);
(2) @ is minimized for a given r;
(3) Q=0 1if r > k (the CCA algorithm produces a minimal

cost-equivalent realization of order k = rank C).

Proof. Claim (1) is proven by showing that (58a) holds.
By virtue of the fact that iRT = 0 (since X in definition 6 is .

diagonal) it follows from (57c) that ﬁi = 0. Hence (58a) is
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satisfied if Vv > Vn' To show that Vv > VR note from (67a) that
. TT -
Vg = 2 xilexc chx], ieR.
i

Hence, since Ai > 0 for all i,
V=Y ifr -~ k, k = [rank C]
V>V ifr <k

and (1) is proven. The proof of claim (2) follows from (1)
and theorem 5. Claim (3) follows from claim (1) together with
(67b) and the fact that IG:CTQCGXI can have no more than k 4
rank C nonzero eigenvalues. # It may be readily verified
that proposition 7 holds for the general cost-decoupled co-
ordinates in definition 6, and proposition 7 is not restricted
to the special choice of cost-decoupled coordinates givgn by
(63) . Furthermore, claim (3) éf proposition 7 shows that the
CCA algorithm using cost~decoupled coordinates yields a cost-
equivalent realization of (32) if r > k and if the reduced-
order model is disturbable. These are only sufficient condi-
tions. We shall now present the precise conditions in which
such cost-equivalent realizations are obtained.

Proposition 8. The CCA algorithm using cost-decoupled
coordinates yielde cost-equivalent realizations of (32) if and
only if (a) r > k and (b) the undisturbable subspace of (AR,
DR) is unobservable,

Proof. For any pair (AR, DR), the transformation defined
in (70) exists. (If (AR, DR) is disturbable then I = T = Tl'
All = AR, Dl= DR' and C1 = CR.) Then from equations (70) and
(71), it can be seen that AR is not asymptotically stable.
Those eigenvalues of Ag which are not asymptotically stable

are contained in the set of eigenvalues of LYY
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_nhggd_;h;qAQQ:;elpopdg to the undisturbable .part of ian. DR)*'
Hence, the undisturbable modes are the only ones that are not
asymptotically stable. Since the unstable (and undisturbable)

part of Ag does not contribute to the cost V_, [6], the model

R
(35) can be further reduced to yield

xl = Allxl + Dlw,

(72)
Y) = C1%
such that
Ve = lim Elly () |12 = 1im E(ly, (601 2.
tow Q taoo Q
Now from (7la) and (49) we have
T T.T
Vg = tr C;QC, = tr T,CLQC T,
(73a)

= tr cgqcR - tr 'rgcgock'rz,

where the orthonormal property of T(TIT{ + Tzrg = I) is used.

From (66), (67a), and the partitioning of C in (55), it can be
seen that

r
T T.T
tr cjoc, = ) Ai[exc chx].
i=1
Hence,
r
T.T T
Vg = z "1|°x° ocex] - tr cj0c, (73b)
i=]
where c, 4 CrT,+ Now, since A, = 0 from (71b), considering
(70b) to be in observable canonical form [6], it can be said

that C, = 0 if and only if condition (b) holds. PFurthermore,

2
since the columns of T, span the undisturbable subspace of
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(Ags Dp) [6), we have the following:

(1) 4if condition (b) holds (egnivalently if C2 = 0) then

r
T.T
2 A [oxcToce, | = v t£r2k (74a)
i=1
V -
R r
E A, [6TcTace | < v ifr < x (74b)
il ™x X
i=1

(1i) 41if condition (b) does not hold (i.e., c2 # 0), then
r
T,.T
Vg = > Ai[exc ocex] -a <V, (74c)
i=]
where a ! tr C'gQC2 > 0. Obviously a = 0 if (AR, DR) is dis-
turbable since [Tl Tzl + [Tl] = I and [Cll + [cR] implying
c2 + 0. Note, therefore, from (74) that if condition (a) does

not hold, then V_, < V and (35) is not a cost-equivalent

R
realization. #
One obvious conclusion from proposition 8 is that the
order of the minimal CER is never less than k, the number of
independent outputs. It is of interest to claésify those sys-

tems whose minimal CER is of order greater than k.

Proposition 8. For all systems (32) whose first Markov
Parameters is zero (CD = 0) the order of the minimal CER is

greater than k.

Proof. Let the system (55) be in cost-decoupled coordi-
nates and let r = k. Hence, assuming Q; = I, from (66) we have

T T 2
- CRQCR CRQCT A 0
cToc = | o e |- , (75a)
CTQCR CTQCT o 0

PRPIRS A _

35
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where A% & aiag(a, (cTac], A,1cTac), ..., A lcTac]}. Now since
rank C = k, Ai[chC] ¥ 0, i=1, 2,..., k. Hence, equating

T 2
CRQCR = A%, (75b)

T
CTQCT =0, (75¢)

and recognizing that Q > 0, it can then be claimed that CR (of
dimension k x k) is square and of full rank and that CT = 0,
Now, since Markov parameters are invariant under similarity
transformation, we have

Dx

Ch =0 ‘*[CR 0] = CRDR = 0. (76)

Dy,

Equation (76) is satisfied if and only if Dp = 0, since C_ is
square and of full rank. In this event, the pair (AR, DR) is
obviously undisturbable. Furthermore, due to full rank of CR'
the pair (CR’ AR) is completely observable. Therefore, the
undisturbable subspace of (AR, DR) cannot be also unobservable.
This violates condition (b) of proposition 8. Hence the mini-
mal CER cannot be of order k. #

Nevertheless, a minimal CER of order r > k, can be con-
structed for the systems defined in proposition 9, by in-
creasing r until condition (b) of proposition 8 is satisfied.
C. THE ALGORITHM FOR COST-EQUIVALENT

REALIZATIONS (CER)

Cost-equivalent realizations (CERz; are provided by the
CCA algorithm using cost-decoupled coordinates and the CERs
have all the properties of propositions 6 and 7. The two

steps of the basic CCA algorithm are described in Sertion IV

36
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ad the cost-decoupled coordinates are described in Section
VIi.B. Combining these two ingtodioptl leads to the following
CER algorithm.

The CER algorithm

Step 1. Given the model and performance objectives of (32)
and (33):
(A, D, C, Q, W) where Q> 0, W > 0, A stable.

(Choose ay = I,)

Step 2. Compute covariance X fromz
0 = XAT + AX + DWD'. (17

Step 3. Compute ex the square root of x?

T
X = exex. (78)

Step 4. Compute By, the orthonormal modal matrix of
O:CTQCGX.’ The component costs are

e;'e:c'rocexey = diag{?), Vyueees Vs Opueey OF, (79)

where the number of nonzero component costs are k = rank {C].
Step 5. Rearrange the columns of ey 80 that the V, appear in
order

V1 2 V2 2 s > Vk. Set r = k = rank C. (80)
Step 6. Then define BR by

o, = 8p, 6,), Oy € R, (81)

Tpor efficient solution of the linear Liapunov equation,
use the algorithm in [11].

zror efficient calculation of 9:, sse the computer codes
in [123]).

stor thie task use singular value decomposition [§) or use
an eigenvalue/eigenvector program specialized for symmetric
matrices.

R
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1

T -
Step 7. Compute AR - enex Aexen

Dp = ege;lo ‘} CER. (82)

|

CR = cexen

Step 8. Compute modal data for AR:
Age; = Ai'i' i=1, 2,..., 1

1f ||cgeyll > 0 for any i such that R\ = 0, where R () de-
notes "real part" of (+), set r = r + 1 and go to step 6.

Otherwise stop.

Remark: The preduct Cpe, is defined as the observability
vector associated with mode i [5] (mode i in a nondefective
system is unobservable if and only if its observability vector
is zero). Hence, the purpose of step 8 is to check if the un-
stable mode (R#Ai = 0) is observable. Since in cost-decoupled
coordinates the unstable modes of AR are also undisturbable,
step 8 amounts to checking if the condition (b) of proposition
8 holds.

This algorithm guarantees the construction of a CER. How-
ever, the construction of a minimal CER is guaranteed only if
the algorithm converges within the first two iterations, in
which case the CER is éf order r = k or r = k + 1. For the
minimal CER of order k the triple (Ap, DR' CR) is both dis-
turbable and observable and asymptotically stable. For any
other CER produced by the algorithm, the.distutbable, observ-
able spectrum of (Ap, Dp. CR) is asymptotically stable. After
the first iteration of the algorithm, the selection of the
best sequence of eigenvector calculations in step 5 has not

been determined and is under investigation.
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If the CER algorithm yields a CER of order r with an
unstable (and undisturbable and unobservable) spectrum, then
the CER can be further reduced, as -govn in (70) and (72), ¢to
yield & realization of order lesc than r. This smaller real-
ization is still a CER as is proved following proposition 8.
D. RELATIONSHIPS BETWEEN THE COST-DECOUPLED

COORDINATES AND THE BALANCED CCORDINATES

OF NOORE (7]

The balanced coordinates of Moore [7] are defined by the
transformation that diagonalizes the controllability and ob-
servability matrices (X and K in this paper). S8Singular value
analysis provides the efficient tools to compute the balanced
coordinates. As mentioned in the introduction, CCA can be
applied to any choice of coordinates, including balanced co-
ordinates. The most powerful results from CCA are obtained
with the use of the cost-decoupled coordinates defined in the
last section using the CER algorithm. Moore (7] introduced
balanced coordinates to reduce numerical ill-conditioning,
thereby making data more manageable in the computer. On the
other hand, the primary goal of CCA is specifically to tailor
the reduced model to the control or output response objectives
(36). It would be of interest to know whether there are cir-
cumstances under which balanced cocrdinates of Moore are cost-
decoupled.

To obtain balanced coordinates, a coordinate transforma-
tion is selected so that the new (balanced) coordinates have

the properties [see Eqs. (37) and (38) in (7]],

X =K =12 = diag, (83)



ORIGINAL PASE IS I
OF POOR QUALITY

where X is the disturbability matrix

[ T .
X Af AowpTePr tar, wo>o0 - (84)
0
satisfying
0 = XxAT + AX + DWD?, (85)

and K is the observability matrix
o _T
K é.l' e? tcToce®t at, o> 0 (86)
0

satisfying

0= KA + ATK + CTQC* (87)

To obtain the cost-decoupled coordinates of Section VII.B,
a coordinate transformation is selected so that the new (cost-

decoupled) coordinates have the properties from definition 6,

X = diag, CI¢C = diag, (88)
To summarize these results from (83) and (88), proposition 10
specifies the condition under which cost-equivalent realiza-
tions can be obtained from balanced coordinates,

Proposition 10. If in balanced coordinates the state
weighting CTQC happens to be diagonal, then balanced coordi-
nates are cost-decoupled and hence have all the properties of
proposition 6.

Proof. Cost-decoupled coordinates are defined by (88)
and balanced coordinates satisfy (83). The comparison of (83)

and (88) concludes the proof.
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VIII. SHOULD REDUCED MODELS DEPEND
UPON THE WEIGHTS IN THE QUADRATIC COST?
The reader should be reminded of the fact that the state

weighting [CTQC] in the performance metric

V = lim B‘Ilyllé = 1im ExT(cTaC)x
> o

often contains parameters chosen in an ad hoc fashion. Why
then, one might ask, should one adopt a model reduction strat-
egy in which the reduced models depend upon the weight CTQC?
This question is briefly answered as follows. The selection
of a performance metric V reflects, to the best of one's
ability, the objective of the model analysis (to describe ac-
curately specific outputs y). Thus, it is important to keep
in mind that there are many problems in which the entire state
weighting matrix CTQC is not arbitrary, but only the output
weighting Q might be free to be manipulated. This notion of
penalizing only specific physical variables represented by y
allows the number of free parameters in the n x n state
weighting CTQC to be reduced from n(n + 1) to k(k + 1), the
free parameters in Q. Thus, CTQC contains important informa-
tion by its very structure. For example, a certain spacecraft
may have a mission to keep optical line-of-sight errors small
in a space telescope. These error variables, collected in the
vector herein labeled y, make up only a small subset of all
the state variables y = Cx. Alternativeiy, the same space-
craft may have a communications mission where one is interested
in the RMS deflections over the entire surface of a flexible
antenna. These two problems have entirely different modeling
(and control) objectives and it is precisely the weighte CTQC

that distinguish betwaen the two objectives. That is, the
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reduced-order model that is best for the analysis (estimation,
control) of optical errors is different from the model that is
best for analysis of errors in the p;rabolic shape of the an-
tenna. To ignore these weights cTQc is to force a complete
and artificial separation between the control problem and the
modeling problem, a state of affairs which the authors helievé,
is not realistic. The authors' opinion is that one's ability
to evaluate the quality of any reduced model (obtained by any
method) is no better and no worse than his ability to choose

a precise performance metric. Of cou}ae, if one has no physi-
cal objective to motivate the choice of specific output vari-
ables y = Cx and if he instead arbitrarily chooses an equal
weighting on all balanced cocrdinates (CTQC = I), then the CCA
algorithm produces the same partial realization as balanced
coordinate methods of model reduction. A primary goal of this
chapter is therefore to promote a systematic beginning for the
integration of the modeling and the estimation/control prob-
lems, to allow modeling decisions to be influenced by specific
quadratic control or estimation objectives, without relying
upon nonlinear programming methods.

It should also be mentioned that for scalar input-output
systems the reduced models produced by the CCA algorithm are
independent of the choices of the output weighting Q and the
noise intensity W. This can be readily verified by noting
that 0 and W in {(34) and also in (47) aré scalars that are
common factors in every component cost Vi' and cannot there-

fore influence the cost ordering (36).



IX. STABILITY CONSIDERATIONS

Stability may or may not be an important feature of a
reduced model. In fact, several schemes for "improving® re-
duced models upon which state estimators are based include the
tntentional destabilization of the model as a means to reduce
or eliminate Kalman filter divergence. This means of im-
proving models is discussed in [15] and its references. Also
note that the technique of guaranteeing stability margins in
linear regulator problems by multiplying the state weight in
the quadratic cost function by exp(2at) causes the closed loop
eigenvalues to lie to the left of the line -a in the complex
plane [16]. This method is also equivalent to intentionally
destabiliaing a stable plant model by replacing A by A + al in
lieu of multiplying the state weight by exp(2at). It is not
our purpose to recommend necessarily such methods for esti-
mator or control design, but merely to point out that stabil-
ity is neither a necessary nor sufficient gqualification for a
reduced model to be a "good"™ model of a stable system.

The model error index @ is finite if the observable modes
of (A, C) and the observable modes of (AR, CR) are stable.
Hence, stability is a sufficient but not a necessary condition
for the existence of Q. If stability is an overriding concern
in the selection of a partial realization, then one may choose
special coordinates for which the CCA algorithm guarantees
stability.

Presently, if the order of the partial realization is
fixed a priori, the only coordinates for which asymptotic sta-

bility of the partial realizations produced by CCA has been

guaranteed is modal coordinates. The modal cost analysis (MCA)




of Section V produces stable models since the eigenvalues of
the reduced model are a subset of the eigenvalues of the orig-
inal (stable) system. However, since other coordinate choices
(such as the cost-equivalent coordinates of Section VII) may
produce better models, it is suggested that the CER be found
first and examined for stability. If stability of the reduced
model is required and not obtained from the CER, then obtain
the reduced model by application of MCA, which guarantees
stability. Note, however, that if both realizations (from CER
and MCA) of order r are stable, the a&thors have not found a
single example in which the CER failed to yield a smaller
model error index Q.

Furthermore, if the order of the partial realization is
not fixed a priori, then the CER algorithm alwayé yields a CER
that is asymptotically stable.

X. CER EXAMPLES

The concepts are best illustrated with simple problems.
We begin with a second-order example.

Example 1. The CER for the system (32) with parameters

-1 0 111
A= ’ D ’ Q=1
0 !-10 701 1

c= [, -0.2], W 1

with transfer functions

y(s) = G(s)w(s),

G(s) = [(s + 1)(s + 10)1 1(-13s - 4, 0.8s + 9.8)
is

A = -10.318' C = -2.867' D = {4.53" —00279]'

R R R
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which has the transfer function

§(s) = Gy(s)w(s), Gp(s) = [-13, 0.8) [(s + 10.33)]7%,

The reduced-order model has an eigenvalue near the fast mode
(-10) of the original system as a consequence of the fact that
this mode is highly disturbable from w(t).

Example 2. Several authors on model reduction have cited
the fact that there seems to be no simple way to say that

_ (s + 1.1) 1
G(s) = B+ (s +10) s+ 10°

We consider a little more general sithation: We find that for

s + a
G(8) = 17 (s + 10

the minimal CER is

Gpls) = ——T5
- U 1
10 + a

Table I provides the results for a variety of choices of a,
and the corresponding CER. The table illustrates (for a =1,

1.1, 10) the proper use of zero information in a near

Table I.
a Example G(s) Gple) of CER
1 e + 1 1
(e + 1)(s + 10) 8 + 10
1.1 g + 1.1 1
* (e + 1)(s8 + 10) 8 + 8.8
10 8 + 10 : 1
(e + 1)(s8 + 10 8 + 1
-10 8 - 10 1
(e + 1)(8 + 10) 8 + 1
1 g -~ 1 1
- (s + 1)(e + 10) 8 + 10
0 8 1
(s + 1)(s8 + 10) s + 11

[
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pole-zero cancellation situation--a situation that frustrates .
many model reduction schemes. The reader is reminded that for
scalar input-output systems, the CER parameters (AR. Dp. CR)
are independent of the noise intensity W > 0 and output
weighting Q > 0.
Example 3. Consider the following system whose first
Markov parameter is zero (i.e., CD = 0)
x =Ax + Dw, w ~ N(O0, 1)
y = Cx
where
-10 1 O 0
A=|-5 0 1}, D={1], cC=1({100)]
-1 0 O 1
From proposition 9 a minimal CER of order 1 does not exist for

thig system. However a CER of order 2 exists and is given by

“
x
I
;1
*
2

0 0.7384 0
AR= ’ DR=
-0.7384 -8.166 4.0413

C {0.335, 0}.

R

This CER is asymptotically stable, disturbable and observable,
XI. APPLICATION OF CCA TO CONTROLLER REDUCTION

Given a model of high-order n > n., the traditional
approach to designing a linear controller of specified order
n, i8 first to use model reduction methods to reduce the model
to order n, and then design a controller that is perhaps

optimal for the reduced model. There are at least two



objections to this strategy. The first disadvantage is that
most model reduction techniques ignore the effect of the (yet
to be determined) control inputs, and it is well known that
the inputs (whether they be functions of time or state) can
have a drastic effect on the quality of the reduced model.
The second disadvantage is that optimal control theory applied
to a poor model can certainly yield poor results, often de-
stabilizing the actual system to which the low-order "optimal®
controller is applied.

The design strategy suggested for obtaining a controller
of order n, given a model of order n >> n, is as follows:

A controller-reduction algorithm

1. Apply CCA to reduce the model to order NR > n., where
Np is the largest dimension of a Riccati equation that can be
reliably solved on the local computer.

2. Solve for the optimal controller of order NR' using
the _educed model of order Ngp.

3. Apply CCA to reduce the-controller to order n, < Np

The purpose of this section is to show how to accomplish
step 3. The intended advantage of this algorithm over the
traditional approach (which skips step 3 and sets NR = nc) is
that more information about the higher order system and its
would-be optimal controller is made available for t“2z design
of the reduced-order controller.

The controller reduction can be presented as a restricted
model reduction problem as follows: Consider the plant,

X = Ax + Bu + Dw,

y = Cx, (89)

zZ = Mx + vV,
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X ¢ Rn, ue Rm, w e Rd,

Yy € RF, z e RL, rk(B] = m < n,

where w(t) and v(t) are uncorrelated zero-mean white noise
processes with intensities W > 0 and V > 0, respectively. The
measurement is z, y is the output to be controlled, and u is

the control chosen to minimize
2
Vv = lim E(Ilyllé + IIuIIR). Q >0, R>0. (90)
t+o
Under the assumpticns that (A, B) and(A, D) are control-

lable, (A, C) and (A, M) observable, the optimal controller for

(89) takes the form

- n
x, = Acxc + Fz , X, € R,
(91a)
u = ch,
where
A, £ A+ BG - FN, (91b)
6 =-R 18Tk, kA +aTk - xer 18Tk + cToc = o, (92)
F = pMTV"l, PaT + Ap - pMTV IMp + DWDT = 0. (93)

Augmenting the plant (89) and the controller (91) yields

the closed-loop system.

x ] Ao BGl|x D Oliw
. = + (94)
ch -FM Ac X, 0 Fliv
[Y' [ C O][x]
u |0 GJix,

The cost V can be expressed as

V = tr illcToc + tr izchnG, (95)
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whare
CE . 2 I o s a
i11 212 A NP A BGJIX,, X,
+
SN T T aT 2
k2 %y,|leB" A FM AL X2 X22
_ (96)
DWDT 0
+ = 0
0 PVFT

Now if the two "conponents” of (90) are defined as the plant
(with state x) and tﬁe controller (with state x.), then the
component costs for x and x, are denoted V° and Vc,
respectively, where

v =ve + ¢¢ (97)
and
ve & ¢r %,,cTac, | (98)
e ¥ al
v R ey X,,G RG. (99)

Since we desire to reduce the dimension of the controller and
not the plant, we further decompose v© into individual compo-

nent costs associated with controller states.

n
Vo= ve 4+ jz vi, (100)
i=1
where
c A T
v 4 (xzzG nc)ii. (101)

Having defined the controller componénts, the controller
reduction can be shown to be a special "model reduction® p.ub~
lem by simply interpreting (90) in the form of (32). That is,
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substitute i
xT o [T xT], vT 4 |yT uT] -
. el! |
TTTTTTA BGY 'D 0 W o

A+ R D ~» e W=
[FM A, [o F 0o Vv
Q 0 [c 0]

Q -+ R C -
[0 R [0 G

Now with a very minor modification the standard CCA algorithm
can be applied to cbtain the reduced-order model of dimension
N, = n‘+ n., where n, is the dimension of the reduced-order
controller desired. The minor restriction is that the plant
component of dimension n is not to be truncated, regardless of
the value of V°.
Motivated by the theory of cost-decoupled coordinates,CERs
and definition 6, we desire to fransform the controller co-
ordinates so that both §22 and G'RG in (97) are diagonal,

The cost-decoupled controller (CDC) algorithm

Step 1. Given the model and performance objectives (A, B, D,
C, M, W, V, Q, R).

Step 2. Compute the optimal controller (Ac, F, G) from (91)-
(93) and the covariances ill and izz satisfying (96).

Step 3. Compute el the séuare root of izz

T
2= 99

bt

Step 4. Compute 6, the orthonormal modal matrix of G{GTRGGI.
The controller component costs are

ege{cTRGelez = atag(v§, vS..... v:, 0,... 0}

where the number of nonzero controller component costs are m =

rank B.
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Step 6. Rearrange the columns of 92 so that the Vf appear in

order

c L N ] c
Vﬁ 2 Vz 20002 Vm'

Then define eR by

nxm

= IBR, ] 6, ¢ R .

6, el Og

Step 6. The reduced CDC is

= Agxp + FpZ, QR e P,

where

A 8 ole] A 8,0

g
F eR

R 1

4
Gy ¥ Go,6..

Additional properties ¢f the CDC must be explored in
future investigations. Space limitations suggest this con-
venient stopping point in the presentation of the CER theory

and its application to both model and controller reduction.
XII. CONCLUSIONS

A summary of the ideas of cost decomposition is given to
aid in the determination of the relative cost (or "price") of
each component of a linear dynamic system using quadratic per-
formance criteria. 1In addition to the insights into system
behavior that are afforded by such a component cost analysis
(CCA), these CCA ideas naturally lead to a theory for cost-

equivalent realizations.




Cost-equivalent realizations (CERs) of linear systems are
defined, and an algorithm for their construction is given.
The partial realizations of order r ;roducod by this algorithm
have these properties:

l. a minimized model error index;

2. the model error index is zero (i.e., the original sys-
tem and the partial realization have the same value of the
quadratic performance metric), if r > k, where k is the number
of independent outputs;

3. the algorithm does not require the computation of modal
data of the plant matrix A;

4. the method is applicable to large-scale systems,
limited only by the necessity to solve a linear Liapunov-type
algebraic equation;

S. the CER algorithm produces stable realizations of a

stable system.

The algorithm is based upon component cost analysis (CCA),
vwhich is described for time-varying systems, for time-invariant
systems, and for systems for which accurate modeling is of
concern only over a finite interval of time. These component
costs are shown herein to be useful in obtaining the above
cost-equivalent realizations, but they are also useful in
closed-loop applications where controllers, rathec than models,
are to ke simplified.

Property 2 above reveals that cost-equivalent realizations
can be smaller than Kalman's minimal realization, which is
always of the dimension of the controllable, observable

subspace.

TR e
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Section VI is a point of departure for further research
using different model erroxr criteria. Inetead of using the
difference of norms as in (48), an o;ror criterion using the
norm of the differences can be studied much more extensively
than done in [5], where only input-induced component costs
were used. The model error criterion utilized herein, (48),
is chosen for its appropriateness to the reduction of optimal
controllsrs. Other uses of component cost analysis (CCA),
which warrant further research include decentralized control,
failure analysis, and system redesign strategies based upon

*"cost-balancing."”
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