ACM SIGSOFT Software Engineering Notes Page 1 January 2005 Volume 30 Number 1

Component Evolution and Versioning
State of the Art

Alexander Stuckenholz
FernUniversiat in Hagen
Lehrgebiet éir Datenverarbeitungstechnik
Universi@atsstrasse 27, 58084 Hagen, Germany
Alexander.Stuckenholz@FernUni-Hagen.de

October 26, 2004

Abstract the kind of information about the running system as well as the
lifecycle of the component in which the mechanisms are applied.
Emerging component-based software development architecturese most frequently used technology in this area is versioning.
promise better re-use of software components, greater flexibilityersioning mechanisms are typically used to distinguish evolv-
scalability and higher quality of services. But like any other piecihg software artifacts over time. As we will show in section 4 on
of software too, software components are hardly perfect, when hgage 4, these mechanisms play an important role in componen
ing created. Problems and bugs have to be fixed and new featupgsied software development too.
need to be added. This paper presents an overview of current versioning mecha-.
This paper analyzes the problem of component evolution amsms and substitutability checks in the area of component base
the incompatibilities which result during component upgradesoftware development. In a comparison, these systems will be
We present the state of the art in component versioning and cogvaluated against their usability in the case of component up-
pare the different methods in component models, frameworks agehdes. Here we come to the conclusions that the available so
programming languages. Special attention is put on the automations are not sufficient to reduce version conflicts in component
tion of processes and tool support in this area. The concludirgstems. To overcome this weakness, we are proposing an im
section sketches a possible solution of these problems we are gtoved upgrade mechanism that can applied to all major compo:
rently working on. nent models. This paper is organized as follows: Section 2 on
the following page will focus on the ultimate problem of evolving
components, its reasons and related works.

Section 3 on the next page will render more precisely the au-
Durin th?rs comprehension of the term software component. We illus-
g the last years component based software developmen ; : L
changed from a pure scientific research field to a widely used tec gte the_llnkage_ mech_amsms between components, Wh.'Ch influ

ence their substitutability, and the problems that arise during com:-

nique [1]. A number of component models for different layers gnent upgrades. Further on an overview about versioning mech
(desktop, server) have been established [2-5]. After consolidatibi P9) 9

e S o . nisms, generally used terminology in this area and the semantic
of standards and specifications in this area, it is now time to loo . .
at the problems that arise by the practical use of software Comp%_vers!on numbers is given.
Section 4 on page 4 introduces a component based softwar

nents in everyday projects. o) . !
. . stem, which is used as a running example in the next sections t
Just like any other piece of software too, software components . . - : ;
clarify the different versioning mechanisms. We compare a series

are hardly perfect, when they are created [6]. Problems and bugfscomponent models, programming languages and other syster

have to be fixed and new features need to be added [7]. Softwarﬁ. . : . .
) which promise solutions to the upgrade problem by using partic-
development generally may be defined as the process of creatlr] I . .
; . ; ugr versioning mechanisms. The author focuses on four main
and propagating changes [8]. By this process, new versions of .~~~
. . guestions:
software components come into existence.
To take advantage of these updates, one has to deploy the nefu Does the system have the ability to distinguish different ver-
components into the systems that use them. Daoing this, the main sions of the same component at all?
guestion is: Does the system run with the new component, or i
the system negatively affected by the upgrade? [9]
As we will show in the following, a series of different ap-
proaches exist in this area (see section 4 on page 4). They var$. How is the compatibility and incompatibility between differ-
in the component model that is used, the kind of meta informa- ent component versions detected and how is that reflected ir

tion about the component, which is used for compatibility checks, the version information?

1 Introduction

%. How are syntactical and semantic changes detected and ho
are these changes reflected in the version information?

ACM SIGSOFT Software Engineering Notes Page 2 January 2005 Volume 30 Number 1

4. Will the provided mechanisms warn the component user @&fs long as this situation lasts, the advantages of component base
incompatible upgrades and does the system provide solutiossftware development such as flexibility, scalability and higher
for such situations? quality of services are abrogated. The problem of versioning anc

check for substitutability is therefore one of the most burdensome
In section 5 on page 8 the results will be categorized and evalin-this area.
ated with special attention to the questions and the main problem.
Special importance is attracted to the automation level of the usgd
przlctises tg minimize the burdens for component developers aﬁdl Related Work

system administrators. System Evolution is the stepwise development of systems or mod
In section 6 on page 9 we will propose an advanced componesls due to environment changes [12]. These environment change
upgrade system calledtelligent component swappirigat seizes are, e.g., the need for new functionality, changes in use cases, ne
and enhances a number of mechanisms in this area to minimize g ditions (laws), implementation of new technologies or major
negative effects during component upgrades and to initiate COlhanges in the processed data. At the Fraunhofer Institute fo
teractive measures as automatic as possible. Software- and System Technology (ISST) the profgehtinuous
is focusing on evolving systems [12-14], which use component
based software development (CBS) as a base technology.
2 The Problem In general, Configuration Management (CM) is the discipline
for organizing and controlling evolving systems [15]. Accord-

Software components undergo dynamic evolution during whichigy {4 this definition, controlling component evolution is a sub-

client component experiences the effects of modifications maﬁ?scipline of CM. However, the term Software Configuration
to a service component even though these occurred after the C”mnagement (SCM) includes the creation phase of software. Pro

was built [10]- . o cedures like construction and team work are in the center of in-
Dynamic evolution means that all characteristics of a cOMpQgrest [16]. Component Evolution also includes managing the de-
nent that are observable from external clients may change o byment of components and system management.
time. These characteristics are part of different contract leve S.Class Evolution is defined as the process of evolving class hi-
Beugnard et. al have identified four classes of contracts in the SOftarchies in object oriented programming. Since almost all cur-
ware component world (see [11]): basic or syntactic (1), behaYan: component models are based on object oriented develop
ioral (2), synchronization (3) and quantity (4). The higher the levelent class evolution plays an important role in this area. [17]
of contracts in which changes have been performed, the lower & inguishes the categories Class Tailoring, Class Surgery, Clas
the chance to detect them. So far there are a couple of approac{igisioning and Class Reorganization as solutions for evolving

to detect syntactical and only a few approaches to detect beh@yssses. For component evolution especially versioning plays ar
ioral changes (see section 4 on page 4), but we are not aware of #Bortant role.

approaches that considers the level of synchronization or quantity.
Whichever level of contract is affected by component changes,
such changes are necessary in many situations. In many cages Components, Models and Versioning
bugfixes need to be enforced, which entail changes in the compo-
nent’_s implem_e_ntation. In some cases the requirements, like t@?]_ Definitions
required precision of results or the used types, may change over
time, which causes changes at the interface level of the componéntvidely accepted definition of the term software component is
next to its implementation. The simple addition of functionality ifrom Szyperski [18]. He defines software components as a coars
in most cases unproblematic. grained blackbox software element with contractually specified
In the case of a component upgrade, problems may arise in tiyntax and semantics on both the provided and required side of th
interaction of the changed component and other componentsiitterface. He claims that a software component can be deployet
the system. In these situations of incompatibilities it may come iadependently and is subject to composition by third parties.
malbehavior of system parts or the crash of the whole system. The rules for the creation, composition and communication of
This problem did not carry so much authority, because duringdividual components are defined by component models and pu
the last years the majority of components were created by thos¢o operation by component frameworks.
developers that also had the responsibility for the whole system.A component encapsulates specific knowledge which is acces
Hence incompatibilities could be removed on the spot. But theible only by its provided interfaces,j. Furthermore a com-
problem will emerge in the future, because a growing number gionent needs access to some general framework services and
components will be created by third persons (Off-The-Shelf Conother components or services to work. These necessities are e
ponents), who do not have control over the client systems aptlessed by the components required interfaggs The specifica-
do not have any information about the way their components atien (s) of the component, especially the semantics of the compo-
used. nent’s interfaces, their constraints, data formats and protocols a
There are currently no automatic tools or methods for versiomvell as detailed information about timeouts or quality of services
ing components in such a way that incompatibilities could be prenay also be specified by OCL, in terms of predicate calculus or
dicted and corrected before a component is deployed to a systegraphical description techniques like state charts or Petri nets. Thi

ACM SIGSOFT Software Engineering Notes Page 3 January 2005 Volume 30 Number 1

higher the degree of formalization of such descriptions is, the bet-Westphal [23] described this problem and suggested the re:
ter is the utilization by automatic triggers, checks or verificatioplacement of strong-typing by a so called strong-tagging mech-
mechanisms [12]. anism and a single entry point for components. Strong tagging

In current component models there is no obligation to enrictietaches the parameters of methods from their position in metho
components with that kind of information. As a matter of factgcalls and bind them to their names. Thereby the parameter order i
this has different reasons. Component based software develdpelevant at method calls. Westphal uses XML to pass parameter:
ment is an inherently complex technology, which would becom® methods, thereby he also assures independence from platfor
even more difficult, if component developers would be forced tdependent type representations and enables implicit type casting
embrace formal specifications. These are tedious and difficult toNext to this technique to avoid the invalidation of component
write [9]. Additionally formal specifications are really needed ininterfaces at all there are mechanisms to detect problems of in
least projects. Currently most components do simple things likmpatible interfaces before they arise. Invalidation checks of
displaying controls on user interfaces. Using extensive formal ddirect component interfaces are not a difficult issue. Several tech
scriptions for those components would break a fly on a wheel. niques, like fingerprinting, are currently used in component mod-

In general, metadata that specifies different aspects of softwals and programming languages (see section 4 on the following
components is needed in case of dynamic linkage, where the opigge). However, indirect interfaces like object references that are
information about component usage is the component itself [10passed over component boundaries, should also be integrated in

The above mentioned distinction between required interfacdgjs analysis. Since the dependencies between object reference
provided interfaces and the specification has advantages with keild a directed cyclic graph such calculation is getting complex.
gard to versioning of changeable parts and can also be found

in [19] and [20]. 3.3 Component Upgrades

When upgrading a component, a user has different possibilities
3.2 Component Usage and Changes at hand depending on the component model. The most commol

Components are put together in order to build more complex coWay t0 do an upgrade is to remove the'old component and to re:
ponents or "composable” software systems. The degree of sub&ace it by another, usually newer, version (e.g. JavaBeans [2] ol
tutability of a component in a system does not only depend of ttfdmple DLLS). This procedure is designated especially to system:
facilities of the components themselves, but also on how Compmat do not use a centralized registration and identification service
nents are glued together and what kinds of composition mecHé® COM [24]. Applications which make use of such component
nisms have been used [19]. models are bound to specific components by component IDs o
The stronger the dependency between a component, other cdijfler naming mechanisms. Since a new version of a component!
ponents and the system that makes use of it is, the harder it isA§° connected to a new component ID, simple replacement won’
do upgrades with new component versions. This influences tH@TK for upgrade purpose. _
requirements for a component versioning and upgrading system. Another possibility to upgrade a component is to deploy the
Some of the current component models, like JavaBeans [2], df@mPonent to the system and to pursue the new component i
based on object oriented programming languages. Although tng_allel to the old one. This has_ the advantage that different app!|-
idea of component based software development does not deal wifions may use different versions of one component. In certain
object oriented concepts, they often go hand in hand in curredsPects, this reduces problems of incompatibility but circumvents
component models. simple bugfixes since in this situation applications need to be re-
Hence the strongest possible dependency between compon&faiigured or rebuilt for other component versions. .
in a system is inheritance. Changes of classes in components froni\! inconvenient way of performing component upgrades is to
which other components or classes derive, may cause the Fraghg€ multiple versions simultaneously in one application. Rakic
Base-Class problem as described in [21] and [18]. Although thf{'d Medvidovic [7] use a so-called Multiple Version Connector
kind of usage contradicts the proposed paradigm that the knovp. t_est new cpmponent versions in parallel with older versions in
edge of components should only be accessible via specified fSingle application (see section 4.9 on page 7).
terfaces, this is often done by reasons of flexibility. Especially
components for the GUllayer are often customized by deriva-3.4 Versioning

tion [22].
[22] Ihe terms version, version model, revision and change originate

The most common way of component usage is to invoke dire _)
(procedural) or indirect (object) interfaces based on strong ty[%—om the area of Software Configuration Management (SCM).

ing. Strong typing comes with a couple of problems in contex hey can be directly transferred to the area of component evo

of component evolution. Minor modifications of such interfacedution. A version of a component is a specific instance on the time

even switching the order of method parameters, may cause an S, Which came into existence due to a revision or change. The
validation of the component to a client. Parts of the system th&{®Y how a version is identified by a version identifier and which

make use of the changed component and expect older versionSlpracteristics are included into computation is defined in a spe:
an interface crash when they invoke the new methods cific version model [25]. This may also contain a metric which
allows conclusions about the kind of changes in reference to the

1Graphical User Interface version identifier. In general, version identifiers consist of version

ACM SIGSOFT Software Engineering Notes Page 4 January 2005 Volume 30 Number 1

numbers, which arex-tuples of natural numbers often denoted Figure 4.1 illustrates a typical situation in a component based
X.Y.Z. The most commonly used versioning mechanism is theystend. A couple of components by different producers use and
so-called Major-Minor-Build scheme, where major changes irprovide services from each other by means of their interfaces.
duce an increment of the major-version number (&y.whereas The whole system may be an Enterprise Resource Plannin
minor bugfixes or enhancements lead to an increment of minglstem (ERP) and’; encapsulates the management of the ware-
version numbers. house. A couple of methods i deal with finding the price of

In its first occurrence to versioning binary modules to distina specific product. The manufacturer ©f discovers that float
guish them during deployment and runtime (see section 4.3 on thembers are perhaps not the best data type for representing do
following page), this scheme also tried to introduce special star values. After all, a price is never $2.33333333333 but uses
mantics to version numbers. Their original sense was to discoverily two digits after the comma. Additionally that representation
incompatibility between different versions at the first glance. Difeauses some rounding errors due to the way that trade prices al
ferent major versions should be incompatible whereas differepilculated by the system. So the manufacturef'pfdecides to
minor and build versions reflect compatibility. Over the years thishange the data type from a float to an integer, where it is under-
meaning was more and more deluded. In the meantime versisivod that the integer value is a price in cénts
numbers are merely used for marketing purpose only. Implementing that major revision, versiér).0 of C; comes to

The manual assignment of version numbers to a specific comxistence, which could be smoothly deployed to the system. But
ponent is problematic. In general, version numbers do not hauge above mentioned change has a hazardous impact on the rest
the potential to state which characteristics have changed andtft@ system, a€'; directly uses services @f; andC, is indirectly
which extent. The only information that can be derived from sucBonnected t@; overCs.
numbers is that one component is newer than another. The onlyconcepts and tools in component models and programming lan
approach, known to the author, of giving a well-defined meaningages for version control of evolving components should enable
(semantics) to such version numbers is the concept of Premyglyelopers to avoid such situations of surprising incompatibilities.

Brada (see section 4.9 on page 7). . . _The following sections will focus on current mechanisms in this
One advantage of version numbers is their human readabilifyes

instead of hashes, fingerprints or manifold specifications. Indeed
version numbers have no great expressiveness but they can be

caught by humans at first glance. 4.2 Fingerprinting
o Mechanisms of version control in component and module basec
4 Component Versioning software development were introduced first with the intention to
reduce the number of recompilations of separate modules.
4.1 Example Bernard Crelier [27] described two different inceptions, the lay-

ered model and the object model for the portable Oberon-2 com:-
piler OP2. Both models compute a fingerprint over certain charac-

<<component>> <<component>> teristics of module interfaces. The coarse grained layered mode
E E keeps a list of changes for a module interface for invalidation
1 checks. The history information consists of the fingerprints of
C1 V2.3.7 ®) 02 V173 the w_hole interface. The fln_er graln_ed object model computes fin-
gerprints of all exported objects of interfaces (parameters, types)
This also includes recursive types. The programming language
J\ 2 Al Component Pascal also uses such a fingerprinting mechanism t
Q reduce recompilation [28].

T Within this fingerprinting mechanism developers can automat-
<<component> <<component>> ically detect syntactical changes of components, modules and Ii
— braries. Because the mechanism was intended only to detect th
E O E presence of a change, Crelier did not design a special version pol
3 icy. Hence it does not reflect the kind or extend of changes anc

C3 V1.5.9 C4 V7.3.4 does not give answers in the case of incompatibilities.

In the example introduced in section 4.1 the major change car
be detected by the sketched fingerprinting mechanisms, becaus
\r 14 \r 15 it also includes an interface change which also modifies the com:

puted fingerprint. However, the developer only knows #wahe-
thing has changed. He neither has an idea what was changed nc
does he know to which extend it has been modified.

System Layer

. . . . 2A UML 2 component diagram is used to illustrate the structure of the system.
Figure 4.1: Common situation in component based Systems 37he example is taken from [26].

ACM SIGSOFT Software Engineering Notes Page 5 January 2005 Volume 30 Number 1

4.3 Library Interface Versioning in Unix Systems there is a huge risk of creeping errors that are difficult to maintain

i)) . _inhuge systems (cf. [31], p. 9).
Sun Microsystems SunOS introduced dynamic shared libraries to

UNIX in the late 1980s [29]. Right from the start Sun established
versioning mechanisms to allow the evolution of dynamic share#-4 CORBA

I|brar|e_s. . . _ . . CORBA components are specified by their interfaces in the Inter-
For library wide versioning, the filenames of the libraries Were. - Definition Languag®(IDL). The IDL description is mapped

enhanced. by version numbers (major.mmor) |n|t|a_||3./.- Thus d'ffo a specific programming language following precise rules [4]. If
ferent major version numbers represent incompatibility betwe CORBA component changes, its specification in IDL changes

!ibrarie; as differgnt minorvers'ion numbers reprgse.nt compatib{-o_ Especially changes that cause an invalidation of the client
ity. This semantics was kept in all further versioning enhancec, sq worry lines of CORBA-developers foreheads. As a mattel

ments. The Link Editor (Id) simply recorded the filename of the, fact these are all changes to IDL except the addition of new
library within the application binary, the application depende ethods or interfaces to a component

upon [30]. At T“”“me _the Library Lmkgr made sure to dyn_am— The CORBA specification [4] does not contain any approaches
|caII.y load the I|brar){ with the same major relgase and the_hlghet%t handle component evolution at all. On the basis of the current
avalla}ble minor version [31]. T.hls course greqned rr}echan!sm h RBA specification, it is neither possible to enrich components
the disadvantage that an application built with a given minor "Suith version information, nor to run more than one version of a

lease of a library might, but cannot be certain to run on an earlig[’

: | level of the lib 30 ngle component in a system.
minor release evel of the liorary [30] One workaround for this problem has been demonstrated by

. Tq ehmmart]e that dt:awbdack, iunEdLelélil_oped ? fine gra;:ptre]d Vqamilton and Radia in the Spring Experimental Distributed Sys-
sloning mechanism based on the ihary ormat which cof [6]. They created new interface versions by derivation and
tains libraries as well as executables and introduced it to U'\”édded version numbers to the interface names. The advantage
System V/[29]. This new mechanism decorates the exported sy Sing such a strategy is to have multiple versions of an interface ir

bols (e.g. mgthods) of a shared Iibrary with version numbers al ystem. However these versions need to be separated by explic
stores them in the header of the_ ELF file. By thg use of a mapfi ming conventions. Hence clients do not automatically profit
or special control-code one can influence the visibility and the Vefrom latest versions

sioning of the respective symbols. At runtime the Dynamic Linker Using that mechanism with respect to the major change from

seeks for the library by means of the SONARENd analyzes the section 4.1 on the preceding page means that the developer has

ELF header for the requi_red symbol or a compatible ver_sion. O&eate a completely new componefitnew by deriving it from
Solaris systems an ELF I|.brary may only gontaln compgnble Sy”bg. All other components that want to use servicelghew
b9|§ (cf. [32]) whereas Linux _Systems .W'th the GNU I|n}<er a.ndneed to be rebuilt. This disagrees with the intrinsic sense of com-
glibc from 2.1 may also host incompatible symbol versions 'nﬁonent upgrades

single library [33]. This proceeding along with the ELF_binar Unfortunately, CORBA does not really have an answer to the
format became the quasi standard on UNIX and UNIX like Sys\7ersioning problem
tems (Linux, BSD) [29]. '
In our example (cf. section 4.1 on the preceding page) the re-

vision of C; would create a new libraryl.s0.3.0 which is in- 4.5 Web-Services
compatible to older versions. The versioning information of th
exported methods af; are stored in the ELF header. All appli-
cations that require the old version &f are not affected by the
deployment of the new library.

?Neb—Services are not units of deployment, but they also encapsu
late specific knowledge accessible via their interfaces. By the use
of web-services and some glue-code it is possible to compose ne\

An evaluation of the UNIX library version model with respectapphcatlons’ which is very close to the idea of components.

to the four main questions from section 1 on page 1 shoes the f l_Unfortunater, standards like WSDL [34] (to specify the inter-
: 9 . . onpag - ?aces) or SOAP [35] (the transport protocol) do not address the
lowing results. On the basis of fine grained symbol versioning

. - . volution of web-services. Nevertheless, web-service develop-
the UNIX library versioning model allows the parallel existence .))

. . . o~ T ers recognized that web-services may also change over time an
of several library and symbol versions. Since the versioning in; -

S o herefore adopted versioning workarounds.

formation is attached manually to the libraries the developer mayA common workaround is shown in [36] and [26]. A web-
consider syntactical as well as semantical changes. The detectisoergvice belonas o a unique namespace which is écified in it
of compatibility and incompatibility between different library ver- SDL descri gtion The r?ames acef)strin can be us?ed 0 a er;
sions is limited reliable. Syntactic changes are not distinguishable ption. b 9 PP

. : a date or version stamp. This follows the general guidelines given
from semantic changes by means of the version numbers. DUé - . .
the W3C for XML namespace definitions. Doing so, it is pos-

to the fact that the version numbers are manually attached to sy

bols and libraries during development by mapfiles or pseudo—cods(% le _to run dn‘feren_t versions of one web—serwcg to support ap-
plications that require older versions of the service. Due to the

4ELF object files may contain an SONAME — a specific means of namin§trong-typing of web-services, it IS, for _example, r_‘Ot pos&b_le_to
the library (superceding the library’s filename) stored within the library’s objecchange a parameter-type of a service without invalidating existing
file [30].
5Symbols that have the same major release. 61SO/IEC 14750:1999

ACM SIGSOFT Software Engineering Notes Page 6 January 2005 Volume 30 Number 1

clients. Automatic technigues to announce those kinds of chandgefder where it is globally usable by all applications on the system.
are missing. This installation method could have the same impact as before.
The usage of XML namespaces to distinguish different web- The advantages of the above sketched versioning mechanism
service versions is just a workaround. Neither Web-Services nare ruined if the assumptions of the library developer with respect
CORBA components (see section 4.4 on the page before) intto-the extent of changes, their effect to the system and the possibl
duce a versioning policy, automated tools to detect syntactical m¥sulting incompatibilities between different library versions are
semantical changes or mechanisms to discover incompatibilitiearrong. This can have hazardous impact to the whole system an
should be replaced by automated versioning tools (cf. [20], p. 4-
5).
4.6 From the DLL-Hell to Windows XP)

The concept of Dynamic Link Libraries (DLL) was introduced4 7 From COM to .NET - The Microsoft Way
by Microsoft into their operating systems to bundle functional- '

ity, which could be used by several applications simultaneouslifter Microsoft made some bad experiences with the DLL-Hell
The main purpose was to load such libraries dynamically at rugsee 4.6) the company decided to forbid changes in existing com
time, thus building the basis for a couple of component concep®nents in their component models (COM, and related ones like
(see 4.7), in which DLLs are acting as component containers. ActiveX and DCOM) completely.

The underlying DLL system of MS-Windows did not specify Once an interface of a COM component is published, it gets
any mechanisms for introspection or versioning. In this contex unique interface identifier (11D) by which the interfaces can be
single applications could replace libraries during their installatiopjentified, also beyond the boundaries of one computer (DCOM).
by other versions. This often caused crashes of applications tfgther than changing an interface, the developer actually create
had been installed previously and relied on older versions of thétnew interface and the new interface gets a new lID (See [41])
library. This phenomenon is called DLL-Hell and represents thehis practice is useful to ensure that component clients are neve
most quoted versioning problem in the windows world (see [3%isabled by installing a newer version of a component. But this
38]). also prevents clients to know the features of newer componen

As part of the development of Windows 98 SE and Windowsersions without rebuilding them.

ME, Microsoft introduced the possibility to control the dynamic \jth the development of the .Net framework, Microsoft intro-

Iinkage of their libraries. SpECial meta-files could redirect thguced a Coup|e of new techn0|ogieS, sometimes well known from
loading process to local, isolated libraries, which could be desther platforms, to the windows world. Beside a runtime environ-
ployed to one or more applications only (Isolated Applicationsment that uses bytecode like Java and is endowed with meta dat
see [39]). they also designed a new component model with some interestin

Since Windows XP, libraries could be endowed by manifestrersioning features.
files in a special XML-format, which contains the name, the type, Net resources like classes, executables and therefore also con
the processor architecture and a version number of the library. Thgnents are shipped in so called assemblies together with a mar
version number is a quadruple of major, minor, build and revisiofiest. These assemblies are the objects of versioning, where th
number. Using such a manifest, application developers are aljd§rsion number is a quadruple of 16-bit integers, which is spec-
to control the process of dynamic linkage, so that only specifigfled manually by the developer. The manifest may contain, in
versions of a library can be loaded. The application is bound tdition to the version number, some metadata like the name o

a major and minor version of a lib. To enable bug-fixes (Quickhe assembly, a description and some info about the manufacture
Fix Engineering, QFE), the build number and the revision numbWhich can be received at runtime by reflection.

may vary [40]. Next to private assemblies, which can be used by local applica:
By the introduction of the above mentioned version mechaions only, one can deploy multiple versions of an assembly to the
nisms Microsoft introduced library versioning with external metag|opal Assembly Cache (GAC) to share it with all applications on
information to Windows. Techniques like this have been existingye computer system. Shared assemblies must be extended with
in the Unix world for years (see section 4.3 on the page before) strong Name, which is some kind of UID based on a public-key
With respect to the example from section 4.1 on page 4 thggnature to ensure authenticity and integrity [42].
developer could create a new dynamic link library which would The manifest of an assembly records all dependencies to ex
contain componen€’;. During creation he attaches a manifesternal assemblies specified by their name, their version numbe
to the library with manually created version information. If hegng the strong names, if existing. A reference to an entity which
found that his library is compatible to the old version, he coulgyas a not yet loaded causes the Fusion Utility to search first the
copy the file to the applications directory and redirect the dynami§ac and after that the local application directory for the appro-
linkage to the new library by creating a meta file. By alternative:j}sriate version of the required assembly which is then passed to th
installing the library locally to the application’s directory (isolated jhrary Loader [10]. If the Fusion Utility is not able to find the

library) the developer ensures that his update does not negativgg/semmy version the application was built Viitm exception is
affect other applications. Obviously this either needs to be doRgown.

with every application which wants to benefit from this update or
he installs the new library version as a shared library to the system”Microsoft calls this a compatible version

ACM SIGSOFT Software Engineering Notes Page 7 January 2005 Volume 30 Number 1

By means of the .Net Configuration Tool this default processinattributes. The methodCompatibleWitlreceives a specification
can be replaced by a custom version policy. Thereby it is possiersion to check the compatibility of the current component to the
ble to redirect the linkage of external assemblies to other versiogiven version.
or version ranges than the originally demanded. Additionally it Many of the J2EE application servers that are currently in use
is possible to define global custom policies for assemblies in th@ve several classloaders, organized into hierarchical structure:
GAC to control their usage. A typical implementation of a classloader in a hierarchy will ask

On top of the .Net component model and the .Net framewoiiks parent classloader to find and load the class first. In a chair
Eisenbach, Jurisic and Sadler modelled an extended componehtseveral classloaders, the effect is that a classloading reque:
cache to ensure its consistency in relation to required and proropagates all the way to the top of the hierarchy, and then filters
vided services [10]. They adopted the version model of the .Ndbwn the chain until found [47]. By using such classloaders it is
framework and made use of the assembly metadata to check fmssible to have multiple versions of components in a system anc
inconsistencies in their assembly cache in the case of a componenimplement user defined versioning policies.
upgrade. Unfortunately, there are no rules or regulations to realize such

The versioning system of the .Net framework is currently theystems, so that components that have been created for one sy
most progressive mechanism in the area of component versidam, might not run in another. Not only does this contradict the
ing. The .Net framework prevents the effects of the DLL-HelDava paradignvrite once, run anywherebut in this context the
(see 4.6 on the preceding page) because it permits the simultateem jar-hell arose (see [48]). Component developers are not
ous existence and usage of multiple versions of one componeiut.ced to enrich components with version information and there
Nevertheless the techniques can only be as good as the providedo predefined version policy. Furthermore component users ar
metadata, especially the version number, of the components. Besponsible to evaluate version information by themselves, e.g. tc
developers need to specify them manually, changes which areate workarounds for well known bugs [46].
not reflected correctly by the version numbers will cause unpre- To close this gap, currently different case tools (i.e. Kry8plis

dictable effects. come into existence, which support component developers in
adding version information to Java packages and evaluating thei
4.8 The Java Way runtime environment.

The whole versioning concept of Java components is based ol
Both JavaBeans [2,22] as well as Enterprise Java Beans (EJB)$8me fungous specifications which do not allow conclusions to the
43, 44] are specifications, based on the object oriented prograkind of changes and their extent. Further on it was not designatec
ming language Java. Java maps classes to single files and pdblet multiple package versions exist in one system. By the use
ages to directories in a file system. In difference to the packagé hand-crafted classloaders this situation can be circumvented
term in UML, a Java package is a physical organization of classdsjt this is not part of the specification. By manually adding the
resources and a manifest. A Java package is a unit of deploymengthodisCompatibleWithto Java packages, developers can at
which can be seen as a component. least provide a vague notion or pruning if one component is com-
The standard class loader resolves references along the CLA$8tible to another. As Java does not provide automated tools to d
PATH and returns the first occurrence of the component. This pritese kinds of calculations, wrong assumptions of the developer:
vents the simulcast existence of two or more different versions oflaay cause system crashes.
component, except custom classloaders [10] are used (see below).
As Java binaries contain meta information, reflection mechanismgsg QOthers
can be used to get information on exported interfaces and types of
components at runtime. Next to the well known component standards like CORBA or .Net,
Class serialization in Java is used for persistence and for R&eme smaller component systems, sometimes primary develope
mote Method Invocation (RMI). In this context the Java specificdfor academic use, have integrated mechanisms for component ve
tion defines compatible and incompatible changes for type evolgioning. Furthermore there are systems that intend to enhanc
tion (see [45]). Compatible changes are that kind of class revisiofxisting systems with versioning mechanisms and substitutability
that may be used instead of the older class version, to unserialitgecks.
data-streams. One really interesting approach for detecting incompatibilities
In Java, packages are the objects of versioning. The padk-the case of component upgrades is presented by McCamar
age manifest may optionally be used to enrich a component wigind Ernst (cf. [9] and [49]). The approach is focused on seman-
course grained version information, which serves for identificdic changes in components and their impact on their operationa
tion [46]. This includes the package title, package version, spe@bstractiof. The operational abstraction of the new component
ification title and the specification version. Separating specifica¢hich has to be deployed to the system is created automaticall)
tion and implementation allows the two to evolve independentify the component developer by means of test tools and is provide:
All those attributes are of the typsring, which gives evidence together with the blackbox component to the component user. Or

about the cloudiness of their entropy. the other side the operational abstraction of the old component i
Addltlona!ly component deye!opers are able to add a speciat Shttp-//krysalis.org/version/index htm
class to their components deriving from the abstract dRask- ®McCamant and Ernst have a broad understanding of components which als

age which contains a set of methods next to the aforemention@dtiudes software modules, classes and even single procedures.

ACM SIGSOFT Software Engineering Notes Page 8 January 2005 Volume 30 Number 1

derived online during its usage and in the context of the real apnd ties have been left unchanged (cf. [20], p. 72). By simple
plication. By the comparison of these two abstractions and tlmmparison of the adequate version number parts, compatibility
thereby extracted pre- and post conditions possible incompatibitian be detected before replacing a component by a new version.
ties can be detected before the upgrade is initiated. The approach of Brada solves a series of problems in this aree
In the example from section 4.1 on page 4 the developer coutte established a completely new versioning policy which mini-
create version.3.8 of component’; which provides the same in- mizes new burdens to component developers because it uses a
terface a®.3.7 but has major changes in its implementation. Fotomatic tests and parsers to transform existing informations anc
example, the developers changed the allowed range of prices in théernal specifications like IDL into the required ELF model. By
ERP system, which is not visible through the syntax of the intemeans of his approach the situation in component upgrades coul
face. The operational abstraction of the new component contaips improved considerably. But the mechanism depends on the
this information. If the old component was called with paramete@vailability of an abstract description of components in the ELF
outside the new price range, this would be recorded to its usafgmat. This is easy to create with component models that already
profile and the comparison of the abstractions would detect thise an IDL as an external description. But it is a non trivial task
incompatibility. for models like JavaBeans or .Net components which are speci
The advantages of that approach are the high level of autonfigations upon programming languages and do not have externz
tion in deriving the operational abstraction, its adaptability télescriptions (see [20], p. 139-143). We also believe that it is not
black-box components and its consideration of the usage profigfficient to detect incompatibilities before a component update
of the component in the users application. Unfortunately, McCais executed. This is only the first step into the right direction.
mant and Ernst do not mention the adaptability of their approadbection 6 on the next page will sketch an approach for solving
in the case of syntactical changes or the replacement of more tH&maining problems.
one component by a set of new components which are again com-
patible among each other. Another component versioning related technique is presentec
by M. Rakic and N. Medvidovic (cf. [7]) which is based on ex-
The most sophisticated methods in the area of component v@Hcit software connectors. Using such connectors it became pos
sioning, substitutability analysis and dynamic component ugsible to create a Multi Versioning Connector (MVC) which encap-
grades have been elaborated at Charles University in Praguesliates two or more versions of a component in order to monitor
the Departement of Distributed Systéths By means of the the execution of multiple component versions and perform com-
SOFA distributed system, the SOFA component model and ti@risons of their performance (i.e., execution speed), reliability
DCUP system to initiate dynamic component updates, the profi-€., number of failures), and correctness (i.e., ability to produce
lem of component evolution and component upgrades was stugkpected results). Thereby new components can be tested witt
ied and solutions have been proposed in a series of publicatio?igf affecting the rest of the system as for a transitional period the
(see [50-53]). In this area, Premysl| Brada designed a scheme fi@gults of the new component are only logged. By the simulta-
component versioning suitable for automated processing and stjg¢ous use of more than one version of a component, the syster
porting component distribution and retrieval [20]. His concept i§icreases its reliability [54]. Therefore voting schemes are used tc
built upon the ELF-meta model, which enables abstract descri@ecide which version(s) are correct [55]. But this can only work,
tions of components and its characteristics coming from differeffithe two different component versions have either the same inter-
component models. Once the abstract component descriptiorfa§e or an intermediator like a component wrapper that translate:
available in the ELF format, automatic tests are able to analyze tRgocedure names and converts data. Hence this technique cann
differences between component versions to identify compatibilifye used at major changes between component versions.
or incompatibility between them. By means of these specification In the example from section 4.1 on page 4 the developer coulc
comparisons which are based on subtyping rules, human readatyieate an MVC to monitor the correctness of an upgrade of com-
version numbers that allow conclusions which parts of a compgonentC; from version2.3.7 to 2.3.8 by comparing the logged
nent have changed (provided parts, required parts or ties) are diesults of both components after a specified period. Unfortunately
ated and attached to the components. This is the only approdbgre are no tools provided for automatically deriving the informa-
known to the author, which joins such semantics to componetien if the new component works as predicted.
version numbers. The mechanisms are integrated into the SOFAThe sketched technique of Rakic and Medvidovic is not a ver-
component model, but can be applied to all component models f@ioning mechanism itself but can be seen as an enhancement
which ELF representations can be generated. other versioning mechanisms. It does not establish a specific ver
In the example from section 4.1 on page 4 the developer firgton policy and rules to derive and attach version numbers or how
needs a parser which transforms the components (the IDL descﬁig.detect incompatibilities. Thus this mechanisms will not being
tion or source code) to an abstract ELF description. If he creatégnsidered in the concluding comparison.
new versions of the components, the automated comparison tools
will find out incompatibilities and create according version num-
bers. As an example, versiare.1 of a component means thattheD ~ Summary

provided parts have changed three times, the required parts twice
The concepts and technologies around component based softwa

LOhttp://nenya.ms.mff.cuni.cz/ development did not appear over night. In addition to the con-

ACM SIGSOFT Software Engineering Notes Page 9 January 2005 Volume 30 Number 1

cepts and processes especially the concrete models for which tighe systems evaluated in previous sections could find such ¢
developers create their components needed to evolve. The faotution.
that components often pass through an evolution and change oveThis is the reason why we are currently working on a new
time was recognized only lately. approach which combines different ideas to find answers in the
The previous sections compared a series of component modalketched situations. The approach tends to combine availabls
frameworks and programming languages that promise solutionemponent versions in one system, so that in case of initially in-
to the upgrade problem by using their versioning mechanismsompatible upgrades of one or more components, a conflict free
Thereby we dwelled on the four main questions that have besgstem arises again. This technique is cailgdlligent compo-
sketched at the beginning (see section 1 on page 1). The resuént swapping
will are summarized in table 5.1 on the following page. For the implementation of such a technique the author cur-
Most of the current component models, programming larrently designs an abstract component description comparable ti
guages and frameworks integrate rudimentary versioning supptre ELF metamodel (see section 4.9 on page 7) which will be lim-
to distinguish different versions of components and libraries. Biitied to syntactic characteristics of components (interfaces, excep
the expressiveness of version numbers in the Major-Minor-Builtions) for different reasons. The main reason is the current lack
scheme, which is used in the majority of cases, is limited. E®f methods to specify the usage profile between component de
pecially if component developers need to assign version numbgrandencies. The current compatibility and substitutability checks
to their components manually and do not have proper instructiofgee section 4.9 on page 7) are based on behavior specificatior
that define which changes in what level of contract conduct a new# one single component, at which it is possible to detect behav-
version, those version numbers at most rest for marketing use anthl incompatibilities by comparing the specification changes in
do not ensure compatibility between different components. a version history by subtyping. Unfortunately, we do not know
Among the current systems which are commercially in use botiny possibility to perform these checks between completely dif-
.Net assembly versioning and the Unix library versioning presefgrent components, because it is not possible to discover how on
the most practical approaches, because multiple versions of coptackbox component uses another.
ponents or libraries can exist in parallel in one system and can beThe next step to an intelligent component swapping system (ics;
used in different applications without side effects. is to gather techniques to create the so called version reachabilit
Automatic detection of component changes and substitutabiligraph of all available component versions in a system or a com-
checks based on the versioning history of single components gapnent repository. In this graph all components are recorded a:
be found in the scientific approach of McCamant and Ernst and iodes with directed edges to their component versions. Com:
the SOFA experimental system only. Furthermore the SOFA sygenent versions implement one or more interface versions whicr
tem and its versioning policy is the only existing approach wittthey provide to other components. On the other hand component
dedicated interconnection between changes of different compway also require specific interface versions from other compo-
nent characteristics and version numbers. nents. Our comprehension is, that the interfaces of a componer
None of the compared systems is able to reduce side effectsafe the object of versioning. Special kinds of components (con-
a component system in the case of an incompatible compondwctors) have the ability to bridge between the different interface
upgrade. The minority of the systems are able to detect such kersions of components, that could not interact without the exis-
compatibilities at all. In general, developers and system admitence of those bridges. All of these dependencies between com
istrators need tools to automate the detection of incompatibilitig®nents, interfaces and connectors are expressed in the versic
and to minimize their effects. reachability graph.
Figure 6.1 on the next page shows an example of a versior
reachability graph. The component repository contains three com
6 Future Work ponentsC;, Cs, C3 and the connectofy. For each of the com-
ponents at least one concrete component version eXjseXists
As discussed in the previous sections, component based softwaseversion.1, C; as2.1 andC5 as6.2). These components pro-
development especially lacks of mechanisms which are able ¥itle and require a number of interfaces. Required interfaces cat
transfer systems into a version conflict free state in the case @iy be satisfied by provided interface with equal version. In Fig-
incompatible upgrades of one or more new component versionsiure 6.1 on the following page the component adaptgbridges
Some systems, especially the SOFA system, its versioning pbletween interface versidnh7 of component; and interface ver-
icy and substitutability checks, indeed detect such incompatibi#ion 1.9 of componentC;. The version reachability graph con-
ities. But in the author’s opinion evolutionary components neetins all possible combinations between interfaces of componen
to be analyzed with respect to the system structure in which thegrsions. If there was another component tharthat could fulfill
will be used and in the interaction of all other possible compahe requirements af; from the example, that dependency would
nent versions. This puts the original usage of components, théie part of the graph also.
composition, more into the right perspective. If an application only consists of components which are ele-
As an example consider a system with a couple of componentsents of the version reachability graph, the dependencies of thic
In an upgrade two of them need to be replaced by new versiorgpplication can be seen as a subgraph of the reachability grapt
Each of the new versions are incompatible to the old system. Bt the case of a single- or multi-component upgrade our objective
by replacing them both, a new conflict free system emerges. Nofction needs to find a compatible subgraph of the reachability

ACM SIGSOFT Software Engineering Notes Page 10 January 2005 Volume 30 Number 1

&
< NI X
& & & © N
N < %2 Q <
O & P2 ¢ O
F & ¥ F & o
Q}OQ +\;\Q Q)v 6§ &Q ,04 ’0'® Q?‘
F S § gL
versioning support o . . . ° °
detection of changes e . .
subsititutability checks .

minimizing incompatibilities

o basic supporte full support
Table 5.1: Comparison of component models, programming languages and frameworks

Repository

‘ Required ‘ ‘ Provided ‘

Provided

@ Required ‘ ‘ Provided ‘

. | Connector
C,

Figure 6.1: Version reachability graph

10

ACM SIGSOFT Software Engineering Notes Page 11 January 2005 Volume 30 Number 1

graph with the highest congruence to the original application inf4] Object Management Group, Inc, “Common object
order to reduce version conflicts. request broker architecture: Core specification, Tech.
A specific component version from the system can be replaced Rep. Version 3.0.2 - Editorial update, Decem-
by another version without further activities if the new versionhas ber 2002, last visited: 03/2004. [Online]. Available:
the same dependencies as the old component version. If the new http://www.omg.org/technology/documents/formal/corba_iiop.htm
component requires other component versions than existent in the _
system, the objective function tries to replace those component®] ECMA, “Standard ecma-335 - common language in-
by according component versions or add them to the system. frastructure (cli)” Tech. Rep., Dezember 2002, last
As the reachability graph is a directed cyclic graph (dcg) nei- y|S|ted: . 10/2004. [O'nlln.e]. Available: http://www.ecma-
ther its creation above hundreds of component versions nor the Nntérnational.org/publications/standards/Ecma-335.htm
search for cpnflict free solutions ig a trivial .problem. Even with [6] G. Hamilton and S. Radia,
only three different components with one single component ver-
sion each, the version reachability graph from figure 6.1 on the
page before becomes very complex. In a number of examinations

the author furthermore realized that some components cannot ljg] M. Rakic and N. Medvidovic, “Increasing the confidence in
swapped in systems. These components either have direct hard- off-the-shelf components: a software connector-based ap:

ware dependencies or are too COSt'y, e.g. transformation of huge proach," inProceedingS of the 2001 Symposium on Software
databases, to be swapped. Hence these components must be ex- reusability, 2001, pp. 11-18.

cluded from swapping. During the search for a conflict free sub-
graph we may find multiple solutions or no solutions at all. By the[8] A. Zeller and J. Krinke©pen-Source-Programmierwerkzeu-
existence of a great number of suitable component versions from ge, Versionskontrolle - Konstruktion - Testen - Fehlersuche
the repository, the problem of finding a conflict free subgraph be- 2nd ed. dpunkt.verlag, 2003, in German.
comes a NP-complete search problem. . _ o }
The objective function to reduce version conflicts by compo-9] S- McCamant and M. D. Ernst, "Early identification of in-
nent swapping is additionally equipped with a number of con- ~ compatibilities in multi-component upgrades,” Rroceed-
straints. As component swapping probably can be enforged during "9S of the 10th European Software Engineering Conference
system breaks only, one constraint may be to reduce the upgrade 21d the 11th ACM SIGSOFT Symposium on the Founda-
duration and for this purpose the number of required component ions of Software Engineeringielsinki, Finland, June 14—
swaps. Another constraint is to ensure that the system uses the lat- 18, 2003, pp. 287-296.
est possible component versions. This conforms to the definiti?fo] S. Eisenbach, V. Jurisic, and C. Sadler,

of well versioned systems seen in [10]. lution of .NET programs,” irbth IFIP International Confer-

The main aim of the approach is to provide fully automated gnce on Formal Methods for Open Object-based Distributed
tools to component developers and system administrators to per- Systems (FMOODS 20Q3Yovember 2003.

form component upgrades transparently. These tools should auto-

matically find conflict free systems, collect missing componen{d1] A. Beugnard, J.-M.&zquel, N. Plouzeau, and D. Watkins,

and perform component swaps. “Making components contract aware,” IEEE software
The author hopes to reduce the situations of unforseen in- june 1999, pp. 38-45.

compatibilities in component upgrades by means of the above

sketched approach and thereby to leverage component based dé#} A. Borusan, M. GroBe-Rhode, H. Ehrig, R.-D. Kutsche,
ware development sustainable. S. Mann, J. Padberg, Aighil, and H. Weber, “Kontinuier-

liches engineering: Grundlegende terminologie und basis-
konzepte,” Fraunhofer ISST, Tech. Rep., 2000, (in German).

“Using interface inheritance to
address problems in system software evoluti®f¢M SIG-
PLAN Noticesvol. 29, no. 8, pp. 119-128, 1994.

“Managing the evo-

References [13] M. GrofRRe-Rhode, R.-D. Kutsche, and Fit, “Concepts for

the evolution of component based software systems,” Fraun-

[1] O. Zwintzscher,Komponentenbasierte & generative Soft- hofer ISST, Tech. Rep., 2000.

wareentwicklung - Generierung komponentenbasierter Soft-

ware aus erweiterten UML - ModellenW3L GmbH, 2003, [14] F. Biibl, “Towards the early outlining of a component-based
(in German). system with concoil,” Technische UnivesitBerlin, Tech.

. . I Rep., 2000.
[2] Sun Microsystems, “Javabeans api specification,” Tech.

Rep., August 1997, last visited: 04/2004. [Online][15] A. Zeller, “Configuration management with version sets -
Available: http://java.sun.com/products/javabeans/ a unified software versioning model and its applications,”

) N] Ph.D. dissertation, Technische Universitaet Braunschweig,
[3] B. Shannon, “Java 2 platform enterprise edition speci- Apyil 1997.

fication,” Sun Microsystems, Tech. Rep. v1.4, Novem-
ber 2003, last visited: 04/2004. [Online]. Available:[16] M. Bar and K. FogelOpen Source Development with GVS
http://java.sun.com/j2ee/index.jsp 3rd ed. Paraglyph Publishing, 2003.

11

ACM SIGSOFT Software Engineering Notes Page 12 January 2005 Volume 30 Number 1

[17] O. Nierstrasz and D. Tsichritzi§bject-Oriented Software [32] U. Drepper, “How to write shared libraries,” Red
Composition Prentice Hall International, 1995. Hat, Inc., Research Triangle Park, NC, Tech. Rep.,
April 2004, last visited: 10/2004. [Online]. Available:

[18] C. Szyperski, Component Software: Beyond Object- piy:-//people.redhat.com/drepper/dsohowto.pdf

Oriented Programming - Second EditionAddison-Wesley,

2002. [33] ——, “Using ELF in glibc 2.1” Cygnus So-
lutions, Sunnyvale, CA, Tech. Rep., March
[19] S. Mann, A. Borusan, H. Ehrig, M. GroRe-Rohde, R. Mack- 1999, last visited: ~ 10/2004. [Online]. Available:
enthun, A. &inkil, and H. Weber, “Towards a component http://people.redhat.com/drepper/elftutl.ps
concept for continuous software engineering,” Fraunhofer _ _
ISST, Tech. Rep., 2000. [34] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana, “Web services description language (wsdl) 1.1,
[20] P. Brada, “Specification-based component substitutability =~ W3C,” 2001, March 2001.
and veviion idenificaton, PhD.dissertation, Charles UNfag) 1. Gudgin, M. Hadley, . Mendelsohn, J-J. Moreau,
' and H. F. Nielsen, “Soap version 1.2 w3c recom-
[21] L. Mikhajlov and E. Sekerinski, “The fragile base class prob- ~ mendation 24 june 2003” W3C, Tech. Rep. June
lem and its impact on component systems,” Rroceed- 2003, last visited: 04/2004. [Online]. Available:
ings of the Second International Workshop on Component- http://www.w3.0rg/2000/xp/Group/
Oriented Prograrpmmg (WCOP "97 . Weck, J. Bosch, {36] R. lrani, “Versioning of web services - solv-
and C. Szyperski, Eds. Turku Centre for Computer Sci- ing the problem of maintenance’ InSync In-
ence, September 1997, pp. 59-67. formation Systems, Inc, Tech. Rep., August
[22] R. EnglanderDeveloping Java Beans O'Reilly, 2001. 2001, last Vvisited: 10/2004. [Online]. Available:

http://www.webservicesarchitect.com/content/articles/irani0O4.asp
[23] R. Westphal, “Strong Tagging als Ausweg aus der Interfac

Versionstblle,” Objekt Spektrurnvol. 04/2000, 2000, in Ger- T37] P. Devanbu, “The ultimate reuse nightmare:

got the wrong dll,” inthe 5th Symposium on Sofware

Honey, i

mam. Reuseability 178-180 1999. [Online]. Available: cite-
[24] Microsoft Corporation, “The component ob- seer.nj.nec.com/devanbu99ultimate.html
ject model specification,” Tech. Rep., October, €l :
1995, last visited: 10/2004. [Online]. Available: 0! i'g P(;ﬂtscﬁgner’ Witﬁ'mfr']':;y '”gNEiep'%”r;eerxorde v v
http://www.microsoft.com/com/resources/comdocs.asp crosoft Corporation, Tech. Rep., November
[25] R. Conradi and B. Westfechtel, “Version models for soft- 2001, last visited: ~ 04/2004. [Online]. ~Available:
ware configuration managememCM Computing Surveys http://msdn.microsoft.com/library/default.asp?url=/library/en-
vol. 30, no. 2, pp. 232—282, 1998. us/dndotnet/html/dplywithnet.asp
[26] K. Brown and M. Ellis, “Best practice for web service ver-[39] Mi(_:rosoft_CorporationMicrqsoft Plat_form SDK DOC“.”.‘e”'
sioning - keep your web services current with wsdl and tation, Microsoft Corporation, April 2004, last visited:
uddi” IBM, Tech. Rep., January 2004 04/2004. [Online]. Available: http://msdn.micorsoft.com
40] D.B # M+ P i M & T Books, 2001.
[27] R. Crelier, “Separate compilation and module extension,[’ ol eyer.C# CO fogramming M & T Books, 200
Ph.D. dissertation, Swiss Federal Institute of Technolog1] D. Rogerson|nside COM - Microsofts Component Object
1994, Model Redmond, Washington: Microsoft Press, 1997.
[28] K. Hug, Module, Klassen, Verage : ein Lehrbuch zur [42] J. Lowy, Programming .Net ComponentsO'Reilly, 2003.

komponentenbasierten Softwarekonstruktion mit Compon

25 R. M -HaefeEnterprise JavaBeans O'Reilly & As-
Pascal Vieweg, 2001, (in German). q45) onson-HaefelEnterprise JavaBeans O'Reilly & As

sociates, 2001.

[29] J. R. Levine,Linkers & Loaders
September 1999, vol. one.

Morgan Kaufmann, [44] E. Roman, S. Ambler, and T. Jewelllastering Enterprise

JavaBeans2nd ed. New York: Wiley Computer Publish-

[30] D. J. Brown and K. Runge, “Library interface versioning in ing, 2002.

solaris and linux,” inProceedings of the 4th Annual Linux [45] Sun Microsystems, “Java object serialization specification,”
Showcase and Conferenc&tlanta, Georgia, USA, October Tech. Rep., 2003, last visited: 10/2004. [Online]. Available:

2000,, pp. 10-14.

http://java.sun.com/j2se/1.4.2/docs/guide/serialization/spec/serial TOC.html

[31] R.A.Gingell, M. Lee, X. T. Dang, and M. S. Weeks, “Shared46] ——, “Java product versioning specification,” Tech. Rep.,

libraries in sunos,Proceedings of the USENIX 1987 Sum-
mer Conferencepp. 131-145, 1987.

12

November 1998, last visited: 04/2004. [Online]. Available:
http:/fjava.sun.com/j2se/1.4.2/docs/guide/versioning/speciversioningTOC.html

ACM SIGSOFT Software Engineering Notes Page 13

[47] E. Eide, “Manage your software with the java product ver-
sioning specification - an introduction to component version-
ing with java,” JavaWorld, Tech. Rep., September 2002.

[48] A. R. B. Jack, “Jar hell” Krysalis Community
Project, Tech. Rep., January 2004. [Online]. Available:
http://krysalis.org/version/jar-hell.html

[49] S. McCamant and M. D. Ernst, “Early identification of in-
compatibilities in multi-component upgrades,” ECOOP
2004 — Object-Oriented Programming, 18th European
ConferenceOlso, Norway, June 16-18, 2004.

[50] P. Brada, “Component revision identification based on
idl/adl component specification,” iRroceedings of the 8th
European software engineering conference held jointly with
9th ACM SIGSOFT international symposium on Founda-
tions of software engineering@001, pp. 297—-298.

[51] —, “Towards automated component compatibil-
ity assessment,” in Workshop on Component-
Oriented Programming (WCOP’2001) June
2001, Position Paper. [Online]. Available:
http://research.microsoft.com/ cszypers/events/WCOP2001/

[52] P. Hnetynka and F. Plasil, “Distributed versioning model for
mof,” in WISICT 2004 ser. ACM international conference
proceedings. Cancun, Mexico: Computer Science Press,
January 2004, pp. 489-494.

[53] S. Visnovsky, “Checking semantic compatibility of
sofa/dcup components,” Master's thesis, Charles University,
Faculty of Methematics and Physics, Prague, 1999.

[54] A. Avizienis, “The n-version approach to fault-tolerant soft-
ware,”|EEE Transactions on Software Engineerjingl. 11,
no. 12, pp. 1491-1501, 1985.

[55] J. E. Cook and J. A. Dage, “Highly reliable upgrading
of components,” ininternational Conference on Software
Engineering 1999, pp. 203-212. [Online]. Available:
citeseer.ist.psu.edu/cook99highly.html

13

January 2005

Volume 30 Number 1

