
Component Evolution and Versioning
State of the Art

Alexander Stuckenholz
FernUniversiẗat in Hagen

Lehrgebiet f̈ur Datenverarbeitungstechnik
Universiẗatsstrasse 27, 58084 Hagen, Germany
Alexander.Stuckenholz@FernUni-Hagen.de

October 26, 2004

Abstract

Emerging component-based software development architectures
promise better re-use of software components, greater flexibility,
scalability and higher quality of services. But like any other piece
of software too, software components are hardly perfect, when be-
ing created. Problems and bugs have to be fixed and new features
need to be added.

This paper analyzes the problem of component evolution and
the incompatibilities which result during component upgrades.
We present the state of the art in component versioning and com-
pare the different methods in component models, frameworks and
programming languages. Special attention is put on the automa-
tion of processes and tool support in this area. The concluding
section sketches a possible solution of these problems we are cur-
rently working on.

1 Introduction

During the last years component based software development
changed from a pure scientific research field to a widely used tech-
nique [1]. A number of component models for different layers
(desktop, server) have been established [2–5]. After consolidation
of standards and specifications in this area, it is now time to look
at the problems that arise by the practical use of software compo-
nents in everyday projects.

Just like any other piece of software too, software components
are hardly perfect, when they are created [6]. Problems and bugs
have to be fixed and new features need to be added [7]. Software
development generally may be defined as the process of creating
and propagating changes [8]. By this process, new versions of
software components come into existence.

To take advantage of these updates, one has to deploy the new
components into the systems that use them. Doing this, the main
question is: Does the system run with the new component, or is
the system negatively affected by the upgrade? [9]

As we will show in the following, a series of different ap-
proaches exist in this area (see section 4 on page 4). They vary
in the component model that is used, the kind of meta informa-
tion about the component, which is used for compatibility checks,

the kind of information about the running system as well as the
lifecycle of the component in which the mechanisms are applied.
The most frequently used technology in this area is versioning.
Versioning mechanisms are typically used to distinguish evolv-
ing software artifacts over time. As we will show in section 4 on
page 4, these mechanisms play an important role in component
based software development too.

This paper presents an overview of current versioning mecha-
nisms and substitutability checks in the area of component based
software development. In a comparison, these systems will be
evaluated against their usability in the case of component up-
grades. Here we come to the conclusions that the available so-
lutions are not sufficient to reduce version conflicts in component
systems. To overcome this weakness, we are proposing an im-
proved upgrade mechanism that can applied to all major compo-
nent models. This paper is organized as follows: Section 2 on
the following page will focus on the ultimate problem of evolving
components, its reasons and related works.

Section 3 on the next page will render more precisely the au-
thors comprehension of the term software component. We illus-
trate the linkage mechanisms between components, which influ-
ence their substitutability, and the problems that arise during com-
ponent upgrades. Further on an overview about versioning mech-
anisms, generally used terminology in this area and the semantics
of version numbers is given.

Section 4 on page 4 introduces a component based software
system, which is used as a running example in the next sections to
clarify the different versioning mechanisms. We compare a series
of component models, programming languages and other systems
which promise solutions to the upgrade problem by using partic-
ular versioning mechanisms. The author focuses on four main
questions:

1. Does the system have the ability to distinguish different ver-
sions of the same component at all?

2. How are syntactical and semantic changes detected and how
are these changes reflected in the version information?

3. How is the compatibility and incompatibility between differ-
ent component versions detected and how is that reflected in
the version information?

ACM SIGSOFT Software Engineering Notes Page 1 January 2005 Volume 30 Number 1

4. Will the provided mechanisms warn the component user of
incompatible upgrades and does the system provide solutions
for such situations?

In section 5 on page 8 the results will be categorized and evalu-
ated with special attention to the questions and the main problem.
Special importance is attracted to the automation level of the used
practises to minimize the burdens for component developers and
system administrators.

In section 6 on page 9 we will propose an advanced component
upgrade system calledintelligent component swappingthat seizes
and enhances a number of mechanisms in this area to minimize the
negative effects during component upgrades and to initiate coun-
teractive measures as automatic as possible.

2 The Problem

Software components undergo dynamic evolution during which a
client component experiences the effects of modifications made
to a service component even though these occurred after the client
was built [10].

Dynamic evolution means that all characteristics of a compo-
nent that are observable from external clients may change over
time. These characteristics are part of different contract levels.
Beugnard et. al have identified four classes of contracts in the soft-
ware component world (see [11]): basic or syntactic (1), behav-
ioral (2), synchronization (3) and quantity (4). The higher the level
of contracts in which changes have been performed, the lower is
the chance to detect them. So far there are a couple of approaches
to detect syntactical and only a few approaches to detect behav-
ioral changes (see section 4 on page 4), but we are not aware of any
approaches that considers the level of synchronization or quantity.

Whichever level of contract is affected by component changes,
such changes are necessary in many situations. In many cases
bugfixes need to be enforced, which entail changes in the compo-
nent’s implementation. In some cases the requirements, like the
required precision of results or the used types, may change over
time, which causes changes at the interface level of the component
next to its implementation. The simple addition of functionality is
in most cases unproblematic.

In the case of a component upgrade, problems may arise in the
interaction of the changed component and other components in
the system. In these situations of incompatibilities it may come to
malbehavior of system parts or the crash of the whole system.

This problem did not carry so much authority, because during
the last years the majority of components were created by those
developers that also had the responsibility for the whole system.
Hence incompatibilities could be removed on the spot. But the
problem will emerge in the future, because a growing number of
components will be created by third persons (Off-The-Shelf Com-
ponents), who do not have control over the client systems and
do not have any information about the way their components are
used.

There are currently no automatic tools or methods for version-
ing components in such a way that incompatibilities could be pre-
dicted and corrected before a component is deployed to a system.

As long as this situation lasts, the advantages of component based
software development such as flexibility, scalability and higher
quality of services are abrogated. The problem of versioning and
check for substitutability is therefore one of the most burdensome
in this area.

2.1 Related Work

System Evolution is the stepwise development of systems or mod-
els due to environment changes [12]. These environment changes
are, e.g., the need for new functionality, changes in use cases, new
conditions (laws), implementation of new technologies or major
changes in the processed data. At the Fraunhofer Institute for
Software- and System Technology (ISST) the projectContinuous
is focusing on evolving systems [12–14], which use component
based software development (CBS) as a base technology.

In general, Configuration Management (CM) is the discipline
for organizing and controlling evolving systems [15]. Accord-
ing to this definition, controlling component evolution is a sub-
discipline of CM. However, the term Software Configuration
Management (SCM) includes the creation phase of software. Pro-
cedures like construction and team work are in the center of in-
terest [16]. Component Evolution also includes managing the de-
ployment of components and system management.

Class Evolution is defined as the process of evolving class hi-
erarchies in object oriented programming. Since almost all cur-
rent component models are based on object oriented develop-
ment, class evolution plays an important role in this area. [17]
distinguishes the categories Class Tailoring, Class Surgery, Class
Versioning and Class Reorganization as solutions for evolving
classes. For component evolution especially versioning plays an
important role.

3 Components, Models and Versioning

3.1 Definitions

A widely accepted definition of the term software component is
from Szyperski [18]. He defines software components as a coarse
grained blackbox software element with contractually specified
syntax and semantics on both the provided and required side of the
interface. He claims that a software component can be deployed
independently and is subject to composition by third parties.

The rules for the creation, composition and communication of
individual components are defined by component models and put
into operation by component frameworks.

A component encapsulates specific knowledge which is acces-
sible only by its provided interfaces (ip). Furthermore a com-
ponent needs access to some general framework services and to
other components or services to work. These necessities are ex-
pressed by the components required interfaces (ir). The specifica-
tion (s) of the component, especially the semantics of the compo-
nent’s interfaces, their constraints, data formats and protocols as
well as detailed information about timeouts or quality of services
may also be specified by OCL, in terms of predicate calculus or
graphical description techniques like state charts or Petri nets. The

2

ACM SIGSOFT Software Engineering Notes Page 2 January 2005 Volume 30 Number 1

higher the degree of formalization of such descriptions is, the bet-
ter is the utilization by automatic triggers, checks or verification
mechanisms [12].

In current component models there is no obligation to enrich
components with that kind of information. As a matter of fact,
this has different reasons. Component based software develop-
ment is an inherently complex technology, which would become
even more difficult, if component developers would be forced to
embrace formal specifications. These are tedious and difficult to
write [9]. Additionally formal specifications are really needed in
least projects. Currently most components do simple things like
displaying controls on user interfaces. Using extensive formal de-
scriptions for those components would break a fly on a wheel.

In general, metadata that specifies different aspects of software
components is needed in case of dynamic linkage, where the only
information about component usage is the component itself [10].

The above mentioned distinction between required interfaces,
provided interfaces and the specification has advantages with re-
gard to versioning of changeable parts and can also be found
in [19] and [20].

3.2 Component Usage and Changes

Components are put together in order to build more complex com-
ponents or ”composable” software systems. The degree of substi-
tutability of a component in a system does not only depend of the
facilities of the components themselves, but also on how compo-
nents are glued together and what kinds of composition mecha-
nisms have been used [19].

The stronger the dependency between a component, other com-
ponents and the system that makes use of it is, the harder it is to
do upgrades with new component versions. This influences the
requirements for a component versioning and upgrading system.

Some of the current component models, like JavaBeans [2], are
based on object oriented programming languages. Although the
idea of component based software development does not deal with
object oriented concepts, they often go hand in hand in current
component models.

Hence the strongest possible dependency between components
in a system is inheritance. Changes of classes in components from
which other components or classes derive, may cause the Fragile-
Base-Class problem as described in [21] and [18]. Although this
kind of usage contradicts the proposed paradigm that the knowl-
edge of components should only be accessible via specified in-
terfaces, this is often done by reasons of flexibility. Especially
components for the GUI1 layer are often customized by deriva-
tion [22].

The most common way of component usage is to invoke direct
(procedural) or indirect (object) interfaces based on strong typ-
ing. Strong typing comes with a couple of problems in context
of component evolution. Minor modifications of such interfaces,
even switching the order of method parameters, may cause an in-
validation of the component to a client. Parts of the system that
make use of the changed component and expect older versions of
an interface crash when they invoke the new methods.

1Graphical User Interface

Westphal [23] described this problem and suggested the re-
placement of strong-typing by a so called strong-tagging mech-
anism and a single entry point for components. Strong tagging
detaches the parameters of methods from their position in method
calls and bind them to their names. Thereby the parameter order is
irrelevant at method calls. Westphal uses XML to pass parameters
to methods, thereby he also assures independence from platform
dependent type representations and enables implicit type casting.

Next to this technique to avoid the invalidation of component
interfaces at all there are mechanisms to detect problems of in-
compatible interfaces before they arise. Invalidation checks of
direct component interfaces are not a difficult issue. Several tech-
niques, like fingerprinting, are currently used in component mod-
els and programming languages (see section 4 on the following
page). However, indirect interfaces like object references that are
passed over component boundaries, should also be integrated into
this analysis. Since the dependencies between object references
build a directed cyclic graph such calculation is getting complex.

3.3 Component Upgrades

When upgrading a component, a user has different possibilities
at hand depending on the component model. The most common
way to do an upgrade is to remove the old component and to re-
place it by another, usually newer, version (e.g. JavaBeans [2] or
simple DLLs). This procedure is designated especially to systems
that do not use a centralized registration and identification service
like COM [24]. Applications which make use of such component
models are bound to specific components by component IDs or
other naming mechanisms. Since a new version of a component is
also connected to a new component ID, simple replacement won’t
work for upgrade purpose.

Another possibility to upgrade a component is to deploy the
component to the system and to pursue the new component in
parallel to the old one. This has the advantage that different appli-
cations may use different versions of one component. In certain
aspects, this reduces problems of incompatibility but circumvents
simple bugfixes since in this situation applications need to be re-
configured or rebuilt for other component versions.

An inconvenient way of performing component upgrades is to
use multiple versions simultaneously in one application. Rakic
and Medvidovic [7] use a so-called Multiple Version Connector
to test new component versions in parallel with older versions in
a single application (see section 4.9 on page 7).

3.4 Versioning

The terms version, version model, revision and change originate
from the area of Software Configuration Management (SCM).
They can be directly transferred to the area of component evo-
lution. A version of a component is a specific instance on the time
axis, which came into existence due to a revision or change. The
way how a version is identified by a version identifier and which
characteristics are included into computation is defined in a spe-
cific version model [25]. This may also contain a metric which
allows conclusions about the kind of changes in reference to the
version identifier. In general, version identifiers consist of version

3

ACM SIGSOFT Software Engineering Notes Page 3 January 2005 Volume 30 Number 1

numbers, which aren-tuples of natural numbers often denoted
X.Y.Z. The most commonly used versioning mechanism is the
so-called Major-Minor-Build scheme, where major changes in-
duce an increment of the major-version number (e.g.X), whereas
minor bugfixes or enhancements lead to an increment of minor
version numbers.

In its first occurrence to versioning binary modules to distin-
guish them during deployment and runtime (see section 4.3 on the
following page), this scheme also tried to introduce special se-
mantics to version numbers. Their original sense was to discover
incompatibility between different versions at the first glance. Dif-
ferent major versions should be incompatible whereas different
minor and build versions reflect compatibility. Over the years this
meaning was more and more deluded. In the meantime version
numbers are merely used for marketing purpose only.

The manual assignment of version numbers to a specific com-
ponent is problematic. In general, version numbers do not have
the potential to state which characteristics have changed and to
which extent. The only information that can be derived from such
numbers is that one component is newer than another. The only
approach, known to the author, of giving a well-defined meaning
(semantics) to such version numbers is the concept of Premysl
Brada (see section 4.9 on page 7).

One advantage of version numbers is their human readability
instead of hashes, fingerprints or manifold specifications. Indeed
version numbers have no great expressiveness but they can be
caught by humans at first glance.

4 Component Versioning

4.1 Example

Figure 4.1: Common situation in component based systems

Figure 4.1 illustrates a typical situation in a component based
system2. A couple of components by different producers use and
provide services from each other by means of their interfaces.

The whole system may be an Enterprise Resource Planning
System (ERP) andC1 encapsulates the management of the ware-
house. A couple of methods inI2 deal with finding the price of
a specific product. The manufacturer ofC1 discovers that float
numbers are perhaps not the best data type for representing dol-
lar values. After all, a price is never $2.33333333333 but uses
only two digits after the comma. Additionally that representation
causes some rounding errors due to the way that trade prices are
calculated by the system. So the manufacturer ofC1 decides to
change the data type from a float to an integer, where it is under-
stood that the integer value is a price in cents3.

Implementing that major revision, version3.0.0 of C1 comes to
existence, which could be smoothly deployed to the system. But
the above mentioned change has a hazardous impact on the rest of
the system, asC3 directly uses services ofC1 andC4 is indirectly
connected toC1 overC3.

Concepts and tools in component models and programming lan-
guages for version control of evolving components should enable
developers to avoid such situations of surprising incompatibilities.
The following sections will focus on current mechanisms in this
area.

4.2 Fingerprinting

Mechanisms of version control in component and module based
software development were introduced first with the intention to
reduce the number of recompilations of separate modules.

Bernard Crelier [27] described two different inceptions, the lay-
ered model and the object model for the portable Oberon-2 com-
piler OP2. Both models compute a fingerprint over certain charac-
teristics of module interfaces. The coarse grained layered model
keeps a list of changes for a module interface for invalidation
checks. The history information consists of the fingerprints of
the whole interface. The finer grained object model computes fin-
gerprints of all exported objects of interfaces (parameters, types).
This also includes recursive types. The programming language
Component Pascal also uses such a fingerprinting mechanism to
reduce recompilation [28].

Within this fingerprinting mechanism developers can automat-
ically detect syntactical changes of components, modules and li-
braries. Because the mechanism was intended only to detect the
presence of a change, Crelier did not design a special version pol-
icy. Hence it does not reflect the kind or extend of changes and
does not give answers in the case of incompatibilities.

In the example introduced in section 4.1 the major change can
be detected by the sketched fingerprinting mechanisms, because
it also includes an interface change which also modifies the com-
puted fingerprint. However, the developer only knows thatsome-
thing has changed. He neither has an idea what was changed nor
does he know to which extend it has been modified.

2A UML 2 component diagram is used to illustrate the structure of the system.
3The example is taken from [26].

4

ACM SIGSOFT Software Engineering Notes Page 4 January 2005 Volume 30 Number 1

4.3 Library Interface Versioning in Unix Systems

Sun Microsystems SunOS introduced dynamic shared libraries to
UNIX in the late 1980s [29]. Right from the start Sun established
versioning mechanisms to allow the evolution of dynamic shared
libraries.

For library wide versioning, the filenames of the libraries were
enhanced by version numbers (major.minor) initially. Thus dif-
ferent major version numbers represent incompatibility between
libraries as different minor version numbers represent compatibil-
ity. This semantics was kept in all further versioning enhance-
ments. The Link Editor (ld) simply recorded the filename of the
library within the application binary, the application depended
upon [30]. At runtime the Library Linker made sure to dynam-
ically load the library with the same major release and the highest
available minor version [31]. This course grained mechanism had
the disadvantage that an application built with a given minor re-
lease of a library might, but cannot be certain to run on an earlier
minor release level of the library [30].

To eliminate that drawback, Sun developed a fine grained ver-
sioning mechanism based on the ELF binary format which con-
tains libraries as well as executables and introduced it to UNIX
System V [29]. This new mechanism decorates the exported sym-
bols (e.g. methods) of a shared library with version numbers and
stores them in the header of the ELF file. By the use of a mapfile
or special control-code one can influence the visibility and the ver-
sioning of the respective symbols. At runtime the Dynamic Linker
seeks for the library by means of the SONAME4 and analyzes the
ELF header for the required symbol or a compatible version. On
Solaris systems an ELF library may only contain compatible sym-
bols5 (cf. [32]) whereas Linux Systems with the GNU linker and
glibc from 2.1 may also host incompatible symbol versions in a
single library [33]. This proceeding along with the ELF binary
format became the quasi standard on UNIX and UNIX like sys-
tems (Linux, BSD) [29].

In our example (cf. section 4.1 on the preceding page) the re-
vision of C1 would create a new libraryc1.so.3.0 which is in-
compatible to older versions. The versioning information of the
exported methods ofI2 are stored in the ELF header. All appli-
cations that require the old version ofI2 are not affected by the
deployment of the new library.

An evaluation of the UNIX library version model with respect
to the four main questions from section 1 on page 1 shoes the fol-
lowing results. On the basis of fine grained symbol versioning
the UNIX library versioning model allows the parallel existence
of several library and symbol versions. Since the versioning in-
formation is attached manually to the libraries the developer may
consider syntactical as well as semantical changes. The detection
of compatibility and incompatibility between different library ver-
sions is limited reliable. Syntactic changes are not distinguishable
from semantic changes by means of the version numbers. Due
to the fact that the version numbers are manually attached to sym-
bols and libraries during development by mapfiles or pseudo-code,

4ELF object files may contain an SONAME – a specific means of naming
the library (superceding the library’s filename) stored within the library’s object
file [30].

5Symbols that have the same major release.

there is a huge risk of creeping errors that are difficult to maintain
in huge systems (cf. [31], p. 9).

4.4 CORBA

CORBA components are specified by their interfaces in the Inter-
face Definition Language6 (IDL). The IDL description is mapped
to a specific programming language following precise rules [4]. If
a CORBA component changes, its specification in IDL changes
too. Especially changes that cause an invalidation of the client
cause worry lines of CORBA-developers foreheads. As a matter
of fact these are all changes to IDL except the addition of new
methods or interfaces to a component.

The CORBA specification [4] does not contain any approaches
to handle component evolution at all. On the basis of the current
CORBA specification, it is neither possible to enrich components
with version information, nor to run more than one version of a
single component in a system.

One workaround for this problem has been demonstrated by
Hamilton and Radia in the Spring Experimental Distributed Sys-
tem [6]. They created new interface versions by derivation and
added version numbers to the interface names. The advantage of
using such a strategy is to have multiple versions of an interface in
a system. However these versions need to be separated by explicit
naming conventions. Hence clients do not automatically profit
from latest versions.

Using that mechanism with respect to the major change from
section 4.1 on the preceding page means that the developer has to
create a completely new componentC2new by deriving it from
C2. All other components that want to use services ofC2new
need to be rebuilt. This disagrees with the intrinsic sense of com-
ponent upgrades.

Unfortunately, CORBA does not really have an answer to the
versioning problem.

4.5 Web-Services

Web-Services are not units of deployment, but they also encapsu-
late specific knowledge accessible via their interfaces. By the use
of web-services and some glue-code it is possible to compose new
applications, which is very close to the idea of components.

Unfortunately, standards like WSDL [34] (to specify the inter-
faces) or SOAP [35] (the transport protocol) do not address the
evolution of web-services. Nevertheless, web-service develop-
ers recognized that web-services may also change over time and
therefore adopted versioning workarounds.

A common workaround is shown in [36] and [26]. A web-
service belongs to a unique namespace which is specified in its
WSDL description. The namespace-string can be used to append
a date or version stamp. This follows the general guidelines given
by the W3C for XML namespace definitions. Doing so, it is pos-
sible to run different versions of one web-service to support ap-
plications that require older versions of the service. Due to the
strong-typing of web-services, it is, for example, not possible to
change a parameter-type of a service without invalidating existing

6ISO/IEC 14750:1999

5

ACM SIGSOFT Software Engineering Notes Page 5 January 2005 Volume 30 Number 1

clients. Automatic techniques to announce those kinds of changes
are missing.

The usage of XML namespaces to distinguish different web-
service versions is just a workaround. Neither Web-Services nor
CORBA components (see section 4.4 on the page before) intro-
duce a versioning policy, automated tools to detect syntactical or
semantical changes or mechanisms to discover incompatibilities.

4.6 From the DLL-Hell to Windows XP

The concept of Dynamic Link Libraries (DLL) was introduced
by Microsoft into their operating systems to bundle functional-
ity, which could be used by several applications simultaneously.
The main purpose was to load such libraries dynamically at run-
time, thus building the basis for a couple of component concepts
(see 4.7), in which DLLs are acting as component containers.

The underlying DLL system of MS-Windows did not specify
any mechanisms for introspection or versioning. In this context,
single applications could replace libraries during their installation
by other versions. This often caused crashes of applications that
had been installed previously and relied on older versions of that
library. This phenomenon is called DLL-Hell and represents the
most quoted versioning problem in the windows world (see [37,
38]).

As part of the development of Windows 98 SE and Windows
ME, Microsoft introduced the possibility to control the dynamic
linkage of their libraries. Special meta-files could redirect the
loading process to local, isolated libraries, which could be de-
ployed to one or more applications only (Isolated Applications,
see [39]).

Since Windows XP, libraries could be endowed by manifest-
files in a special XML-format, which contains the name, the type,
the processor architecture and a version number of the library. The
version number is a quadruple of major, minor, build and revision
number. Using such a manifest, application developers are able
to control the process of dynamic linkage, so that only specified
versions of a library can be loaded. The application is bound to
a major and minor version of a lib. To enable bug-fixes (Quick
Fix Engineering, QFE), the build number and the revision number
may vary [40].

By the introduction of the above mentioned version mecha-
nisms Microsoft introduced library versioning with external meta-
information to Windows. Techniques like this have been existing
in the Unix world for years (see section 4.3 on the page before).

With respect to the example from section 4.1 on page 4 the
developer could create a new dynamic link library which would
contain componentC1. During creation he attaches a manifest
to the library with manually created version information. If he
found that his library is compatible to the old version, he could
copy the file to the applications directory and redirect the dynamic
linkage to the new library by creating a meta file. By alternatively
installing the library locally to the application’s directory (isolated
library) the developer ensures that his update does not negatively
affect other applications. Obviously this either needs to be done
with every application which wants to benefit from this update or
he installs the new library version as a shared library to the system

folder where it is globally usable by all applications on the system.
This installation method could have the same impact as before.

The advantages of the above sketched versioning mechanisms
are ruined if the assumptions of the library developer with respect
to the extent of changes, their effect to the system and the possibly
resulting incompatibilities between different library versions are
wrong. This can have hazardous impact to the whole system and
should be replaced by automated versioning tools (cf. [20], p. 4-
5).

4.7 From COM to .NET - The Microsoft Way

After Microsoft made some bad experiences with the DLL-Hell
(see 4.6) the company decided to forbid changes in existing com-
ponents in their component models (COM, and related ones like
ActiveX and DCOM) completely.

Once an interface of a COM component is published, it gets
a unique interface identifier (IID) by which the interfaces can be
identified, also beyond the boundaries of one computer (DCOM).
Rather than changing an interface, the developer actually creates
a new interface and the new interface gets a new IID (see [41]).
This practice is useful to ensure that component clients are never
disabled by installing a newer version of a component. But this
also prevents clients to know the features of newer component
versions without rebuilding them.

With the development of the .Net framework, Microsoft intro-
duced a couple of new technologies, sometimes well known from
other platforms, to the windows world. Beside a runtime environ-
ment that uses bytecode like Java and is endowed with meta data
they also designed a new component model with some interesting
versioning features.

.Net resources like classes, executables and therefore also com-
ponents are shipped in so called assemblies together with a man-
ifest. These assemblies are the objects of versioning, where the
version number is a quadruple of 16-bit integers, which is spec-
ified manually by the developer. The manifest may contain, in
addition to the version number, some metadata like the name of
the assembly, a description and some info about the manufacturer,
which can be received at runtime by reflection.

Next to private assemblies, which can be used by local applica-
tions only, one can deploy multiple versions of an assembly to the
Global Assembly Cache (GAC) to share it with all applications on
the computer system. Shared assemblies must be extended with a
Strong Name, which is some kind of UID based on a public-key
signature to ensure authenticity and integrity [42].

The manifest of an assembly records all dependencies to ex-
ternal assemblies specified by their name, their version number
and the strong names, if existing. A reference to an entity which
was a not yet loaded causes the Fusion Utility to search first the
GAC and after that the local application directory for the appro-
priate version of the required assembly which is then passed to the
Library Loader [10]. If the Fusion Utility is not able to find the
assembly version the application was built with7 an exception is
thrown.

7Microsoft calls this a compatible version

6

ACM SIGSOFT Software Engineering Notes Page 6 January 2005 Volume 30 Number 1

By means of the .Net Configuration Tool this default processing
can be replaced by a custom version policy. Thereby it is possi-
ble to redirect the linkage of external assemblies to other versions
or version ranges than the originally demanded. Additionally it
is possible to define global custom policies for assemblies in the
GAC to control their usage.

On top of the .Net component model and the .Net framework
Eisenbach, Jurisic and Sadler modelled an extended component
cache to ensure its consistency in relation to required and pro-
vided services [10]. They adopted the version model of the .Net
framework and made use of the assembly metadata to check for
inconsistencies in their assembly cache in the case of a component
upgrade.

The versioning system of the .Net framework is currently the
most progressive mechanism in the area of component version-
ing. The .Net framework prevents the effects of the DLL-Hell
(see 4.6 on the preceding page) because it permits the simultane-
ous existence and usage of multiple versions of one component.
Nevertheless the techniques can only be as good as the provided
metadata, especially the version number, of the components. As
developers need to specify them manually, changes which are
not reflected correctly by the version numbers will cause unpre-
dictable effects.

4.8 The Java Way

Both JavaBeans [2,22] as well as Enterprise Java Beans (EJB) [3,
43, 44] are specifications, based on the object oriented program-
ming language Java. Java maps classes to single files and pack-
ages to directories in a file system. In difference to the package
term in UML, a Java package is a physical organization of classes,
resources and a manifest. A Java package is a unit of deployment,
which can be seen as a component.

The standard class loader resolves references along the CLASS-
PATH and returns the first occurrence of the component. This pre-
vents the simulcast existence of two or more different versions of a
component, except custom classloaders [10] are used (see below).
As Java binaries contain meta information, reflection mechanisms
can be used to get information on exported interfaces and types of
components at runtime.

Class serialization in Java is used for persistence and for Re-
mote Method Invocation (RMI). In this context the Java specifica-
tion defines compatible and incompatible changes for type evolu-
tion (see [45]). Compatible changes are that kind of class revisions
that may be used instead of the older class version, to unserialize
data-streams.

In Java, packages are the objects of versioning. The pack-
age manifest may optionally be used to enrich a component with
course grained version information, which serves for identifica-
tion [46]. This includes the package title, package version, spec-
ification title and the specification version. Separating specifica-
tion and implementation allows the two to evolve independently.
All those attributes are of the typestring, which gives evidence
about the cloudiness of their entropy.

Additionally component developers are able to add a special
class to their components deriving from the abstract classPack-
age, which contains a set of methods next to the aforementioned

attributes. The methodisCompatibleWithreceives a specification
version to check the compatibility of the current component to the
given version.

Many of the J2EE application servers that are currently in use
have several classloaders, organized into hierarchical structures.
A typical implementation of a classloader in a hierarchy will ask
its parent classloader to find and load the class first. In a chain
of several classloaders, the effect is that a classloading request
propagates all the way to the top of the hierarchy, and then filters
down the chain until found [47]. By using such classloaders it is
possible to have multiple versions of components in a system and
to implement user defined versioning policies.

Unfortunately, there are no rules or regulations to realize such
systems, so that components that have been created for one sys-
tem, might not run in another. Not only does this contradict the
Java paradigmwrite once, run anywhere, but in this context the
term jar-hell arose (see [48]). Component developers are not
forced to enrich components with version information and there
is no predefined version policy. Furthermore component users are
responsible to evaluate version information by themselves, e.g. to
create workarounds for well known bugs [46].

To close this gap, currently different case tools (i.e. Krysalis8),
come into existence, which support component developers in
adding version information to Java packages and evaluating their
runtime environment.

The whole versioning concept of Java components is based on
some fungous specifications which do not allow conclusions to the
kind of changes and their extent. Further on it was not designated
that multiple package versions exist in one system. By the use
of hand-crafted classloaders this situation can be circumvented,
but this is not part of the specification. By manually adding the
method isCompatibleWithto Java packages, developers can at
least provide a vague notion or pruning if one component is com-
patible to another. As Java does not provide automated tools to do
these kinds of calculations, wrong assumptions of the developers
may cause system crashes.

4.9 Others

Next to the well known component standards like CORBA or .Net,
some smaller component systems, sometimes primary developed
for academic use, have integrated mechanisms for component ver-
sioning. Furthermore there are systems that intend to enhance
existing systems with versioning mechanisms and substitutability
checks.

One really interesting approach for detecting incompatibilities
in the case of component upgrades is presented by McCamant
and Ernst (cf. [9] and [49]). The approach is focused on seman-
tic changes in components and their impact on their operational
abstraction9. The operational abstraction of the new component
which has to be deployed to the system is created automatically
by the component developer by means of test tools and is provided
together with the blackbox component to the component user. On
the other side the operational abstraction of the old component is

8http://krysalis.org/version/index.html
9McCamant and Ernst have a broad understanding of components which also

includes software modules, classes and even single procedures.

7

ACM SIGSOFT Software Engineering Notes Page 7 January 2005 Volume 30 Number 1

derived online during its usage and in the context of the real ap-
plication. By the comparison of these two abstractions and the
thereby extracted pre- and post conditions possible incompatibili-
ties can be detected before the upgrade is initiated.

In the example from section 4.1 on page 4 the developer could
create version2.3.8 of componentC1 which provides the same in-
terface as2.3.7 but has major changes in its implementation. For
example, the developers changed the allowed range of prices in the
ERP system, which is not visible through the syntax of the inter-
face. The operational abstraction of the new component contains
this information. If the old component was called with parameters
outside the new price range, this would be recorded to its usage
profile and the comparison of the abstractions would detect the
incompatibility.

The advantages of that approach are the high level of automa-
tion in deriving the operational abstraction, its adaptability to
black-box components and its consideration of the usage profile
of the component in the users application. Unfortunately, McCar-
mant and Ernst do not mention the adaptability of their approach
in the case of syntactical changes or the replacement of more than
one component by a set of new components which are again com-
patible among each other.

The most sophisticated methods in the area of component ver-
sioning, substitutability analysis and dynamic component up-
grades have been elaborated at Charles University in Prague at
the Departement of Distributed Systems10. By means of the
SOFA distributed system, the SOFA component model and the
DCUP system to initiate dynamic component updates, the prob-
lem of component evolution and component upgrades was stud-
ied and solutions have been proposed in a series of publications
(see [50–53]). In this area, Premysl Brada designed a scheme for
component versioning suitable for automated processing and sup-
porting component distribution and retrieval [20]. His concept is
built upon the ELF-meta model, which enables abstract descrip-
tions of components and its characteristics coming from different
component models. Once the abstract component description is
available in the ELF format, automatic tests are able to analyze the
differences between component versions to identify compatibility
or incompatibility between them. By means of these specification
comparisons which are based on subtyping rules, human readable
version numbers that allow conclusions which parts of a compo-
nent have changed (provided parts, required parts or ties) are cre-
ated and attached to the components. This is the only approach
known to the author, which joins such semantics to component
version numbers. The mechanisms are integrated into the SOFA
component model, but can be applied to all component models for
which ELF representations can be generated.

In the example from section 4.1 on page 4 the developer first
needs a parser which transforms the components (the IDL descrip-
tion or source code) to an abstract ELF description. If he creates
new versions of the components, the automated comparison tools
will find out incompatibilities and create according version num-
bers. As an example, version3.2.1 of a component means that the
provided parts have changed three times, the required parts twice

10http://nenya.ms.mff.cuni.cz/

and ties have been left unchanged (cf. [20], p. 72). By simple
comparison of the adequate version number parts, compatibility
can be detected before replacing a component by a new version.

The approach of Brada solves a series of problems in this area.
He established a completely new versioning policy which mini-
mizes new burdens to component developers because it uses au-
tomatic tests and parsers to transform existing informations and
external specifications like IDL into the required ELF model. By
means of his approach the situation in component upgrades could
be improved considerably. But the mechanism depends on the
availability of an abstract description of components in the ELF
format. This is easy to create with component models that already
use an IDL as an external description. But it is a non trivial task
for models like JavaBeans or .Net components which are speci-
fications upon programming languages and do not have external
descriptions (see [20], p. 139-143). We also believe that it is not
sufficient to detect incompatibilities before a component update
is executed. This is only the first step into the right direction.
Section 6 on the next page will sketch an approach for solving
remaining problems.

Another component versioning related technique is presented
by M. Rakic and N. Medvidovic (cf. [7]) which is based on ex-
plicit software connectors. Using such connectors it became pos-
sible to create a Multi Versioning Connector (MVC) which encap-
sulates two or more versions of a component in order to monitor
the execution of multiple component versions and perform com-
parisons of their performance (i.e., execution speed), reliability
(i.e., number of failures), and correctness (i.e., ability to produce
expected results). Thereby new components can be tested with-
out affecting the rest of the system as for a transitional period the
results of the new component are only logged. By the simulta-
neous use of more than one version of a component, the system
increases its reliability [54]. Therefore voting schemes are used to
decide which version(s) are correct [55]. But this can only work,
if the two different component versions have either the same inter-
face or an intermediator like a component wrapper that translates
procedure names and converts data. Hence this technique cannot
be used at major changes between component versions.

In the example from section 4.1 on page 4 the developer could
create an MVC to monitor the correctness of an upgrade of com-
ponentC1 from version2.3.7 to 2.3.8 by comparing the logged
results of both components after a specified period. Unfortunately,
there are no tools provided for automatically deriving the informa-
tion if the new component works as predicted.

The sketched technique of Rakic and Medvidovic is not a ver-
sioning mechanism itself but can be seen as an enhancement of
other versioning mechanisms. It does not establish a specific ver-
sion policy and rules to derive and attach version numbers or how
to detect incompatibilities. Thus this mechanisms will not being
considered in the concluding comparison.

5 Summary

The concepts and technologies around component based software
development did not appear over night. In addition to the con-

8

ACM SIGSOFT Software Engineering Notes Page 8 January 2005 Volume 30 Number 1

cepts and processes especially the concrete models for which the
developers create their components needed to evolve. The fact
that components often pass through an evolution and change over
time was recognized only lately.

The previous sections compared a series of component models,
frameworks and programming languages that promise solutions
to the upgrade problem by using their versioning mechanisms.
Thereby we dwelled on the four main questions that have been
sketched at the beginning (see section 1 on page 1). The results
will are summarized in table 5.1 on the following page.

Most of the current component models, programming lan-
guages and frameworks integrate rudimentary versioning support
to distinguish different versions of components and libraries. But
the expressiveness of version numbers in the Major-Minor-Build
scheme, which is used in the majority of cases, is limited. Es-
pecially if component developers need to assign version numbers
to their components manually and do not have proper instructions
that define which changes in what level of contract conduct a new
version, those version numbers at most rest for marketing use and
do not ensure compatibility between different components.

Among the current systems which are commercially in use both
.Net assembly versioning and the Unix library versioning present
the most practical approaches, because multiple versions of com-
ponents or libraries can exist in parallel in one system and can be
used in different applications without side effects.

Automatic detection of component changes and substitutability
checks based on the versioning history of single components can
be found in the scientific approach of McCamant and Ernst and in
the SOFA experimental system only. Furthermore the SOFA sys-
tem and its versioning policy is the only existing approach with
dedicated interconnection between changes of different compo-
nent characteristics and version numbers.

None of the compared systems is able to reduce side effects in
a component system in the case of an incompatible component
upgrade. The minority of the systems are able to detect such in-
compatibilities at all. In general, developers and system admin-
istrators need tools to automate the detection of incompatibilities
and to minimize their effects.

6 Future Work

As discussed in the previous sections, component based software
development especially lacks of mechanisms which are able to
transfer systems into a version conflict free state in the case of
incompatible upgrades of one or more new component versions.

Some systems, especially the SOFA system, its versioning pol-
icy and substitutability checks, indeed detect such incompatibil-
ities. But in the author’s opinion evolutionary components need
to be analyzed with respect to the system structure in which they
will be used and in the interaction of all other possible compo-
nent versions. This puts the original usage of components, their
composition, more into the right perspective.

As an example consider a system with a couple of components.
In an upgrade two of them need to be replaced by new versions.
Each of the new versions are incompatible to the old system. But
by replacing them both, a new conflict free system emerges. None

of the systems evaluated in previous sections could find such a
solution.

This is the reason why we are currently working on a new
approach which combines different ideas to find answers in the
sketched situations. The approach tends to combine available
component versions in one system, so that in case of initially in-
compatible upgrades of one or more components, a conflict free
system arises again. This technique is calledintelligent compo-
nent swapping.

For the implementation of such a technique the author cur-
rently designs an abstract component description comparable to
the ELF metamodel (see section 4.9 on page 7) which will be lim-
ited to syntactic characteristics of components (interfaces, excep-
tions) for different reasons. The main reason is the current lack
of methods to specify the usage profile between component de-
pendencies. The current compatibility and substitutability checks
(see section 4.9 on page 7) are based on behavior specifications
of one single component, at which it is possible to detect behav-
ioral incompatibilities by comparing the specification changes in
a version history by subtyping. Unfortunately, we do not know
any possibility to perform these checks between completely dif-
ferent components, because it is not possible to discover how one
blackbox component uses another.

The next step to an intelligent component swapping system (ics)
is to gather techniques to create the so called version reachability
graph of all available component versions in a system or a com-
ponent repository. In this graph all components are recorded as
nodes with directed edges to their component versions. Com-
ponent versions implement one or more interface versions which
they provide to other components. On the other hand components
may also require specific interface versions from other compo-
nents. Our comprehension is, that the interfaces of a component
are the object of versioning. Special kinds of components (con-
nectors) have the ability to bridge between the different interface
versions of components, that could not interact without the exis-
tence of those bridges. All of these dependencies between com-
ponents, interfaces and connectors are expressed in the version
reachability graph.

Figure 6.1 on the next page shows an example of a version
reachability graph. The component repository contains three com-
ponentsC1, C2, C3 and the connectorC4. For each of the com-
ponents at least one concrete component version exist (C1 exists
as version1.1, C2 as2.1 andC3 as6.2). These components pro-
vide and require a number of interfaces. Required interfaces can
only be satisfied by provided interface with equal version. In Fig-
ure 6.1 on the following page the component adapterC4 bridges
between interface version2.7 of componentC1 and interface ver-
sion 1.9 of componentC3. The version reachability graph con-
tains all possible combinations between interfaces of component
versions. If there was another component thanC2 that could fulfill
the requirements ofC1 from the example, that dependency would
be part of the graph also.

If an application only consists of components which are ele-
ments of the version reachability graph, the dependencies of this
application can be seen as a subgraph of the reachability graph.
In the case of a single- or multi-component upgrade our objective
function needs to find a compatible subgraph of the reachability

9

ACM SIGSOFT Software Engineering Notes Page 9 January 2005 Volume 30 Number 1

Obe
ro

n,
Com

po
ne

nt
Pas

ca
l

Unix
Lib

ra
ry

Ve
rs

ion
ing

CORBA, W
eb

-S
er

vic
es

W
ind

ow
s XP

.N
ET

Com
po

ne
nt

s

Ja
va

Ve
rs

ion
ing

M
cC

am
an

t a
nd

Ern
st

SOFA

versioning support ◦ • • • • •
detection of changes • • •

subsititutability checks • •
minimizing incompatibilities

◦ basic support,• full support

Table 5.1: Comparison of component models, programming languages and frameworks

Figure 6.1: Version reachability graph

10

ACM SIGSOFT Software Engineering Notes Page 10 January 2005 Volume 30 Number 1

graph with the highest congruence to the original application in
order to reduce version conflicts.

A specific component version from the system can be replaced
by another version without further activities if the new version has
the same dependencies as the old component version. If the new
component requires other component versions than existent in the
system, the objective function tries to replace those components
by according component versions or add them to the system.

As the reachability graph is a directed cyclic graph (dcg) nei-
ther its creation above hundreds of component versions nor the
search for conflict free solutions is a trivial problem. Even with
only three different components with one single component ver-
sion each, the version reachability graph from figure 6.1 on the
page before becomes very complex. In a number of examinations
the author furthermore realized that some components cannot be
swapped in systems. These components either have direct hard-
ware dependencies or are too costly, e.g. transformation of huge
databases, to be swapped. Hence these components must be ex-
cluded from swapping. During the search for a conflict free sub-
graph we may find multiple solutions or no solutions at all. By the
existence of a great number of suitable component versions from
the repository, the problem of finding a conflict free subgraph be-
comes a NP-complete search problem.

The objective function to reduce version conflicts by compo-
nent swapping is additionally equipped with a number of con-
straints. As component swapping probably can be enforged during
system breaks only, one constraint may be to reduce the upgrade
duration and for this purpose the number of required component
swaps. Another constraint is to ensure that the system uses the lat-
est possible component versions. This conforms to the definition
of well versioned systems seen in [10].

The main aim of the approach is to provide fully automated
tools to component developers and system administrators to per-
form component upgrades transparently. These tools should auto-
matically find conflict free systems, collect missing components
and perform component swaps.

The author hopes to reduce the situations of unforseen in-
compatibilities in component upgrades by means of the above
sketched approach and thereby to leverage component based soft-
ware development sustainable.

References

[1] O. Zwintzscher,Komponentenbasierte & generative Soft-
wareentwicklung - Generierung komponentenbasierter Soft-
ware aus erweiterten UML - Modellen. W3L GmbH, 2003,
(in German).

[2] Sun Microsystems, “Javabeans api specification,” Tech.
Rep., August 1997, last visited: 04/2004. [Online].
Available: http://java.sun.com/products/javabeans/

[3] B. Shannon, “Java 2 platform enterprise edition speci-
fication,” Sun Microsystems, Tech. Rep. v1.4, Novem-
ber 2003, last visited: 04/2004. [Online]. Available:
http://java.sun.com/j2ee/index.jsp

[4] Object Management Group, Inc, “Common object
request broker architecture: Core specification, Tech.
Rep. Version 3.0.2 - Editorial update, Decem-
ber 2002, last visited: 03/2004. [Online]. Available:
http://www.omg.org/technology/documents/formal/corba_iiop.htm

[5] ECMA, “Standard ecma-335 - common language in-
frastructure (cli),” Tech. Rep., Dezember 2002, last
visited: 10/2004. [Online]. Available: http://www.ecma-
international.org/publications/standards/Ecma-335.htm

[6] G. Hamilton and S. Radia, “Using interface inheritance to
address problems in system software evolution,”ACM SIG-
PLAN Notices, vol. 29, no. 8, pp. 119–128, 1994.

[7] M. Rakic and N. Medvidovic, “Increasing the confidence in
off-the-shelf components: a software connector-based ap-
proach,” inProceedings of the 2001 symposium on Software
reusability, 2001, pp. 11–18.

[8] A. Zeller and J. Krinke,Open-Source-Programmierwerkzeu-
ge, Versionskontrolle - Konstruktion - Testen - Fehlersuche,
2nd ed. dpunkt.verlag, 2003, in German.

[9] S. McCamant and M. D. Ernst, “Early identification of in-
compatibilities in multi-component upgrades,” inProceed-
ings of the 10th European Software Engineering Conference
and the 11th ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, Helsinki, Finland, June 14–
18, 2003, pp. 287–296.

[10] S. Eisenbach, V. Jurisic, and C. Sadler, “Managing the evo-
lution of .NET programs,” in6th IFIP International Confer-
ence on Formal Methods for Open Object-based Distributed
Systems (FMOODS 2003), November 2003.

[11] A. Beugnard, J.-M. J́eźequel, N. Plouzeau, and D. Watkins,
“Making components contract aware,” inIEEE software,
june 1999, pp. 38–45.

[12] A. Borusan, M. Große-Rhode, H. Ehrig, R.-D. Kutsche,
S. Mann, J. Padberg, A. Sünb̈ul, and H. Weber, “Kontinuier-
liches engineering: Grundlegende terminologie und basis-
konzepte,” Fraunhofer ISST, Tech. Rep., 2000, (in German).

[13] M. Große-Rhode, R.-D. Kutsche, and F. Bübl, “Concepts for
the evolution of component based software systems,” Fraun-
hofer ISST, Tech. Rep., 2000.

[14] F. Bübl, “Towards the early outlining of a component-based
system with concoil,” Technische Universität Berlin, Tech.
Rep., 2000.

[15] A. Zeller, “Configuration management with version sets -
a unified software versioning model and its applications,”
Ph.D. dissertation, Technische Universitaet Braunschweig,
April 1997.

[16] M. Bar and K. Fogel,Open Source Development with CVS,
3rd ed. Paraglyph Publishing, 2003.

11

ACM SIGSOFT Software Engineering Notes Page 11 January 2005 Volume 30 Number 1

[17] O. Nierstrasz and D. Tsichritzis,Object-Oriented Software
Composition. Prentice Hall International, 1995.

[18] C. Szyperski, Component Software: Beyond Object-
Oriented Programming - Second Edition. Addison-Wesley,
2002.

[19] S. Mann, A. Borusan, H. Ehrig, M. Große-Rohde, R. Mack-
enthun, A. S̈unb̈ul, and H. Weber, “Towards a component
concept for continuous software engineering,” Fraunhofer
ISST, Tech. Rep., 2000.

[20] P. Brada, “Specification-based component substitutability
and revision identification,” Ph.D. dissertation, Charles Uni-
versity in Prague, August 2003.

[21] L. Mikhajlov and E. Sekerinski, “The fragile base class prob-
lem and its impact on component systems,” inProceed-
ings of the Second International Workshop on Component-
Oriented Programming (WCOP ’97), W. Weck, J. Bosch,
and C. Szyperski, Eds. Turku Centre for Computer Sci-
ence, September 1997, pp. 59–67.

[22] R. Englander,Developing Java Beans. O’Reilly, 2001.

[23] R. Westphal, “Strong Tagging als Ausweg aus der Interface-
Versionsḧolle,” Objekt Spektrum, vol. 04/2000, 2000, in Ger-
mam.

[24] Microsoft Corporation, “The component ob-
ject model specification,” Tech. Rep., October
1995, last visited: 10/2004. [Online]. Available:
http://www.microsoft.com/com/resources/comdocs.asp

[25] R. Conradi and B. Westfechtel, “Version models for soft-
ware configuration management,”ACM Computing Surveys,
vol. 30, no. 2, pp. 232–282, 1998.

[26] K. Brown and M. Ellis, “Best practice for web service ver-
sioning - keep your web services current with wsdl and
uddi,” IBM, Tech. Rep., January 2004.

[27] R. Crelier, “Separate compilation and module extension,”
Ph.D. dissertation, Swiss Federal Institute of Technology,
1994.

[28] K. Hug, Module, Klassen, Verträge : ein Lehrbuch zur
komponentenbasierten Softwarekonstruktion mit Component
Pascal. Vieweg, 2001, (in German).

[29] J. R. Levine,Linkers & Loaders. Morgan Kaufmann,
September 1999, vol. one.

[30] D. J. Brown and K. Runge, “Library interface versioning in
solaris and linux,” inProceedings of the 4th Annual Linux
Showcase and Conference, Atlanta, Georgia, USA, October
2000,, pp. 10–14.

[31] R. A. Gingell, M. Lee, X. T. Dang, and M. S. Weeks, “Shared
libraries in sunos,”Proceedings of the USENIX 1987 Sum-
mer Conference, pp. 131–145, 1987.

[32] U. Drepper, “How to write shared libraries,” Red
Hat, Inc., Research Triangle Park, NC, Tech. Rep.,
April 2004, last visited: 10/2004. [Online]. Available:
http://people.redhat.com/drepper/dsohowto.pdf

[33] ——, “Using ELF in glibc 2.1,” Cygnus So-
lutions, Sunnyvale, CA, Tech. Rep., March
1999, last visited: 10/2004. [Online]. Available:
http://people.redhat.com/drepper/elftut1.ps

[34] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana, “Web services description language (wsdl) 1.1,”
W3C,” 2001, March 2001.

[35] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau,
and H. F. Nielsen, “Soap version 1.2 w3c recom-
mendation 24 june 2003,” W3C, Tech. Rep., June
2003, last visited: 04/2004. [Online]. Available:
http://www.w3.org/2000/xp/Group/

[36] R. Irani, “Versioning of web services - solv-
ing the problem of maintenance,” InSync In-
formation Systems, Inc, Tech. Rep., August
2001, last visited: 10/2004. [Online]. Available:
http://www.webservicesarchitect.com/content/articles/irani04.asp

[37] P. Devanbu, “The ultimate reuse nightmare: Honey, i
got the wrong dll,” in the 5th Symposium on Sofware
Reuseability, 178–180 1999. [Online]. Available: cite-
seer.nj.nec.com/devanbu99ultimate.html

[38] S. Pratschner, “Simplifying deployment and solv-
ing dll hell with the .NET framework,” Mi-
crosoft Corporation, Tech. Rep., November
2001, last visited: 04/2004. [Online]. Available:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndotnet/html/dplywithnet.asp

[39] Microsoft Corporation,Microsoft Platform SDK Documen-
tation, Microsoft Corporation, April 2004, last visited:
04/2004. [Online]. Available: http://msdn.micorsoft.com

[40] D. Beyer,C# COM+ Programming. M & T Books, 2001.

[41] D. Rogerson,Inside COM - Microsofts Component Object
Model. Redmond, Washington: Microsoft Press, 1997.

[42] J. Löwy, Programming .Net Components. O’Reilly, 2003.

[43] R. Monson-Haefel,Enterprise JavaBeans. O’Reilly & As-
sociates, 2001.

[44] E. Roman, S. Ambler, and T. Jewell,Mastering Enterprise
JavaBeans, 2nd ed. New York: Wiley Computer Publish-
ing, 2002.

[45] Sun Microsystems, “Java object serialization specification,”
Tech. Rep., 2003, last visited: 10/2004. [Online]. Available:
http://java.sun.com/j2se/1.4.2/docs/guide/serialization/spec/serialTOC.html

[46] ——, “Java product versioning specification,” Tech. Rep.,
November 1998, last visited: 04/2004. [Online]. Available:
http://java.sun.com/j2se/1.4.2/docs/guide/versioning/spec/versioningTOC.html

12

ACM SIGSOFT Software Engineering Notes Page 12 January 2005 Volume 30 Number 1

[47] E. Eide, “Manage your software with the java product ver-
sioning specification - an introduction to component version-
ing with java,” JavaWorld, Tech. Rep., September 2002.

[48] A. R. B. Jack, “Jar hell,” Krysalis Community
Project, Tech. Rep., January 2004. [Online]. Available:
http://krysalis.org/version/jar-hell.html

[49] S. McCamant and M. D. Ernst, “Early identification of in-
compatibilities in multi-component upgrades,” inECOOP
2004 — Object-Oriented Programming, 18th European
Conference, Olso, Norway, June 16–18, 2004.

[50] P. Brada, “Component revision identification based on
idl/adl component specification,” inProceedings of the 8th
European software engineering conference held jointly with
9th ACM SIGSOFT international symposium on Founda-
tions of software engineering, 2001, pp. 297–298.

[51] ——, “Towards automated component compatibil-
ity assessment,” in Workshop on Component-
Oriented Programming (WCOP’2001), June
2001, Position Paper. [Online]. Available:
http://research.microsoft.com/ cszypers/events/WCOP2001/

[52] P. Hnetynka and F. Plasil, “Distributed versioning model for
mof,” in WISICT 2004, ser. ACM international conference
proceedings. Cancun, Mexico: Computer Science Press,
January 2004, pp. 489–494.

[53] S. Visnovsky, “Checking semantic compatibility of
sofa/dcup components,” Master’s thesis, Charles University,
Faculty of Methematics and Physics, Prague, 1999.

[54] A. Avizienis, “The n-version approach to fault-tolerant soft-
ware,” IEEE Transactions on Software Engineering, vol. 11,
no. 12, pp. 1491–1501, 1985.

[55] J. E. Cook and J. A. Dage, “Highly reliable upgrading
of components,” inInternational Conference on Software
Engineering, 1999, pp. 203–212. [Online]. Available:
citeseer.ist.psu.edu/cook99highly.html

13

ACM SIGSOFT Software Engineering Notes Page 13 January 2005 Volume 30 Number 1

