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Abstract. Face detection using components has been proved to produce
superior results due to its robustness to occlusions and pose and illumi-
nation changes. A first level of processing is devoted to the detection of
individual components, while a second level deals with the fusion of the
component detectors. However, the fusion methods investigated up to
now neglect the uncertainties that characterize the component locations.
We show that this uncertainty carries important information that, when
exploited, leads to increased face localization accuracy. We discuss and
compare possible solutions taking into account geometrical constraints.
The efficiency and usefulness of the techniques are tested with both syn-
thetic and real world examples.

1 Introduction

It is known that component-based face detection can yield better performance
than global approaches when pose and illumination variations and occlusions are
considered[9, 5, 6, 11]. While pose and illumination significantly change the global
face appearance, since the components are smaller than the whole face, they are
less prone to these changes. The component detectors can accurately locate
the face components as well. This information should be used to register and
normalize the face to a ”standard” one, which is appropriate for face recognition.
Also, component-based methods can be used to build a detector that can handle
partial occlusions [6, 11]. Component-based methods have been also successfully
used in other areas, such as people detection [8].

In [5], Heisele et al present a component-based face detector with a two-level
hierarchy of Support Vector Machine (SVM) classifiers [2]. The face components
are detected independently with the trained SVMs at the first level, and at the
second level, a single SVM checks if the geometric locations of the components



comply with a face. However, only the largest responses from the component
detectors are used when checking the validity of the geometry. Also, SVMs are
slow and it should be very challenging to employ them in real-time systems.

In [10], Viola and Jones employ 4 types of rectangular features and use Ad-
aBoosting [4] to automatically build the strong classifier from feature-based weak
classifiers. They compute the integral image (similar to the summed area table
in [3]) to accelerate the computation of features. Their paper reports a high de-
tection rate, a low false detection rate and the boosted face detector works in
real-time.

This paper introduces a new framework for component fusion in the context
of the face detection task. Fusion relies on modeling the noise as heteroscedas-
tic and is constrained by a geometric face model. To achieve real-time perfor-
mance, we employ AdaBoosting when training component detectors. However,
our framework is open to various types of component detectors, e.g., SVMs.

Fig. 1. Left: the components of a face. The left eye component and right eye component
are 36 by 28 pixels. The lower face component is 52 by 40 pixels. Right: Face examples.
The first row and the second row are frontal and turning left faces respectively with 4
different illumination settings.The third row shows faces with different expressions.

2 Component Detectors

In our work, we use 3 components for a face. All the faces are aligned to a 64
by 64 pixel image. We then use three rectangles to cut 3 components, left eye,
right eye and lower face, as shown in Figure 1 (left).

Our face database has 1862 faces. The images were taken with 5 poses
(frontal, turning left, turning right, tilting up, and tilting down) and 4 illumi-
nation conditions(dark overall, lighting from left, lighting from right, and bright
overall). There are also some faces with different expressions. Figure 1 (right)
shows some examples from the database. We collected more than 6000 pictures
as negative examples for detector training.



The AdaBoosting theory states that by adding weak classifiers one can obtain
better strong classifiers. However in practice this might not be true, since the
weak classifiers are often correlated. To deal with this issue, we use a modified
AdaBoosting method that trains the component detectors such that the trained
strong classifier is verified to be empirically better at each boosting step.

3 Component-Based Face Model

Suppose we have a probabilistic face model, where each component position has
some uncertainty. With the uncertainties, the face model is flexible to describe
a variety of possible faces. Assuming Gaussian distributions, in the face model
we have a set of 2D points with means mi, and covariance matrices Ci, i =
1, 2, ..., N , where N is the number of components. The face model is a constraint
that the components should comply with the geometrical configurations, e.g.,
the components should not be too far away (see Figure 2 (left)).

The face model is trained from known face examples. We know the exact
locations of the components in each training face example, so we can estimate
the mean and covariance matrix of each component from these locations.

4 Component Fusion

4.1 Problem Formulation

After the component detectors are trained, we scan the input image to get the
component confidence maps, Ai(x), i = 1, 2, ..., N , where x is the location in
image, and N is the number of components. We assume confidence map Ai(x)
is normalized across all the components.

With the face model {mi, Ci}i=1,2,...,N , the overall face likelihood is:
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where {x′

i} are rigidly transformed from {xi} into the face model space, subject
to rotation, translation and scaling.

Note the simple maxima of individual component detector responses are not
necessarily best choices for component locations under face model constraints.
Our goal is to find the best component localization {xi} with maximal L. We
can do exhaustive search with all Ai(x) but that is too expensive.

Since the shape of Ai(x) is often smooth and Gaussian-like, we use a Gaussian
shape to approximate it. In other words, the underlying noise model is assumed
heteroscedastic, i.e., the noise is both anisotropic and inhomogeneous. We can
identify the local maximum as si = Ai(µi), where µi is the location of maximum
and considered the center of the Gaussian shape. Matei [7] gives a non-parametric



method to estimate the ”covariance” matrix Qi in a area B around µi:
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Then the confidence map can be rewritten:
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Therefore,
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where
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In order to maximize L one should minimize d2. When d2 is computed for an
observation, L or lnL can be thresholded to make a detection or rejection deci-
sion.

4.2 Least Square Fitting

For the beginning, let us simplify the problem so that we only have fixed-point
face model {mi} and fixed-point observations {xi}, for example, taking the
means of the face model and maxima of the confidence maps.

Suppose we find the scaling factor s, the rotation R and translation x0, so
that an observation point x can be mapped to a point x′ in model space.

x′ = sR(x − x0) (7)

where, the rotation matrix R is a function of θ:

R =

(

cos θ sin θ

− sin θ cos θ

)

(8)

Our goal is to minimize the sum of squared error d2 by choosing the right s,
R and x0:
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(9)



By taking the partial derivatives of Equation (9) with respect to θ, s and x0,
and setting them to zeros (denoting mi = (mi, ni)

T and xi = (xi, yi)
T ), we get

the solution:
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Using the above solution, we can evaluate Equation (9) to get the least square
error. A smaller d2 suggests a larger similarity between the observation and
model geometrical configurations. This simple method does not take the indi-
vidual component confidences into consideration, nor the heteroscedastic model
of the noise.

4.3 Fitting Points to a Probabilistic Model

Within this section assume that we have a probabilistic model of 2D points
{mi, Ci}i=1,2,...,N . We want to match the observed points xi to the model. This
case has been analyzed by Cootes and Taylor[1], and here is the summary.

An observation point x can be mapped to a point x′ in model space:

x′ = Rx + t (13)

where, t = (tx, ty)T and the scaling and rotation matrix R is

R =

(

a −b

b a

)

(14)

Let us denote a = (a, b)T , and the goal is to find the best a and t to minimize
the Mahalanobis distance:
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Taking the partial derivatives of Equation (15) with respect to a and t, and
setting them to zeros, we get the solution:
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where, Yi = (xi, Jxi) and

J =

(

0 −1
1 0

)

(17)



4.4 Matching Probabilistic Observations to a Probabilistic Model

With the model {mi, Ci} and observation {µi, Qi}, i = 1, 2, ..., N , we want to
find the best choices of component locations xi, and the associated transforma-
tion a and t to minimize the combined Mahalanobis distance d2 in Equation (6),
where x′

i is a function of xi, a and t according to Equation (13). Unfortunately,
it is hard to find the close form solution to this problem, because the partial
derivatives are not linear with respect to xi, a and t.

We can use two strategies to solve this optimization problem. One employs
numerical optimization methods, such as Levenberg-Marquardt or Newton iter-
ative optimization, which require iterations before convergence.

The other approximates the solution. Notice in Equation (6)
there are two terms. The first term is the Mahalanobis distance in the model

space, and the second term is the Mahalanobis distance in the observation space.
If we pick µi as the solution for xi (this is the first approximation of the solution,
though very rough), and use Section 4.3 to match µi to the probabilistic model
{mi, Ci}i=1,2,...,N , we end up a biased minimization d2

obs of Equation (6) where
the second term is zero. On the other hand, if we pick mi as the matched points
x′

i in the model space, and use Section 4.3 to match x′

i back to the observation
{µi, Qi}i=1,2,...,N (denote that the choices in the observation space are x′′

i ), we
end up another biased minimization d2

mod of Equation (6) where the first term is
zero. The real minimization must be a tradeoff between these two biased ones.
The second approximation of the solution we choose is then the equal average:

xi =
µi + x′′

i

2
(18)

Further more, we can refine the equal average to get the third approxima-
tion, the weighted average approximation, by using the Mahalanobis distances
in weighting the average:

xi = µi +
d2

obs

d2

obs + d2

mod

(x′′

i − µi) (19)

The advantage of the approximations is that they are fast. If the solutions are
close to the real minimum, the approximations are more favorable for real-time
face detection systems.

5 Experiments

5.1 Synthetic Data

In this experiment, we assume a face model where the centers of the left eye,
right eye and lower face components are:

m1 =

(

17.5
−13.5

)

;m2 =

(

45.5
−13.5

)

;m3 =

(

31.5
−43.5

)

(20)



−10 0 10 20 30 40 50 60 70

−60

−50

−40

−30

−20

−10

0

Fig. 2. Left: Face model and 50 examples of the observation distributions. The thick
ellipses are the model distribution. The thin ellipses are the randomly generated ob-
servation distributions. Right: Real world face detection examples from a video with
different poses.

and the associated covariance matrices are:

C1 =

(

18 0
0 7

)

; C2 =

(

18 0
0 7

)

; C3 =

(

27 0
0 15

)

(21)

We randomly generate observation data by adding noise to both the means
and covariance matrices of the components in the face model. A 0-mean Gaussian
noise with a standard deviation of 4 pixels is added to both x and y directions of
the means, and the covariance matrices are also added with a 0-mean Gaussian
noise with a standard deviation of 3. The face model and observation examples
are shown in Figure 2 (left).

Figure 3 (left) shows the d2 computed with various approximations. The ob-
servation mean approximation has large errors. The equal average and weighted
average approximations are very close to the true d2 obtained by Levenberg-
Marquardt optimization. Figure 3 (right) shows the distance error of the best
match for each component in average in the observation space. We can see small
but noticeable displacement errors for the equal and weighted average methods,
compared to Figure 3 (left). This suggests that the when d2 is close to the min-
imum, the d2 surface is quite flat, which is because of the fact that we have
relatively large covariances in the face model and observation examples.

5.2 Real World Examples

With AdaBoosting component detectors, our current face detection system runs
comfortably at frame rate on a standard laptop with 640 by 480 image size.
We tested our techniques with real world examples. Figure 2 (right) shows some
examples of handling pose changes. We are currently evaluating the performance
of the system on standard face databases.
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Fig. 3. Left: d
2 from various approximations. Right: Both the weighted and average

approximations have small localization errors. The x axis is the sample number index
in the above graphs.

6 Conclusion

This paper presented a statistical fusion framework for component-based face
detection. The framework is tested with component face detectors trained using
AdaBoosting, running in real-time. Our work is effective with both synthetic
and real world experiments. We do not model the cross-component correlations
and this could be part of future work.
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