
한국산학기술학회논문지
Vol. 10, No. 12, pp. 3715-3724, 2009

3715

Component Metrics to Measure Component Quality

Chul-Jin Kim1 and Eun-Sook Cho2*

1Dept. of Computer System, Inha Technical College
2Dept. of Software, Seoil University

컴포넌트 품질 측정을 위한 컴포넌트 메트릭

김철진1, 조은숙2*
1인하공업전문대학 컴퓨터시스템과

2서일대학 소프트웨어과

Abstract Recently, component-based software development is getting accepted in industry as a new effective software

development paradigm. Since the introduction of component-based software engineering (CBSE) in later 90’s, the

CBSD research has focused largely on component modeling, methodology, architecture and component platform.

However, as the number of components available on the market increases, it becomes more important to devise

metrics to quantify the various characteristics of components. In this Paper, we propose metrics for measuring the

complexity, customizability, and reusability of software components. Complexity metric can be used to evaluate the

complexity of components. Customizability is used to measure how efficiently and widely the components can be

customized for organization specific requirement. Reusability can be used to measure the degree of features that are

reused in building applications. We expect that these metrics can be effectively used to quantify the characteristics of

components.

요 약 최근 들어 산업계에서 컴포넌트 기반의 소프트웨어 개발이 새로운 효율적 소프트웨어 개발 패러다임으로
받아들여지고 있다. 1990년대 후반 컴포넌트 기반 소프트웨어 공학이 소개되면서 컴포넌트기반 소프트웨어 개발
(CBSD) 관련 연구는 컴포넌트 모델링, 개발 방법론, 아키텍처, 그리고 컴포넌트 플랫폼 등에 주로 집중되어왔다. 그
러나 시장에서 가용한 컴포넌트들의 수가 증가함에 따라, 컴포넌트들의 다양한 특성들을 정량화하기 위한 메트릭에
대한 개발이 점차 중요해지기 시작했다. 본 논문에서 우리는 소프트웨어 컴포넌트의 복잡도, 특화성, 재사용성을 측
정할 수 있는 메트릭들을 제안한다. 복잡도 메트릭은 컴포넌트의 복잡성을 평가하는데 사용가능하고, 특화성은 해당
컴포넌트가 조직의 특화된 요구사항에 맞도록 얼마나 효율적이면서 폭넓게 커스터마이즈될 수 있는지를 측정하는데
사용된다. 재사용성은 애플리케이션을 구축할 때 해당 컴포넌트의 재사용되는 정도를 측정하는 용도로 사용된다. 제
안하는 이러한 메트릭들은 컴포넌트가 갖는 특징들을 정량화하는데 보다 효율적으로 사용될 수 있으리라 기대한다.

Key Words : Component, Component-Based Development, Customizability, Reusability, Component Metric

*Corresponding Author : Eun-Sook Cho(escho@seoil.ac.kr)

Received November 08, 2009 Revised December 04, 2009 Accepted December 16, 2009

1. Introduction

Object technologies have been often heralded as the

silver bullet for solving software reuse problems since

early 1980. However, it’s been known that objects are too

small-grained units, especially for enterprise application

development projects. Component technology has been

introduced with new approach to address reusability

problem in software development. Various component

platforms such as COM+, EJB, and CCM, component

modeling techniques, component development tools, and

component development processes were introduced

[1,3,5].

Component-oriented software development requires a

한국산학기술학회논문지 제10권 제12호, 2009

3716

considerably different approach from object-oriented (OO)

methods[4]. While OO methods develop systems by

defining functional and object models, component-based

development (CBD) methods utilizes commonality and

variability (C&V) analysis, components, component’s

interfaces, and relationships among components [1].

Therefore, various metrics developed for OO

programming cannot be equally applied to CBD process.

Hence, in this paper, we propose component metrics that

can be efficiently applied in CBD process.

The paper is organized as follows. We first discuss

relevant OO metrics. These metrics focus on object

structure that reflects the complexity of each individual

entity, such as methods and classes, and on external

complexity that measures the interactions among entities,

such as coupling and inheritance. Then, we show the

limitations of existing OO metrics in applying to CBD. In

chapter 3, we propose three metrics to measure

component’s quality; complexity, customizability, and

reusability. We define each metric and suggest the

applicability of each metric in CBD. Chapter 4 presents a

case study conducted with the proposed metrics. Also, we

compare proposed metrics to existing metrics.

2. Related Works

2.1 Metrics for Object-Oriented System

Many different metrics have been proposed for

object-oriented systems.

The object oriented metrics measure principle

structures that, if improperly designed, negatively affect

the design and code quality attributes[2,6,12]. Existing

object oriented metrics are primarily applied to the

concept of classes, coupling, and inheritance[11].

2.2 Weighted Methods per Class (WMC)

The WMC is a count of the methods implemented

within a class or the sum of complexities of the methods

(method complexity is measured by cyclomatic

complexity). The second measurement is difficult to

implement since not all methods are assessable within the

class hierarchy due to inheritance. The number of

methods and the complexity of the methods involved is a

predictor of how much time and effortis required to

develop and maintain the class. The larger the number of

methods in a class, the greater the potential impact on

children; children inherit all of the methods defined in the

parent class. Classes with large numbers of methods are

likely to be more application specific, limiting the

possibility of reuse [7-10].

2.3 Limitations of Existing OO Metrics

In this section, we discuss difficulties of applying

existing object-oriented metrics into component

development and CBSD. It is not adequate in measuring

component’s qualification with object-oriented metrics

themselves discussed in previous section. The reason is

that as following:

1. Measurement unit is different. OO metrics only

focus on objects or classes. Component consists of one or

more classes as well as one or more interfaces. Existing

object-oriented metrics do not consider component itself

or component’s interfaces on measuring complexity,

cohesion, or coupling, and so on. Therefore, it is required

new metrics that measure complexity of component itself.

2. Measurement factor is insufficient. Because

object-oriented applications are developed with only

classes, almost OO metrics measure the complexity or

reusability by considering classes, methods, and depth of

class hierarchy. However, considering only these factors is

not adequate to measure the complexity or reusability of

component because components have more much

information such as interface, interface methods, and so

on. While existing OO metrics do not consider

customizability of classes or objects, customizability of

component is very important in CBD because

component’s customizability effects on reusability of

components in CBD.

3. Definition of Component Metrics

We will propose some metrics to measure complexity,

customizability, and reusability in this chapter. We define

metrics to measure the quality of designed components as

well as we propose metrics for measuring the quality of

implemented components[13]. Therefore, proposed metrics

Component Metrics to Measure Component Quality

3717

are classified into design metrics and implementation

metrics.

3.1 Measuring the Complexity

To measure the complexity, the cyclomatic complexity

is used in traditional program. Cyclomatic complexity

(McCabe) is used to evaluate the complexity of an

algorithm in a method. It is a count of the number of test

cases that are needed to test the method comprehensively.

The formula for calculating the cyclomatic complexity is

the number of edges minus the number of nodes plus 2.

A method with a low cyclomatic complexity is generally

better. Cyclomatic complexity cannot be used to measure

the complexity of a component because of inheritance in

a component, but the cyclomatic complexity of individual

methods can be combined with other measures to evaluate

the complexity of the component. Therefore, we propose

new complexity metric to measure complexity of a

component by combining cyclomatic complexity:

Component Complexity Metric (CCM). We classify CCM

into four kinds of complexity metrics: component plain

complexity (CPC), component static complexity (CSC),

component dynamic complexity (CDC), and component

cyclomatic complexity (CCC). While component

cyclomatic complexity of these component complexity

metrics is used in component implementation phase, other

complexity metrics can be applied in component design

phase.

3.1.1 CPC

The first approach used in order to measure the

complexity of each component is CPC. CPC is a metric

that measures the complexity of component itself by

calculating the sum of classes, abstract classes, and

interfaces, and the complexity of classes and methods.

CPC is expressed by the following formula:

[Def.1]

∑ ∑
= =

++=
m

i

n

j
ji MCCCCmpCCCPC

1 1

)(

where:

CmpC: is calculated by counting classes, abstract

classes, and interfaces,

∑
=

m

i
iCC

1 : the complexity of each class, and

∑
=

n

j
jMC

1 : the complexity of each method.

The CmpC is calculated by counting classes, abstract

classes, interfaces, and methods. The definition of CmpC

is given by:

[Def.2]

∑ ∑ ∑
= = =

×++×=
m

i

n

j

o

k
kkjii MWMCountICountCWCCountCmpC

1 1 1

))()(()())()((

where:

Count(C): The count of the class of contained in a

component,

W(C): weight value of each class,

I: the interface of provided/used by a component,

Count(M): The count of the methods of classes

contained in a component, and

W(M): weight value of each method.

Classes contained in a component are divided into

internal classes and external classes. External classes are

imported classes from other reused library or packages.

Internal classes are identified classes during component

analysis and design in a domain. We give weight value to

internal classes because external classes are implemented

classes. Also, methods of internal classes are given weight

value because methods of external classes are only

invoked.

The complexity of each class (CC) contained in a

component is calculated by counting single attributes of

each class as Single Attribute (SA) and complex attribute,

(i.e. attribute which type is a class), as Complex Attribute

(CA). Then, we define CC as following formula:

[Def.3]

∑ ∑
= =

×+=
m

i

n

j
jji CAWCACountSACountCC

1 1

))()(()((

where:

Count(SA): The count of single attribute,

Count(CA): The count of complex attribute,

W(CA): Weight value of each complex attribute.

The complexity of each method of classes is calculated

by counting parameters of each method. Simple argument

is counted as SP, while complex argument, such as

objects, is counted as CP. Also, complex arguments are

given with weighted value because complex arguments

contain another arguments in it. MC is given by following

formula:

한국산학기술학회논문지 제10권 제12호, 2009

3718

[Def.4]

∑ ∑
= =

×+=
m

i

n

j
jji CPWCPCountSPCountMC

1 1

))()(()(

where:

Count(SP): The count of single argument,

Count(CP): The count of complex argument, and

W(CP): Weight value of each parameter.

3.1.2 Component Static Complexity

The second approach used in order to measure the

complexity of each component is CSC. CPC only focuses

on the number of classes, interfaces, methods, and

parameters declared in a component, while CSC focuses

on how complex the component’s the internal structure.

CSC is a metric that measures the complexity of internal

structure in a component with a static view. Therefore, the

static complexity of each component is calculated by

counting relationships among classes contained in a

component. We define the CSC as following formula:

[Def. 5]

))()((
1

i

m

i
i RWRCountCSC ×= ∑

=

where:

Count(R): The count of each relationship between

classes, and

W(R): Weight value of each relationship.

There are four relationships between classes as UML

specification.[4] According to accessibility between

classes, the size of weight vale for the relationships is

defined. We give the weight value as following priority:

Dependency<Aggregation<Generalization<Aggregation

<Composition.

On counting relationships, if there are n-ary

relationships among classes, n-ary relationship should be

converted into binary relationship.

3.1.3 Component Dynamic Complexity

The third approach used in order to measure the

complexity of a component is CDC.

CSC only focuses on how complex the component’s

the internal structure, while CDC focuses on how many

message passing is occurred in a component. CDC is a

metric that measures the complexity of internal message

passing in a component with a dynamic view. Therefore,

the dynamic complexity of each component is calculated

by counting messages passed between classes contained in

a component. We define the CDC as following formula:

[Def. 6]

∑
=

=
m

i
iIMDCCDC

1

)(

where:

∑
=

m

i
IMDC

1

)(
: the complexity of each interface method.

[Def. 7]

∑
=

+×=
n

i
iii MsgMCMsgFreqMsgCountIMDC

1

))()()(()(

where:

Msg: the message passed between classes,

Freq(Msg): the frequency of messages passed between

classes, and

MC(Msg): the complexity of each message, equal to

the MC defined in [Def. 4].

3.1.4 Component Cyclomatic Complexity

The fourth approach used in order to measure the

complexity of a component is CCC. While previous three

metrics (i.e. COFP, CSC, CDC) are used in a component

design time, CCC is used after the component

implementation is finished. Therefore, other three metrics

are calculated by using class diagram, interaction diagram,

and component diagram, while CCC is computed by using

developed source code. The difference between CPC and

CCC is that the complexity of interface method declared

in the interface of a component is based on cyclomatic

complexity metric used in traditional program. CCC is

defined as following formula:

[Def.8]

CCC=
∑∑∑

===

+++
o

k
k

n

j
j

m

i
i CCMMCCCCmpC

111

where:

CmpC: the sum of classes, interfaces, and interface

methods defined in [Def. 2],

∑
=

m

i
iCC

1 : the sum of complexity of each class

contained in a component, and

∑
=

n

j
jMC

1 : the sum of complexity of each interface

Component Metrics to Measure Component Quality

3719

method.

The complexity of each class and of each interface

method is equal to the [Def. 3] and [Def. 4]. However,

the cyclomatic complexity of each method implemented in

a class may be computed because CCC is calculated by

using implemented component source code. We define the

cyclomatic component method as following formula:

[Def. 9] =
∑

=

o

k
kCCM

1 = 2+− nodesedges

[Def.9] is referred to [9]. The formula for calculating

the cyclomatic complexity is the number of edges minus

the number of nodes plus 2.

[Fig. 1] Example of Cyclomatic Complexity

For a sequence where there is only one path, no

choices or option, only one test case is needed. An IF

loop however, has two choices, if the condition is true,

one path is tested; if the condition is false, an alternative

path is tested. Figure 1 shows examples of calculations

for the cyclomatic complexity for four basic programming

structures.

3.2 Measuring the Customizability

The one of component’s characteristics is component

customization. If a component does not provide

customizable interfaces, reusability of a component

becomes low because application developers want to

customize reusing components according to theirs

purpose. Therefore, customizability of component should

be considered in a component development process. In

this chapter, we present customizability metric may be

used in a component design phase or after the component

development.

In order to measure customizability, we use

component’s variability methods as following formula:

[Def. 10]

∑

∑

=

== n

j
j

m

i
i

CIMCount

CVMCount
CV

1

1

)(

)(

where:

CV: Component variability to measure customizability,

Count(CVM): the count of method for customization

Count(CIM): the count of method declared in each

interface

According to [Def. 8], CVM is redefined as following

formula:

[Def.11]

∑ ∑ ∑
= = =

++=
m

i

n

j

o

k
kji CVMwCountCVMmCountCVMaCountCVM

1 1 1

))()())((

where:

Count(CVMa): the count of the method for attribute

customization,

Count(CVMm): the count of the method for behavior

customization,

Count(CVMw): the count of the method for workflow

customization,

W(CVMm): Weight value for behavior customization

method, and

W(CVMw): Weight value for workflow customization

method.

As given in [Def. 11], we assign weight value into

behavior customization methods and workflow

customization methods. The reason is that those methods

are more complex than attribute customization methods.

Furthermore workflow customization methods are more

complex than behavior customization methods because

they contain several business methods in a workflow

customization. Then, the priorities are given as following

order: attribute customization method<behavior

customization<workflow customization method.

3.3 Measuring the Reusability

We propose two approaches to measure the reusability

of component in this paper. The one is a metric that

measures how a component has reusability, while the

other is a metric that measures how a component is

reused in a particular application.

한국산학기술학회논문지 제10권 제12호, 2009

3720

The first approach is component itself reusability (CR).

CR metric may be used at design phase in a component

development process. CR is calculated by dividing sum of

interface methods providing commonality functions in a

domain into the sum of total interface methods. We define

the CR as following formula:

[Def. 12]

CR= ∑

∑

=

=
m

j
j

n

i
i

CIMCount

CCMCount

1

1

)(

))((

where:

Count(CCM): The count of each interface method for

providing common functions among several applications

in a domain, and

Count(CIM): The count of methods declared in

interfaces provided by a component.

The second approach is a metric to measure particular

component’s reuse level per application in a CBSD. We

call that Component Reuse Level (CRL). CRL is divided

into CRLLOCs and CRLFunc. While CRLLOCs is

measured by using Lines of Code (LOC), CRLFunc is

measured by dividing functionality that a component

supports into required functionality in an application.

The CRLLOCs, expressed as a percentage, for a

particular application is given by:

[Def. 13]

CRLLOCs(C)=
%100

)(

)(Re ×
CSize
Cuse

where:

Reuse(C): The lines of code reused component in an

application,

Size(C): The total lines of code delivered in the

application.

The CRLFunc is expressed with:

[Def. 14] CRLFunc(C)= Sum of supported

functionality in a component/Sum of required

functionality in an application

According to the [Def.14], the more many functions

are supported in a component, the more much the

reusability of a component in an application. If we apply

this metric to a component used different applications for

the same domain, we get the reusability of a component

in a domain.

4. Case Study

This is the conclusions for our paper.4. Case Study

and Assessment

In order to measure complexity, reusability,

customizability, we apply proposed metrics into several

projects proceeded in the banking domain. The reason is

that because various components for the same purpose

may be developed in the same domain, we may measure

the complexity, customizability, and reusability of

components. In this chapter, we demonstrate the

measurement results by applying metrics into component

design and implementation. Also, we discuss the

difference of between existing metrics and proposed

metrics.

We will estimate the costs and effort for component

development or component-based software development

through measurement results obtained using the previous

metrics. Furthermore, we measure the component’s quality

when we register developed components in component

repository.

4.1 Measurement Results of Complexity

In order to measure the complexity of each component

in component design time, we should first develop

component diagram. We apply proposed metrics into

component diagram for banking domain. An example of

component diagram is shown in [Figure 2]. The Figure 2

shows a part of banking component diagram such as

customer management, employee management, and

deposit management of banking domain.

As shown in Figure 2, there are three components:

‘Customer Management’, ‘Employment Management’, and

‘Deposit Management’. Also, there are one or more

classes in the each component. We measure the

complexity of each component by using proposed CPC

and CSC. Also, CDC is measured by using sequence

diagram for each component.

Component Metrics to Measure Component Quality

3721

[Fig. 2] Component Diagram

For example, the CPC and CSC of ‘Customer

Management’ and ‘Deposit Management’ are measured

with:

CPC(Customer Management) = 47 + 66 + 13 = 126,

where,

CmpC= 10 + 1+36 = 47,

∑
=

m

i
iCC

1 =30 + 9*4=66, and

∑
=

n

j
jMC

1 =5+2*4=13.

CSC(Customer Management)=

(0*2) +(1*4)+(4*6)+(0*8) +(0*10) = 28.

We give weight values for each relationship based on

weight value table for relationships shown in Table 1.

[Table 1] Weight Value Table for Relationship

In order to measure the CDC of each component, we

use sequence diagrams per a use case. An example of

sequence diagrams is shown in Figure 3. Figure 3 shows

the interactions among classes existent in a use case. The

‘OpenAccount()’ is the interface method declared in the

interface of ‘Deposit Management’.

As depicted in Figure 3, there are several message

flows among classes contained in a component such as

deposit component. It is difficult to measure the

complexity of ‘Deposit Management’ component with

only class diagrams or component diagrams.

[Fig. 3] ‘Open Account’ Sequence Diagram of Deposit

Management

Therefore, it is enable to measure the dynamic

complexity of each component with interaction diagrams.

Applied CDC into this example diagram, the measurement

result is given by:

DC(OpenAccount())=1+1+1+2+1+3+4=13.

[Table 2] Measurements of Interface Methods

Also we calculate the value of CCC for each

component by using lines of code. We developed each

component in forms of EJB Beans. Therefore, we measure

the CCC of each component by combining CPC and

cyclomatic complexity. The results are as following:

CCC(Customer Management) = 47 + 66 + 13 + 98 =

224.

CCC(Deposit Management) = 114 + 69 + 68 + 70 =

321.

Here we calculate the CCM by applying cyclomatic

한국산학기술학회논문지 제10권 제12호, 2009

3722

complexity of each method. After the CCM of each

method in each class contained in a component is

calculated, the summation of values of each CCM

becomes CCM of ‘Customer Management’ component.

The resulting value is 98. The values of CmpC, the sum

of class complexity, and the sum of method complexity

are equal to the values of CPC.

We have learned that the measurement results of CCC

are larger than of CPC. It means that the larger the

complexity of CPC, the larger the complexity of CCC.

4.3 Measurement Results of Customizability

In order to measure the customizability of each

component, we use the component specification for each

component specification. During the component analysis,

we identified commonality and variability of components

will be developed in a domain. Then, identified variability

methods are described as customization methods in

component specifications at design phase. Customization

methods of ‘Customer Management’ and ‘Deposit

Management’ are described in Table 3.

We measure the customizability of ‘Customer

Management’ component and ‘Deposit Management’

component by using CV metric. The results obtained are

given by:

CV(Customer Management) = 2/11≈0.18.

CV(Deposit Management) = 2/11≈0.18.

For example, there are two customization methods in

the ‘Deposit Management’ Component. Therefore, the

CV(Deposit Management) may be calculated by dividing

customization methods into total interface methods.

[Table 3] Customization Methods

4.4 Measurement Results of Reusability

We measure the reusability by using CRLFunc and

CRLLOCs. CRLFunc is applied into designed

components, while CRLLOCs is applied into implemented

applications because CRLLOCs measures the percentage

how many parts of a component is reused in an

application. For example, CRLFunc of ‘Deposit

Management’ component and ‘Customer Management’

component is obtained with:

CRLFunc (Customer Management)= 9/9=1

CRLFunc (Deposit Management)= 9/11≈0.819

We developed component-based banking systems by

using ‘Customer Management’, ‘Deposit Management’,

and ‘Employee Management’. Then we measure the reuse

level of each component in banking system development

through lines of code.

The measurement results of each component are given

by:

CRLLOCs (Customer Management)= 34/576*100% ≈
5.9%

CRLLOCs (Deposit Management)= 28/576*100% ≈
4.9%

4.5 Assessment

In this section, we discuss different metrics proposed

in this paper to measure component’s quality and their

pros and cons. Table 4 lists approaches and factors to

measure component’s quality.

[Table 4] Comparisons of Different Metrics

As shown in Table 4, the number of factors of metrics

applied in design time is fewer than the number of factors

Component Metrics to Measure Component Quality

3723

of metrics applied in implementation time. Therefore,

measurement results of complexity or reusability by using

CCC and CRLLOCs are more accurate than of by using

CPC, CSC, CDC, and CR.

However, we estimate the size of component, costs, or

efforts required in component development or

component-based software development because CPC,

CSC, CDC, and CR may be measured early in CBD.

[Table 5] Component-Oriented Metrics Effects

*C.T.E: Component Testing Efforts, Und: Understandability,

Main: Maintainability, C.D.E: Component

Development Effort, CBSD.E: CBSD Effort, Cust:

Customizability

Proposed component-oriented metrics help evaluate the

development and testing efforts needed, understandability,

maintainability, and reusability. This information is

summarized in Table 5.

Proposed component-oriented metrics provide valuable

information to component developers, component

assemblers, application developers and project managers.

5. Concluding Remarks

In this paper, we have measured the complexity,

customizability, and reusability of components produced

during component development process for banking

domain. Several different metrics have been for this

purpose, CPC, CSC, CDC, CCC, CV, CR, and CRL.

Especially we applied CRL to measure the reuse level of

developed components into component-based banking

systems.

We have found that the complexity of a component

may help to estimate the component’s size. Also,

reusability and customizability of components effect on

the reusability of components during component based

software development.

Finally, we have found that lines of code of

components are suitable for measurements of reusability

in CBSD. However, we do not consider the complexity of

technical complexity of each component. We will expect

that the complexity and reusability of components may be

calculated by using function points. Traditional function

points are not suitable in component based software

development. We will research the component-oriented

function points and complexity metrics

References

[1] Szyperski C., Component Software: Beyound

Object-Oriented Programming, Addison Wesley

Longman, Reading, Mass., 1998.

[2] Linda H. Rosenberg, “Applying and Interpreting

Object-Oriented Metrics”, at URL:

http://satc.gsfc.nasa.gov/support/STC_APR98/apply_oo/a

pply_oo.html.

[3] Sun Microsystems Inc., “Enterprise JavaBeans

Specifications”, at URL: http://www.javasoft.com

[4] Rational Software Corp., Unified Modeling

Language(UML) Summary, 1997.

[5] Object Management Group, “CORBA Components”,

at UR: http://www.omg.org, March 1999.

[6] Norman E. Fenton and Shari Lawrence Pfleeger,

Software Metrics: A Rigorous and Practical

Approach, PWS Publishing Company, 1997.

[7] Chidamber, Shyam and Kemerer, Chris, “A metrics

Suite for Object Oriented Design”, IEEE Transactions

on Software Engineering, June, 1994, pp. 476-492.

[8] Lorenz, Mark and Kidd, Jeff, Object Oriented

Software Metrics, Prentice Hall Publishing, 1994.

[9] McCabe & Associates, McCabe Object Oriented Tool

User’s Instructions, 1994.

[10] Rosenberg, Ian, “Metrics for Object Oriented

Environments”, EFAITP/AIE Third Annual Software

Metrics conference, December, 1997.

[11] Hudli, R., Hoskins, C., Hudli, A., “Software Metrics

for Object Oriented Designs”, IEEE, 1994.

[12] 한정수, “컴포넌트 재사용을 위한 효율적인 사용자
검색 피드백에 관한 연구”, 한국산학기술학회논문지,

Vol.7, No. 3, pp.379-384, 2006년 3월.

[13] 궁상환, “품질속성을 고려한 소프트웨어 아키텍처
패턴의 정의”, 한국산학기술학회논문지, Vol.8, No.1,

한국산학기술학회논문지 제10권 제12호, 2009

3724

pp.82~95, 2007년 2월.

Chul-Jin Kim [Regular member]

• Feb. 1996 : Kyonggi Univ., B.E.

• Feb. 1998 : Soongsil Univ., M.S

• Feb. 2004 : Soongsil Univ.,

Ph.D

• Sept.2004 : Catholic Univ.

Visiting Professor

• Dec. 2004 ~ Dec. 2009 :

Samsung Electronics Co.

• Mar.2009 ~ current : Inha Technical College, Dept of

Computer System, Assistant Professor

<Research Interests>

CBD, Component Customization, Embedded Software

Eun-Sook Cho [Regular member]

• Feb. 1993 : Dongeui Univ. B.E

• Feb. 1996 : Soongsil Univ., M.S

• Feb. 2000 : Soongsil Univ.,

Ph.D

• Jan. 2002 ~ Oct. 2003 : Invited

Researcher in ETR

• Sep. 2000 ~ Feb. 2005 : Dongduk Women's Univ.,

Dept of Data Information, Full-time Instructor

• Mar. 2005 ~ current : Seoil Univ., Dept of Software,

Assistant Professor

<Research Interests>

CBSE, Embedded Software, Service- Oriented

Computing, SOA

