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ABSTRACT Face super-resolved (SR) images aid human perception. The state-of-the-art face SR methods

leverage the spatial location of facial components as prior knowledge. However, it remains a great challenge

to generate natural textures. In this paper, we propose a component semantic prior guided generative adversar-

ial network (CSPGAN) to synthesize faces. Specifically, semantic probability maps of facial components are

exploited to modulate features in the CSPGAN through affine transformation. To compensate for the overly

smooth performance of the generative network, a gradient loss is proposed to recover the high-frequency

details. Meanwhile, the discriminative network is designed to perform multiple tasks which predict semantic

category and distinguish authenticity simultaneously. The extensive experimental results demonstrate the

superiority of the CSPGAN in reconstructing photorealistic textures.

INDEX TERMS Facial component, face super-resolution, generative adversarial networks, multiple task,

semantic prior.

I. INTRODUCTION

Face super-resolution (SR) task refers to reconstructing a

high-resolution (HR) image from a low-resolution (LR)

facial image. It increases high-frequency details and removes

degradation due to various factors including blur, noise and

low-resolution caused by the imaging acquisition device.

Generating photo-realistic super-resolved faces is beneficial

for a series of face-related tasks, including face attribute

recognition [1], face alignment [2], and face recognition [3] in

complex real-world scenarios. It has attracted a large amount

of attention in image processing and computer vision com-

munities [4]–[6].

Face SR is a domain specific reconstruction problem.

While there are numerous algorithms for performing

face SR, the majority of them are devoted to generic

images [4], [7], [8]. These methods cannot fully utilize the

characteristics of facial images with their structural geom-

etry and similar appearance [9] and thus cause a loss of

fine-grained details. To solve this issue, different kinds of

face-specific information are adopted as latent priors to guide

the super-resolved generating process. Among them, most

are spatial location related. Zhu et al. utilized a facial cor-

respondence field to describe the spatial configuration and
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FIGURE 1. Exemplar of synthesized images with or without semantic
guidance. Training a CNN-based generative network with a guidance of
semantic prior can add convincing details which fall into their underlying
classes. Owing to the semantic information, pupil and brow patches can
be recovered clearly.

corresponding properties [10]. Yu et al. employed facial com-

ponent heatmaps to explicitly incorporate structural informa-

tion of face into the synthesizing process [11]. On the basis

of different priors, the overall visual quality of reconstruction

are significantly improved.

Though great strides have been made, generating photo-

realistic textures is still a challenging problem. Given that

the results obtained with spatial prior cannot generate tex-

tures which are faithful to their natural classes, the semantic

prior is utilized and demonstrated to be non-trivial in general

SR problem [9], [12]. As shown in Fig. 1, with the guid-

ance of semantic information, super-resolved patches appear
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perceptually convincing. Driven by this idea, we propose

semantic segmentation probability maps to guide the process

of reconstruction. These maps are a set of stacked probability

values which are able to represent the semantic categories

of well-segmented facial components. With the guidance of

the strong semantic prior, the proposed component semantic

prior (CSP) layer can modulate the intermediate features of

network to synthesize photo-realistic facial details.

Meanwhile, considering that the face SR problem is a ill-

posed one, an effective way to constrain the solution space

of convolution neural networks (CNN) based methods is

through learning mapping loss functions from LR and HR

exemplars [13]–[18]. Pixel-wise errors, such as the mean

squared error (MSE) and the mean absolute error (MAE), are

the most widely applied losses. Though they are helpful in

improving the peak signal-to-noise (PSNR) score, they have

shortcomings to capture perceptually relevant differences and

thus encourage a generation of blurry and overly-smooth

results.

To remedy the deficiency, a new gradient loss is intro-

duced to recover high-frequency details. In order to recon-

struct them with low-frequency information at the same time,

a mask is utilized to separate them on the basis of the

gradient magnitude of an image. We seek to constraint the

generative network with the gradient loss in the region of

high-frequency textures. Meanwhile, a perceptual loss, which

relies on some pre-trained models [19], is utilized to impact

the feature space instead of pixel space of low-frequency

regions. The weighted combination of two losses can capture

more high-frequency details, e.g. the hair, while maintaining

the perceptual fidelity of the original HR face images.

Moreover, inspired by recent success of Generative Adver-

sarial Networks (GANs) based methods in synthesizing

images, Yu et al. first developed a GANs-based face SR algo-

rithm to reconstruct faces. The idea behind GANs is to train

a generative network G to fool a discriminative network D,

which is interactively trained to distinguish super-resolved

faces from real ones. The network D is utilized to optimize

the smoothness of images which are synthesized by the only

generative network. In this paper, we not only inherit plain D

to distinguish the validity of facial images, but also to predict

the semantic categories of the input. Multiple tasks ofDmake

the process of reconstruction more robust in poor conditions.

In summary, the main contributions of this paper include:

• Wepropose a novel CSPGAN to generate photo-realistic

details in face super-resolution. To the best of our knowl-

edge, this is the first component semantic prior guided

face SR method.

• In CSPGAN, we design a new gradient loss to capture

high-frequency information and concatenate it with the

perceptual loss to generate satisfying facial textures.

• In CSPGAN, we design a multiple task discriminative

network to distinguish authenticity and predict semantic

category simultaneously.

II. RELATED WORK

Exploiting facial related priors is the key factor that dis-

tinguishes face SR problem from generic SR tasks. In this

section, we will review some prior related works on

face super-resolution methods. As for different kinds of

priors, the existing face SR methods can be classified

into three categories: (i) global-based methods [20]–[24],

(ii) patch-based methods [25]–[31], and (iii) learning-based

methods [32]–[42].

The global-based methods employ holistic priors to repre-

sent the input LR faces and synthesize SR ones as weighted

combinations of training samples. Wang et.al employed

principal component analysis (PCA) algorithm to model

the global prior variations of facial appearance in the

eigenspace [20]. Baker and Kanade proposed pyramid-based

algorithm to learn a prior on the distribution of face gradi-

ents [43]. However, the performance of global-basedmethods

depends on whether the training set is distributed widely and

may degrade greatly if the number of training samples is

insufficient.

Local feature priors are utilized to compensate the details

of generated SR faces in patch-based methods. In these

methods, facial image is considered as a highly structured

object and is divided into patches according to the position

prior. Assuming the image patches share the same local

geometry, the position information can be served as a con-

straint to map the LR patches to HR ones through com-

binations. Liu et al. proposed a two-step approach which

decomposed the SR process into global reconstruction and

local residual compensation [44]. Motivated by this work,

plenty of patch-based algorithms were proposed to solve

the problem through implicitly coding by representing the

input LR patches locally [25], [28], [45], collaboratively [26],

and sparsely [29], [38] or explicitly regression [46]–[48].

Nonetheless, a local patch prior is insufficient to infer the

holistic structure of facial images, especially when the upscal-

ing factor is too large.

In the meantime, as a domain specific SR technique,

the face SR method is influenced by the rapid development

of deep learning techniques. With the help of a large training

dataset, learning-basedmethods aim to predict super-resolved

faces through LR and HR facial image pairs [49]. The prior

knowledge is learned from a set of HR training images and

then used to reconstruct SR images. Due to larger mag-

nification factor that learning-based methods can achieve,

they attract more attention in recent research for practical

applications. Yu et al. [17] localized facial components in

the LR images by practicing a facial landmark detector

and then reconstructed missing high-frequency details from

similar HR references. In their remarkable work, the facial

components need to align accurately and the performance

degrades dramatically when misalignment occurs. In this

paper, instead of enforcing a precise alignment on input

facial images, we preserve the spatial information and assign
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FIGURE 2. The architecture of CSPGAN network. LR, SR, and HR images represent the low-resolution, super-resolution and
high-resolution facial images.

semantic categories’ probabilities as prior. They are not only

more robust to miner misalignment, but also hold richer

information to assist reconstruction.

III. METHOD

In face SR problem, given a low-resolution facial image

Ilr as input, the super-resolution image Isr is generated by

the generator G where Ihr is the corresponding ground truth.

High-resolution images are only available during training

while low-resolution ones are obtained by a downsampling

operation with factor r . The reconstruction process can be

represented as G parameterized by θ :

Isr = G(Ilr |θ ). (1)

Our goal is to find a suitable set of parameters for the gen-

erator G during training. For a given LR input Ilr and its

corresponding HR counterpart Ihr , we solve:

θ̂ = argmin
θ

∑

L(G(Ilr ), Ihr ). (2)

In the following, we will introduce our CSPGAN in details.

A. NETWORK ARCHITECTURE

As shown in Fig. 2, our CSPGAN is composed of two parts:

a generative network G and a discriminate network D. In net-

work G, the semantic segmentation probability (SSP) maps

are created to preserve the semantic information of facial

components. Instead of reconstructing facial components

independently [50], SSP maps are utilized as feed-forward

guidances to alter the behavior of G through a well-designed

component semantic prior (CSP) layer. Trained with the

end-to-end strategy, CSP layers affinely amend intermedi-

ate features of G on the basis of SSP maps. Specifically,

to further share the parameters, we use a small condition net-

work to generate shared values for broadcasting thoroughly.

Meanwhile, the discriminator D has the ability of multi-

tasking to not only determine authenticity, but also predict the

semantic category for the inputs. Different from the previous

discriminator, our D encourages generator G to reconstruct

more confident results.

B. DETAILS INSIDE GENERATIVE NETWORK G

In CSPGAN, the generator G is a feed-forward network that

modulates features according to the semantic information of

facial components. It consists of four parts: semantic seg-

mentation probability maps, component semantic prior layer,

condition network, and residual block.

1) SEMANTIC SEGMENTATION PROBABILITY MAPS

As mentioned before, the issue with existing face SR meth-

ods is easily trapped to degraded details which are visually

identical between different semantic sections, e.g. the eye and

eyebrow. One of the solutions is to fulfill the synthesizing

process with effective semantic information. An effective

way is represented as semantic category along with its spatial

location. In our generator G, a semantic segmentation proba-

bility maps P is introduced to represent them. Specifically,

8 = P = (P1, · · · ,Pk , · · ·,PK ), (3)

where Pk represents the probability map of K th category and

K is the total number of considered categories.

For the ground truth Ihr , we use Openface [51] to directly

perform face detection and obtain the landmark localizations.

Then we initialize K stacked maps of probabilities to zero

which have the same size of inputs. Based on the k th semantic

category that each pixel belongs to, the value of same location

in k th SSP map is set to a random value in [0.8, 1] while

values of other k − 1 maps are set to values in [0, 0.2].

We intentionally avoid the hard probability values of ones
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and zeros for robustness. Note that the SSP maps are easy

to truncate, random flip, or rotate along with HR faces.

With the expression of both location and sematic prior

information in SSP maps, the process of face SR in Eq. (1)

can be expressed as:

Isr = G(Ilr , 8|θ). (4)

2) COMPONENT SEMANTIC PRIOR LAYER

The motivation of the component semantic prior layer is

to change the behavior of the generative network on the

basis of semantic priors to synthesize super-resolved faces.

In this section, we show a direct way to alternate the behavior

of G. This feed-forward technique adaptively influences the

outputs rapidly.

To be specific, we design a CSP layer to learn a mapping

function C which outputs a set of parameter pairs (γ, β)

based on semantic prior 8. Through the learned parameters,

CSP layers are able to influence the synthesized SR faces

by applying an affine transformation at intermediate feature

values of G. As seen in Fig. 2, the CSP layers are directly

embedded intoG. During testing, only a single forward pass is

needed to generate the SR facial images, given the LR inputs

and SSP maps. The process can be described as follows:

A pair of affine transformation parameters (γ, β) is mod-

eling the prior 8 through a mapping function C ,

(γ, β) = C(8). (5)

Consequently, the target SR faces in Eq. 4 can be calcu-

lated by:

Isr = G(Ilr , (γ, β)|θ ). (6)

By scaling and shifting intermediate features, the CSP

layer performs affine transformation in generator G after

obtaining γ and β. The process is as follows:

CSP(F |γ, β) = γ ⊗ F + β, (7)

where F denotes the features of input facial images in G with

the same dimension as γ and β, and⊗ refers to the Hadamard

product of element-wise multiplication. Most of the transfor-

mations are calculated in the LR space and followed with

the upsampling operation that broadcasts the computation

thoroughly. The details of CSP layer is shown in Fig. 2.

3) CONDITION NETWORK

To share the semantic prior that SSP maps contain, a condi-

tional network plays a role of delivering conditions to all the

CSP layers. This small network is filled with convolutional

operations. Meanwhile, we still keep few parameters inside

each CSP layer to further adapt the shared conditions to the

specific parameters γ and β, providing fine-grained control

of the features.

4) RESIDUAL BLOCK

Different from other face SR methods, we introduce residual

blocks embedded with two CSP layers to change the genera-

tive network’s behavior. Skip connection [52] is used to ease

the training of deep CNN-based generative networks. On top

of them, several upsampling layers are placed to magnify the

input LR facial images into their high-resolved sizes.

C. DETAILS INSIDE GENERATIVE NETWORK D

With a delicate design, the discriminator D undertakes two

different tasks: determine whether the synthesized image is

real or fake, and estimate the sematic categories which the

components belong to (see Fig. 2). We apply a CNN-based

network and use LeakyReLU activation (α = 0.2) and avoid

max-pooling throughout the network. Strided convolutions

are employed in the intermediate layer for D to gradually

decrease the dimensions. Although the inputs are different

sizes, they use similar convolution layers rather than fully

connected layers since the training images are cropped to

contain only one category. This restriction is not applied on

test images. We find this strategy facilitates the generation of

images with realistic textures and robust characteristics.

IV. LOSS FUNCTION

The loss function plays an important role in our gen-

erative network G. While LG is commonly modeled by

the MSE [53], [54], we design a loss function that helps

assess perceptually relevant characteristics and preserve

high-frequency details. We formulate the loss as the weighted

sum of a perceptual loss, a gradient loss and an adversarial

loss:

LG = λperLper+λgradLgrad
︸ ︷︷ ︸

content loss

+ λadvLadv_G
︸ ︷︷ ︸

adversarial loss

. (8)

In the following, we describe the perceptual loss and the

gradient loss as two components of content loss. The details

of each loss are defined below.

A. CONTENT LOSS

Optimizing a pixel-wise loss may cause perceptually blur

and a lack of high-frequency information. In this section,

we design a content loss which is a weighted combination of

a perceptual and a gradient loss to address this issue. By train-

ing end-to-end, the content loss is performing perfectly in

reconstruction.

1) PERCEPTUAL LOSS

Following Ledig’s work [52], a perceptual loss is utilized

to help assess perceptually relevant characteristics by using

high-level features of a pre-trained VGG-19 network [55].

In details,

Lper = ‖φ (Isr ) − φ (Ihr )‖
2, (9)

where φ denotes the pre-trained VGG model. Similar to [4],

we use the feature maps obtained by the ‘relu5_3’ layer and

compute the MSE on the feature activations.

2) GRADIENT LOSS

Drawing an inspiration from the common fact that high-

frequency details lie under high gradient pixels, we propose
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a gradient loss to recover the image gradients while rescuing

the missing high-frequency textures. Intuitively, the gradient

loss is formulated as [59]:

Lgrad = ‖∇xIhr − ∇xIsr‖1 +
∥
∥∇yIhr − ∇yIsr

∥
∥
1
, (10)

where ∇xIhr and ∇yIhr denote the directional gradients of Ihr
along the horizontal (denoted by x) and vertical (denoted by y)

directions, respectively.

It is noted that minimizing the gradient loss will help

to recover the gradients, but it will cost a degradation of

reconstruction performance. By introducing a mask M to

separate the high-frequency part from the low-frequency one,

the constraint on gradient-level will not affect the pixel-

level. Therefore, optimizing the weighted joint loss is able

to preserve both low-frequency content and high-frequency

structure of facial images. Specifically, the mask M is used

to decompose the image I by

I = M ⊙ I + (1 −M ) ⊙ I , (11)

where Mi,j ∈ [0, 1]. Given the gradient magnitude GM ,

where GMi,j =

√

(∇xIi,j)
2 + (∇yIi,j)

2, we can define the

mask M as the normalization of GM into [0, 1]:

M = (GM − min(GM ))/(max(GM ) − min(GM )), (12)

where max(GM ) and min(GM ) denote the maximum and

minimum value in GM , respectively. Finally, we define our

content loss as:

Lcontent (Isr , Ihr ) = λgradLgrad (M ⊙ Isr ,M ⊙ Ihr )

+ λperLper ((1 −M ) ⊙ Isr , (1 −M ) ⊙ Ihr ), (13)

where ⊙ denotes the element-wise multiplication.

B. ADVERISARIAL LOSS

Our framework is based on adversarial learning. It consists of

a generatorG and a discriminatorD, which are parameterized

by θ and η respectively. They are jointly trained on the basis

of the objective function, which can be written as:

min
θ

max
η

Ey∼PIhr
logD(y|η) + Ex∼PIlr

log(1 − D(G(x|θ )|η)),

(14)

where x ∼ PIlr and y ∼ PIhr are LR and HR samples’

empirical distributions.

For generator G, the adversarial loss can be written as:

Ladv_G = Ex∼PIlr
[(D(G(x |θ ) |η ) − 1)2]. (15)

Meanwhile, the training process alternately minimizes the

objective function of discriminator D as follows:

LD = Ex∼PIlr
[(D(G(x |θ ) |η ))2] + Ex∼PIhr

[(D(x |η ) − 1)2].

(16)

V. EXPERIMENTS

A. DATASET

In this paper, experiments are evaluated on Labeled Faces in

the Wild (LFW) for its diversity in facial images, such as

expression, occlusion, aging, etc. We assume five primary

categories, i.e., eyebrow, eye, nose, lip, and facial. A ‘back-

ground’ category is used to express regions that do not appear

in the aforementioned categories. For LFW dataset, we use

10023 images for training, and 1091 images for evaluation.

In addition, we collect a new set of high-resolution images

to complement the facial details since the resolution of LFW

images is still quite low. By querying the Google search

engines using ‘high resolution image’ and the defined cat-

egories as keywords, we gather 573 HR facial images and

349 facial components images. It is called Facial HR images

Online (FHRO) dataset.

Following [52], all experiments are performed with scaling

factor of ×4 and ×8 between LR and HR facial images.

During training, we use MATLAB bicubic and near kernel

to downsample HR faces and obtain LR faces. The sizes of

cropped HR and LR sub-images are 96 × 96 and 24 × 24,

respectively.

B. SETTINGS

We initialize the network by parameters pre-trained with

perceptual loss and GAN loss on LFW dataset. After initial-

ization, we fine-tune our CSPGAN network on the FHRO

dataset on the basis of SSP maps. During training, the size

of each mini-batch is set to 16. For optimization, we use

Adam [60] with β1 = 0.9. The learning rate is set to 1e−4 and

decays by a factor of 2 every 100k iterations. The trade-off

parameters λadv, λper , and λgrad are empirically set to 5e−3,

1, and 1e−3. Alternatively optimizing the generator G and

discriminator D, the model usually converges at about 5e3

iterations.

In order to evaluate the performance of the network,

we compare the synthesized SR facial images to the state-

of-the-art methods with qualitative and quantitative analysis.

The Peak Signal-to-Noise Ratio (PSNR), structural similarity

(SSIM), and feature similarity (FSIM) [61] are employed as

our evaluation measurements.

C. COMPARISON WITH STATE-OF-THE-ART METHODS

Wecompare the CSPGANwith four state-of-the-art SRmeth-

ods, including FSRCNN [56], ESPCN [57], SRResNet [58],

and SRGAN [52]. For FSRCNN and ESPCN, we train the

released codes with the same LFW dataset. For SRResNet,

we implement 16 residual blocks which take a standard

feed-forward convolution network and add skip connections

that bypass a few layers. As an improvement of SRResNet,

SRGAN adds GANs’ structures with perceptual loss function

to recover the fine texture details. In the comparison experi-

ments, we train all five methods for qualitative comparisons,

but only SRResNet and SRGAN are for quantitative estima-

tion. All the comparative experiments are fine-tuned with the

same settings as ours.
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FIGURE 3. Comparison between different SR approaches with downsampling factor ×4 in LFW dataset: FSRCNN [56],
ESPCN [57], SRGAN [52], SRResNet [58], our proposed CSPGAN and the original HR image.

FIGURE 4. Details of comparison between generated facial images by SRResNet [58], SRGAN [52], CSPGAN w/o
Lgrad , and CSPGAN with magnified factor ×8 in FHRO dataset. The first and third row are restored facial images
through different methods while the second and forth row are specific corresponding details of the framed
patches. (Zoom in for best view).

First, we compare CSPGAN with the state-of-the-arts

methods qualitatively. As shown in Fig. 3, the first two meth-

ods cannot recover facial details accurately. They suffer from

edge overlaps and blob-like artifacts. SRGAN and SRResNet

methods notably improve the high-frequency details, how-

ever, they tend to generate monotonous textures. In contrast to

the above approaches, our network benefits from the sematic

priors of facial components, generating realistic textures,

clear outlines, and pleasant colors.

Second, we assess the performances quantitatively by

comparing the evaluations on the scale factor ×8 with the

test dataset of FHRO. The results are shown in Fig. 4 and

Table 1. Although the scores of SRResNet are pretty high,

the synthesized facial images are perceptually too smooth and

lack of convincing results. Benefitting from the facial seman-

tic prior knowledge, our networkwith or without gradient loss

is all able to accurately reconstruct details that belong to their

semantic categories and generate photo-realistic final results.

CSPGAN network significantly outperforms state-of-the-arts

methods in PSNR, SSIM, and FSIM and recovers more high-

frequency details.

D. ABLATION STUDY

To validate the effectiveness of the proposed model for face

SR problem, we study our CSPGAN which is converged

with only perceptual loss except for the last subsection.
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TABLE 1. PSNR, SSIM and FSIM scores of compared methods for ×8 upscaling face super-resolution in FHRO dataset.

FIGURE 5. Effects of CSPGAN with or without certain facial component’s
category in the progress of reconstruction. When not labeling a semantic
category, e.g. the ‘eye’ component, the generated facial images with
magnified factor ×8 will suffer blurry boundaries. The images of the upper
row are integral reconstructed faces with their PSNR scores and images of
the lower row are the details of the corresponding boxed patches.

Individually, the effects of the proposed gradient loss of the

model is demonstrated in the last subsection.

1) EFFECTS OF FACIAL COMPONENTS’ CATEGORIES

The facial semantic prior plays an significant role in our gen-

erative network. By pruning the facial components’ semantic

categories in SSPmaps, we design an experimental procedure

to train CSPGAN separately to observe the influence of dif-

ferent categories. Based on the baseline network, we present

a comparison of SSP maps with or without eye and eyebrow

categories in Fig. 5. As we can see, the model using full prior

information outperform the crippled ones with the PSNR

deficiency of 1.1 dB. The outline of synthesized face is blurry

in the models without eye or eyebrow.

2) EFFECTS OF CSP LAYERS

A powerful prior representation of facial image may lead

to accurate guidance in the network. Here, we mainly focus

on how the CSP layers influence the behavior of generator

G on the basis of semantic prior. Since the CSP layers are

warped in residual block, we test the number of blocks by

intuitively tuning n = 2/4/8/16 to estimate the effect of

CSP layer. We show the details of generated images in Fig. 6.

It can be observed that using more CSP layer leads to a

deeper structure, a growth of the learning ability of G, and

hence better performance. Clearly, synthesized facial images

with 16 residual modules have clear boundaries and more

convincing textures. Meanwhile, the PSNR and SSIM scores,

which are shown in Table 2, verify the upper conclusion.

3) EFFECTS OF MULTIPLE TASKS IN DISCRIMINATOR D

Although it is natural to believe that a plain discriminator is

beneficial to judge authenticity and to recover faces, there is

still an improved performance of our discriminative network

FIGURE 6. Effects of CSPGAN with different number of CSP Layers. The
number of CSP layers has a strong influence on the reconstruction ability.
Since they are embedded into the residual blocks, we prune the number
of ResNets to test it. When n = 16, the synthesized face appears most like
the ground truth HR image. The upper right legends are the details of
framed corresponding patches. (Zoom in for best view).

TABLE 2. PSNR, SSIM and FSIM scores of generator G with different CSP
layer number n.

FIGURE 7. Effects of the discriminator D with or without the ability of
multi-tasking. Our proposed multi-tasking discriminative network is
capable of generating richer and more realistic textures than the plain
one. By exploiting same structure of generative network, the first
and second row are the illustrations of faces and the corresponding
boxed patches. They are generated by discriminative networks which are
able to ignore or judge the semantic categories of generated images. The
third row shows the ground truth high-resolution images.

to reconstruct photo-realistic textures. As a comparison, our

D is able to distinguish which region belongs to the facial

component, e.g. eye, nose, or lip. In Fig. 7, the extracted

patches from generated facial image through generic dis-

criminator D appear to be warped. Using the same structure

of generator G, but lack of distinguishing category ability

will synthesize details that are not faithful to the underlying

class or blob-like artifacts. Our D with multiple tasks can
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FIGURE 8. Performance comparison of different loss functions. The PSNR and SSIM values are shown above the
images. Our proposed loss, a weighted combination of λperLper + λgradLgrad , outperforms other losses in term
of perceptual quality.

FIGURE 9. Illustration of the limitation with downsampling factor ×4.
(a) 8 × 8 low-resolution image. (b) Super-resolved images synthesized by
CSPGAN. (c) Original 32 × 32 high-resolution image.

assure G to generate more realistic details and more robust

to noises.

4) EFFECTS OF GRADIENT LOSS

To show the effectiveness of the proposed gradient loss,

we perform face super-resolution results in ×8 upscaling to

study the impacts of the differences. By comparing the mean

square error, mean absolute error, perceptual loss, and the

proposed gradient loss, CSPGAN is trained under the same

settings. As shown in Fig. 8, the proposed content loss of

perceptual and gradient loss is able to converge to the highest

PSNR score among all the compared experiments. From the

reconstructed RGB facial images, we observe generator G

trained with λperLper + λgradLgrad loss is able to capture

high-frequency details and maintain the perceptual fidelity of

the original HR images.

VI. CONCLUSION, LIMITATION, AND FUTURE WORK

We present a novel face super-resolution method, named

CSPGAN, which generates abundant texture and clear out-

lines of facial components. Different from existing face

SR methods, we propose a CSP layer, which is integrated

into the generative network G, to assist the process of recon-

struction on the basis of semantic guidance. Moreover, a new

gradient loss is utilized to constrain the solution space and

recover high-frequency textures. Meanwhile, we design a

discriminator with an additional branch which classifies the

semantic categories of images. Experiments demonstrate that

CSPGAN outperforms the state-of-the-art approaches.

However, our CSPGAN still has some limitations on the

reconstruction of tiny images, e.g., 32× 32 sized HR images

in Fig. 9. The reasons come from two issues. Firstly, the pur-

pose of designing our SSP maps is to represent the image’s

semantic prior. They are proved to be essential for genera-

tor G. Based on an existing facial landmark detector, SSP

maps may crash when facing a tiny image. Secondly, fewer

pixel in tiny image makes CSPGAN hard to capture valid

information and degrades to common facial SR methods.

In future study, we plan to investigate the progressive recon-

struction of super-resolved facial images.
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