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6Dipartimento di Fisica e Astronomia, Università di Catania and INFN, Via S. Sofia, 64, 95123 Catania, Italy

(Received 9 February 2012; accepted 9 March 2012; published online 5 April 2012)

Real complex systems are inherently time-varying. Thanks to new communication systems and

novel technologies, today it is possible to produce and analyze social and biological networks with

detailed information on the time of occurrence and duration of each link. However, standard graph

metrics introduced so far in complex network theory are mainly suited for static graphs, i.e., graphs

in which the links do not change over time, or graphs built from time-varying systems by

aggregating all the links as if they were concurrent in time. In this paper, we extend the notion of

connectedness, and the definitions of node and graph components, to the case of time-varying

graphs, which are represented as time-ordered sequences of graphs defined over a fixed set of nodes.

We show that the problem of finding strongly connected components in a time-varying graph can be

mapped into the problem of discovering the maximal-cliques in an opportunely constructed static

graph, which we name the affine graph. It is, therefore, an NP-complete problem. As a practical

example, we have performed a temporal component analysis of time-varying graphs constructed

from three data sets of human interactions. The results show that taking time into account in the

definition of graph components allows to capture important features of real systems. In particular,

we observe a large variability in the size of node temporal in- and out-components. This is due to

intrinsic fluctuations in the activity patterns of individuals, which cannot be detected by static graph

analysis.VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3697996]

Time-varying graphs are a natural model for networked
systems in which the relationships among nodes are
intrinsically dynamic and fluctuate over time, where links
appear and disappear at specific points in time and are
often recurrent. Here, we extend the concept of connect-
edness and the definitions of node and graph components
to the case of time-varying graphs, we prove that finding
strongly connected components in time-varying graphs is
an NP-complete problem and we also report the results
of component analysis performed on three real time-
varying systems. This analysis confirms that the classical
aggregate representations of networks evolving over time
wash out most of the richness of the original systems. In
particular, static graph erroneously flatten down fluctua-
tions in the size of in- and out-components of nodes, and
tends to substantially overestimate the actual size of the
connected components of the graph.

I. INTRODUCTION

Complex network theory has proved to be a versatile

framework to represent and analyze biological, social, and

man-made complex systems.1,2 Typically, a complex system

is inherently dynamic. Social interactions and human activ-

ities are intermittent,3–6 the neighborhood of individuals

moving over a geographic space evolves over time,7–9 links

appear and disappear in the World Wide Web,10 in patterns

of interactions among genes from microarray experi-

ments11,12 and in functional brain networks.13,14 In all these

networks, time plays a central role: links exist only for cer-

tain time periods, and are often recurrent. Despite this fact,

most of the classic studies in complex networks theory are

based on the analysis of the topological properties of static

graphs. These are graphs in which the links do not change

over time, or graphs built from time-varying systems as the

result of the aggregation of all interactions, as if these were

all concurrent in time. The evolution of linking patterns over

time, when considered, has been usually studied by creating

a series of graphs, each graph containing all the links

appeared in a certain time interval. Then, each standard

graph metric has been evaluated for the static graph obtained

at each time window, and plotted as a function of time.15,16

Today, thanks to recent technological developments, for the

first time we have the opportunity to study large social and

biological networks with precise temporal information on

the appearance, duration, and frequency of links among a set

of nodes. Many other similar databases will be produced in

the near future, at an ever increasing rate. These data sets

demand for new network measures and models that can take

account of the richness introduced by detailed temporal in-

formation. Some recent works have analyzed large intercon-

nected systems with fluctuating interactions,17–19 and some

graph measures have been already extended to the case of

graphs in which connection patterns evolve over time.20
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More recently, some works have also studied the onset of

synchronization in populations of agents interacting through

time-evolving topologies.21 In previous works,22–24 it has

been shown that a static analysis of aggregated graphs is not

able to capture the real dynamic behavior and time correla-

tions of complex networks evolving over time. Since in this

type of analysis the temporal ordering of links is ignored, the

number of available links at each time is overestimated and,

therefore, the actual lengths of walks and paths are underesti-

mated. In particular, it has been found that edge causality

plays an important role on the dynamics of many processes

that occur on networks, such as disease spreading.25–27 There

have been several attempts to incorporate temporal informa-

tion in the description of complex networks,25,28,29 and dif-

ferent definitions of time-varying graphs have been proposed

so far.32–34 At the same time, some basic concepts of com-

plex network theory, such as temporal walks,30,31 path length

and distance,32–34 and centrality23 have been extended to the

case of temporal networks.

In this paper, we focus our attention on two important

concepts in graph theory, namely those of connectedness and

connected components of a graph, and we generalize them to

the case of time-varying graphs. These concepts have been

thoroughly used to study the reachability of pairs of nodes in

static complex networks,35 and to characterize the resilience

of networks to attacks.36 Here, we show that node connected-

ness and connected components play a central role in time-

varying graphs, and can reveal interesting details on the real

structure of the network, which usually remain hidden to an

analysis based on static graphs.

The paper is organized as follows. In Sec. II, we briefly

review the concepts of connectedness and components in

static graphs, while in Sec. III we extend them to the case of

time-varying graphs. In particular, we define the temporal in-

and out-component of a given node, and we give the defini-

tion of weakly and strongly connected components of a

graph. In Sec. IV, we show that the problem of finding com-

ponents in a time-varying graph can be mapped into the

maximal-clique problem for an opportunely constructed

graph, which we call affine graph. An affine graph is a static

graph, which incorporates all the information on the tempo-

ral reachability of pairs of nodes, and is a useful tool to ana-

lyze the components of the corresponding time-varying

graph. Thanks to this mapping, we also prove that finding

strongly connected components in time-varying graphs is a

NP-complete problem. Finally, in Sec. V, we present the

results of temporal component analysis on time-varying

graphs constructed from three different data sets of human

interactions.

II. COMPONENTS IN STATIC GRAPHS

Let us consider a graph G with N nodes and K links.

From now on we will refer to it as to a static graph. We will

consider the case of undirected and directed static graphs

separately. An undirected static graph G can be represented

by a symmetric adjacency matrix, an N � N matrix A whose

each entry aij is equal to one if and only if there is a link

between i and j, and is equal to zero otherwise. In order to

define graph components, we need to introduce the concept

of connectedness, first for pairs of nodes, and then for the

whole graph. Two nodes i and j of an undirected graph G are

said to be connected if there exists a path between i and j. G

is said to be connected if all pairs of nodes in G are con-

nected, otherwise it is said to be unconnected or discon-

nected. A connected component of G associated to node i is

the maximal connected induced subgraph containing i, i.e.,

the subgraph induced by all nodes connected to node i. If an

undirected graph is not connected, it is always possible to

find a partition of the graph into a set of disjoint connected

components. It is straightforward to prove that this partition

is unique.

A directed static graph G is described in general by a

non-symmetric adjacency matrix, an N � N matrix A whose

each entry aij is equal to one if and only if there is a directed

link from i to j, and is equal to zero otherwise. Defining con-

nectedness for pairs of nodes in a directed graph is more

complex than in an undirected graph, because a directed path

may exist through the network from vertex i to vertex j, but

this does not guarantee that any path from j to i does actually

exist. Consequently, we have two different definitions of

connectedness between two nodes, namely weak and strong

connectedness. In particular, we can define the weakly and

the strongly connected components of a directed graph as

follows.37 Two nodes i and j of a directed graph G are said

strongly connected if there exists a path from i to j and a

path from j to i. A directed graph G is said strongly con-

nected if all pairs of nodes (i, j) are strongly connected. A

strongly connected component of G associated to node i is

the maximal strongly connected induced subgraph contain-

ing node i, i.e., the subgraph induced by all nodes which are

strongly connected to node i. A weakly connected component

of G is a component of its underlying undirected graph Gu,

which is obtained by removing all directions in the edges of

G. Two nodes i and j of G are weakly connected if they are

connected in Gu, and a directed graph G is said to be weakly

connected if the underlying undirected graph Gu is con-

nected. Hence, the components of a directed graph can be of

two different types, namely weakly and strongly connected.

It is also useful to review the definitions of components asso-

ciated to a node of a directed graph. We have four different

definitions:

1. The out-component of node i, denoted as OUT(i), is the

set of vertices j such that there exists a directed path from

i to j; 8j.
2. The in-component of a node i, denoted as IN(i), is the set

of vertices j such that there exists a directed path from j to

i; 8j.
3. The weakly connected component of a node i, denoted as

WCC(i), is the set of vertices j such that there exists a

path from i to j; 8j in the underlying undirected graph Gu.

4. The strongly connected component of a node i, denoted as

SCC(i), is the set of vertices j such that there exists a

directed path from i to j and also a directed path from j to

i; 8j.

We have implicitly used the last two concepts for the

definitions of weakly and strongly connected components of
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a directed graph given above. In fact, the property of weakly

and strongly connectedness between two nodes is reflexive,

symmetric, and transitive, i.e., in mathematical terms, it is an

equivalence relation. Therefore, it is possible to define

weakly and strongly connected components of a graph by

means of the weakly and strongly connected components

associated to its nodes: a strongly (weakly) connected com-

ponent of a node is also a strongly (weakly) connected com-

ponent of the whole graph.

Conversely, the definitions of out-component and in-

component of a node are not based on equivalence relations.

In fact, the symmetry property does not yield: i 2 OUTðjÞ
does not imply j 2 OUTðiÞ. This means that out- and in-

components can be associated only to nodes, and cannot be

directly extended to the entire graph. In practice, we cannot

partition a graph into a disjoint set of in- or out-components,

while it is possible to identify a partition of a static graph

into a disjoint set of weakly or strongly connected compo-

nents. However, the in- and out-components of the nodes of

a graph can be used to define the strongly connected compo-

nents of the graph. From the above definitions, we observe

that i 2 OUTðjÞ if and only if j 2 INðiÞ. Furthermore, we

notice that i and j are strongly connected if and only if j 2
OUTðiÞ and, at the same time, i 2 OUTðjÞ. Or equivalently,
if and only if j 2 OUTðiÞ and j 2 INðiÞ. Therefore, the

strongly connected component of node i is the intersection of

IN(i) and OUT(i).

We are now ready to describe the rich interplay among

the various concepts of connectedness in a directed static

graph in detail. In the most general case, as shown in Fig. 1,

a directed graph can be decomposed into a set of disjoint

weakly connected components. In a large graph, one compo-

nent will be larger than all the others. This component is usu-

ally called the giant weakly connected component (GWCC)

of the graph.

If we treat each link in the GWCC as bidirectional, then

every node in the GWCC is reachable from every other node

in the GWCC. As shown in Fig. 1, the GWCC contains the

giant strongly connected component (GSCC), consisting of

all nodes reachable from each other following directed links.

All the nodes reachable from the GSCC are referred to as the

giant OUT component, and the nodes from which the GSCC

is reachable are referred to as the giant IN component. The

GSCC is the intersection of the giant IN- and OUT-

components. All nodes in the GWCC, but not in the IN- and

OUT-components, are referred to as “tendrils.”

III. COMPONENTS IN TIME-VARYING GRAPHS

In this paper, we consider time-varying graphs, which

are graphs characterized by links that appear and disappear

over time among a fixed set of nodes. A time-varying graph

can be described as an ordered sequence of graphs, i.e., an

ordered set fG1;G2;…;GMg of M graphs defined over N

nodes, where each graph Gm in the sequence represents the

state of the network, i.e., the configuration of links, at time

tm, where m ¼ 1;…;M. In this notation, the quantity tM � t1
is the temporal length of the observation period. The graphs

in the sequence can be uniformly distributed over time, i.e.,

tmþ1 ¼ tm þ Dt; 8m ¼ 1;…;M � 1,33 or in general they can

correspond to any ordered sequence of times such that

t1 < t2 < … < tM.
30 In a more compact notation, we denote

the graph sequence as G � G½t1;tM �. Each graph in the

sequence can be either undirected or directed. Consequently,

the time-varying graph G can be described by means of a

time-dependent adjacency matrix AðtmÞ;m ¼ 1;…;M, where

aijðtmÞ are the entries of the adjacency matrix of the graph at

time tm. This matrix is, in general, non-symmetric. If we dis-

card the time-ordering of the links of a time-varying graph G
and consider all links as concurrent in time, we obtain its

corresponding aggregated static graph. Different ways of

constructing an aggregated graph from a temporal network

have been indeed proposed. It is possible to assign a weight

to each edge of the aggregated graph, according to the fre-

quency or the strength of the connection, and also to preserve

the directionality of edges of the original temporal system.

However, all these static representations fail to capture the

temporal correlation of links and, consequently, are not able

to represent causality relationships. In panel (a) of Fig. 2, we

report a simple time-varying graph G½t1;t4� with N¼ 5 nodes

and M¼ 4 edges and, in panel (b), the corresponding aggre-

gated static graph (undirected and unweighted). It is worth

noticing that the aggregated graph discards most of the rich-

ness of the original time-varying graph. For instance, three

paths exist between node 1 and node 5 in the static aggre-

gated graph, namely 1-4-5, 1-2-5, and 1-2-4-5, while in the

time-varying graph there is no temporal path from node 1 to

node 5.

The problem of defining connectedness and components

in time-varying graphs looks more similar to the case of

directed static graphs than to the case of undirected static

graphs. In fact, even if each graph Gm;m ¼ 1;…;M in the

sequence is undirected, the temporal ordering of the graphs

naturally introduces a directionality. For instance, in the

time-varying graph G½t1;t4� reported in Fig. 2, there exists a

path connecting node 5 to node 1 (i.e., the link a52 at time t1
and the link a21 at time t3) but there is no path which con-

nects node 1 to node 5. An immediate consequence of this

fact is that node 5 can send a message to node 1 at time t1,

while node 1 cannot send a message to node 5.

In order to define node connectedness for a time-varying

graph, we first need to introduce a mathematical definition of

reachability for an ordered pair of nodes i and j. We say that

FIG. 1. A directed graph can be partitioned into a set of disjoint weakly con-

nected components (in yellow). Furthermore, each of these components has

a rich internal structure, as shown for the GWCC.
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i can reach j if i can send a message to j directly or through a

time-ordered sequence of contacts. In mathematical terms,

this implies the existence of a walk connecting i to j. In a

time-varying graph, a walk, also called temporal walk, from

node i to node j is defined as a sequence of L edges

½ðnr0 ; nr1Þ; ðnr1 ; nr2Þ;…; ðnrL�1
; nrLÞ�, with nr0 � i; nrL � j, and

an increasing sequence of times tr1 < tr2 < … < trL such that

anrl�1
;nrl

ðrlÞ 6¼ 0 l ¼ 1;…; L.30,33

A path (also called temporal path) of a time-varying

graph is a walk for which each node is visited at most once.

For instance, in the time-varying graph of Fig. 2, the

sequence of edges [(5, 2), (2, 1)] together with the sequence

of times t1 and t3 is a temporal path of the graph. This path

starts at node 5 at time t1 and arrives at node 1 at time t3.

Given the definitions of temporal walk and path, we can

introduce the concepts of temporal connectedness (in a weak

and in a strong sense) for a pair of nodes.

A node i of a time-varying graph G½t1;tM � is temporally

connected to a node j if there exists in ½t1; tM� a temporal path

going from i to j. This relation is not symmetric: if node i is

temporally connected to node j, in general, node j can be ei-

ther temporally connected or disconnected to i. In the graph

G½t1;t4� of Fig. 2, node 5 is temporally connected to 1 but node

1 is not connected to node 5. For this reason, we introduce

the definition of strong connectedness, which enforces

symmetry:

Definition 1. (Strong connectedness) Two nodes i and j

of a time-varying graph are strongly connected, if i is tempo-

rally connected to j and also j is temporally connected to i.

Strong connectedness is a reflexive and symmetric rela-

tion, so that if i is strongly connected to j, then j is strongly

connected to i. However, this definition of strong connected-

ness lacks transitivity, and, therefore, it is not an equivalence

relation. In fact, if i and j are strongly connected and j and l

are strongly connected, nothing can be said, in general, about

the connectedness of i and l. In the example shown in Fig. 2,

nodes 5 and 2 are strongly connected and also 2 and 1 are

strongly connected, but nodes 5 and 1 are not strongly con-

nected, since there exists no temporal path which connects

node 1 to node 5. It is also possible to introduce the concept

of weak connectedness for a pair of nodes. Similarly to the

case of static directed graphs, given a time-varying graph G,
we construct the underlying undirected time-varying graph

Gu, which is obtained from G by discarding the directionality

of the links of all the graphs fGmg, while retaining their time

ordering.

Definition 2. (Weak connectedness) Two nodes i and j of

a time-varying graph are weakly connected if i is temporally

connected to j and also j is temporally connected to i in the

underlying undirected time-varying graph Gu.

Also weak connectedness is a reflexive and symmetric

relation, but it is not transitive. This definition of weak con-

nectedness is quite similar, but not identical, to that given for

directed static graphs. In fact, two nodes in G can be weakly

connected even if there is no temporal directed path which

connects them, but the temporal ordering of links breaks the

transitivity so that if i and j are weakly connected and j and l

are weakly connected, then nothing can be said about the weak

connectedness of i and l. Notice that the definitions of strong

and weak connectedness given above for time-varying graph

are consistent with those given for static graphs, so that if two

nodes are strongly (weakly) connected in a time-varying graph,

then they are also strongly (weakly) connected in the corre-

sponding aggregated static graph. The vice-versa is trivially

not true. We are now ready to give the definitions of compo-

nents associated to a node of a time-varying graph G:

1. The temporal out-component of node i, denoted as

OUTTðiÞ, is the set of vertices which can be reached from

i in the time-varying graph G.
2. The temporal in-component of a node i, denoted as

INTðiÞ, is the set of vertices from which i can be reached

in the time-varying graph G.
3. The temporal weakly connected component of a node i,

denoted as WCCTðiÞ, is the set of vertices which i can

reach, and from which i can be reached, in the underlying

undirected time-varying graph Gu.

4. The temporal strongly connected component of a node i,

denoted as SCCTðiÞ, is the set of vertices from which ver-

tex i can be reached, and which can be reached from i, in

the time-varying graphG.

FIG. 2. A time-varying graph G consisting of a sequence of M¼ 4 graphs

with N¼ 5 nodes (panel a) and its corresponding aggregated static graph

(panel b). The static representation of graphs discards time ordering of links

and time correlations of paths. In the aggregated graph, node 1 and node 2

are neighbors, but in the original time-varying graph they are directly con-

nected only in one of the four graphs of the sequence, namely in Gt3 .

Moreover, in the aggregated graph a path exists from node 1 to node 5 and

vice-versa, while in the time-varying graph there exists a temporal path from

5 to 1 but there are no temporal paths from 1 to 5.
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Differently from the case of directed static graphs, it is

not possible to define the strongly (weakly) connected com-

ponents of a time-varying graph starting from the definition

of connectedness for pairs of nodes. As we explained above,

this is because the relation of strongly (weakly) connected-

ness for couples of nodes is not an equivalence relation. For

this reason, we give the following definition of strongly con-

nected component of a time-varying graph:

Definition 3. (Strongly connected component) A set of

nodes of a time-varying graph G is a temporal strongly con-

nected component of G if each node of the set is strongly con-

nected to all the other nodes in the set.

Similarly, a set of nodes is a weakly connected compo-

nent if each node in the set is weakly connected to all the

other nodes in the set. The definitions of strongly and weakly

connected components enforce transitivity, but the check of

strong (weak) connectedness has to be directly performed for

every couple of nodes. Let us suppose for instance that we

want to verify if the five nodes in the graph G shown in Fig.

2 form a strongly connected component. In the static aggre-

gated graph, this check has O(K) computational complexity,

where K is the total number of links in the graph. In fact, we

have only to check that 2, 3, 4, and 5 are connected to 1,

which can be done by a depth first visit of the graph started

at node 1, since node connectedness is an equivalence rela-

tion for static graphs, and a component of a node is also a

component for the whole graph. On the contrary, for a time-

varying graph we should check the connectedness of all the

possible couples of nodes, so that a procedure to verify that a

set of N nodes forms a strongly connected component has

computational complexity OðN2Þ for every check, instead of

O(K). Such a difference in computational complexity is rele-

vant for graphs obtained from real world systems, which are

usually sparse. Moreover, while static directed graphs admit

only one partition into strongly connected components, for a

time-varying graph there exists in general more than one

possible partition, as we shall see in Sec. IV.

IV. THE AFFINE GRAPH OFATIME-VARYING GRAPH

In this section we show that the problem of finding the

strongly connected components of a time-varying graph is

equivalent to the well-known problem of finding the

maximal-cliques of an opportunely constructed static

graph.38 We call such a static graph the affine graph corre-

sponding to the time-varying graph. It is defined as follows:

Definition 4. (Affine graph of G) Given a time-varying

graph G � G½t1;tM �, the associated affine graph GG is an undir-

ected static graph with the same nodes as G, and such that

two nodes i and j are linked in GG if i and j are strongly con-

nected in G.
In practice, the affine graph of a time-varying graph can

be obtained by computing the temporal shortest paths

between any two pairs of nodes, and then adding a link

between two nodes i and j of the affine graph only if the tem-

poral distance from i to j and the temporal distance from j to

i are both finite. Another method to construct the affine graph

is based on the usage of the out-components of all the nodes.

We start by considering the out-component of the first node

(let us say i¼ 1) and then we check if for each node j 2
OUTTðiÞ; j > i then also i 2 OUTTðjÞ. If this is true, we add

a link between i and j in the affine graph. We then repeat this

procedure for the second node, i¼ 2, for the third node,

i¼ 3, and so on. We obtain the affine graph by iterating over

the out-components of all the nodes. It is worth noticing that

the definition of affine graph is independent from the particu-

lar definitions of reachability and temporal path given here,

since it is based only on the existence of mutual temporal

paths between pairs of nodes. Therefore, given any of the

different definitions of time-varying graph and the corre-

sponding notions of walk and path, it is always possible to

construct the affine graph associated to that particular repre-

sentation of the system.

We also observe that the concept of affine graph is

somehow related to existing concepts of path graphs, reach-

ability graphs, and influence digraphs.25,29 In fact, in a path

graph (or in an influence digraph), a directed link exists from

node i to node j if there is a temporal path from i to j, i.e., if

it is possible to reach j starting from i. Therefore, we can

construct an affine graph from the path graph or from the

influence digraph associated to a time-varying graph, by

replacing each couple of reciprocated directed links with a

single undirected edge, and removing all the remaining

links.

In Fig. 3, we report the affine graph corresponding to the

time varying graph shown in Fig. 2. In this graph, node 1 is

directly connected to nodes {2, 3, 4}, since it is temporally

strongly connected to them in the time-varying graph. Simi-

larly, node 2 is connected to nodes {1, 3, 4, 5}, node 3 is

connected to {1, 2}, node 4 is connected to {1, 2, 5}, and

node 5 is connected to {2, 4}. Hence, the affine graph GG has

only 7 of the 10 possible links, each link representing strong

connectedness between two nodes.

We briefly report here some definitions about graph cli-

ques. Given an undirected static graph, a clique is a complete

subgraph, i.e., a subgraph in which all the nodes are directly

linked to each other. A maximal-clique is a clique that is not

included in any larger clique, while a maximum-clique is a

maximal-clique whose size is equal to or larger than those of

all the other cliques.39

By construction, a clique of the affine graph GG, con-

tains nodes which are strongly connected to each other, so

FIG. 3. The affine graph GG associated to the time-varying graph G reported

in Fig. 2. The affine graph is static and undirected, and each of its maximal-

cliques corresponds to a strongly connected component of the original time-

varying graph G.
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that the maximal-cliques of the affine graph, i.e., all the cli-

ques which are not contained in any other clique, are tempo-

ral strongly connected components (SCCT) of G. Similarly,

all the maximum-cliques of the affine graph GG, i.e., its larg-

est maximal-cliques, are the largest temporal strongly con-

nected components (LSCCT) of G. Therefore, the affine

graph can be used to study the connectedness of a time-

varying graph, and the properties of the strongly connected

components of time-varying graphs can be obtained from

known results about maximal-cliques on static graphs. For

instance, the problem of finding a partition of G, which con-

tains the minimum number of disjoint strongly connected

components is equivalent to the well-known problem of find-

ing a partition of the corresponding affine graph GG in the

smallest number of disjoint maximal-cliques.38 Unfortu-

nately, this problem is known to be NP-complete, and in

practice can be exactly solved only for small graphs. In the

case of the affine graph in Fig. 3, it is possible to check by

hand that there are only three possible partitions of GG into

maximal-cliques, namely,

1. f1; 2; 3g [ f4; 5g;
2. f1; 2; 4g [ f3g [ f5g;
3. f2; 4; 5g [ f1; 3g:

Notice that the second partition contains two isolated nodes,

which are indeed degenerated maximal-cliques. Therefore,

the original time-varying graph admits only two different

partitions into a minimal number of non-degenerated

strongly connected components, namely into two compo-

nents containing at least two nodes each. One possible parti-

tion of our network G½t1;t4� is composed of the components

{1, 2, 3} and {4, 5}, while the other partition consists of {2,

4, 5} and {1, 3}. If we discard the temporal ordering of links,

we obtain different results. In fact, the aggregated static

graph shown in Fig. 2 has only one connected component,

which includes all the five nodes.

Other interesting results stem from the mapping into

affine graphs and from the following well known results for

cliques in graphs.

1. Checking if a graph contains a clique of a given size k has

polynomial computational complexity, and precisely

OðNkk2Þ.40

2. The clique decision problem, i.e., the problem of testing

whether a graph contains a clique larger than a given size
�k, is NP–complete.38 Therefore, any algorithm that veri-

fies if a time-varying graph has a strongly connected com-

ponent whose size is larger than a fixed value �k, has

exponential computational complexity.

3. Listing all the maximal-cliques of a graph has exponential

computational complexity, namely Oð3N=3Þ on a graph

with N nodes.41,42 Consequently, finding all strongly con-

nected components of a time-varying graph with N nodes,

requires an amount of time which exponentially grows

with N.

4. The problem of finding a maximum-clique for an undir-

ected graph is known to be hard-to-approximate,43–45 and

an algorithm that finds maximum-cliques requires expo-

nential time. This means that, if P 6¼ NP, there exists no

polynomial algorithm to find approximated solutions for

the maximum-clique problem. The best known algorithm

works in Oð� 1:2NÞ for a graph with N nodes.46,47

5. The problem of determining if a graph can be partitioned

into K different cliques is NP-complete, and consequently

also the problem of finding the minimum number of cli-

ques that cover a graph, known as the minimum clique

cover, is NP-complete.38 This means that there exists no

efficient algorithm to find a partition of a time-varying

graph made by a set of disjoint strongly connected com-

ponents. Moreover, there are, in general, more than one

partition of a graph into maximal-cliques, so that a time-

varying graph cannot be uniquely partitioned into a set of

disjoint strongly connected components.

The existence of a relation between the strongly con-

nected components of a time-varying graph and the

maximal-cliques of its affine graph implies that it is practi-

cally unfeasible to find all the strongly connected compo-

nents of large time-varying graphs. The problem can be

exactly solved only for relatively small networks, for which

it is computationally feasible to enumerate all the maximal-

cliques of the corresponding affine graphs. Even if, in many

practical cases, it is possible to find only the maximal-

cliques up to a certain size �k, we can still obtain some infor-

mation about the maximum value of �k to be checked. First of

all, in order to have a clique of size �k, the graph should have

at least �k nodes having at least �k links. Moreover, each cli-

que of order �k > 3 has exactly
�

�k

3

�

sub-cliques of order 3,

so that in order for a subgraph to be a clique of order �k, the

graph should have at least
�

�k

3

�

triangles. This means that

there is a relation between the number of triangles of the

affine graph and the size of its maximum-cliques. In particu-

lar, the number of existing triangles in the affine graph sets

an upper bound for the size of the largest admissible

maximal-cliques of the graph.

V. RESULTS

In this section, we extract and analyze node and graph

components of time-varying graphs constructed from three

different data sets of temporal social networks. The first is

the data set of human interactions produced by the Reality

Mining Project,48 which was a large experiment devised and

performed by researchers at the MediaLab, Massachusetts

Institute of Technology, US. One of the aims of this experi-

ment was to record the contacts among students, staff, and

faculty members at the Massachusetts Institute of Technol-

ogy. The resulting data set contains co-location information

among 100 individuals during six months, from the end of

June 2004 to the end of December 2004, sampled by means

of Bluetooth-enabled mobile phones at regular intervals of

5min. The second data set contains all the contacts among

78 people attending the INFOCOM 2006 conference.49 Simi-

lar to the Reality Mining data set, the INFOCOM 2006 data-

set also has been constructed using records of scans made by

Bluetooth devices provided to conference participants, but
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covers a shorter period of time (only five days). The

third data set contains the records of communications among

� 100:000 Facebook users living in Santa Barbara (CA),

occurred over a period of six months, from January 2009 to

June 2009.50 In the following, we denote the Reality Mining,

INFOCOM, and Facebook data sets as RM, IC, and FB,

respectively.

When contacts are inferred from Bluetooth scans, we

make the reasonable assumption that two individuals are co-

located, i.e., they are at the same place, at a given time, if

their respective devices detect each other presence. In fact,

Bluetooth devices are able to detect similar devices within a

very limited range, usually between 5 and 10m. At each

time t, a co-location graph can be obtained by connecting

through undirected links all the nodes which are co-located

at that time. For the RM and the IC data sets, we constructed

several time-varying graphs, made of sequences of co-

location graphs obtained at regular intervals of 5min. For the

dataset of FB communication, the concept of co-location is

not meaningful, since the communication is usually asyn-

chronous and mediated by the Internet. In this case, we con-

struct a contact graph for each hour, where a link between

two nodes does exist if the nodes have exchanged at least

one message in the corresponding interval. We have chosen

these three data sets because they represent different typical

aspects of temporal social networks. First of all, RM pro-

vides a good example of recurrent face-to-face interactions,

like those we experience in our everyday life. At the same

time, IC is a relevant instance of bursty face-to-face interac-

tions, which are typical in gatherings and meetings. Finally,

FB is the prototypal model of on-line communication, which

is different from face-to-face interaction because it does not

require physical co-location to be facilitated.

We start analyzing the distribution of the sizes of the

node temporal in- and out-components in RM, by consider-

ing time-varying graphs obtained from the first half and the

second half of a week. In particular, in Fig. 4, we consider

week 11, which roughly corresponds to the beginning of the

Fall term.

For each node, we report the size of its temporal in- and

out-component during the beginning of the week (WB),

namely from Monday 12:00 a.m. to Thursday 11:59 a.m. (red

circles), and during the end of the week (WE), namely from

Thursday 12:00 p.m. to Sunday 11:59 p.m. (blue squares). As

shown in the figure, during WB almost all the nodes have

temporal in- and out-component of size 72. Conversely, dur-

ing WE, we observe a wider distribution of the sizes of tem-

poral in- and out-components. In particular, in panel (a), we

notice a group of nodes having an in-component of size 53,

another group whose in-component contains around 40

nodes, and other nodes with in-component of size smaller

than 30. Similarly, in panel (b), there is a group of nodes

whose out-component contains around 60 nodes, a second

group of nodes with out-component sizes between 40 and

50, and many other nodes having out-component with less

than 40 nodes. The observed small variability in the size of

node components during WB, is due to the fact that students

and faculty members have more opportunities to meet and

interact at lectures during WB. Even if not all students attend

the same classes, and not all professors teach all the students,

there is a high probability that two individuals would be con-

nected by longer temporal paths. Conversely, during WE,

the students usually meet other students in small groups, and

they usually do not meet professors and lecturers, except for

the classes held on Thursday afternoon and on Friday. As a

result, the size of the in- and out-components during WE

exhibits large fluctuations from node to node. Such fluctua-

tions are lost in a static graph description, which aggregates

all the links independently of their time ordering. In fact, the

static aggregated graphs corresponding, respectively, to WB

and WE, have only one giant connected component which

contain the majority of the nodes, while the remaining nodes

are isolated. As comparison, the size of the giant component

of the aggregated static graphs for WB and WE are also

reported in Fig. 4, respectively, as dashed red line and solid

blue line. Notice that the static aggregated graph correspond-

ing to a co-location time-varying graph is intrinsically undir-

ected. Therefore, the in- and out-components of a node in

this graph coincide and correspond to the component to

which the node belongs. Moreover, in a static aggregated

graph all the links (and consequently also all the paths) are

always available, so that all the nodes in the same connected

component have the same component size. As a result, the

variability in the node connectedness of the time-varying

network, which is evident from the distribution of circles and

squares in Fig. 4, is flattened down in the aggregated static

graphs. In the latter case, all information about network con-

nectedness is represented by a single value, namely the size

of the largest connected component, which does not provide

any information about the mutual reachability of two generic

nodes of such a component. In particular, the size of the

giant connected component of the static aggregated graph is

equal to 74 during WB and to 66 during WE, despite the fact

that in the latter interval the majority of nodes has much

smaller temporal in- and out-components. Similar results are

FIG. 4. Size of the temporal in-component (panel a) and out-component

(panel b) for each of the N¼ 100 individuals during week 11 of the RM data

set. Red circles and blue squares correspond, respectively, to the beginning

of the week (WB) and to end of the week (WE). For comparison, the size of

the largest connected component of the corresponding aggregated static

graph are reported as dashed red line (WB) and solid blue line (WE),

respectively.
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obtained for the temporal in- and out-components of nodes

in IC and FB. However, we do not report here the corre-

sponding figures for brevity.

We now analyze the strongly connected components of

different time-varying graphs obtained from the three data

sets under consideration. In particular, we focus on the Fall

term of RM (namely weeks from 10 to 19 in the original data

set), the last four days of IC (namely days 2 to 5), and the

first twelve weeks of FB (from January to the end of March

2009). In Table I, we report the relevant structural properties

of different affine graphs constructed from RM. In particular,

we consider the time-varying graphs constructed in the first

24 h (Monday) of ten consecutive weeks (from week 10 to

week 19), and the time-varying graphs corresponding to the

whole weeks. At the scale of one day, we observe large fluc-

tuations in the measured values. The number of links K

ranges from 105 in week 12 to 1485 in week 15, while the

number of triangles T is in the range [307, 22 096], with a

mean value around 10 000 and a standard deviation equal to

6932. This variance is due to the fact that, even if the daily

activity of each individual is, on average, almost periodic, in

a particular day we can observe a peculiar temporal pattern

of connections. For instance, some students decide to skip a

class or the lessons are suspended for public holidays. This is

exactly what happens on week 12. Monday of week 12 is

September 11th 2004, and corresponds to the Patriot Day, a

national holiday introduced in the US in October 2001, des-

ignated in memory of the 2977 killed in the September 11th,

2001 attacks. Therefore, we observe the minimum connec-

tivity and the minimum number of triangles on week 12 of

RM, because all teaching activities were suspended, and stu-

dents did not participate to lessons as usual. At the scale of

one week, instead, the number of links and the number of tri-

angles T are much more stable over time: K has a mean value

of 2717 and a standard deviation of 342, while T has a mean

value around 62 000 and a standard deviation around 12 000.

For the graphs of Mondays, we find that the number Ns and

the average size hsi of maximal cliques of the affine graphs

fluctuate over the ten weeks. In particular, we observe rela-

tive smaller values of Ns and hsi during Mondays of weeks

10 to 14 than in weeks 15 to 19, which is probably due to the

relatively lower number of links and triangles. Conversely, if

we consider the size S of the largest strongly connected com-

ponent (i.e., the largest maximal-clique of the affine graph),

we notice that it is not strongly correlated with K and T. For

instance, the size of the largest strongly connected compo-

nent found at Monday of week 11 (S¼ 29) is equal to that

observed at Monday of week 16. However, in week 11 the

affine graph has a much smaller number of links and trian-

gles than in week 16. Moreover, on Monday of week 14 we

have a maximal-clique of size 27, even if the number of links

and triangles is higher than on Monday of week 11.

At the scale of a week, we still observe relevant fluctua-

tions of average size hsi, in the range [39.3, 62.5], but the

number of strongly connected components is stable around

Ns ¼ 10, with a maximum of NS ¼ 15 in week 14. These

results confirm that the size of the largest strongly connected

component of a time-varying graph is determined by the

actual configuration of links and triangles of the correspond-

ing affine graph, and not only by their relative number, and

in general depends on the temporal scale at which we

observe the system.

Examining the results reported in Table I, we notice that

the affine graphs for Mondays of all the weeks of RM admit

a single LSCCT , except in week 19 where two LSCCT s of

size S¼ 38 emerge. For this reason, we also looked at the

number of nodes NU which participate to at least one

LSCCT , and at the number NI of nodes which participate to

all LSCCT s. These numbers correspond, respectively, to the

number of nodes found in the union and in the intersection

of all LSCCT s. An interesting result is that NI ¼ 34 on Mon-

day of week 19, so that 34 nodes participate to both maximal

42-node cliques. These 34 nodes play a very important role

in the structure of the network. If we remove just one of

them, then the resulting affine graph does not have a clique

of size 42 any more, and consequently the size of the LSCCT

of the remaining time-varying graph is smaller than 42. At

the same time, removing all these NI nodes will cause a sig-

nificant reduction in the size of LSCCT s, in the number of

triangles of the affine graph and, consequently, in the number

of SCCT s. The nodes that participate to at least one LSCCT

are important for the diffusion of information throughout

time-varying graphs. In fact, if a message is passed to one of

these NU nodes, then there is a high probability that the mes-

sage could be delivered to all the other NU � 1 nodes in the

TABLE I. Structural properties of the affine graph corresponding to the

time-varying graph of the first 24 h of the week (Monday), and to the whole

weeks in the Fall term of RM. We report the number of links (K), number of

triangles (T), number of maximal cliques (Ns), average size of maximal cli-

ques (hsi), size of the largest maximal clique (S), number of largest maximal

cliques (NS), number of nodes in the union (NU), and in the intersection (NI)

of all largest maximal cliques. The size of the giant component of the corre-

sponding static aggregated graph (C) is reported in the rightmost column.

K T Ns hsi S NS NU NI C

RM (Mondays)

10 646 4341 22 10.3 27 1 27 27 62

11 554 4414 15 9.1 29 1 29 29 54

12 105 307 11 4.1 13 1 13 13 22

13 772 8322 16 10.6 36 1 36 36 59

14 815 6481 20 12.7 27 1 27 27 62

15 1485 22 096 23 23.7 44 1 44 44 67

16 1022 9033 22 16.5 29 1 29 29 70

17 1284 15 572 19 22.3 38 1 38 38 67

18 1417 18 430 16 20.7 44 1 44 44 67

19 1106 13 531 13 20.9 38 2 42 34 60

RM (weeks)

10 2200 45 428 10 44.0 61 1 61 61 69

11 2506 54 500 12 46.8 64 1 64 64 75

12 2598 57 913 12 43.5 66 1 66 66 77

13 2965 71 561 9 62.5 69 1 69 69 79

14 2590 56 826 15 39.3 64 1 64 64 79

15 3321 85 348 9 54.7 74 1 74 74 85

16 2927 69 452 9 53.2 70 1 70 70 80

17 2802 66 247 10 57.9 69 1 69 69 77

18 2298 47 429 12 40.0 61 2 62 60 73

19 2966 70 963 13 53.8 69 3 71 68 81
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union of all LSCCT . Similar results are also observed at the

scale of a week, where almost all graphs have just one

LSCCT , except for week 18 and 19, where we found NS ¼ 2

and NS ¼ 3, respectively.

In the rightmost column of Table I we report, for each

time-varying graph, the size C of the giant component of the

corresponding static aggregated graph. At the scale of one

day, the value of C is always much larger than S, as a conse-

quence of the fact that the static representation of the time-

varying graph systematically overestimates node connected-

ness and paths availability. Conversely, at the scale of one

week, the size of the LSCCT is comparable with the size of

the largest strongly connected component of the aggregated

graph. In fact, when we consider longer time periods, longer

temporal paths appear and, consequently, there is a higher

probability that a large number of pairs of nodes become

mutually reachable. The affine graphs of entire weeks of RM

are almost complete graphs and look similar to each other, so

that we observe a relatively high correlation between S and C

at the scale of one week, even if there is no correlation

between S and C at the scale of a single day. For instance, on

Monday of week 16 we observe the maximum value of C,

namely C¼ 70, while the corresponding time-varying graph

has a largest strongly connected component of size S¼ 29,

which is relatively small compared to the other weeks. Con-

versely, on Monday of week 13 we observe a relatively small

giant component, with C¼ 59 nodes, while the size of the larg-

est strongly connected component at the same day is S¼ 36.

In Table II, we consider the time-varying graphs con-

structed at different hours of the day 3 of IC, and those

obtained for each of the four days of the conference. In

this case, the system at the scale of one day is saturated:

there are just a few strongly connected components and

only one LSCCT , which roughly correspond with the larg-

est connected component of the aggregated graph. In fact,

the dynamics of interactions between participants at a con-

ference differs a lot from the recurrent daily interactions

which are typical in RM. Usually, during a single day of

conference the participants attend different plenary ses-

sions, and consequently they have many opportunities to

be co-located with a large number of other participants for

a relatively long period (at least a couple of hours). There-

fore, all the participants to the same session usually form

a single strongly connected component. However, if we

observe the system at the scale of 1 h, we notice that there

are relevant fluctuations in the number of links and trian-

gles, and in the number and size of strongly connected

components. In the graphs constructed from contacts

recorded before 8:00, we observe a relatively smaller

number of links and triangles and smaller values of S. The

number of links remains almost stable until 17:00, while S

steadily increases up to S¼ 72 at 13:00 (lunch time) when

the size of the LSCCT reaches a maximum. Then, both the

number of triangles and the size of the LSCCT decrease,

and the graph at 20:00 has S¼ 46 and T¼ 16393. Also, at

the scale of 1 h we observe a clear correlation between S

and C, NS ¼ 1 and the average size hsi of SCCT s is com-

parable with the size of the largest strongly connected

component.

Finally, in Table III, we report the structural properties

of the affine graphs constructed from FB. We considered 12

time-varying graphs at the scale of a week and 11 time-

varying graphs at the scale of 14 days, i.e., couples of subse-

quent weeks. In this case, the number of nodes of the affine

graphs was quite large, so we used HPC facilities provided

by the Edinburgh Parallel Computing Center (EPCC), in

order to run a parallelized version of the algorithm described

in Ref. 47 on 128 processors. At the scale of a week, we

observe significant fluctuations in the structural properties of

the affine graphs corresponding to distinct weeks: there is a

high variability in the number of links (K is in the range [43

400, 79 645]) and in the number of triangles (T is in the

range [32 655, 200 061]). However, the size of the LSCCT is

relatively small, compared to the number of nodes in the

graph. In fact, S remains in the range [16, 41], which is quite

surprising for a graph with more than 100 000 nodes. At the

same time, there is no correlation at all neither between S

and C nor between S and T. A similar result is obtained when

considering pairs of adjacent weeks: in this case, the size of

the LSCCT is slightly larger (the maximum is observed for

the 9th pair of weeks, when S¼ 149), but S is still two orders

of magnitude smaller than C. The case of FB is emblematic

of the implicit weaknesses of a component analysis based on

static aggregated graphs. According to traditional static

graphs theory, the giant component of a network constructed

from two adjacent weeks of Facebook communication con-

tains at least 32% of the 100 000 nodes, while a temporal

analysis reveals that less than 0.15% of the nodes are indeed

mutually reachable.

TABLE II. Structural properties of the affine graphs corresponding to time-

varying graphs of different hours of the third day and of each of the four days

of IC. The graph corresponding to each hour includes all the contacts recorded

in that hour, so that, for instance, the first graph is constructed from the

interactions observed from 6:00 to 6 :59. Legend as in Table I.

K T Ns hsi S NS NU NI C

IC (h)

6:00 376 2061 17 8.1 19 2 20 18 44

7:00 793 7514 16 15.8 29 1 29 29 50

8:00 1922 35 472 13 35.8 56 2 57 55 69

9:00 1825 35 598 4 29.5 60 1 60 60 61

10:00 2252 48 459 6 50.8 64 1 64 64 68

11:00 2142 45 510 3 43.0 65 1 65 65 66

12:00 2346 52 394 1 69.0 69 1 69 69 69

13:00 2621 61 270 2 69.0 72 1 72 72 73

14:00 2389 53 297 2 56.5 69 1 69 69 70

15:00 2330 51 382 4 63.5 66 1 66 66 69

16:00 1991 40 153 5 46.6 58 3 60 56 65

17:00 1862 36 165 5 44.2 58 1 58 58 62

18:00 1595 27 979 6 39.3 51 1 51 51 58

19:00 1177 18 424 2 25.5 49 1 49 49 49

20:00 1110 16 393 8 16.0 46 1 46 46 49

IC (days)

2 2920 72 638 4 55.8 75 1 75 75 78

3 2776 67 435 3 50.3 74 1 74 74 76

4 2225 47 287 5 44.0 63 1 63 63 68

5 1602 27 617 9 31.7 53 1 53 53 60
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VI. CONCLUSIONS

Conventional definitions of connectedness and compo-

nents proposed so far have only considered aggregate, static

topologies, neglecting important temporal information such

as time order, duration, and frequency of links. In this work,

we have extended the concepts of connectedness to the case

of time-varying graphs, and we have introduced definitions

of node and graph components which take into account dura-

tion, times of appearance, and temporal correlations of links.

The proposed temporal measures are able to capture variations

and fluctuations in the linking patterns, typical of many real

social and biological systems. As a first application, we have

studied three databases of human contacts, showing that varia-

tions in the pattern of connections among nodes produce rele-

vant differences in the size and number of temporal strongly

connected components. We have pointed out the important role

played by nodes that belong to different strongly connected

components at the same time, and we have also analyzed how

the size of temporal strongly connected components depends

on the observation interval. We hope that our formalism will be

useful to analyze other data sets of time-varying networks that

will be available in the near future, and to better characterize

dynamical processes that take place on these networks, such as

diffusion of information and spreading of diseases.
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