
sensors

Article

Components of Artificial Neural Networks Realized
in CMOS Technology to be Used in Intelligent
Sensors in Wireless Sensor Networks

Tomasz Talaśka 1,2,†

1 Faculty of Telecommunication, Computer Science and Electrical Engineering, UTP University of Science and
Technology, 85-796 Bydgoszcz, Poland; talaska@utp.edu.pl

2 Aptiv Services Poland S.A., 30-399 Kraków, Poland
† Current address: Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland.

Received: 6 November 2018 ; Accepted: 17 December 2018; Published: 19 December 2018 ����������
�������

Abstract: The article presents novel hardware solutions for new intelligent sensors that can be
used in wireless sensor networks (WSN). A substantial reduction of the amount of data sent
by the sensor to the base station in the WSN may extend the possible sensor working time.
Miniature integrated artificial neural networks (ANN) applied directly in the sensor can take over
the analysis of data collected from the environment, thus reducing amount of data sent over the RF
communication block. A prototype specialized chip with components of the ANN was designed
in the CMOS 130 nm technology. An adaptation mechanism and a programmable multi-phase
clock generator—components of the ANN—are described in more detail. Both simulation and
measurement results of selected blocks are presented to demonstrate the correctness of the design.

Keywords: wireless sensor networks; intelligent sensors; artificial neural networks; ASIC; CMOS
technology; low power solutions; parallel data processing

1. Introduction

In typical wireless sensor networks, the role of particular sensors is to register a given signal
from the environment, perform an initial data preprocessing and then to transfer it to a base station
where an artificial neural network (ANN) may be used to carry out a more detailed analysis. Signal
processing performed at the sensor level typically includes an anti-aliasing filtering, analog-to-digital
conversion, and optionally data compression to reduce the amount of data transferred over the wireless
network. One of the problems associated with WSN development is high energy required to transfer
data. Radio-frequency (RF) communication block, used of this purpose, consumes even 80–90% of
total energy consumed by the overall sensor [1,2].

To reduce the described problem, we propose a solution, in which to a much greater extent than
now, data processing will take place directly at the sensor level. The proposed scenario is as follows.
After the analog-to-digital conversion, a data preprocessing takes place inside the sensor to prepare
a training file for an ANN integrated together with other sensor components in a single device. Thus,
subsequent data analysis would be performed inside the sensor. In this situation, only the results
provided by the ANN would be transferred to the base station, which usually means a much smaller
amount of data than in the case of raw data.

An important question here is the one about the profitability of this approach. The problem can
be defined, for example, as follows: Does the energy consumed by the ANN implemented in the
sensor will be smaller than the energy saved by the radio-frequency (RF) transmission block in case of
reduced operation time? This problem has been studied in more detail in previous works on hardware

Sensors 2018, 18, 4499; doi:10.3390/s18124499 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7252-8013
http://dx.doi.org/10.3390/s18124499
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/12/4499?type=check_update&version=2

Sensors 2018, 18, 4499 2 of 19

implemented ANNs, which may be found in the literature [3]. The answer to some extent depends
on the type of the processed data, and thus the data rate. The investigation presented in [3] shows
that optimized parallel ANN, working at data rates at the level of 1000–2000 samples/s dissipates the
power in-between 2 and 30 µW, for 64 and 1000 neurons, respectively, for 10 inputs of the network.
In many real applications, the number of neurons is closer to the lower value. Such data rates are
sufficient, for example, while processing various biomedical data. Even at data rates two orders of
magnitude higher, the ANN would dissipate power not exceeding 200–500 µW. For the comparison,
the RF communication block may dissipate power up to 15 mW, as reported in [1,2].

For the described problem, however, we can look not only from the point of view of the energy
consumption. When the ANN is implemented inside the wireless sensor, then in the overall WSN
we have N distinct ANNs operating in parallel (distributed data processing), where N is the number
of sensors in a given WSN. If data collected by all these sensor would have to be analyzed by the
ANN implemented in a base station, a throughput problem may appear. Such ANN would have to
be multiplexed and switched between data streams coming from particular sensors. An additional
problem appears when there is no synchronization between particular sensors. In other words,
the distributed data processing may be more convenient at all.

One of the problems here is how to implement the ANN, so that it features a small silicon area
and very low energy consumption. Such sensors can be described as intelligent wireless sensors.
A substantial limitation of data transmitted over the wireless network will, in turn, strongly reduce
the energy consumed by the overall sensor. As a result, the sensor to higher degree would be able to
operate with the energy scavenged from the environment. This approach may greatly simplify the
assembly, as well as the operation of such devices over a longer period. Our investigations show that
even large neural networks, implemented in the CMOS technology, operating at data rates of several
thousand samples/s (sufficient in many situations) dissipates the power not exceeding a few µW [4].

In this work, we present a contribution to the described problem. For many years, we have
performed investigations toward efficient transistor level implementations of very low power, parallel
ANNs in which each neuron is represented by a separate circuit. In this paper, we present a prototype
integrated circuit containing novel implementations of main components of such neural networks, as
well as selected components of the overall wireless sensor. The proposed circuits were optimized for the
application in parallel ANNs. To make this possible, their structure had to be substantially simplified,
however not at the expense of a degradation of the behavior of the overall ANN. The fabricated chip
was positively verified by means of laboratory measurements.

In this work, we focus in particular on the adaptation mechanism for such ANN, as well as on
a multiphase programmable clock used to control the ANN. One of the goals was to obtain flexible
solutions, which means, for example, the ease of changing the number of input signals, i.e., the size of
learning patterns. In this approach, the presented clock controls the stage of determining the distance
between vectors of neurons weights and learning patterns. It is then used in the process of adapting
neuron weights. It is also used to control the analog-to-digital converter (ADC) and filters used at the
data preprocessing stage. It is therefore a block of universal application, playing a significant role in
the whole sensor.

1.1. State-of-the-Art Study

1.1.1. Wireless Sensors

In this section, we briefly present the proposed concept of the intelligent wireless sensors. Our goal
is not to completely change the structure of existing wireless sensors, but rather to expand their
functionalities. A typical wireless sensor consists of several components listed below [5–8]:

• front-end sensor used to collect analog data from the environment;
• anti aliasing filter and filters used to remove the noise from the signal;
• ADC used to convert measured analog signal into its digital counterpart; and

Sensors 2018, 18, 4499 3 of 19

• RF communication block.

The requirements as well as the structure of particular components of the sensors depend on the
application for which they are designed. In an in-door environment, for example in some medical
applications [9], the robustness on extreme conditions may be not so important as in the case of the
sensors to be used in the out-door environment, e.g., in automotive applications [10]. On the other
hand, in the case of medical application, a larger miniaturization and lower energy consumption
is required.

The first element in the presented data processing chain is the front-end sensor used to collect
data from the environment. Depending on spectrum of the input data, a low-pass analog filter
may be required to avoid aliasing that may occur during the following operation, which is the
analog-to-digital conversion. The signal after the ADC may be further processed in various ways in
a data processing unit.

In the proposed concept of the intelligent sensors, we assume a direct analysis of the collected
signals by the use of an ANN integrated together with other components of the sensor. To make this
possible, we propose to extend the scope of functionality of the processing unit by adding to it an
artificial neural network and a block responsible for creating a training set. The structure of such
a sensor is shown in Figure 1. The aim of this approach was to move some part of signal processing
tasks from the external base station to the sensor itself. As a result, the sensor would communicate less
frequently with the base station and thus consume less energy.

Since the key block in the described concept is a miniature ANN, the state-of-the-art should be
more related to the neural networks themselves, instead of the sensors.

Figure 1. A general structure of the wireless intelligent sensor.

1.1.2. ANNs Realized at the Transistor Level

There are not many studies in the literature on the implementation of ANNs as specialized
integrated circuits. The existing realizations can be divided into digital and analog. For analog
solutions, only three comparable designs can be indicated, as reported in [4,11,12]. The solutions
reported in [11,12] are mentioned here only as an illustration, as they were designed in much older
technologies (CMOS 2 µm) that are not comparable to currently used technology. In [4] is reported
a fully analog neural network designed by us earlier, in a similar technology (CMOS 180 nm) as the
current prototype (CMOS 130 nm). This ANN consisted of four neurons. Each of them contained
three calculation channels corresponding to three inputs of the ANN and thus three weights per each
neuron. The ANN worked in the current mode. All main components were designed by us from
scratch [13–15]. Design of such NNs is a complex task, as after the fabrication no changes are possible.
The design process requires comprehensive simulations to check as many scenarios as possible [16] to
make the fabricated chip a universal solution.

As regards state-of-the art digital solutions, on the one hand, solutions based on field
programmable gate arrays (FPGA) can be indicated [17–20]. However, such solutions are not
comparable with our works, which results from the fact that in this case the emphasis is put on
different aspects. For example, in our solutions, the miniaturization of the circuit, as well as reduction
of energy consumption, is of paramount feature, while, in the FPGA realization, the emphasis is put
rather on the convenience and time spent on the design, while the two mentioned parameters are
usually of second importance.

On the other hand, to some extent, selected circuits designed for the pattern recognition
applications may be comparable with self-organizing ANNs [21–23]. In such circuits, some components
have a similar structure. For example, the block used to calculate the distance between two vectors of
signals and the block used to determine which internal pattern is the most similar to an input pattern

Sensors 2018, 18, 4499 4 of 19

are the same as in the self-organizing ANNs. However, in these solutions, the adaptation block, which
is one of the subjects of the presented work, is not used. There is also no clock generator described in
these works.

1.2. Technical Background

In this work, we focus on self-organizing ANNs that allow extending the range of capabilities of
existing wireless sensors and make them smarter. Such types of ANNs are used, for example, in the
analysis of air pollutions to predict their levels in some periods. In the case of the proposed hardware
implementation, such ANNs may be applied directly in wireless sensors in smart cities. Another group
of applications includes the analysis of biomedical data, for example: ECG (Electrocardiography) and
EMG (Electromyography) signals. In this case, the miniaturization of such ANNs may lead to efficient
wireless body area networks used in medical health care.

Self-organizing ANNs feature relatively simple structure, which is suitable for low power and low
chip area hardware realizations, as shown in our previous works [3,4,24]. This group of ANNs include
the following learning algorithms: winner takes all (WTA), winner takes most (WTM) and the neural
gas (NG). At most of the computation stages, these algorithms perform similar operations, as shown in
Figure 2. Below are presented the subsequent steps carried out for each new input learning pattern X:

1. Initialize the neuron weights that aims at distribution of the neurons over the overall input
data space.

2. Provide a new learning pattern X to the inputs of all neurons in the ANN (a data normalization
may be required before following stages).

3. Calculate distances (d1, d2, d3, dj, . . . , dN) between the pattern X and the weight vectors W of
all neurons in the ANN (N is the total number of neurons in the NN). The distance may be
computed according to one of typical distance measures, for example the Manhattan (L1 norm)
or the Euclidean (L2 norm) ones [3].

4. Determine the neuron that is located in the closest proximity to a given pattern X. This neuron
becomes the winner. Mathematically, the min(d1, d2, d3, dj, . . . , dN) operation is used at this stage.

5. Determine the neighborhood of the winning neuron (explained in more detail below).
6. Adapt the weights of the winning neuron and of its neighbors (in the WTM and the

NG algorithms).

The adaptation of the neuron weights is performed according to the formula below, which is
similar for all learning algorithms mentioned above:

Wj(k + 1) = Wj(k) + η(k) · G() · [X(k)− Wj(k)] (1)

In this formula, the Wj(k) is the weights vector of a jth neuron, in k cycles (iteration) of the learning
process of the ANN, while η is the learning rate that determines the intensity of the learning process.
The neurons that belong to the winner’s neighborhood, are trained with the intensities determined
by the applied neighborhood function (NF) G() [3,24]. The values of the NF for particular neurons
depend on distances between these neurons and the winning neuron.

Sensors 2018, 18, 4499 5 of 19

Figure 2. Diagram illustrating following steps of the learning algorithm of typical self-organizing
neural networks.

The adaptation block is one of the most important components of the neural network. It computes
an update of particular neuron weights, which are calculated as follows:

∆wi,j(k) = η(k) · G() · [xi(k)− wi,j(k)] (2)

Before the learning process, the values of both the η(k) factor and the G() function are set to be in
the range between 0 and 1, usually closer to 1. Then, during the learning process, these parameters
are gradually reduced to zero. For η(k) = 0, the adaptation process becomes inactive, and the NN
enters the recall phase, in which the values of the weights are then constant. Thanks to setting the
η(k) parameter to be less than 1, the subsequent learning process is convergent. At the beginning of
the learning process, when the η and the G() values are relatively large, the modifications in weight
values are greater than at the end of this process. In real data processing, however, when the input
dataset suddenly changes, the η value should be enlarged again. In the case of hardware realizations of
the neural networks, the changing rate of the η parameter should be additionally matched to various
physical phenomena, especially visible in the case of analog solutions. In such networks, one can
observe, for example, the leakage phenomenon of information from analog memory cells [13]. This
problem may be solved, to some extent, by remaining the η coefficient at a non-zero level even in the
recall phase. Under certain conditions, this allows compensating the the lost of the information. This
problem, however, does not occur in digital networks that are the subject of this work.

The main differences between described three self-organizing ANNs are visible in the structure
of the block responsible for the neighborhood mechanism. In the WTA algorithm, the neighborhood
is not used. In this case, however, the so-called conscience mechanism may be added to allow for
a stimulation of all neurons in the ANN [4]. In the WTM ANN, particular neurons are permanently
linked to their neighbors, which means that distance is determined in the so-called map space
and is independent on the distance in the input data space. In contrast, in the NG algorithms,

Sensors 2018, 18, 4499 6 of 19

the neighborhood is created “ad hoc” based directly on the current positions of particular neurons in
the input data space. This requires sorting the neurons according to their distances to a given learning
pattern X (sort(d1, d2, d3, dj, . . . , dN)).

In the WTM and the NG approaches, a neighborhood function (NF) is required to differentiate
the strength with which the weights of particular neurons are adapted. Theoretical and simulation
studies reported in [25] have shown that a triangular NF is a good approximation of the Gaussian one,
while it requires much simpler hardware. Using this function allows for a substantial simplification of
the overall adaptation mechanism.

One of the important parameters of the presented NNs is the measure of the distance between
successive learning patterns X and vectors of neuron weights of particular neurons. Figure 2 shows
two popular ways to calculate the distance. From the point of view of the learning process of the neural
network, both norms allow obtaining comparable learning results, as shown in our previous works in
this area [3,15]. However, the application of the L1 norm is of great importance from the point of view
of the computational complexity. This in turn is very important in hardware realizations, in which
it directly translates into the circuit complexity. In the case of the L1 norm, only simple operations
of adding, subtracting and calculating the function returning the absolute value of abs() are needed.
In the case of the L2 (Euclidean) approach, it is also necessary to carry out squaring and square root
operations. The two operations in the case of the software realizations are not problematic, but, when
implementing at the transistor level, this issue is important.

The results presented in this work are universal and can be combined with each of the two norms,
as the distances described above are computed at a different (former) stage of the overall learning
process of the ANN.

In the literature dealing with the ANNs, an important factor is the learning time or, in other words,
the convergence time of the learning process. This time depends on various factors. These include
the number of the learning patterns, the number of the inputs of the ANN, the number of neurons in
all layers of the network, the applied learning algorithm, the values of particular parameters of the
adaptation mechanism (η and G() mentioned above), the method of determining the learning error
that is responsible for the appropriate correction of the weights, etc.

In general, ANNs may be divided into those trained with the so-called teacher and those without
the teacher. The ANNs belonging to the first group usually feature more complex learning algorithm,
which translates into a longer convergence time. We focus in this work on the second (self-organizing)
group, as they feature less computation complexity, and thus a simpler hardware structure. In our
former investigations, we observed that in the case of such ANNs, assuming a proper configuration,
the learning process was convergent for a wide range of the input datasets. Some problems with the
convergence were observed in the case of the WTA algorithms with an incorrect initialization [4].

2. Materials and Methods

2.1. Materials

In this section, we briefly present tools and materials used to design and verify the presented
prototype chip. First, we briefly describe the chip and its design process. Then, we provide a description
of the measurement setup. The realized chip has been verified by the use of a custom designed PC
board with on-board programmable devices such as XC9572XL (Xilinx, San Jose, CA, USA). The board
closely cooperates with MyRio card, equipped with Xilinx Z-7010 device that contains two ARM
Cortex-A9 cores, a set of programmable gates and I/O circuits that are equivalent to the Artix-7 FPGA.
It is coupled with 256 MB RAM and 512 MB Flash memories. These devices allow programing the
prototype chip and facilitating a full range of tests. Selected results are presented in next Section.

Sensors 2018, 18, 4499 7 of 19

2.1.1. Chip Design—Cadence Environment

The prototype chip was designed in the CMOS 130 nm technology, in the professional Cadence
environment. Virtuoso tool was used for layout design. Spectre simulator as well as the LVS
(layout-vs.-schematics) module were used for the chip verification. Before the fabrication, the chip was
thoroughly verified by means of corner analysis, in which simulations were carried out for different
values of the process, voltage and temperature conditions. The temperature varied between −40 and
+140 ◦C, and the supply voltages between 0.8 and 1.2 V. The simulations were carried out for standard,
slow and fast transistor models. In Figure 3, we present layout of one of the most important block—a
programmable 10-phase clock generator, used in different parts of the sensor, and at different states of
the learning process of the ANN.

The realized chip is a reconfigurable/programmable device. This means that the parameters of
particular components as well as the connection scheme in the overall chip may be easily reconfigured.
The problem we faced was a limited number of external pins, thus particular digital inputs and outputs
had to be multiplexed in a proper way. This required a development a programmable I/O block,
composed of configuration switches, an address decoder and the memory block. The overall chip area
including the external pads equals 1.4 mm2, with the areas of particular developed components not
exceeding 0.06 mm2.

Figure 3. Layout of the proposed, programmable 10-phase clock generator, implemented in the CMOS
130 nm technology. The silicon area equals 0.0058 µ

2, with the sizes of 105 × 55 µ.

2.1.2. Measurement Setup

The main element of the measurement setup is the PCB board with the socket used to simplify
the mounting procedure. The board also includes a dedicated power supply system, a digital I/O
connector, a cross-over matrix in the form of a CPLD circuit, and I/V and V/I converters and buffers
for analog lines.

The PCB is equipped with an appropriate measuring equipment. As a front-end measurement
device, we used MyRio 1950 measuring card that operates under the control of the LabView (LV)
environment. The card by using a built-in FPGA and the FIFO DMA registers allows exchanging
digital measurement data with the tested device, with a step of 25 ns. It is also used to trigger other
measurement components, thus allowing for a joint operation of different devices such as oscilloscopes
and generators, while maintaining a common “timeline”. Immediately before the measurement, the LV
configures the devices and fills the buffers. After the measurement, data obtained from the devices
are collected, unified, adapted to the common timeline and saved to a csv file, along with the headers.
Such files may be immediately further processed using such tools as, for example, dataplot or Microsoft
Excel. The measuring setup is additionally equipped with a three-output programmable, precise DC
power supply, and, depending on the type of measurement, also with Textronix oscilloscopes and
generators. However, it should be remembered that the type and quantity of equipment required
at the measurement station changes and is adapted on an ongoing basis depending on the type of
measurement. The measuring setup is shown in Figure 4.

Sensors 2018, 18, 4499 8 of 19

Figure 4. Measurement setup composed of PC board, designed from scratch for the verification of
the realized chip prototype: (left) a new, printed circuit board (PCB) for the implemented integrated
circuit; and (right) the overall measurement setup.

2.2. Methods—Solutions for the Adaptation Mechanism and Clock Generator

The proposed digital ANN operates in a mixed synchronous-asynchronous mode. This means that
part of the operations is performed sequentially, but asynchronous processing is introduced wherever
possible, which allows for significant simplification of the structure of the used circuits. The network
works with multi-bit signals, which means that each input datum xi, as well as the corresponding
neuron weight wi,j, is a multi-bit number (usually 16-bit) [26]. Lower resolutions, however, may be
used to test the proposed solution. Providing, in parallel, a full learning pattern into the network
(X = {x1, x2, . . . , xn}) is impractical, considering various possible values of n in X(k) and Wj(k) signal
(where n is the dimension of the learning pattern). For this reason, particular components of the X

pattern are fed sequentially into the network, with all bits of a given component xi provided in parallel.
For example, for a ANN processing 10-element learning patterns X, only 10 clock cycles are needed.
Diagram of the proposed adaptation mechanism is shown in Figure 5.

Figure 5. Diagram of the proposed adaptation mechanism.

Sensors 2018, 18, 4499 9 of 19

In the first step, described above, the distances between the neuron weights and the given learning
pattern X are calculated, according to the so-called Manhattan distance measure:

DL1(X(k), Wj(k)) =
n

∑
i=1

∣

∣xi(k)− wi,j(k)
∣

∣, (3)

This means that for each pair (xi(k), wi,j(k)) the signal |xi(k)− wi,j(k)| is calculated, which is then
stored in the internal memory of a given neuron. The subtraction operation is based on a multi-bit full
subtractor (MBFS), in which the borrow out bit Bi,j, at the most significant 1-bit full subtractor (1BFS)
in the MBFS indicates which of the input signals (x or w) is larger. This information is also stored in
the memory of a given neuron. The memory cells containing particular neuron weights wi,j, and the
computed |xi − wi,j| factors are indexed with the use of the proposed programmable multiphase clock.
It is worth emphasizing here that the described operations are performed in parallel in all neurons
of the ANN. In other words, for an n-element learning pattern X, only n clock phases are required to
calculate the distances of all neurons in the network to a given X. At the next stage of the learning
algorithm, the winning neuron is determined. On the basis of the position of this neuron, the ANN
then determines which neurons belong to its neighborhood and what is their distance to this neuron.
The way the neighborhood is defined depends on the applied learning algorithm of the ANN. Based
on the distance, the value of the learning rate, η, is calculated for each neuron in the ANN. Then, based
on the previously stored |xi − wi,j| factors, the adaptation process is carried out, as described below:

wi,j(k + 1) = wi,j(k) + (Bi,j − Bi,j) · Pi,j(k) · |xi(k)− wi,j(k)|, (4)

where Pi,j(k) is the product of learning rate η and the so-called neighborhood function, which
determines the strength of the adaptation depending on the distance of a given neuron to the winning
neuron. The adaptation process is also carried out in an iterative manner. The number of iterations is
equal to the number of iterations from the first step described above (n). The same clock generator is
used at this stage to control this process. At the hardware level, in Equation (4) very simple summing,
subtraction, negation and multiplication operations are used. Since the Pi,j(k) factor is a fractional
numbers, the multiplication is carried out in two steps. First, the |xi − wi,j| is multiplied by the
numerator of this number. Since the denominator is one of the powers of the number 2, the division
is carried out simply by shifting all bits to the right, by a given number of bits. Such operation is
performed by a simple asynchronous circuit composed of a field of switches.

The multi-bit clock generator, described below, is of key importance in the described steps of
distance calculation and the adaptation process.

2.3. Adaptation Mechanism

The structure of the proposed adaptation mechanism in general corresponds to the adaptation
process described above and expressed by Equation (4). For each clock cycle, following components
of the X pattern and the vector of neuron weights are provided to the inputs of this block. The final
outcome is then computed in an asynchronous fashion. This results from the fact that particular
components of this mechanism (Multi-bit full adder (MBFA), Multi-bit full subtractor (MBFS), and
multiplier) are asynchronous circuits, leading to a very small delay. This allows obtaining a very high
data rate.

A first operation performed by the adaptation system is the subtraction of the X and the W signal
(in following pairs xi − wi,j). The result of this operation can be positive or negative. In the second
case, if the buffer length is too small (4 bits in this example case), then in two’s complement code the
result is incorrect. This problem propagates into the subsequent multiplication operation.

For example, let us consider an example case in which xi = 3 and wi,j = 13. The subtraction result
in this case equals −10. In the two’s complement code, assuming the buffer length of 4 bits, we get

Sensors 2018, 18, 4499 10 of 19

“0100”. Multiplying this number by η = 8/16 leads (after the shift by 4 bits, required in this case) to the
value of “0010”, which corresponds to the number of 2.

To avoid this problem, after the subtraction operation, the absolute value (abs) of the xi(k)−

wi,j(k) factor is determined. The sign of this factor is stored in a memory cell. As a result, the
multiplication may always be performed with positive numbers. The result of the multiplication
operation, Pi,j(k) · |xi(k)− wi,j(k)|, depending on the stored sign is then changed accordingly. In the
case when the sign stored in memory is negative, the sign of the overall result is changed, which is
carried out by subtracting the calculated result from the 0 number. In the situation, in which the sign is
positive, the result remains unchanged. The EXOR gates used in the circuit are responsible for a proper
interpretation of the signs and to ensure a proper operation of the overall adaptation mechanism.

It is worth noting that, for (xi(k)− wi,j(k)) < 0, the EXOR gates behave as typical NOT gates. This
allows easily performing either the addition or the subtraction operation, depending on the situation.

The η(k) · G() · (xi(k) − wi,j(k)) signal is, in the last step of the adaptation process, added to
a given wi,j(k) weight of a given neuron. The resultant wi,j(k + 1) substitutes then, in the memory,
the previous wi,j(k) value. Storing the new value into the memory takes place at the falling edge of the
clock signal.

Particular xi and wi,j signals are supplied sequentially to the described adaptation block (in each
neuron). In this case, the use of a fully parallel approach would be ineffective, as it would require
a very large number of external pads of the chip. For example, for ten x input signals and 16-bit
resolution, it would be necessary to use 160 pads.

Programmable Multi-Phase Clock Generator

The proposed multi-phase clock generator has been implemented inside the chip, to reduce the
number of external pins of the chip. Circuits of this type are usually implemented using a chain of
D-flip flops (DFFs) [27–32]. The advantage of such approach is the high immunity of the parameters
of the clock to external conditions. However, there are also some disadvantages of such solutions.
A typical DFF is composed of 26 transistors (six logic NAND gates). Two of these gates are switched
over, even if there is no change at the D input of the DFF. These gates are switches over twice, i.e.,
during the raising and the falling edges of the controlling clock signal. In a typical multiphase clock
generator, the input of only one DFF equals “1”, however the power is dissipated by all DFFs in the
chain. As a result, such clocks consume relatively large power.

In this paper, we propose a clock generator that is based on NOT logic gates and switches,
connected alternately in series. In this approach, the logical values are stored in parasitic capacitances
of particular NOT gates that serve as short-time memory cells. In the realized project, the chain of the
switches and NOT gates has been supplemented with additional logic gates that allow determining
the clock behavior. As a result, we can select the number of clock phases and the position of the first
phase in the clock cycle. Additionally the filling ratio (pulse width) may be determined as well.

The proposed clock generator is shown in Figure 6. It is composed of a chain of 10 blocks denoted
as UCLK (unit clock cell). Selected outputs of the UCLK blocks are fed to an nine-input NOR gate.
In the situation, in which the outputs of all UCLK block are equal to “0”, the NOR gate generates
a new “1” impulse that is provided to the chain, and then propagated between subsequent UCLK
blocks, according to subsequent clk1/clk2 pulses. Each UCLK block provides complementary “Nclkx”
and “Pclkx” clock signals, as switches in the ANN are realized as transmission gates, composed of the
NMOS and PMOS transistors, connected in parallel.

The structure of the first block in the chain (UCLK_IN) is a bit different than of remaining UCLK
blocks, as this circuit plays a different role. It allows providing the generated “1” impulse not necessary
to the first UCLK block. For this reason, the output of this block is connected to all UCLK blocks in
parallel. The UCLK block that receives the “1” impulse is determined by the sequence of the Bsi9–Bsi0
bits. These bits also determine the number of the clock phases. To explain how it works in detail, let us

Sensors 2018, 18, 4499 11 of 19

consider an example sequence of Bsi9–Bsi0 bits of 1011111011. The first appearance of the “0” signal
indicates the first phase, while the second occurrence of the “0” signal indicates the last one.

Such a programming method was obtained by an appropriate structure of the UCLK blocks,
shown in Figure 7. The advantage of this approach is that reprogramming the clock so that it performs
a multi-phase cycle with different numbers of phases, requires changing only 2 or 4 bits, regardless of
the maximum number of the phases. In this prototype, the circuit allows obtaining 10 phases, however,
by extending the length of the chain of the UCLK blocks and by increasing the number of the inputs of
the NOR gate, the clock may be very easily adapted to many phases. Regardless of the length of the
chain, reprogramming the clock will always require the same amount of steps.

Figure 6. General structure of the proposed 10-phases clock generator.

(a) (b)

Figure 7. Diagrams of the (a) UCLK and (b) UCLK_IN sections used in the realized multi-phase clock.

3. Results

In this section, we present selected results obtained during the simulations, as well as the
measurements of the prototype chip described in previous sections. We mainly focus on the adaptation
mechanism along with the controlling multiphase clock generator—the topic of the presented work.
In the case of the adaptation mechanism, we present the simulation results (see Figure 8), while the
behavior of the clock generator is demonstrated by means of both the simulations and the laboratory
measurements. Main parameters that may be programmed in the case of the clock generator are the
number of the clock phases in a given multiphase cycle (see Figure 9), as well as the width of particular
clock pulses.

Sensors 2018, 18, 4499 12 of 19

(a)

(b)

(c)

Figure 8. Cont.

Sensors 2018, 18, 4499 13 of 19

(d)

Figure 8. Simulations of the adaptation mechanism for different values of the Pi,j(k) value: (a) an
example sequence of the input signals xi(k) and corresponding neuron weights wi,j(k); (b–d) values
of the updated neuron weights after the adaptation process wi,j(k + 1) for: (b) Pi,j(k) = 4/16;
(c) Pi,j(k) = 8/16; and (d) Pi,j(k) = 14/16.

(a)

(b)

Figure 9. Cont.

Sensors 2018, 18, 4499 14 of 19

(c)

Figure 9. Selected simulation results, illustrating the performance of the designed multi-phase clock,
controlled by a simple two-phase external clock: (a) selected pulse waveforms for an example case of
10 phases; (b) supply current proportional to power dissipation; and (c) supply current—the worst case.

3.1. Adaptation Mechanism

Figure 8 illustrates the adaptation process performed by the proposed adaptation mechanism.
The top diagram presents subsequent input signals xi(k) and corresponding neuron weights wi,j(k).
The following three diagrams of Figure 8 show updated weights computed by the proposed circuit.
The learning process is presented for different values of the Pi,j(k) factor: 4/16, 8/16, and 14/16.
The multiplication by these numbers is performed as a multiplication by the numerator of this number,
followed by shifting the resultant product by a given number of bits to the right. It is worth noting that,
in the situations when Pi,j(k) equals 4/16 (→ 1/4) or 8/16 (→ 1/2), the multiplication operation may
be omitted (1 in numerator). In this case, the |xi − wi,j| term is shifted by different numbers of bits.

Two signals are shown for each simulation presented in Figure 8. The top one is the
∆wi,j(k) = P(k) · [xi(k)− wi,j(k)] signal, which directly results from Equation (2), while the bottom
one is the w(k)± ∆w(k), i.e., the weight signal after the adaptation wi,j(k + 1).

3.2. Clock Generator

Selected simulation results of the clock generator are shown in Figure 9. Figure 9a illustrates
particular input and output signals. Ten top waveforms are subsequent phases generated by the clock.
The following two waveforms are two phases of an external clock that controls the designed block.
The reset signal, shown below the clock pulses, is used to break a given multiphase cycle. This signal
causes that a new cycle starts with the following impulse of the external clock. The bottom waveform
is the external “fill” signal that controls the width of all clock phases. Figure 9b,c presents a total
supply current, IDD, for the supply voltage of 1.2 V.

Measurements of the clock generator are shown in Figures 10 and 11. Figure 10 illustrates the
operation of the clock generator for different numbers of phases: 10, 7 and 3, respectively. The
programming sequences in particular cases (bits Bsi9–Bsi0) are as follows: (Figure 10a) “0111111111”;
(Figure 10b) “0111111011”; and (Figure 10c) “0110111111”. In all these cases, the first occurrence of
the “0” value at first position starts the multiphase cycle from CLK0 phase. The second occurrence of
the “0” value stops the cycle, thus starting a new cycle. Case (a) illustrates a full set of clock phases
(10 clock phases), thus the second “0” is not required in this case. Figure 11 shows the clock waveforms
for different widths, for an example case of five clock phases (programming sequence: “0111101111”).

Sensors 2018, 18, 4499 15 of 19

(a)

(b)

(c)

Figure 10. Measurement results of the implemented clock generator for selected numbers of clock
phases in a single cycle: (a) 10; (b) 7; and (c) 3.

Figure 11. Measurement results of the clock generator with five phases, for different widths of the
clock pulses (fill ratio).

Sensors 2018, 18, 4499 16 of 19

4. Discussion

The presented results show that both the adaptation mechanism and the clock generator work
correctly, in line with earlier assumptions. The investigation results, presented in the previous section,
show that the realized components of the ANN are flexible solutions. It is especially important in the
case of the clock generator, which in this way may be easily adapted to different applications. Here,
it serves as one of the key blocks of the ANN realized at the transistor level.

4.1. Clock Generator

Since in wireless sensors the power consumption is one of the key parameters, in our designs,
we put a special attention to this parameter. Figure 9 shows the supply current waveform over time.
The current pulses are generated only during switching the clock to a next phase. In the worst case
scenario, when a new “1” impulse is generated by the NOR gate, the value of the current peak equals
ca. 175 µA, while an average value during the overall switching period lasting 4 ns does not exceed
50 µA in this case. For the supply voltage of 1.2 V, it means about 240 fJ of energy consumed in
this time, in the worst case. In most cases, the consumed energy does not exceed 60–70 fJ per one
clock phase.

Another important parameter is the available circuit speed. In the measurements, due to the
limitations of the available measurement equipment, the clock was tested up to 20 MHz. In simulations,
the achievable speeds were even 150–200 MHz. This, however, requires confirmation by measurements
on more advanced measuring equipment.

We compared the results obtained during the tests of the realized clock generator with similar
state-of-the art solutions. A comparison is shown in Table 1. To enable a more straightforward
comparison, we defined a Figure-of-Merit (FOM), which is the achievable data rate over the power
dissipation. Thus, the higher is the value of the FOM, the better is the result. The obtained data rate is
relatively small, for example, in the comparison with [32] circuit, however proportionally smaller is
also the power dissipation. Thus, the obtained FOM is slightly better than in [32] and substantially
better than in other presented cases. It is mostly due to to the substitution of DFFs with dynamic
memory cells realized on parasitic capacitances of NOT gates.

Table 1. Performance comparisons with other reported clock generators.

Ref. fmax[GHz] P[mW] VDD[V] FOM [1/nJ] Technology CMOS

[30] 1.2 34 1.8 0.035 0.18 µm
[32] 40 45 1.0 0.89 0.09 µm
[33] 0.125 32 1.8 0.004 0.18 µm
[34] 1.8 86.6 3.3 0.021 0.35 µm
[35] 2.0 21 1.2 0.095 0.13 µm

This work 0.15 0.06 1.2 2.5 0.13 µm

4.2. Adaptation Mechanism

The possibility of adjusting the width of the clock phase is an important feature, which is useful
from the point of view of the adaptation mechanism. This time should be set so that the adaptation
system can perform all necessary operations. At the end of a given clock phase (falling edge), a given
weight, i, in a given neuron, j, is updated, which means that wi,j(k) is substituted with a new signal
wi,j(k + 1). For larger signal resolutions, the data processing time is slightly longer.

To facilitate the presentation of the results obtained on the basis of the simulations of the adaptation
mechanism, the resolutions of the x and the w signals have been set to 4. It is sufficient to verify the
concept of the circuit. Nevertheless, simulations were carried out also for the resolutions of 8 and
16 bits. Any resolution may be obtained easily by an extension of the lengths of the used summing and
subtracting circuits.

Sensors 2018, 18, 4499 17 of 19

In all simulations, to facilitate the interpretation of the results, the equivalent decimal values are
also provided, which correspond to their 4-bit counterparts. It should be noted that the ∆w(k) term is
negative when x < w. In these situations, the 4-bit binary signal is expressed in two’s complement code.

5. Conclusions

In this work, we present two circuits, crucial from the point of view of the implementation of
artificial neural networks at the transistor level. Such networks can be used in intelligent wireless
sensors, which, thanks to the internal processing and analysis of data collected from the environment,
will be able to contact the base station less frequently.

Designed circuits—a programmable multi-phase controlling clock and the adaptation block
for neuron weights—allows in the next step to build an overall neural network with full learning
opportunities at the silicon level. Earlier, as part of our work, we had already designed other
components of such networks.

In the paper, we present a prototype specialized chip designed in the CMOS technology. The chip
was verified by means of both transistor-level simulations and laboratory measurements. In addition
to the described ANN blocks, it also includes other components of wireless sensors, such as an
analog-to-digital converter, and a programmable input/output block. Thanks to this, now we can also
build an overall prototype intelligent wireless sensor. Remaining components of such sensors, such as
a RF communication block, will be based on state-of-the art solutions described in the literature.

Funding: This research was funded by UTP University of Science and Technology, 85-796 Bydgoszcz, Poland.
http://www.utp.edu.pl/en/.

Acknowledgments: The author want to say Thank You to the anonymous reviewers for their valuable feedback.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CMOS Complementary Metal Oxide Semiconductor
WSN Wireless Sensor Network
ANN Artificial Neural Network
WTA Winner Takes All
WTM Winner Takes Most
NG Neural Gas
NF Neighborhood Function
FPGA Field Programmable Gate Array
ADC Analog to Digital Converter
SAR ADC Successive Approximation Analog to Digital Converter
RF Radio Frequency
CPLD Complex Programmable Logic Device
PCB Printed Circuit Board
MBFA Multi Bit Full Adder
MBFS Multi Bit Full Subtractor

References

1. Yan, J.; Zhou, M.; Ding, Z. Recent Advances in Energy-Efficient Routing Protocols for Wireless Sensor
Networks: A Review. IEEE Access 2016, 4, 5673–5686. [CrossRef]

2. Srbinovska, M.; Dimcev, V.; Gavrovski, C. Energy consumption estimation of wireless sensor networks in
greenhouse crop production. In Proceedings of the IEEE EUROCON 2017–17th International Conference on
Smart Technologies, Ohrid, Macedonia, 6–8 July 2017.

http://www.utp.edu.pl/en/
http://dx.doi.org/10.1109/ACCESS.2016.2598719

Sensors 2018, 18, 4499 18 of 19

3. Długosz, R.; Kolasa, M.; Pedrycz, W.; Szulc, M. Parallel programmable asynchronous neighborhood
mechanism for Kohonen SOM implemented in CMOS technology. IEEE Trans. Neural Netw. 2011,
22, 2091–2104. [CrossRef] [PubMed]

4. Długosz, R.; Talaśka, T.; Pedrycz, W.; Wojtyna, R. Realization of the conscience mechanism in CMOS
implementation of winner-takes-all self-organizing neural networks. IEEE Trans. Neural Netw. 2010,
21, 961–971. [CrossRef] [PubMed]

5. Morrison, D.; Ablitt, T.; Redouté, J.M. Miniaturized Low-Power Wireless Sensor Interface. IEEE Sens. J. 2015,
15, 4731–4732. [CrossRef]

6. Chen, S.-L.; Lee, H.-Y.; Chen, C.-A.; Huang, H.-Y.; Luo, C.-H. Morrison, D.; Ablitt, T.; Redouté, J.M. Wireless
Body Sensor Network With Adaptive Low-Power Design for Biometrics and Healthcare Applications.
IEEE Syst. J. 2009, 3, 398–409. [CrossRef]

7. Gao, D.; Fu, Y. A fully integrated SoC for large scale wireless sensor networks in 0.18 µm CMOS.
In Proceedings of the IET International Conference on Wireless Sensor Network (IET-WSN 2010), Beijing,
China, 15–17 November 2010; pp. 90–94.

8. Somov, A.; Karpov, E.F.; Karpova, E.; Suchkov, A.; Mironov, S.; Karelin, A.; Baranov, A.; Spirjakin, D.
Compact Low Power Wireless Gas Sensor Node With Thermo Compensation for Ubiquitous Deployment.
IEEE Trans. Ind. Inform. 2015, 11, 90–94. [CrossRef]

9. Banach, M.; Wasilewska, A.; Długosz, R.; Pauk, J. Novel techniques for a wireless motion capture system
for the monitoring and rehabilitation of disabled persons for application in smart buildings. J. Technol.

Health Care 2018, 26, 671–677. [CrossRef] [PubMed]
10. Banach, M.; Długosz, R. Real-time Locating Systems for Smart City and Intelligent Transportation

Applications. In Proceedings of the IEEE 30th International Conference on Microelectronics (Miel 2017), Nis,
Serbia, 9–11 October 2017; pp. 231–234.

11. Macq, D.; Verleysen, M.; Jespers, P.; Legat, J.-D. Analog implementation of a Kohonen map with onchip
learning. IEEE Trans. Neural Netw. 1993, 4, 456–461. [CrossRef] [PubMed]

12. Peiris, V. Mixed Analog Digital VLSI Implementation of a Kohonen Neural Network. Ph.D. Thesis, Dépt.
Électr., Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland, 2004.

13. Długosz, R.; Talaśka, T.; Pedrycz, W. Current-Mode Analog Adaptive Mechanism for Ultra-Low-Power
Neural Networks. IEEE Trans. Circuits Syst. II Express Briefs 2011, 58, 31–35. [CrossRef]

14. Długosz, R.; Talaśka, T. Low power current-mode binary-tree asynchronous min/max circuit. Microelectron. J.

2010, 41, 64–73. [CrossRef]
15. Talaśka, T.; Kolasa, M.; Długosz, R.; Pedrycz, W. Analog Programmable Distance Calculation Circuit for

Winner Takes All Neural Network Realized in the CMOS Technology. IEEE Trans. Neural Netw. Learn. Syst.

2016, 27, 661–673. [CrossRef] [PubMed]
16. Kolasa, M.; Długosz, R. An Advanced Software Model for Optimization of Self-Organizing Neural Networks

Oriented on Implementation in Hardware. In Proceedings of the International Conference Mixed Design of
Integrated Circuits and Systems (MIXDES), Torun, Poland, 25–27 June 2015; pp. 266–271.

17. de Sousa, M.A.; Pires, R.; Perseghini, S.; Del-Moral-Hernandez, E. An FPGA-based SOM circuit architecture
for online learning of 64-QAM data streams. In Proceedings of the International Joint Conference on Neural
Networks (IJCNN), Rio, Brazil, 8–13 July 2018; pp. 1–8.

18. Angelo de Abreu de Sousa, M.; Del-Moral-Hernandez, E. Comparison of three FPGA architectures for
embedded multidimensional categorization through Kohonen’s self-organizing maps. In Proceedings of the
International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4.

19. Hikawa, H.; Kaida, K. Novel FPGA Implementation of Hand Sign Recognition System With SOM–Hebb
Classifier. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 153–166. [CrossRef]

20. Długosz, R.; Kolasa, M.; Szulc, M. A FPGA implementation of the asynchronous, programmable
neighbourhood mechanism for WTM Self-Organizing Map. In Proceedings of the International Conference
Mixed Design of Integrated Circuits and Systems (MIXDES), Gliwice, Poland, 16–18 June 2011; pp. 258–263.

21. Oike, Y.; Ikeda, M.; Asada, K. A High-Speed and Low-Voltage Associative Co-Processor with Exact
Hamming/Manhattan-Distance Estimation Using Word-Parallel and Hierarchical Search Architecture.
IEEE J. Solid-State Circuits 2004, 39, 1383–1387. [CrossRef]

http://dx.doi.org/10.1109/TNN.2011.2169809
http://www.ncbi.nlm.nih.gov/pubmed/22049367
http://dx.doi.org/10.1109/TNN.2010.2046497
http://www.ncbi.nlm.nih.gov/pubmed/20421180
http://dx.doi.org/10.1109/JSEN.2015.2442235
http://dx.doi.org/10.1109/JSYST.2009.2032440
http://dx.doi.org/10.1109/TII.2015.2423155
http://dx.doi.org/10.3233/THC-182514
http://www.ncbi.nlm.nih.gov/pubmed/29843290
http://dx.doi.org/10.1109/72.217188
http://www.ncbi.nlm.nih.gov/pubmed/18267749
http://dx.doi.org/10.1109/TCSII.2010.2092827
http://dx.doi.org/10.1016/j.mejo.2009.12.009
http://dx.doi.org/10.1109/TNNLS.2015.2434847
http://www.ncbi.nlm.nih.gov/pubmed/26087501
http://dx.doi.org/10.1109/TCSVT.2014.2335831
http://dx.doi.org/10.1109/JSSC.2004.831805

Sensors 2018, 18, 4499 19 of 19

22. Sasaki, S.; Yasuda, M.; Mattausch, H.J. Digital Associative Memory for Word-Parrallel
Manhattan-Distance-Based Vector Quantization. In Proceedings of the European Solid-State Circuit
conference (ESSCIRC 2012), Bordeaux, France, 17–21 September 2012; pp. 185–188.

23. Mattausch, H.J.; Imafuku, W.; Kawabata, A.; Ansari, T.; Yasuda, M.; Koide, T. Associative Memory
for Nearest-Hamming-Distance Search Based on Frequency Mapping. IEEE J. Solid-State Circuits 2012,
47, 1448–1459. [CrossRef]

24. Talaśka, T.; Długosz, R. Analog, parallel, sorting circuit for the application in Neural Gas learning algorithm
implemented in the CMOS technology. Appl. Math. Comput. 2018, 319, 218–235. [CrossRef]

25. Kolasa, M.; Długosz, R.; Pedrycz, W.; Szulc, M. A programmable triangular neighborhood function for
a Kohonen self-organizing map implemented on chip. Neural Netw. 2012, 25, 146–160. [CrossRef] [PubMed]

26. Długosz, R.; Kolasa, M.; Szulc, M.; Pedrycz, W.; Farine, P.A. Implementation Issues of Kohonen
Self-Organizing Map Realized on FPGA. In Proceedings of the European Symposium on Artificial Neural
Networks Advances in Computational Intelligence and Learning, Bruges, Belgium, 25–27 April 2012;
pp. 633–638.

27. Gao, X.; Klumperink, E.A.M.; Nauta, B. Low-Jitter Multi-phase Clock Generation: A Comparison between
DLLs and Shift Registers. In Proceedings of the 2007 IEEE International Symposium on Circuits and Systems,
New Orleans, LA, USA, 27–30 May 2007; pp. 2854–2857.

28. Liu, C.C.; Chang, S.J.; Huang, G.Y.; Lin, Y.Z. A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor
Switching Procedure. IEEE J. Solid-State Circuits 2010, 45, 731–740. [CrossRef]

29. Długosz, R.; Pawłowski, P.; Dąbrowski, A. Multiphase clock generators with controlled clock impulse width
for programmable high order rotator SC FIR filters realized in 0.35 µm CMOS technology. In Proceedings of
the Microtechnologies for the New Millennium 2005, Sevilla, Spain, 9–11 May 2005; Volume 1056.

30. Shin, D.; Koo, J.; Yun, W.J.; Choi, Y.; Kim, C. A fast-lock synchronous multiphase clock generator based on
a time-to-digital converter. In Proceedings of the IEEE International Symposium on Circuits and Systems
(ISCAS), Taipei, Taiwan, 24–27 May 2009; pp. 1–4.

31. Dong, L.; Qiao M.; Fei, L. A 10 bit 50 MS/s SAR ADC with partial split capacitor switching scheme in
0.18 µm CMOS. J. Semiconduct. 2016, 37, 015004

32. Chuang, C.N.; Liu, S.I. A 40GHz DLL-Based Clock Generator in 90nm CMOS Technology. In Proceedings
of the 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, Taipei, Taiwan,
11–15 February 2007; pp. 178–180.

33. Liu, T.-T.; Wang, C.-K. A 1–4 GHz DLL Based Low-Jitter Multi-Phase Clock Generator for Low-Band
Ultra-Wideband Application. In Proceedings of the IEEE Asia-Pacific Conference on Advanced System
Integrated Circuits(AP-ASIC2004), Fukuoka, Japan, 5 August 2004; pp. 330–333.

34. Kim, J.-H.; Kwak, Y.-H.; Kim, M.; Kim, S.-W.; Kim, C. A 120-MHz–1.8-GHz CMOS DLL-Based Clock
Generator for Dynamic Frequency Scaling. IEEE J. Solid-State Circuits 2006, 41, 2077–2082. [CrossRef]

35. Kim, Y.; Pham, P.-H.; Heo, W.; Koo, J. A low-power programmable DLL-based clock generator with
wide-range anti-harmonic lock. In Proceedings of the International SoC Design Conference (ISOCC), Busan,
Korea, 22–24 November 2009; pp. 520–523.

c© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSSC.2012.2190191
http://dx.doi.org/10.1016/j.amc.2017.02.030
http://dx.doi.org/10.1016/j.neunet.2011.09.002
http://www.ncbi.nlm.nih.gov/pubmed/21964449
http://dx.doi.org/10.1109/JSSC.2010.2042254
http://dx.doi.org/10.1109/JSSC.2006.880609
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	State-of-the-Art Study
	Wireless Sensors
	ANNs Realized at the Transistor Level

	Technical Background

	Materials and Methods
	Materials
	Chip Design—Cadence Environment
	Measurement Setup

	Methods—Solutions for the Adaptation Mechanism and Clock Generator
	Adaptation Mechanism

	Results
	Adaptation Mechanism
	Clock Generator

	Discussion
	Clock Generator
	Adaptation Mechanism

	Conclusions
	References

