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INTRODUCTION

Genome-wide association studies (GWAS) aim to 

fi nd QTL which are associated with the same marker 

across a population. Therefore, GWAS need to fi lter out 

signals due to population structure, whether they are due 

to linkage or spurious linkage disequilibrium (LD), to 

avoid false positives (e.g., Freedman et al., 2004; Marchi-

ni et al., 2004). In contrast to GWAS, the aim of genomic 

prediction is to predict breeding values from dense SNP 

data (Meuwissen et al., 2001; Goddard and Hayes, 2009). 
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ABSTRACT: In genome-wide association studies, 

failure to remove variation due to population structure 

results in spurious associations. In contrast, for predic-

tions of future phenotypes or estimated breeding values 

from dense SNP data, exploiting population structure 

arising from relatedness can actually increase the accu-

racy of prediction in some cases, for example, when the 

selection candidates are offspring of the reference popu-

lation where the prediction equation was derived. In 

populations with large effective population size or with 

multiple breeds and strains, it has not been demonstrated 

whether and when accounting for or removing variation 

due to population structure will affect the accuracy of 

genomic prediction. Our aim in this study was to deter-

mine whether accounting for population structure would 

increase the accuracy of genomic predictions, both with-

in and across breeds. First, we have attempted to decom-

pose the accuracy of genomic prediction into contribu-

tions from population structure or linkage disequilib-

rium (LD) between markers and QTL using a diverse 

multi-breed sheep (Ovis aries) data set, genotyped for 

48,640 SNP. We demonstrate that SNP from a single 

chromosome can achieve up to 86% of the accuracy for 

genomic predictions using all SNP. This result suggests 

that most of the prediction accuracy is due to population 

structure, because a single chromosome is expected to 

capture relationships but is unlikely to contain all QTL. 

We then explored principal component analysis (PCA) 

as an approach to disentangle the respective contribu-

tions of population structure and LD between SNP and 

QTL to the accuracy of genomic predictions. Results 

showed that fi tting an increasing number of principle 

components (PC; as covariates) decreased within breed 

accuracy until a lower plateau was reached. We specu-

late that this plateau is a measure of the accuracy due to 

LD. In conclusion, a large proportion of the accuracy 

for genomic predictions in our data was due to varia-

tion associated with population structure. Surprisingly, 

accounting for this structure generally decreased the 

accuracy of across breed genomic predictions.
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Population structure contributes signifi cantly to the accu-

racy of genomic predictions when the selection candidates 

are closely related to the reference population (Habier et 

al., 2007, 2010). Thus the accuracy of genomic predictions 

could be expected to have 2 main contributors: i) predic-

tion based on genomic relationships arising from popu-

lation structure, and ii) prediction based on LD between 

markers and QTL. The 2 contributors are likely correlated, 

because closer relatedness between subgroups (i.e., more 

recent divergence) increases LD between subgroups and 

close relationships within a subgroup increases linkage. 

The extent to which the 2 sources contribute to prediction 

accuracy is currently unclear. However, the distinction is 

important because the accuracy due to LD is more likely 

to persist across generations and breeds than the accuracy 

due to relationships (Meuwissen et al., 2001; Habier et al., 

2007; De Roos et al., 2009).

This reasoning leads us to propose the following hy-

pothesis: if population structure is different in the refer-

ence and validation population, the accuracy of genomic 

breeding values will be reduced if population structure 

is not accounted for. This is analogous to the reasoning 

in GWAS, where failure to account for population struc-

ture can lead to spurious associations. However, this 

does not imply that all population structure is spurious, 

as, for example, the phase between QTL and markers 

may differ between subpopulations.

We attempt to decompose the accuracy of genomic 

prediction into the contributions from population structure 

and SNP in LD with QTL, in a large multi-breed sheep 

population. We then investigate whether accounting for 

population structure is benefi cial in genomic prediction 

both within and across breeds to test this hypothesis.

METHODS

Phenotype and Genotype Data

Two phenotypic traits were investigated in sheep: 

yearling greasy fl eece weight (mean 3.3kg; SD 0.96kg) 

and ultrasound scanned eye muscle depth (mean 23.5 

mm; SD 4.9 mm), which have heritability estimates of 

0.37 and 0.23, respectively (Safari et al., 2005; Mortim-

er et al., 2010). Datasets from the Cooperative Research 

Centre for Sheep Industry Innovation (van der Werf et 

al., 2010) and Falkiner Memorial Field Station (Oddy 

et al., 2005) were combined to increase the size of the 

reference population. This resulted in 3,341 and 7,431 

animals with phenotypes and genotypes available for 

greasy fl eece weight and eye muscle depth, respectively. 

The breed content of the reference populations of the 2 

traits is shown in Figure 1. Both reference populations 

had a signifi cant proportion of Merino individuals, and 

only this breed had a substantial proportion of purebred 

animals. Most other animals were crossbreds of meat 

breeds and Merinos. Breed group size ranged from 

3,792 animals for purebred Merino sheep to 5 for a Bor-

der Leicester/East Friesian/Polled Dorset cross. A total 

of 196 rams sired our reference population, and the size 

of the resulting half-sib families ranged from 385 to 1. 

Thus, there was great diversity not only in breed-crosses 

but also in half-sib family size. Notably, the size of the 

ram half-sib families was often larger than the number 

of animals in the respective breed-cross groups.

All animals were genotyped using the Illumina 50K 

ovine SNP chip (Illumina Inc., San Diego, CA), which 

reacts to 54,977 SNP. The following quality control mea-

sures were applied to the SNP data: SNP were removed 

if they had a call rate of <95%, an Illumina Gentrain 

(GC) score of <0.6, a minor allele frequency of <0.01, 

were out of Hardy-Weinberg equilibrium (a P-value cut-

off of 1−15), had no genome location or were in >0.99 r2 

with another SNP on the chip. After these measures were 

applied, 48,640 SNP were used. Data for genotyped ani-

mals were removed if their genotype call rate was <0.9 

or if their mean heterozygosity was >0.5, which would 

indicate sample contamination. The genotype database 

was built over a period of time; early genotypes were 

imputed using fastPHASE (Scheet and Stephens, 2006), 

and more recent genotypes were imputed for miss-

ing genotypes using Beagle (Browning and Browning, 

2009), when this program became available.

Genomic Prediction Methods

Genomic BLUP (GBLUP) was used for most analy-

ses by fi tting the following model in ASReml (Gilmour 

et al., 2009):

y = Xb + Zg + e

where y is a vector of phenotypic records, X is a design 

matrix relating the fi xed effects to the animal, b is a vec-

tor of fi xed effects, Z is a design matrix relating animal 

effects to phenotypes, g is a vector of additive genetic 

Figure 1. Proportional breed content of crossbred animals in reference 

populations for greasy fl eece weight (n = 3341) and eye muscle depth (n = 

7431). Animals in category “Crosses” have a complex multiple breed makeup
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racy of genomic prediction in sheep is due to population 

structure at the current SNP density. In other words, only 

a small proportion of the accuracy was due to LD be-

tween markers and QTL alone. The trend for reduced ac-

curacy when considering chromosome 26 versus chro-

mosome 1 is likely because there are many fewer SNP 

on chromosome 26. We also tested the hypothesis that 

fi tting of all chromosome-wide matrices simultaneously 

would result in each chromosome explaining a fraction 

of the total genetic variance proportional to its length. 

This expectation was generally confi rmed in both traits 

(Figure 2). However, the regression lines had only a 

moderate R2 of 0.39 in greasy fl eece weight and 0.32 

in eye muscle depth and the slopes were slightly fl atter 

at 0.0003 than their expectation of 0.0004. The slightly 

lower slope may indicate that the accuracy due to popu-

lation structure was evenly distributed among the chro-

mosomes. We also applied the approach by Yang et al. 

(2011) and found that 95 and 89% of the genetic vari-

ance explained was due to relatedness in greasy fl eece 

weight and eye muscle depth, respectively (Figure 2, 

b0d/b0i = 0.249/0.261 = 0.95).

In human populations, fi tting PC of the genomic re-

lationship matrix among individuals derived from SNP 

data has become a widely accepted way to account for 

population structure in GWAS (Patterson et al., 2006; 

Price et al., 2006). In our data we fi tted up to 200 PC 

with genome or chromosome-wide relationship matrices 

in an attempt to correct for population structure in the 

genomic predictions (Figure 3). However, it was unclear 

in this population at which point the different aspects of 

population structure (i.e., breed or family groups) would 

contribute to the PC. Plots of PC annotated by breed-

cross type showed a trend for purebreds to cluster in the 

respective breed groups (e.g., Merino, Border Leicester; 

Figure 4). However, crossbreds failed to form clear clus-

ters. Labeling breed crosses by fi rst sire breed showed 

that they do form broad clusters which nevertheless were 

smeared between the locations of the purebreds in the 

cross, likely a refl ection of variable proportions of the 

genome derived from each purebred (results not shown).

We coded incidence vectors indicating membership 

of a breed or family, and correlated them with the PC. 

The incidence vectors showed the greatest correlation 

for Merino sheep (or not) at PC1, which accounted for 

3.5% of variation in the genomic relationship matrix. 

This indicated that the breed was distinguished from 

the remainder of the animals by this PC (Figure 5). The 

same trend is seen in Figure 4, where Merino sheep 

form a clear cluster separated from the other groups. As 

breed groups became smaller, the PC number at which 

they were differentiated increased. For sire families, the 

incidence vector correlation also accurately pinpointed 

which PC were most important for a particular family 

(Figure 5). The largest 2 families had the greatest corre-

lation at PC3 (1.1% of variation), which coincided with 

them being differentiated at PC3 in Figure 6. Again, the 

smaller the half-sib family, the greater the PC at which 

they were distinguished, and for families, this group size 

effect was stronger and more reliable than for the breed-

groups. This illustrates that the PC at which a group is 

differentiated is heavily infl uenced by its size, thus mak-

ing it diffi cult to use PCA to only correct for breed ef-

fects and leave structure due to families intact. It also 

confi rms analytical and simulated results by McVean 

(2009), which show PC to be sensitive to group size. 

Considering the results in this study, it seems that the 

general practice of fi tting only the fi rst few PC would 

be inadequate to account for population structure due to 

breed in diverse datasets.

It has been noted that PCA may also not suffi ciently 

account for family structures (Price et al., 2010). An ap-

proach which corrects for both stratifi cation and fam-

ily structure based on P-value adjustments has been 

proposed (Won et al., 2009). In genomic prediction, it 

may be more useful to be able to account only for spu-

rious population structure (e.g., structure from admix-

ture) rather than adjust for family structures, as doing so 

Figure 2. Proportion (Prop.) of phenotypic variance [Var(P)] explained 

per chromosome. Chromosomes fi tted individually (top regression) or simul-

taneously (bottom regression). Middle regression results from plotting the 

difference between top and bottom regressions.

Figure 3. Accuracy of genomic prediction in greasy fl eece weight 

(GFW) and eye muscle depth (EMD) when an increasing number of prin-

ciple components are fi tted in addition to the base model, where BL is Border 

Leicester, MER is Merino, PD is Polled Dorset, and WS is White Suffolk.
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would remove predictive effects within a breed. Howev-

er accounting for spurious population structure without 

accounting for relatedness is not trivial in this case.

Accounting for population structure could increase 

accuracy if the population structure in the reference dif-

fers from the validation population or by removing spu-

rious associations. When the phenotypes were corrected 

for the PC, for both greasy fl eece weight and eye muscle 

depth, the accuracy of genomic prediction clearly de-

clined as an increasing number of PC was fi tted (Figure 3). 

Most breeds eventually reached a lower plateau of accu-

racy. For greasy fl eece weight, the Merino group reached 

the lower plateau at approximately PC 50, whereas Bor-

der Leicester sheep reached this plateau at approximately 

PC 80. We speculate that these lower plateaus correspond 

to the accuracy due to LD of markers and QTL as the ma-

jority of the effect of population structure is accounted 

for. The relatively greater accuracy observed in Border 

Leicester than Merino sheep may correspond to a much 

lower effective population size (Ne) in Border Leicester 

(J. Kijas, CSIRO, Brisbane, Australia, personal commu-

nication). This would lead to relatively greater LD in this 

breed than Merino and, in turn, this may have translated 

into a greater accuracy due to LD.

For eye muscle depth, a similar trend of decaying 

accuracy as more PC are fi tted can be seen in Figure 3 

and for this trait the various breeds were more equally 

represented in the reference population. All 4 valida-

tion breeds reached lower plateaus between PC110 and 

130. Although initially Merino sheep had the greatest 

accuracy at low PC, the Polled Dorset and White Suf-

folk breeds had greater accuracies once the lower pla-

teau was reached. This may again be due to the lower Ne 

of these terminal breeds when compared with Merino 

sheep. However, this trend did not seem to hold true for 

Border Leicester sheep in eye muscle depth. Note that 

the accuracy plateaus cannot continue indefi nitely, as 

eventually the PC will remove variation due to LD.

Figure 4. Plot of principal components (PC) 1 and 2 for all genotyped animals in reference and validation sets. Colored by breed combination, where BL 

is Border Leicester, EF is East Friesian, MER is Merino, PD is Polled Dorset, WS is White Suffolk, UNK is unknown, BOO is Booroola, CPW is Coopworth, 

NZROM is New Zealand Romney, SFK is Suffolk, and TXL is Texel. See online version for fi gure in color.
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An alternative approach to PCA to control for popu-

lation structure is to capture the structure through a pedi-

gree-derived relationship matrix, as well as breed effects 

(e.g., Daetwyler et al., 2008; MacLeod et al., 2010; Liu 

et al., 2011). In our data, fi tting a random polygenic ef-

fect through a pedigree relationship matrix within the 

GBLUP model had only a limited impact on the accuracy 

of genomic prediction (Table 1). In most breeds, there 

was no notable difference to the base model. There were 

2 exceptions in eye muscle depth, where the accuracy 

was reduced in Merino sheep and increased in the Border 

Leicester breeds. However, no consistent change in ac-

curacy was observed by fi tting a polygenic effect. These 

fi ndings could in part be due to an incomplete pedigree 

in our sheep dataset. Indeed, the proportion of the pheno-

typic variance explained by the polygenic effect versus 

the genomic relationship matrix, which was corrected for 

the polygenic effect, was low (Table 2). The impact of 

a polygenic effect should be reevaluated in data where 

more complete pedigree records are available. Fitting 

sire and dam breed, which has been used as a way to 

account for population structure in the literature, had a 

small effect on accuracy (Table 1).

The fi nal measure used to assess the accuracy due to 

LD between QTL and SNP, which is perhaps more con-

servative than the previous approaches, is the accuracy 

achieved when predicting breeding values across breeds 

(Table 3). This was investigated in 2 ways. First, Border 

Leicester, Polled Dorset, and White Suffolk rams were 

predicted from a reference of pure Merino sheep. Sec-

ond, these 3 breeds were predicted from references ex-

cluding the breed to be predicted (e.g., predicting Polled 

Dorset sheep from reference without Polled Dorset). In 

addition to the base model, we analyzed the data with 

BayesSSVS. This method had been shown to increase 

across breed prediction (Hayes et al., 2009), possibly 

because it assigns SNP to either a distribution with very 

small variance (near 0) or 1 with a larger variance in the 

prediction model, unlike GBLUP which assumes that 

all SNP have the same variance. The accuracy achieved 

for across breed prediction was always less than when 

the breed to be predicted was included in the reference 

population (compare Tables 1 and 3). For greasy fl eece 

weight, Border Leicester sheep had an increased accura-

cy when a small number of PC were included as covari-

ates (Figure 7, Table 3). This increase in accuracy, com-

pared with fi tting no PC, was greater in both traits when 

predicted with BayesSSVS than with GBLUP. For eye 

muscle depth, a different trend was observed (Figure 7, 

Table 3). The accuracy for Polled Dorset and White Suf-

folk sheep was reduced by fi tting an increasing number 

of PC and the BayesSSVS method always had a slightly 

less accuracy than GBLUP.

A possible explanation for the large disparity be-

tween accuracy due to population structure and accuracy 

due to LD is that the sheep SNP chip is only of medium 

density, at approximately 50,000 SNP, relative to Ne in 

our population. This would limit LD between SNP and 

Figure 5. Correlations of principal components (PC) with incidence vectors for 3 breed composite groups (top) and 3 ram half-sib families (bottom). BL is 

Border Leicester, MER is Merino, and PD is Polled Dorset. 
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QTL thereby limiting the accuracy of this component. 

This effect would be especially pronounced in Merino 

sheep which have a Ne that is larger than the other 3 

breeds. Indications of this can be seen in the lower ac-

curacy plateaus observed in Merino sheep (Figure 2). In 

the longer-term increasing the number of SNP used in 

the analysis or even moving to full sequence would be 

expected to increase the accuracy due to LD, leading to 

greater capability to make genomic predictions across 

breeds. Meuwissen (2009) proposed that the number of 

SNP needed to predict unrelated individuals is equal to 

10NeL, where L is the length of the genome in Morgans. 

The Ne of Merino sheep is approximately 800 (J. Kijas, 

CSIRO, Brisbane, Australia, personal communication) 

and L is approximately 27 Morgans and across breed 

prediction in sheep would require at least 216,000 SNP. 

It is clear that 50,000 SNP in sheep is not suffi cient to 

allow for accurate across breed prediction.

In GWAS, accounting for population structure is 

justifi ed because the aim is to isolate causal variants for 

traits. Here we have evaluated the value of population 

structure adjustments when the aim is to predict ge-

nomic estimated breeding values. The main attraction of 

combining potentially diverse populations, such as our 

multibreed sheep population, is to increase the reference 

population and attempt to take advantage of prediction 

Figure 6. Plot of Principle Components (PC) 3 and 4 for all genotyped animals. Colored by breed combination, where BL is Border Leicester, EF is East 

Friesian, MER is Merino, PD is Polled Dorset, WS is White Suffolk, UNK is unknown, BOO is Booroola, CPW is Coopworth, NZROM is New Zealand Rom-

ney, SFK is Suffolk, and TXL is Texel. See online version for fi gure in color.

Table 2. Proportion of the phenotypic variance explained 

(i.e., heritability) by matrices G, G-A22, and A22 from 

GBLUP analysis. Matrix G was fi tted by itself but matri-

ces G-A22, and A22 were fi tted jointly

Matrix

Proportion of Var(P)1

GFW EMD

G 0.65 0.34

G-A22 0.36 0.21

A22 0.11 0.15

1GFW = greasy fl eece weight; EMD = eye muscle depth.
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across subgroups. We have shown that the impact of 

population structure (i.e., relatedness) on the accuracy 

of genomic prediction is very large at the current SNP 

density and that most of the prediction accuracy is be-

cause the reference population is highly related to the 

predicted animals. Accounting for population structure 

with PCA or other methods only decreased accuracy for 

most breeds in scenarios where across-breed prediction 

was evaluated. Hence, we conclude that there is no ben-

efi t to accounting for population structure in genomic 

prediction at the current SNP densities in sheep. Increas-

ing the number of SNP is expected to shift the infl uence 

of population structure on accuracy toward accuracy 

due to LD between SNP and QTL.

Population structure is an important component of 

genetic variation. In a sample of individuals, population 

structure may be encountered because some individuals 

are more related than others or because a sample may 

contain animals from different subgroups (e.g., breeds, 

ethnicities, admixture). Genomic prediction across 

closely related individuals is based on linkage whereas 

predicting distantly related individuals requires LD be-

tween QTL and markers. Linkage is a form of LD, but 

associations only occur within groups of closely related 

individuals, and the LD may stretch over relatively long 

segments of the genome. In contrast, LD is consistency 

of phase between SNP and QTL, at least within a whole 

population, but possibly even across populations. The 

more distant the relationship between individuals, the 

shorter the genomic distance over which phase will be 

consistent. The time scales which reduce linkage to LD 

are very long, involving many generations. An example 

is the very short stretches of the genome that different 

breeds may share, resulting from common ancestors 

predating breed divergence. Rather than concentrate 

on LD between SNP and QTL alone, genomic predic-

tion can use both linkage and LD. It seems pragmatic 

to not restrict either component and maximize the ac-

curacy of genomic prediction and realize that, at current 

Table 3. Summary of the best accuracies for across breed genomic predictions using genomic best linear unbiased pre-

diction (GBLUP) and Bayesian stochastic search variable selection BayesSSVS (SSVS) for greasy fl eece weight and 

eye muscle depth in Border Leicester (BL), Polled Dorset (PD) and White Suffolk (WS) breeds. Values presented are 

the accuracy achieved with either the Merino only reference set or with the reference set which excluded the respective 

target breed, whichever was greater. Max. refers to maximum accuracy achieved at any of 0, 10, 25, 50, 100, 150, and 

200 PC. All values are shown in Figure 71

Breed

Accuracy

Greasy fl eece weight Eye muscle depth

No PC

GBLUP

200 PC

GBLUP

Maximum across breed No PC

GBLUP

200 PC

GBLUP

Maximum across breed

GBLUP SSVS GBLUP SSVS

BL 0.12 0.05 0.24 0.44 0.08 −0.04 0.08 0.21

PD – – – – 0.33 0.14 0.33 0.20

WS – – – – 0.26 0.04 0.26 0.18

1PC = principal components.

Figure 7. Accuracy when predicting across breeds in greasy fl eece 

weight (top) and eye muscle depth (middle, bottom) with a Merino-only ref-

erence population (MER) or reference populations which exclude the breed 

to be predicted (NoXX) with methods genomic best linear unbiased predic-

tion (GBLUP) and Bayesian stochastic search variable selection BayesSSVS 

(SSVS) , where XX is either BL for Border Leicester, PD for Polled Dorset, 

or WS for White Suffolk.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ja
s
/a

rtic
le

/9
0
/1

0
/3

3
7
5
/4

7
1
7
8
5
3
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



Daetwyler et al.3384

SNP densities, individuals which are more related to the 

reference population will be predicted better than more 

distantly related individuals.
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