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CHAPTER I
INTRODUCTION

If a set of observations.cah be classified according
to one or more criteria, then the total variation between the
members of the set can be broken up into components which can
be attributed to the different criteria of classification.

By testing the significance of these components it is then
possible to determine which of the criteria are associated
with a significant proportion of the overall variation. To
carry out the analysis it is necessary to assume for the data

a model which involves a number of parameters and properties,

1.1 The One-Way Classification

Our data might be the results obtaihed from dye trials
on each of 5 preparations of naphthalene black 12B made from
each of 6 samples of H acid intermediate as recorded in Table

l.l.

TABLE 1.1%
Yields of Napthalene Black 12B
Sample of H acid 1 2 3 4 5 6

Individual yields 1440 1490 1510 1440 1515 1445
in grams of stand- 1440 1495 1550 1445 1595 1450
ard colour. 1520 1540 1560 1465 1625 1455
1545 1555 1595 1545 1630 1480
1580 1560 1605 1595 1635 1520

lBennett and Franklin, Statistical Analysis in Chemistry and
the Chemical Industry. New York: John W%Iey % Jons, Ig;%,p.ZZO.




The data is classified according to the sample of acid
used. We denote an observation by ¥ (i=1,2,...,6;3=1,2,.
«e,5) where i indicates the number of the acid sample and j the
number of the observation for this sample. These observations
are considered to be random variables with the expected value

ECYy) =~ +7
where 77 is the contribution of the (th acid sample and « is a
constant. If we assume that the 77’5 are constant, we have what

is known as the Type 1 model and any conclusions we might draw

would apply only to our six acid samples, If we wished the con-
clusions to hold for a larger group of acid samples of which
our 8ix acid samples were a sample, we would consider the 7 o
themselves to be random variables, If we assume that they are
drawn from an infinite population, f(7:) with variance o;z*, we

have the Type II model. If the population is finite, we say we

have a Type III model. Thus the nature of the conclusions we

wish to draw determines the form of the mathematical model used.
It is customary to write

){'}‘-‘—‘/x/t + 7+ &y
where 69;, a random variable, denotes the difference between Yij

and its mean value,

1.2 Two-Way Crossed Classifications

It is often desirable to collect experimental data so
that they may be classified according to two factors. In this

case our model would be

(1.21) Yoix =Tt Bt By



when 77 is the contribution to the mean of the (th level of the
first classification and /% is the contribution of the jth level
of the second classification., For example, five workmen might
take turns working on four machines. Then Yijk would be the
number of articles produced on machine i by workman j on the
xth day.

In setting up the above model we have assumed that the
7% andvfavs, the effects due to machines and workmen, were
additive. If we had reason to doubt this, we would use the
model
(1.22) X'/‘,, M Bt (78) + Eijx
where (zak} is the interaction term associated with the (th

machine and }th workman,

If all the parameters involved in model (1.21) are con-
sidered to be constants, we have a Type I model and our con=-
clusions would apply to only the workmen and the machines used
in the experiment. In this case, we would be interested in
estimating the parameters and testing hypotheses about these
parameters. If we wish our conclusions to apply to a larger
population of machines and workmen, we would consider all the
parameters, with the exception of/u, to be random variables.
We have a Type II model if the random variables are assumed to
come from continuous populations and a Type III model if they
are assumed to come from finite populations, In addition to

these three models, we may set up mixed models where some of

the parameters are constants and others are random variables,

The model used depends on the objectives of the experimenter.



l.3 Two-Way Nested Classification

In the two-way crossed classification it was assumed
that each level of a given classification made a definite con-

tribution to the mean of Yijk'

This is not a realistic assump-
tion for certain types of experiments. For example, in section
1.1, we consider the yields of naphthalene black for six different
samples of H acid. Suppose these six samples were random sam-
ples of H acid produced from naphthalene supplied by a partic-
ular tar distiller. Suppose further that the experimént was
carried out four times, the supplier of naphthalene being changed
for each experiment. If we attempt to describe the data by
model (1.21) or (1.22), we might regard 77 (1 =1,2,3,4) as the
contribution made by the different suppliers, but it would not
be reasonable to regard /%;(j-zlwz,...,é) as the contributions
of the six random samples of acid since this would suggest that
all samples having the same number have the same effect upon
the yield. What is required is a model of the form

Yik =t Tt * i
where 7 is the effect upon the yield of the (th supplier and
/330 represents the effect due to variations within samples from
the ith supplier. Again, assumptions made about the parameters
can lead to a variety of different models.

l.4 Additional Assumptions

It will be shown in the chapters that follow that we
can impose certain linear conditions upon the parameters with-

out loss of generality. These conditions simplify the math-



ematical analysis. Also it will be assumed, when the parameters
are considered to be random variables,that parameters repre-
sented by different Greek letters are independently distri=-
buted. Their variances,v;‘,g;‘,qu and o*for the Eijxs are
called components of variance since they are parts of the
variance of the Yijk' One of our principal problems is the
estimation of the components of variance., Finally, we shall
always assume that the Eifx have a normal distribution and,
depending on the model under consideration, distributions will

be assumed for any other random parameters.

1,5 The Scope of This Thesis

In the next chapter the theory of regression analysis
is presented in a form which will cover all the Type I models
considered in the thesis and which will provide a foundation
for the other types of models., In the third chapter the one=-
way classification is considered for the case of unequal num=-
bers of observations in the different levels of the classifi-
cation. The case where the number of observations are equal
is then obtained as a special case and Type I,II, and III
models are considered. In the remaining chapters models in-
volving more than one classification are considered. Time
and space do not permit the consideration of all possiblé models
but it is hoped that the methods used here will be of use
in developing the theory of models which have not been con-

sidered.



CHAPTER II

REGRESSION ANALYSIS

2.1 The Model

In this chapter we shall consider the problem of
estimating the value of some random variable Y with a mean

depending on certain variables X;,X5,...,X., whose values

r
may be determined exactly when Y is observed. If n>r ob-
servations are made, we obtain the sets of values(X,« ,Xs«,
coorKnwi¥), (=1,2,...,n). If Xq,Xp,...,X,. were held fixed
at the values X,  ,X;qy++¢rXeas the observed value of Y, Y,

would vary in a random fashion about its mean value which

we assume has the form
3
(2.11) £( XL) :=//“/ * é;:/dt,X}x

It is convenient to introduce the variables

X = Xix -—X" (¢'=/,2,"')4),
where
. n
X" :_/..ZX“ o
n o«

Then equation (2.11) may be written in the form
A
(2.12) £(%) =+ ‘Z,/@ X
where
A —
o=+ L X
This is equivalent to saying that
6



A

(2.13) e =+ Z/?‘-z;,c + Eg

xS/

where £, is defined by this equation and is called the true
error. A consequence of (2.12) is that £(€)=0.

Cur objective is to estimate/u and the /6" (i=1,2,
«++,r) by the method of least squares and we will denote these
estimates bx)ﬁ and by (i=1,2,...,r), where the b;'s are

called the regression coefficients. We can then write

A
o

(2.14) K7+§4‘-x‘.¢+ex (<=7 2 »n)

where €, is called the residual.
The sets of equations (2.13) and (2.14) may be written
in the form of the matrix equations

(2.15) )’=/« +X/3+£ =2 +X4 re

where

7] M !
Y M I

A L A Y I

4| L b .

and X =:(x1,x2,...,xr) is an n Xr matrix where x; is the
1

~



column vector with elements X (e =1,2,...,n). We shall

assume that the rank of X is r. Since
n

T'x, =2 (Xu=-X)=0 , I'X=o0 .

o/

Let Z=(zy,25,...,2p) denote an nxr matrix. Then

there exists a matrix

Wll wzl W31 o o o er\

0 LPY) w32 o e e Wiy

w ={0 0] w33...wr3

such that Z =XW, where the r column vectors of Z are or-
thogonal and of unit length} Hence Z is of rank r. Since
the rank of the product of two matrices does not exceed the
rank of either of the matrices, the rank of W is also r, and

W-'

exists. Since I'X=0, I'Z=I'X W=09=0., Also 2'Z=I,,
: . . =) “1_ =l

the rxr identity matrix, and A=X'X=(W') 2'2 W = (WW).

Thus, WW*=4"' and we also note that A'= A. We have Z=3XW

and Z'=W'X'" so that Ir,'= Z'Z2=W'X X'W=W'A W,

Therefore W '=W'A,

The matrix equations (2.15) may now be written in

the form

Y=u+ZW e = d + Zwlh te

lSchreier and Sperner, Modern Alzebra and latrix Theory.
New York: Chelsea Publishing Company, 1951, p. 14l.




or

(2.16) Y= u+ 27 +¢ =i+ Ze +e

where

1 ¢

Yl- - C‘L -/
V=|.|=Wg , C= =w 4

% c.

2.2 FEstimation of the Regression Coefficients

The least squares estimates of the scalars
are obtained by minimizing the error sum of squares, SSE.

From (2.15) the error sum of squares is
SSE=0 el = e'e =(Y-a-Xt)(y- 0 -X¢)
= (v-2)(v-2)-a(y-2)'Xd + 2'X'X &
(2.21) =(y-2)(Y=2)-2(y2) X4 + 4'4%

since a 1 X1 matrix is equal to its own transpose. Setting

the partial derivative with respect tq/a“equal to zero we

obtain the equation,

35SE = —2I'(Y-@)-2I'kbd =-an(¥Y-2)= o,
3

since I'X=0, and therefore

(2.22) /3 =Y

Taking the partial derivatives with respect to by (i=1,2,

«+4,r’) we obtain the equations, 1
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ISSE = —a(V-F)'X + 8 A8 + L'A38 = o

nm———

N I’i J,Z‘ o ﬂ"' Jé¢

where Jj is equal to an rx1 column matrix with a one occur-
Jbi

ing in the ¢(th rew and zeros in all the other rows. Since

all the matrices for i=1,2,...,r are one element matrices,

and A'= A, we have

38 AL = L' Al

28: 94
and
(2.23) (f—ﬁ.)lﬁg = (j—f;)’)('; ;

I
where y=Y - ¥, Since Ab and X'y are rX1 matrices and (;Lf)
. (3

is the 1 Xr row matrix where a one occurs in the {(th column

and zeros in all the other columns, the normal equations (2.23)

may be written in the matrix form
Ab=X'y
and hence
(2.24) b= Xy,
where A/ exists since X' is of rank r and the Gram matrix
A=X'X must have the same rank.
If our model is considered in the form
y"-'/u-be’kE, = L +Zc+ e ,
we must replace X by Z in the above results and we would
still obtain/'l=Y since
I'Z=]I"XW=0W =0,

which is a 1 xr zero matrix, To obtain the normal equations,
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we would replace A=X'X by Z’Zzlr obtaining
c=2'y=W'X'y=W'A A X'y=W'A b .
Since W'A=W',c=W'o . Hence, we could have obtained ¢ by

substituting for b in ¥ = K/”/S

(2.3) Properties of the Regression Coefficients

We will now show that the ci's give us a unique ab-
solute minimum. Replacing X by 2 and/f/‘ by Y in (2.21), the
error sum of squares is
(2.31) SSE=y'y - 2y'Zc +c'c .

Also
(c « 2'y)'(c = 2'y) =(c' = y'Z){(c - 2'y)

=c'c - 2y'Z c+y'2 2'y .
Therefore
(2.32) SSE =(c = Z'y)'(c - Z'y)+y'y - y'Z2'y .
This expression has a unique absolute minimum for c¢ =Z'y ,
which is y'y - y'ZZ'y , since (c = Z'y)'(c - Z'y) is the
length of the vector ¢ - 2Z'y .

To express this absolute minimum in terms of the
original model, we make use of the relations Z=XW ,
c=W'Ab , WW'=A"', and substitute in (2.32) to obtain

SSE = (D'AW - y'XW)(W'Ab - W'X'y)y'y - y'XWW'X'y
=(b'A - y'X)WW'(Ab - X'y)+y'y - y' XL X1y

=(b' - y'X&')AA A(b - A'X'y)+y'y ~ yIXA X'y

=(b - A'X'y)tA(b - K'X'y)+y'y - y'XA Xy

= u'Au+y'y - y'XA.'X'y
where u=(b - A'X'y) ,
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Now u'Au is a positive definitel quadratic form and has a
unique minimum, O , when
u=b - A'X'y=0 .

This shows that SSE has a unique minimum of y'y = y'XXJX'y
when b=A"X'y .

We have

/g—:A-/X/? _ ﬁ-,X/(X/ﬁf'E) :/5+A”Xl£

Thus

E)=p+A'X Ee)=p
_and by is an unbiased estimate of//% (i=1,2,...,r). Re-
placing X by Z in the above argument shows that E(c)=7 .
Before computing the variance-covariance matrix of the by's,
we introduce the additional assumption that the &.% are in-
dependently distributed and have a common variance, % that

is E(&E')==G”*In. The variance-covariance matrix of the bi’s

i

ELC4-P-p)] = ELAN s x A
= AXLXA = v ATAA = v A

-/

Thus the bjy's will, in general, be correlated. On the other
hand the ci's are uncorrelated, since, replacing X by Z, we
find their variance-covariance matrix is vf’Ir, and each ¢y

has variance o *,

lAttridge, R.F., Linear Regression and Multiple Classification
Designs, Hamilton: unpublished thesis, 1952, p. 63 .
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(2.4) Reduction due to Regression

If no attempt were made to estimate the mean of Y,

VA

o=

would be called the sum of squares for Y and it could be
thought of as giving a measure of the spread of the obser-
vations about the value Y=0 , If it is only assumed that

E(Y) = a4, the least squares estimate of/;/is Y, and
2 __2'—27‘- s
g;()’x—y) = L 4
is a measure of the spread of the observations about Y, our
estimate of E(Y) , Finally, with our model (2.12) , SSE is

our measure of this spread. The difference between SSE and

the sum of squares, when we assume E(Y)j/a , is denoted by
- 2
SSR=2 4" — SSE
<=/ Jx
and is called the reduction in the sum of squares attributable
= 3
to the regression. If SSR differs by little from ; 47,
SSE is small, and the Y 's are close to the estimates of their

means, indicating that little is to be gained by introducing

additional terms into the regression equation (2.12) .

(2.5) Tests of Hypotheses

We will be interested in testing the hypothesis that

/éﬁ:o(i==l,2,...,r) . This is equivalent to the hypothesis
thap/u is a satisfactory expression for E(Y) . The above
remarks suggest that the ratio SSR to SSE would be small

when this is the case and large when the hypothesis should be



14

rejected. In practice we use the more convenient statistic

F=MSR ,
where
MSR = 85 ; MSE = SSE .
r n-r -1

The guestion then arises as to how large F should be if we
are to reject the hypothesis. To answer this question, we
next determine the distribution of F,

We now assume that the &.’s are normally and indepen-
dently distributed with mean O and variance o %, indicated
by saying that the ¢€.’s are NID(O,v*) . From (2.6),

e=y - Zc=zy - Z¥ - Z(c =-Y¥) ,
and

(2.51) SSE = e'e

=(y - 2¥)2 =« 2(y - 2¥)'Z(e =¥) +(c =?)'2'Z(c = ¥)
=(y - 2¥)% = 2(y'2 = ¥'2'Z)(c -¥) + {c = ¥)'(c - ¥)
=(y - 2¥)% = 2(c' =¥')(c =¥) +{c=¥)'{c -7)

=(y - 29% - (c -¥)% .
Since the scalar ¥ = I'Y = u+ 1L I'ZY+ E = u + €

————

n n

g =YV = u+r Zr+¢ —wu-E = ZY+E-F

where

3
;

- - X

|
ony -

Therefore 4~ ZY¥ = € - E and the error sum of squares
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becomes

(2.52) SSF = (e-€)" = (c-¥)"

= F (e-8) = X (e )

\

We shall make frequent use of the following results,

If we have a set of variables X1 9XpyeoorXpy, which are NIDS/%,V'ﬁ,
2 2
Xlz 7 (1«.-4”_(_)

<=/ o_—

has a‘)f*distribution with n degrees of freedom, We often
say that “ZT (1‘—/{/0; is distributed as X '0*with n degrees
of freedom (d.f.) . I{/u is replaced by X, the mean of the
x.'s, the resulting expression has a X*¢r* distribution with
n -14d.f. . We also use the relations

F(XPo*) =Yr* | Va (Xv?)=aVo*
where the second expression is the variance of X*or*and Y

is the number of d.f. associated with X 7. Finally a statistic

A
o= X5/,
X5/ Ve
1
where X, and X, have X?*distributions with ), and y, degrees

b

of freedom and are independently distributed, has what is
known as the F distribution with ¥, and ), degrees of freedom.
Since ¢-¥ = #’€ , which implies that the cy's
are independently distributed, the cy's are NID (0, 7% .
Since the é.°s and the ci's both have this property, both
sums on the right of (2.52) are distributed as XfO'”, the

first with n - 1 d.f; and the second with r d.f. . Hence
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£155£)=(nﬁ)71-717‘ = (n-a-1) v+

and
E( SSE ):v".
=T
Thus
s?—  SSE
1 =« T =™

is an unbiased estimate of v*. We have seen, following
(2.32), that
SSE =y'y - y'Z2'y =y'y - c'c ,

making use of the normal equations c=2Z'y . Thus

SSR=c'c = é: c? .
We wish to test the hypothesis H: ¥, = Y. = -+ - = %=0 .
Since é (c. - ¥ )* is distributed as XLO‘", SSR is also
distributed as X*¢r*with r d.f. under the null hypothesis.
If the hypothesis is not true SSR/¢* has a non-central x*
distribution?t,

Now we will prove that SSE is distributed as X o *
with n - r - 1 degrees of freedom and is statistically in-
dependent of SSR. Augment the r orthogonal vectors Z1,%2
+e+92, by n - r - 1 others, which we shall designate by
P1sPssecesPhopals such that ZyyeeesZpyPyseeesPpopa] form
an orthogonal set of unit vectors., The estimation equations

will now be

lPatnaik, P.B., The Non-Central X*. and F - Distributions
and their Applications,Biometrika, 36 (1949}, p. 202.
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(2.53) Y3M+2Y+E =Y+ Zc + Pd+Ff

where

P:(pl’pz,uo-,pn_r_l) )

4 £,
d, £,

d : L] and f : L) [ ]
dn-r—l n

We may write (2.53) in the form
(2.54) y =Zc + Pd +f=(Z,P)(§)+ £ .

Since {(Z,P) is an orthogonal matrix, our earlier theory shows

(8) = =P =)y = ()

Therefore, ¢ =2'y and d=P'y . We saw earlier that 2 was

that

orthogonal to the nx1 matrix I and this is also true for
p;. From (2.54)
c=2'y=2'2c +2'Pd + 2'f ,
or c=c¢c + 2'f and 2'£f=0 . Similarly P'f£=0 and If=0 .
These n equations in n unknowns have an n xn orthogonal matrix
and hence £f=0 or
y=Z c+P d .
Hence, (y - Zc¢ = Pd)2==0, that is,
0=[y - 2¥- 2(c -¥) - pd]”
=(y - zzr)2 - (c -X)2+ d'P'Pd - 2y'Pd
=(y - 292 = (¢ =¥)%+d'd - 2d'd ,



making use of (2.51). Thus
2 2
d'd=(y « 2¥) - (¢ - ¥) =S8SE ,
Hence we have broken SSE into n-r-l orthogonal squares.
Furthermore,
d=P'y=P'Y=P'(/u+ZY+E)=P'£ 5
E(d)= 0 , and the variance~covariance matrix of d is
E(dd') =E(P'¢ e‘P)‘:V‘P'InP=V'*P'P=V"In_r_l .
Therefore V"(dﬂ,‘)z 7S V‘(dd'a[,() =0 , S#F«
The covariances for dj, ¢y are given by
)
Eld(c-7)']=E(Pee'Z)=vPZ =0

Therefore v 2 (0(‘/'@") =0

18

Since the d;'s are orthogonal linear forms in the £ ’°s

J

which are NID(O,+%), they are NID(O,v™) . Hence the d? are

independently distributed as X2 with 1 degree of freedom
each, or SSE is distributed as X*v* with n-r-1 degrees of
freedom. Also the d;'s and (cy - )'s, being uncorrelated

J
and normally distributed, are independently distributed.

Therefore

S 2 .

SSE=Z o and SSR =2 ¢

AL (=
are independently distributed. Under these conditions, the
statistic

A
F': M‘SR = (2__-7—@( SS &

MSE </ -~

has what is known as the F distribution with r and n-r-1 d.f. .

To test the hypothesis, we select a numbera, 0 < x < /

called the level of significance, and determine from the
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tables the value F,.. such that the probability of F exceed-
ing F,. . is «. When this occurs we reject the hypothesis.
Thus when the hypothesis is true, we would reject it on the

average 100« percent of the time. We should also notice that

t = (C;-'?T)/Gr = c.— ¥

has a t distribution since (¢ — )Ql/%f is N(0,1) and $/&*

is distributed as X with n-r-1 degrees of freedom. This
statistic can be used to test the hypothesis that 0 has a
specified value.

Now suppose we assume ¥, , Yy, ' ', ¥% F O and
test the null hypothesis that {)1“, s Yheas ", %= o} . Let
SSR, be the reduction in the sum of squares due to ¥ ¥, --- ¥

and SSR _ that due to ¥, ¥;,---, % . In the first case

A
2 >
o= - L
S dsl?« =/ ‘
and in the second case
v

SSE=2 47 =2 o
Thus
A N

SSR.=2. ¢, SSR=20 ¢

Y] (=7
The additional reduction in the sum of squares due to the

introduction of ¥, . ¥ Y. is

hrl s Pnp. 0T s
A

SSR, - SSR, = 2 cj

LT AT
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If this reduction is large we would reject our hypothesis
that Ebfw, Xm.,' T Ya;f} . We have shown that the (cj=- %)
we independently distributed as X¥*with 1 degree of freedom

each, Hence, under the null hypothesis that '()}H,"Xfl,"',¥h=o},

S

SSR, -SSR, = > ¢

ISy 7 ald
X
is distributed as X V*with r-k degrees of freedom, We have

seen that
n-4-/

SSE=) o(;
Rt

is distributed as XT*with n-r-1 d.f. and that the cy's and
dj's are independently distributed. Hence SSE and SSR, - SSRk
are independently distributed and

(2.55) S = SSR, —55/&/ SSE

(h~-x) o™ (n=n=-1)T?

has the F distribution with r<k and n-r-l d.f, . A knowledge
of v*is not required since it cancels out in the computation
of F., This 1is the statistic we use to test the hypothesis
that {):w/; Z;'ﬂ.:' "’%:O}

In practice, the hypothesis to be tested will be that
{/24/,/2f4, © ',/@1= OJ’ . We now show that this is equivalent
to the hypothesis that {26,}/, Yorss "5 N =O} . We have/ﬁ=\:\/7
where

Wiy Wap W33 - ¢ - Wp
0 Woo W3n o o o Wies
W=} 0 0 W33 . o Wpeg R

L L L] L4 L L4 * L e L *

0 0 0 e o o« W
rr
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and lwl =w11w22...wrr#0 . Then
2
/42 = g;- wy ¥ (‘} =/,2, -, n ) s

and {)j,,,,, Vg, * ~ °, ¥a ™ O} implies that {/3,,; ,/5«“,' Ty /43,.=o}.
Since wiifr‘o (i=1,2,...,r), the above equations can be solved

for the s in terms of the/dgs and we obtain equations of the

same form. Hence /qwlaﬁaﬂ,-"vf;='0} implies that {ka, Vers
...,32’=C0 . It follows that we may still use the statistic F

of (2.17) to test our hypothesis.

While the matrix Z exists, it is difficult to construct
it and hence to obtain the ci’s and the statistic F. Accord-
ingly we need to obtain SSRk and SSRr in terms of the original
observaE}ons. The expression SSE is the unique absolute mini-
mum of'g;<3: and we saw that it was obtained whether we worked

in terms of the original or the orthogonal model. Hence

SSR, = 2 y* — SSE

does not depend on the model. Now we consider

n

SSR, = 2 o — SSE'

x=z/
n
where SSE' is the minimum of 2 €: when {X,,,., s Vs, , )ﬁz"‘O}
“:l
But we have seen that this implies that {/@,,,/dk,L, - ‘,/é&==o}

80 the above conclusions still hold and we will obtain the same
value for SSRk with either model.
Finally, we derive a result which will be needed in

later chapters., We saw in section 2.3 that C -7 = 2?'8
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Hence the {cj~ ¥)'s are linear combinations of NID variables
and thus are normally distributed. Also their variance-co-
variance matrix is V"Ir . Hence the Jjoint distribution of the

ci's is the multivariate normal distribution

(c-9)'(c-7)

- L
]"‘(CUCJ,"‘, Cﬂ)= l e 2o

We also found that the c;'s were distributed independently
of SSE so that
f(cl,cz,...,cr,SSE)== flcy,cp,.00,c)f(SSE) .
Since c¢=W'p,
£(b,,byyene,by,SSE) = f(cl,cz,...,cr,ssrz)lw"]
= f(cl,cz,...,cr)f(SSE)lbdﬂ}
::f(bl,bz,...,br)f(SSE) .
Hence the bi's are distributed independently of SSE. It also
follows that the bi's have a multivariate normal distribution
with the)/ﬁﬂs as means and v‘/f4 as the variance~covariance

matrix.



CHAPTER III
ONE-WAY CLASSIFICATION MODELS

3.1 The Type I Model for Unequal Numbers per Cell

Suppose we consider a planned experiment in which p
different treatments are applied to N different experimental
units such that the first treatment is applied to ny of these
units, the second to n, of these units and, in general, the
ith treatment is applied to n; of the units (i=1,2,...,p) .
That is, we have divided the N experimental units into p portions
of size N}sNpyeee,lp. These units are usually called plots
and the numbers, ny, are often called the number of replica-
tions for the corresponding treatments, It is our purpose to
test the yield-producing ability of the different treatments.

. plots

i
associated with this particular treatment, could be estimated

The yield for the (th treatment on the gth plot of the n

by the model

(3.11) Yy =T ey
where (Jj=1,2,...,n;) . The parameter 7’ is the differential
effect of the (th treatment over the mean/;x'. We wish to
test the null hypothesis that {77' =7l =- ’7;»/} . Bqua-

tion (3.11) can also be written in the form
P

(3.12) Y= ot L X ¥ ey
where
X3 = 0 for k #1i,

=1 for k=1.

23



If we denote the mean of the ‘k”ﬁ by
-/ t {
=7 = L) ur',
v N e
and set 7, = %X'- 7' in equation (3.12), we obtain

P

(3-13) " —/M .f—/(” X/(l + 5&/ s
where
F
/Mt//‘/' ’7"/”2;)('“- :/’.I,f}?’

We now have the restriction that

F

24

)
Zn = 2w = 2 nF' = NP -NF7'=o0.

Py V2.4 .=/

If we order the Yij's in some way, calling them Y. (e =1,2,

+++,N), the equations (3.13) can be written in the form
(3.14) )’-‘-‘/a+/§7,:)(«+e

Also,
X K = dix ZX,(-I and Xo'I = n

We define o

X Z X/ta( Z:— Xm = Z n"X’(“ = 2

L S A "J T e—

TN N N N

and x = X = Xk , S50 that

Y. 4 P

We also denote by Ek the vector ikl and set xk==Xk - ik .

Substituting in (3.14), we obtain
y

(3.15) Y = a v 2 m(x+X) re

A=/
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since

)
2 n% = o0

We can also write (3.15) in the form

(3.16) Y= u v+ XT + €,

where
X = (xl,xz,ooc,xp)
and
T
Ty
T
We have
P —
2 Xe = ZZ: Xe — 2 Ae =0
A=/ VX4 A=
since
r _ Y L.
ZX,, = I nm =7
A=/ K=/ /‘/

Thus the xk's are not linearly independent and the rank of
the matrix X is not p as reguired in Chapter II. To meet

this difficulty, we use the relation
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M.
43
N

i

O

x
u

to eliminate 7, from (3.15), obtaining

r-1
(3.17) Y oMt ; (=, 7, xf)f,, + £
Note that

Xk - r_r;.;xp '::'Xk - Xk - %};(XP - Xp)

p P
=X, - nX
k = =k iy
p
np ¥
Consider the equation
P/
Z CK(X,«—’,Z,&/Y/J):O
K/ Y d

»

Multiplying the equation by X, (i=1,2,...,p~1), we find that
njc; =0, since the X, 's are orthogonal vectors. Thus the vectors
X, - %;;xp (k=1,2,.4.,p~1)

are linearly independent and our model is of the form given
in Chapter II,

As before, it is assumed that the g, ’s are NID(O,T?%).
We can now use the theory of Chapter II to test the hypothesis

that {Z =L = = Z;-,ro} , which 1is equivalent to testing
our original hypothesis that [77 = A= = 7,2 = 0} since
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.
Lo mu = o

The statistic used to make the test is

F = MST = 33T§§§‘1§ .
MSE -p

where SSE is obtained by minimizing the residual sum of squares

r n¢
2L (% =—m-t)"
and
[d 7"
SST = 2 L 47 —SS£
g gEe Y

is the reduction in the sum of squares attributable to the
regression. In order to compute SST and SSE it is necessary

to estimate the values of the parameters involved,

3.2 Estimation of the Parameters

We wish to estimate the values of/u and the 7 ’'s from
the experiment and to do 80 it is necessary to select ny plots
for each treatment at random. Each treatment will then have
the same chance of appearing on a given plot. Also, the ran-
domization allows us to assume the errors to be uncorrelated.
We could obtain our least squares estimates of//u, %, T, Tae
from the equation (3.17)

e/

P/
‘y=/u+;(x,—;?;xf)7k FE
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but a more convenient and equivalent method is to us the method
of Lagrange multipliers on the equation (3.14)

Y= v Ko e

A=/

with the side condition

’

(3.21) Z 7 % = O

V x4
This means that we minimize the expression
)y N P

(3.22) ZZ(Z@'—»?—&) +l(Z;n,‘t, ,

‘-/ J-I =
where m,tl,tz,...,tp are our least squares estimates of‘/AJ, .
7.7, 0, ZZ . If we make use of the following theorem ,
we can omit the second term in (3.22).

Theorem 3.1:

1r £(Y) = ul +éX«%

§
and (1) I =2 X, , s<p ,

=/

(2) Xy,%,...,X5 form a mutually orthogonal set,

S
(3) /(?_:m?:=o, 2 7 % o

(4) any number of other conditions hold FOr Tan, Torn, s s
such that the method of Lagrange multipliers may be used, then
condition (3) may be ignored. That is, its Lagrange multiplier

is equal to zero in the minimizing of

1

Mann, H.B., Analysis and Design of Experiments.
New York: Dover E?SIicatIons, §§h§, p. 39.
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Y]
- 2
SSE = (Y-l =0 X %)
To determine m and the ti's we set the partial deriv-

atives of
0

(N 2
(3.23) SSE = 2 Z(Yc} - t)
d‘_/

=0

with respect to m and ty, equal to zero, obtaining the normal

equations

P
JSSZ = Z X‘/ - NM - Z??.‘ t;

J m 4
= ;5 X& -Nm = O ,
n \
o)S,SE = Z X} —ﬁ‘.m-—%‘-t“:‘o (":I)'z:”.lp)'
J te £77

From now on we shall replace a subscript by a dot to indicate
summation ever that subscript and we shall represent the corres-
ponding mean by the addition of a bar. In terms of this no-

tation, our normal éqﬁations yield the solution

mo= L D W - Y.,
N «f 4

—
-

Y.
N

and
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3.3 Reduction due to Regression

Substituting our estimates of the parameters/u.and Te

in (3.23), the error sum of squares becomes

SSE=2 (- V) = L \/-*-angz.”

l"o( t,} 4

I
™
=
A
l
N
"\11
B
~<i
»

i
P
<

»
N

i
™
NN

where

Vij ::Yij - Y.. .

Hence the reduction in the sum of squares due to treatments
is

P

SST =2_»n (% -V.)".

-2

In terms of the original model,

(3.31) DA ” = (/q * +R5J) //u + T + E.. s
and

Z: (e + 7+ € L2

y )=t %L
5
(3.32) = -+ £ ner + E.. = + E..
/ /V o= /U

Therefore

SST = (2:7;‘-(7;.+ £ - E.).

In what follows, many of the expressions for the sum of squares
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will be of this form and it will be convenient to introduce
a theorem which permits us to write down the expected value
immediately., This theorem is a generalization of one due to
Tukey%

Theorem 3.2:

If Y1s¥2s00 s ¥p have means s e fe

* + . >

variances o %, v , - , 7%

and every pair has the same co-

variance, A, then

and

Proof: We have

s = (g ] = EY) —

and
= E[(ge M) s - pi)] = £ ) = i pte
so that
E(g) =™ v oon , Eldege) = w1, (%t
Also

2:77;/;/ ;/) Z?r g> = Nz”

1Tuke J.W., Dyadic Analysis of Variance, Human Biology, 21
(1948}, pp. 65-110
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Then
E(F) = x & mEy) = @,
and
£(7°) Lo e £(4:40)
Vi
=L 7 £(47) +LL, L noanc Ely 4u)
VAR ;
= L ‘Zia (i) + 4 & 7 (X + i ptr)
::j%‘ gg; 7 n‘c/y y +-2?, Z; 7. v+ A; g;; VA
But
/Vl = Z:/ NN = é;y‘"-/- ‘2;:/ 7. N ,
so that /
E(Ng:) = Na' + x Lonwt + 2 (W= L n*) .
Hence,
P N e r , N
E{‘é._:n.‘(;/,—;i.)}=§7ig(/a.-’+\7.-“L)‘/1//17 AL/(Z__:,??.VF

]

A (#- g Zn)

= IZ? 77‘.%.)&.)2{—; 77;(/* ’_;\_/)(sz”/l) '

Corollary 3.21: Setting ny=n and hence N=np in theorem
3.2 we obtain
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EAE (=70} = (p- )& =) + L (ui-2)"

where
£

75Tt . A =sL m

Ms

and
— £
g-r = L EZ: U >

s

We shall now use theorem 3.2 to find the exgected

treatment sum of sguares,E(SST). From equation (3.31) we

have

E(N) = ur+7m

Var (%.)= £(&) = %2 = v,
and ‘

cov (¥, W)= £(6. E0)= 0 = 2
Also

» Vs
_..=_/’ )7‘. . = + £ Z”‘. . = .
L Gy T ) = g Ere =
Therefore the expected treatment sum of squares is

F(ss7) = F{E n (T -7.)")
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Hence, the expected value of the mean sum of squares due to
treatments is given by
Vod
E(nsT) = E(LI7) = 7+ £ X e ™
/o-/ AT =/

We have seen that

ss£ =2 (4 - %)

l’/

=2 (€, - &) .

‘JJ
Therefore the expected sum of squares due to error, by corollary
3.21, is given by

£(s5SE) = E{Z (¢;- &)} =

"o‘

{z(%-e>}

‘°- ’

= Zc:_(n--/) vt o= (W-p) VT

s

since

f(fg): c |, Van (E*,)) = V“'J and COV(&J‘,{‘}-/)zo .
Hence, the expected value of the mean sum of squares due to
error is

E(MSE) =E(§-§%) = v

A

We could also have obtained this result by using the theory of
Chapter II. Then SSE is distributed as X v with N-p degrees
of freedom and hence E(SSE) = (N~-p) %, From Chapter II we
know that SST is distributed as X v*with p-1 d.f. under the

-



null hypothesis. The analysis-of-variance table is:

L

Source of | Degrees of Sum of Mean E(MS)
Variation Freedom Squares Square
[ - Y Ve .
Treatments p-1 SST = _Zh‘-()f-,‘ 7..) MST=SST| v*+ 2_ nc 7%
, = -1 o= 75':7
— N2
Error N-p 551":%(23["};.) MSE=SsE v ™
» /V_
Total N-1 =Y )*
> (- %)

More convenient formulas for the computation of the

sums of squares are

p
SS7T =2 x - X
Y

(=

2|

and

< ‘l— 2~ 2
> (Y - ) e ot - x
1_;’< 01 ¢J'J' 4 2
NV
while SSE is obtained by subtraction,

In the particular case where ny=n (i=1,2,...,p),

"we define

If our hypothesis holds, 2:»= © . Then,
(ss7T+ss£)/v* =2 (¥ - Y)Y e

has a X “distribution with N-1 d.f. and

Ly =X ) W=
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is an unbiased estimate of o*, If our hypothesis is rejected,

we estimate % and v by solving the equations

vrir = ST, TF = MSE

3.4 Components of Variance for the Type II Model

Let us estimate the yield for the (th treatment on the
4th plot of the n; plots associated with this particular treat-
ment by the model
(3.41) Yof T+ v+ €,
where the 7 °s and &,’s are assumed to be NID with means zero
and variances ur*and v*respectively., The assumption of nor-
mality is not required for the purpose of estimating the par-
ameters. However, this assumption is required if the usual tests
of significance and confidence limits are used. From (3.41)
we have

B(Y,,)=

and

Var (%)) = Var (v 7c v 6,) = Var (% 7 ey)
;£(7:.+£‘y.)” — V;:L P,

The type’of experiment that we are concerned with here will be
quite different from that in the previous sections. Here we
want to estimate the mean, u, and the variance of this estimate
and to obtain estimates of the variance components, v “and W;’Z

Our estimate of the mean is to be applicable to a wider area

than that of the plots used in the experiment.
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We shall arbitrarily begin with the sums of squares
obtained in the previous section and show that they may be used

to estimate ¥z and v >, In terms of the original model,

— 2N
baz To= 2 Blurmrey) e v B
¢ /—/
and
— P ~

From equation (3.42) we have

E(Y; ) = &,

Ve (L) = Flr +E.)] = w7+ v = o *

A

)
and
ow(/?-,)?/.)=cw(/wx‘+5. ek .
= f[(7zr &7~ E)] =0 =X
Also

r
7.0= L 2 =
M /V/‘ M
Therefore the expected treatment sum of squares is

F(Ss7) = f{fw(7 %)}

,
= Za(i-m)(wte )
P N 7.

fat d
"'(?%;-f’-im-‘)v;’JrZ(/- 77?\_/) v
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=/

=(/V-'/-V’- me-‘) mE o+ (p-r) vE .

Hence the expected value of the mean sum of squares due to

treatments is given by

. ‘
(3.44) LE(ps7)= EG577 = o+ » = (- L Z:_;,f) 7ia
P/ yaatd an
We also have
SSE=2 (M -%) =X (e, -F )"
and as before
E(SSE) = (N-p) o= % .

Therefore
2y ._ E{SSE) __ >
E(s<) = —inzgl = v 7,

3,5 Distributions of the Sums of Squares

Corresponding to our hypothesis 77 = O (i.=1,2,.;.,p)
for the Type I model, we have here the hypothesis oz = O,
Since £(7)=0, this is equivalent to saying that 7~ will always
have the value zero and that our treatments have no effect.
When this hypothesis is true SST and SSE have the same values
as they had in the case of the Type I model and hence are in-
dependently distributed as X’ *with p~1l and N-p d.f., respec-
tively., As before, SSE has a X*r*distribution with N-p d.f.,
whether the hypothesis 1s true or not, since it does not depend

on the 7;’s ., Thus the test used for the Type I model may still



39

be used. We could thén estimate o*by pooling SST and SSE and
their degrees of freedom, as was done for the Type I model,
when v, = © ., If the hypothesis is rejected, o?and oz* may
be estimated by equating MST and MSE to their expected values.

In considering the Type I model, we found that SST/o*>
had a non-central X  distribution when the hypothesis- was
false., We shall now show that, under certain conditions, SST
is distributed as X* after it is divided by E(MST).

In Chapter II we found that t1-=-fi.- Y.. , (i=1,2,
eee,p~1), were distributed independently of

$$£ =2 (¥ -%)"
oy

Therefore any function of the ty's, which inciudes tp, is in-
dependently distributed of SSE. We obtained these results by
making use of the fact that .

£(Y) = a+rm , 2 7% =0
If in particular, E(Yij) = 0, these results will still hold.
Hence, if we replace Yij by €. we can show that the E;. — E..
are distributed independently of
25: ( 59' - é:.,); ’ )

Gk

where (i=1,2,...,p). We can write the treatment sum of squares

in the form

”

557-:2:-77‘(6_;-?--’—7:—-7-;)1 s

cE/

where
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Since the 7, ’s are independent of the €& ’s , SST is distri-

4
buted independently of

SS£E = Z;(éy‘ au)y
<

If we let P 7% or €, , then we have

F(2)=0 and Var(4)=F(7 +E)" = w* =

- The covariance of the yi's is

ANq

COMCJG)%’) = CO/V(T.""’E: , 2t E-;'/,) = O

Therefore the y;'s are NID(0, &% + gz* ). If we consider the

case when n;=n, then by Chapter II,

£ 2
_S$ST_ = 2 (%-2)

77;17‘7——1— (?'»*ri—
n
has a X “distribution with p~1 degrees of freedom since

~
T+ E. = L L r &) T L I A T
+ € /VZ(? ) /\/Z”Z/ A

is the unweighted arithmetic mean of the yi's. Using the

results of Chapter II, section 2.5, we find that

E(NST) = vir o i’

Substituting ny;=n in the equation (3.44) we obtain

f'(A<f7f) ::_<V’ + __/— (7@0-— 2148 )

I

T (pe) Tr Y= g te ono”
p
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which agrees with the result already obtained.

The question remains as to whether the above results
might still hold when the ni's are not all equal. We shall
show that this need not be the case. First we note that if

SST/c has a X * distribution with k d.f.,

E(SST) =
('—E")
and
E(MST):E(%S{_’_I:):C .
If p=2,
Y= n1y; +n5y, , ¥1-¥ = n,{yy=y5) , ¥o=¥ =ny(yp-yy) ,
X _Z_ﬁ____. "L"N""'L
and ) )
SST =£21’_‘2_1’_‘g;z)_‘_&:!z) _ o ly -y )% .
We have
Ela-p) =0, Vnlpip)= amtr (L + L)
and thus
b8
SST = (4 - #)
[;277/77; G‘Lf V”/??,f)?,)]//\/ 2 V';" +~ v F ;,{ r#)
‘ 2

has a X " distribution with one d.f. .
Thus, for p=2, the result still holds but we shall

now show that it need not hold for p=3. We have

SS7 = Z [7 ;]L



Cad

L2

d-/ (T ‘&'/- N FEX ¢ ‘dl A
Also
£ 3
Zw[,%-@_) =?7(/- 7_’¢_) + L niant
(= Y 4 oo —3
N /V 4 /(/L
. 2
=l 7",:/“1) roal (W) = N (W),
N
and
/9
5 e (U= 75 o = )= =TT (ehgyom) 7 2 2 %
Y /Vl ¥ LK AT
= 7, 7N, (u/-@-n,()wf ”&[/V-n —27,() = - X Nk
W A N
Thus
- >
— ’ ‘-_—-
SST = L7 (i-%) 4" = &5 iZe 44
o EA

The moment generating function of SST is

mssr (t) - E (e(.ssr)t )




0 ey _17'87
= I f..- ___L_B_L_ e * 09/#1 Aﬂp
Bl evg ) J (A7)
= [ ,
v e VB
where
v‘._.:--_:v;:i_r%.‘— (i=/,2,"f,-f’)

and |B| is the determinant of the matrix

?l-zfnﬁ-%) 22mt .. . zamt
, W v
B 2270 T A -u‘m(/—”» 2777
AV % o N
22 7t 270 p t Z,- zz‘ﬂ/,{/-’/'_s)
N NV /.

If p=3,

Mg (0 = { 1= 22 [0 (0-2 )7 + 2 (W )57+ 1y (W= 70) 7]

-
2
+ 4 7, n. Ny f‘(v:”v:’v» mTET + w‘w”) }
N

In order that 5ST be distributed as )(ﬁ; , its moment gener-

ating function must be
-1
(1-2ct) ,
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that is, the above quadratic in t must be a perfect square.
It is sufficient if we prove this is not the case when n1==l,
np=2,n3=3 so that N=6. Then the quadratic becomes
/= ézf(/,z vr+aa l7;-’) 1 _‘z‘_é_f_k(e rf a2zt s V;_")
which is not a perfect square unless oy; = O
Thus we can not hope that 3ST will be distributed as
X*c when the ng's are not all equal and V7 is not equal to

zero,

3.6 Components of Variance for the Type III Model

We shall consider the model
where (i=1,2,...,p) and (j=1,2,...,n4) . The % ’s come from
a finite population of size P> p with mean zero and variance v

defined by

A
B.61) e Lt = P E(xY)
P-t =y

and the Eg’s are NID{(O,v*), Since the 77’5 are no longer in-
dependent, we must also consider the covariance between any
pair drawn,at random. That is, we want to find the cov( 7, %) =

£]@77ﬁ) where i+ i' . It is possible to obtain P(P-1) ordered

pairs of the 7.°s so that

a
3.62)  E(T7T)= 2 (%)
OP(P-1)

Since
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squaring both sides we have

2 I
Z 72"+ Z 77 = 0
‘= 4'#y 7

Therefore, from (3.61)

Je,
> %y =(FP-1) >

e g

L4

and substituting this result in (3.62) gives

Ll(r7)=- "=
) £

Once again we shall use the sums of squares obtained

in section 3.3. In terms of the original model,

]

7 .
2 (u+» +£‘;,'):/¢%r?.-. ,

(3.63) Y. = L ¢/
7 LT

and

»
(3.64) A —/i/—é(/l/‘f'?“-?‘ff/') =/a+/l§‘_=z/)7;7:.1—g,,

From equation (3.63) we have

f(Z.)"/u ,
Van(y;-)= E[(’K'fg“-,)‘] =F(r*)+ o~

= p../ V;> + IL — 7{,:. ,
I 7

and

conr (2., %u )= EL(7 + EN20 4 &)] = £ (7 74)

-V o= ) .
F)
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Also

A= G e = e

Therefore the expected treatment sum of squares is

Flss7) = E{Z n( %= 7"}

Hence the expected value of the mean sum of squares due to

treatments is given by

. P
_ _ 2 - L * *
(3.65) [(MﬁT)-f.(_/f__S_./Z)‘ o+ (W NZ:,?L)W ‘

Once again

SSE =2 (% =-%)" = Z (ey-8.)"

4 4

and hence

E(SSE) = (N-p) v *.
Therefore '

E(MSE) = E ssg =v*,

It is interesting to note that the expected sum of squares due

to treatments is of the same form for both the Type II and Type IIl
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models.,

The hypothesis we wish to test in this Type III case
is that 07 =9, which implies that 2v=0 (1i=1,2,...,P), Sub-
ject to this hypothesis, SST has the same form as in the Type I
model and hence SST has a X*o-*distribution with p-1 d.f. and
is distributed independently of SSE, which is distributed as
X*o*with N-p d.f. whether the hypothesis holds or not. If

we reject the hypothesis that vz = O , we may estimate oz ®
and v-*as before by equating the mean squares to their expected
values. If we accept the hypothesis that vz=0, we pool the

sums of squares and degrees of freedom to estimate o %,

3.7 Summary

For all three models we test our hypothesis, 77 = 77 =
++= 7% =0 for the Type I model and V; =0 for the Type II and
Type III models, by the statistic F = MST/MSE with p-1 and N-p

degrees of freedom,

The analysis-of-variance table used in all three cases

-is:
Source of | Degrees of Sum of Mean E(MS)
Variation Freedom Squares Square
P o~ ' P
Treatments p-1 S5T7 = Z:nL(X-.‘ )f.) MST= SST| o™+ .Z:m %
=t F-/ (s F:T
(7yPEL) o
valad
(TYPEZ L)
- 2
Error N-p SSE= Z (X}"X ) MSE=SSF| o
JJ N"F
Total N-1 e ~
Z (= %)




where

.
k= _1t (N =2 2n*) .

NV (p=1)

£z
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If our hypothesis is accepted, our estimate of o *is

(SST + SSE)/(N-1) ,

2

and, if it is rejected, we estimate z* and v * by solving the

equations
Crea T = MST

vt = MSE,
for the Type II and Type III models.

- If we have ny=n (i=1,2,...,p), so that N=np, our

analysis-of-variance table for all three models becomes:

Source of | Degrees of Sum of Mean E(MS)
Variation Freedom Squares Square
_ F o, . ]
Treatments p-1l §S7 = NZ(X‘.“X.) MST = %__&_7_‘ v+ on X
el ‘ -1
R T
Error (n-1)p SSE= 2 (){/'“X'.) MSE= SSEV T *
7 (n-1)p
Total np-1 2 Yy — Y.
G
where
—_ P —_ 2 -
X( = 2 %;‘ D= ézj Y.

and

for the Type I model.

i~

To compute the sums of squares we use the formulas



and

where
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CHAPTER IV

TWO-WAY CROSSED CLASSIFICATION MODELS

L.l The Type 1 lModel for Proportional Freguencies

We consider an experiment in which p treatments are
applied to g blocks. The (th treatment is applied to the ,th

block nij times., Display the nij's in a table

Block Row
1 2 ves q Totals
1l nll n12 o nlq nl.
Treat- 2 |n n e n n
ments 21 22 2q | 2.
n n ces n n
P %p1 Pp2 pPq| p-
Column N N coe n. N
Totals 1 2 q

and let ,4/='Zf 7 We shall assume that the nij's in a

l,d
given row are proportional to the “ij's in any other row., Thus,

nij =kinlj (:j=1,2,...,q)

and
’ >
72‘-. = Z 77‘.‘ = {‘ 72/}' = /ﬂ n/.
¢=/ O[:/
Hence
1 n — Il_ .1 .
i n%g i !
and
i b
= = n,, = N, .
71/ ; 7?‘/ ‘7‘;1' s 77‘ "?;i‘ /\/
b /e e

50
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Therefore

(L'll) niJ ni n.j
N

Consider the model
(‘#-12) JK"J /’( + 7 +/€J + (7;6)&* LJK
(i-l 2'ooo,p,J"l 2,¢¢¢,q,kij—l,2,ooo'n13)
where the &9,’5 are NID(O,v?) and the parameters are subject

to the conditions

P
(4.13) 57 = 2 .7 = o,
t'/ (2
£
(4.14) 2; n S = JZ_i. 2 B = 0,

(4.15) Zfi ng (78) = JZE 7 (7’/5’)%

Making use of (4.11), we see that the conditions (4.15) are

equivalent to

hae) 7 (78) = an (78) =

aw) /‘=I
To show that the above conditions can be satisfied, denote

E(};f&.}.) by 'f‘,t where

Then, if the conditions hold,
3

¥ - L . .
5(- . Z”y jc/ /{+/7: 5

4. J.:/

P
= : -+
} 72/ ; /J, 2

and
P

f..z/_&%%y Zn ‘-,‘:/u
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Thus, we must define
D A A T N A
(7‘/3)9‘ = 554' - f;. = f,} + §..
It may be verified that, when the parameters are defined in

the above way, conditions (4.13),{4.14) and (4.15) are satis-

fied. For example,
P P - _ P _ -
Z V(A A ‘Z:; 2. j“. - vf.. Z 7. \F \F
o=/

and

r ~ Lot z. — =
2: 2 (78 = Z 7y Sy Z Z ny §y t Z iy S

The equations (4.12) may be put in the form
a0 Yy, =0 B Ui 2 N A+, Wy Ol

where -
U = deer %./ = Jdj Wy’g = o c&},
If we order the ngy% in some way, calling them Yo (x =1,2,

.,N), the equations (4.17) may be put in the vector form

(4.18) >//M+Z_u 70 ‘f"Z\//%/-f-Z ‘//{’/;5//‘/"6


http:4.13),(4.14
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where the Uy ’s,V;:’s and the Wy’s are the coefficient vectors

of the zv’s,/@-/kand (73) ,7-,5 respectively.
Denoting the elements of U/ by Uy (<= 1,2,...,N),

we define
oA
L‘/:‘-_I_ gu "I‘_Z.Ui’[: _LZ_??;}J?I‘ = ng. 3
/V «£=! N ‘)Wkg N ‘)} N
and u;, = Uy - Us , so that
” P
O = & L(‘I,‘ Z Ui, Z )7 U = Z 2o Upty
(JJ) ‘,/ "J’ x4
In the same way we find
// = %.f/ » i 77’/ /\7{/ prae o
N /=
Define
. N
Lwéy/ = éz;' Wik = é;;y Wiy = ZZ: n! e JE& = Ao
4 N N
and
W= Wiy Wiyt
Then
b2

Now denote by ﬁf,vshﬁfjlthe vectors ﬁ I V «d and WIJI, respect=

ively, and set
1 - -
ui"Uf- Ui' ’ VJ,= Vj,- VJ.; s Wiljt=Wilj:° Wi‘j' .

We may then write (4.18) in the form

Z ( w.+ u )7’« +/gj(/tf.—r\~/;/)/6//

s

(4.19) Y = wu o+
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1‘5}’
P 8 /%
_../M + (/Z-:; U« A ‘f’//Z:/ /l:;,/ﬁ}‘/ T (‘/ZJ'/ L(J‘/d/ (Tf)LIJI + &

4
L) Ay = L2 " T 2 Py (1) = O

AN = N J7!

If we are to apply the theory of Chapter II, it is necessary
that the uf's,vjﬂs, and wfjfs form a linearly independent set
of vectors. Unfortunately, this is not the case, Before show-
ing this and remedying the situation, we need certain relations

among the vectors. We first show that
,0

2 U =1

(=7

This follows since, when we add the elements in row eC of these

vectors, we have

o P £
; u«."c( = /Z:, ut"[ = {,Z/ Q{t"c' = /.
[ It -

A similar proof establishes that
> >
Vi = Wy = 1
}./:/ (GJ.I
Also

Uj»I =n4, , Vj'I =04 Wij'l =Dy

and the following multiplication table glves us the values

of different dot products formed from our vectors



Ui Vj Wij
Ui' 77[. J[(," (h‘/ Jt:‘-/ )74/
N T E
wil.jl e‘l.'t-’ ﬂl"f’ <{/'}l nt'y Ju JJI 77;)
Now
i P £
Zu‘=;u"“zu‘:‘o
ey = =
since

—.: Z)_o-zc_z
ZU =7z =1

=7

Hence the uy's, vj's and wij’s do not form a linearly indepen-
dent set., To meet this difficulty we use the relations (4.13),
(4.14), and (4.15) to eliminate ;,/(}){r/e)(z (i=1,2,...,P),
and (7")/’4 (j=1,2,...,9=1). We have

LY, §-7
=~-4 2 7 t =~/ 2f »

G 7o 4 a0 ’ /é:’o sy ¢ 74 (¥
g~

g (g =70 Ay o)y
Vs

Py (7/6),0} = - (AT_ Ny (?’/3)9' B

Hence
-/ £~/
Py (713 = Z” » 0Py 7 £ ,Z: y 777
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Therefore
P P s
2: YUee 20 = U Yo = g A 7.0 T
2y Ry o e
Pt
- :;/ (u" - ”—;—; LIP)7:: 2
8 ., s
T R L A
z
B T %)
[£3 4 28
Y w,;g-/ (7'/6)¢9/ l'././-’ “;I/_‘l/ [7?‘-,// {7/8)‘/}1
? "/J-/
-’
e ‘/_, [7&;/ (7;5)%(]0_01/ -+ § [77‘,} (7/5)‘7] a_J‘_’f
iy’ 7ig

+ Z [ 7, (7). J e+ [n/,, (7’/6),,,] Wes

’-/
7lpg! 7Ty

P-/ 8-/ pet gt
yp JZ; [771/ (7’/6)/ I] __:_:_/ —_— ol [71‘1 o/ {7/3)‘J ] U:;II;
¥ F £ £
- i ( ) 7" ‘- w
iy fl [77"/1 7{51{// /y +l” Je g’ ( /3)‘// ;17::;

-/

rsr &
= Z z [77//(7“/6),0,][""‘9 - “/4’5’ — “_{/2’ + WP&

zr 4 E
7§ Prg! vz

We can now write equation (4.19) in the form
1

~-



Ry o u’o) 7 +J%— (M -71,,’ Ag)(gd/
o n-g
P g
+ . 7qp,(‘_g’._ Wig  _ Wayr T’“%&')(ﬁﬂ
":/ Jl:’ / 77“/'/ Ny N ;—
/ L 7 s ot 4
+ €

Note that

Y 7a.
= U =ae Uy -7 T v 7 1 = U - 7 Uy
2. N Mo N %o
Similarly
- 2., = - Y
A AR T3
-& 05
Also
Wijt — g o wy vty = L (W =) = 52 (Wi <)
Y’ ‘g oy’ Nog Lyl ‘4
- { ;- W A - ),
o (=) + 2 by ~17,)
725 )
= Wy _ Wiy — Wy *Mﬁ =gt L +xg It 2yt I = ey I
71‘1/'/ )7"(& )7'/0// /ei 77‘;// VA i 7]/9‘/[ )7/:‘8
= Weyr — Weg  Wht ¢ Wey
RV 7?
M/ g

74! Ul
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Consider the equation

Ve d

Z Cor (Ux" - 73_;_.1.' U/’) = O

= 2o
Multiplying the equation by U; (i=1,2,..,,p-1) we find that
nj,c;=0, since the Uj's are orthogonal vectors. Thus the
vectors

Ui‘- ﬂi‘.U (i‘=l,2,...,p-l)

np. P
are linearly independent. Similarly the
VJ/- Q.j'Vq (jl=l,2’ooo,q-l)
n,gq
are linearly independent. Consider the equation
i
2 i < Cc:/‘f( Wy — Weg = We + Wes )" ©
ey 4 = 7?‘.//./ )7‘4/; 77/0/1 7?/,8
Multiplying by Wij (1 =1,2,...,p-13;3=1,2,.4.,9-1) we find
- ! .
that nijcij' O since the er s are orthogonal Therefore

these (p-1)(q=1) vectors are linearly independent. Also

(uz’ - N Uf) .(\4" - Ty v} ) = oy TG Neg T Ao Ppjt ¥R Nyt Nog
7]

5 7?.’ 773« )7/7' ﬂﬂ.n.g.

= Ay = My A Ay = T e My F Ny p- Mg
2 7. N Mo. 7.4

— )7“9./ _.77‘:// - )7‘{// + 27‘.;/‘/ jposmenst o

-«

Therefore the two sets of vectors are orthogonal., Next we

have
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PIE.

n‘.ldv ﬂ"” nﬁd ] }?P ’

Us - (Mo = Uy~ gt 1 )

= 0/‘"'/ - J‘,‘.( - ‘{‘p + af‘P = O (‘; ‘-/:/,.. -JP-/ .;0[.‘:/3.. Y i-/)

and
Vo = Wy = Way r ey ) = 0
77‘-97 n,; 'p ;;pd. / 77/93

Therefore the third set of vectors is orthogonal to the first
two sets. Our model (4.110) now satisfies the conditions re-
quired in Chapter II. We shall be interested in testing three
hypotheses

Hy : (r/e)‘,~=o (1 =1,2,40.,p-1;3=1,2,...,9-1),

Hy: 7%= O (1=1,2,...,p~1),

Hy: f§'= 0 (3=1,2,...,q9=1).
Conditions (4.13),(4.14), and (4.15) together with the above
hypotheses imply that not only the parameters referred to in

a given hypothesis are zero but also all other parameters of

the same kind.

To test Hy, we first compute

SSE=Z [y —m—ti=dy - (t£);],

s Ky J

where nm, tyy bj and (tb)ij are the least squares estimates of
M, 77:/%/ and ﬁq&i} ,respectively, and SSE is the minimized
value of the residual sum of squares. Next, we compute SSEl,
the corresponding minimum obtained under the assumption that

Hl holds. Then


http:4.13),(4.14
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N
/Q':‘,(Z-__—/y:-\SSt
is the reduction in the sum of squares when all the parameters
are used. Also
N
A, =D;A0¢:—-5$E,

is the reduction due to the parameters left when Hl is true,
Since more parameters are inveolved in the'first case than in
the second, R 2.R1, and the additional reduction in the sum

of squares due to the (7fﬂqisis

Lot Lt
— 7%
SS(TH)= R-R, =SSE, -ss£ =& & [t)}]’,
where the (tb)ij's are the estimates obtained when the orthog-
onal model of Chapter II is used,
In the same way, SSE2 and SSEB denote the minima ob-
tained subject to H, and H3, respectively, and the reductions

in the sum of squares due to the 7/’s and the f&’s are
Pt

SST = R—Ffo = SSE. —SSE = 2 (8),
and
5=/ l
SSB =R-Ri=SSE —SsE = 2_(4)",
d—/

respectively, Finally,

&

SSE=2 - — R

o=/
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& Vg 8! g & R
=g -2 )= L) - 2 L)),
o2/ « i i g
s0 that
N
ny = SS57 +SSB + $S(78) 1+ SSE
= T

| The theory in Chapter II also tells us that, subject
to the corresponding hypotheses, SST, SSB, SS(TB), and SSE are
independently distributed as X*o*with p-1, g-1, (p-1){qg-1),
and N-pq degrees of freedom, respectively., The hypotheses Hl,
Ho, and H3 are tested by the statistics |

- MS(TB — MST — MSB
SSh oS BN B

respectively,

In the next sections methods for the computation of

these statistics are developed.

L.2 The Sums of Squares

Our estimates o{///, 77,/§', /773L}‘ are m, t,, bj,

(tb)ij' respectively, where these values minimize

2
Ss£= 0 (Yo =om-t -4 - (24)y)
‘ada ‘y'

subject to the conditions

e -~
(4.21) lnyto =L m.to = 0
8
g = L= O
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P

P
(4.23) a 7y (€4)y = 2. 7 (b)) =

8
(L.24) ,i 2., ({j)‘)- - /Z_' 7y (th)y =
By Theorem 3.1, we can ignore conditions (4.21) and (4.22)
since their Lagrange multipliers will be gero. Conditions
(4.23) and (4.24) will have to be considered in the computa-
tion of SSE2 and SSEB but in the computation of SSE they can
be avoided by expressing SSE in a different form. We have

55[ Z (\yk - ‘:}_)2”

"J’(‘J

where E(Y )= . Then
ijkv J
QSS£=—2Z‘(VA’—?>—.OJ
g\EV ‘Jtl

and our estimate of J}y' is fy )& . Then, by the in-

variance property of such estimators}

me Bt T e S Yy = Ve
M

— —

= 2 T
s §ommez Doy Y mom = VoV
é&‘r j&-" e = S%i"— Y. 5
(tjlg': EL"“ ?L - 3i[ + ? = >;. -'SZ“ “';;. + ;?.
and
R
SSt_zé: (Yju, =% )
1

Mood, A.M., Introduction to the Theory of Statistics.
New York: McGraw-Hill Co., 1950, p. 159.
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To obtain SSEl, we must minimize

Z (Y;‘k‘;/~ - =T _/g})"

‘J,')A"J
Now conditions (4.23) and (4.24) do not apply and, as before
we can icnore conditions (4.21) and (4.22 We have
‘_ZfJJJC, - >/. — AN = O P
0.
-.j/. o)%:s_:.t-/ = X~“ ")7‘,'(7,1 +2‘2'-)::O ,

and

2 o4

as our normal equations which have been simplified by the use

of conditions (4.21) and (4.22). We conclude that

IB:Y... 9 t "'Y -chc

1= Y., ’ bjx?.j,- ... ’
and
- — 2
SSE£, = ‘Z/:,v (yw,, A A y..)
Then
SS(TB) = SSE,- SSE
— — 2 2.
= Z Oy T G2 = 2 (Vg = %)
—_ - - —_ \2 _ = _v —
=‘§:&J( G = Vo= T ) w2l (oY YW L Xyt X
_ v .o .o LT \*
= %;«-,'(V o=t V)
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since the second sum is equal to

2§7?4 (‘/ -}‘{)")(k:'/" _)(/'o- -X/" —X")’_
To determine 3SE,, we minimize
(’J’ ‘J
subject to condition (4.22), which may be ignored, and con-

ditions (4.23) and (4.24). Thus, we must minimize the ex-

pression
& r
Q = SSE, +,‘Z=; C/'Z”"‘ (tl)‘;j t+ Za/ Z?z (fJ

Taking partial derivatives with respect to m and bj gives the

same normal equations as before so

m =Y... and bJ':Y.j."‘ Ynoo *
Then
(b.25)  2Q = -2, [V -m-& -]+ ne; +n, d.
, / J 7 ¢ ¢
‘ J(ﬂﬁg
and
vt Wy = Vo= & Aoy d.
7y
= - {(s + 4 )
Y 27

by (4.11). Thus
— . ‘ 2
SSEx =& [uy =%+ #(2 + £))

Summing (4.25) with respect to J,

(14«-26) - Z 2. }‘/'o. '/';1)?‘.‘”1 .f?‘l‘..o/Z;/ g’/ + NJ‘ = 0 ,



and, summing (4.26) with respect to i,

i
o
.

- - ¥ P
—aNK tand. N ¢ r N2 d.
J°*’ s/
so that

(14-027) Zﬁ—c + ‘_' = 0

Next, sum (4.25) with respect to i to obtain

(4.28) ".277-/');,'. 7‘2)7;/');1 r,Zn./' Ey+/1/c:/ 7‘2?.'2: a((.

= -2, (7/ Y. ‘Z, )+A/c r)?‘,Zc/
P
= WNec +27y-§ d, = 0

/V fi f-‘{‘) / (:éf %-+-é§¢ﬁ: =Y,

by (h.27 . Thus

..S-S[J. = Z(XJ’(- 7 * -:-.. ')—{-..)I—,
/

) A 4 A
mr A f'(flﬁu' .;' - Y. + %, R
and
(tb)ij =YY - Y Y,

as before. Also

3ST = S3E,- SSE

= 2 O = Gt %) = I U =)

i
~
~<I

|
Xi
N—
‘l

1
X
~
~Xl

I
RS
N—

)-I

65



66

In the same way we find

&

- = 2

SSB = $SE4- SSE = Z on; (5. - Y..)
Jd=!

" 443 Other Models

We still assume that
)‘/0'('4,‘.{ ::/l/ + 7 f/@d  l (7/6)‘J + g"d',f‘;}.
For the Type II model we assume that the 7°s , §’s s (TR ’s
and 89@;5 are NID with zero means and variances 03, %?t Yﬁ;L,
< *, respectively. We then have E(Yijkg'ri/‘ and
- 2

Vm(X"/'K‘.J) = v Flf' Vg,‘ + o *
For the Type III model we assume that the 7%, £°§, and 079g’s
come from finite independent populations of size P>p, Q->q,

and PQ, respectively, with zero means and variances

2 P 2
nts_L L 7 7 ,6
7 ' g ” Q/a ¢ 7

T = / 7’ )‘ 5
T (P-1)(a- /) ﬁ’

The assumption of zero means implies that
e By, B
= L = =0
2:7 0 ,/Z__,//aj o, & (7p) ;

and, in addition we assume that

R &

Z (7)., f;(/’u

For the mixed model we may assume that the 7~ 7’s, /%/’s, and
fﬁd%/% are of any of the types described above. In addition,
when the 7 ’s , say, are of Type I and the /%’5 of Type II,
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it is sometimes assumed that, corresponding to each /%', there
exists a population of ﬁ?ﬁg’s consisting of p elements such

that
o o

ZE: (ﬁﬁ&g’z o , e ¢Z: (7%0;1 ,

VR4 ?P r-1 =7

If the 7; ’s came from a Type III population, we would replace
p by P in the above definitions, and if the roles of the 7/ °’s
and ﬁ"s were interchanged, we would interchange i and J and

replace p by gq. We always assume the §

gmg’s are NID(0,v4).

4.4 The Expected Values of the Sums of Squares

In every case we shall arbitrarily begin with the sums

of squares obtained for the Type I model and, since

;Z; T f/e/ * /7799/ 4 E@v 3

I

= o+ f‘/{ +'(;?§)b + g(“ R

-
o
.

Zorp r(rp; + E

RN
.'l

A
+

;-4

x|
\Q
+
NI
t
Y
+
=
+
m

where

£ g
A R N A T

(7/3)[- = /?//- ; )I;l (7’/3)"01 P (7?)-0‘ = ;‘-—// [—‘Z/‘»“' [7/9)t‘/ )

7K

(78).. = - 2 oy (78) G

(,J
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P e
ssT =L (% -2..)" :

8 — — z
ssB8 =L a; (% -X.)

J-;/

g _ - _ _ — 2
= /g 7., [{5&-—/5. +(7/3).0“ —(’rp).. t &y 6_7 5

£y
5S(78) = L ny (% - -V, +3%.)"
‘ld

re .
r = - 2
+ f‘;‘" - E‘ - 67'. + £ J 5

¥4 Ty _ Vagatoy _ 2
SSE =2 (%) =2 (g4, - )

P Ky G A

We wish to use theorem 3.2 to evaluate the expected
values of the above sums of squares, and, to do so, we shall
need the variances and covariances of the following sets of

variables,
‘Z + (7-;-—5)(. * E".- >
A (7p); + E;.
(7’/?)4/ - (T/&)( 'S .i‘-d - E:‘..
To obtain these, we must compute

Fr), Em 7)), £, E(g B, £LGRE], ELpe (7]



69
el ], ELapy Gy, ELopy R, ELp; ],
f[(?’/?)g' (7’/3)59'7 , and E[ (7'ﬁ)dd' (:77‘)(’-] )

in a form which will be valid regardless of the nature of the
populations used,
If 7. comes from a Type II population, £ (7%)=

and if it comes from a Type III population,
fv,
EG) -y Zrt = (1)
PH/ P

which gives the formula for the Type II case if we let P> o0 |

For the Type II case, £(7: 7<) = O , and for the Type III

case
=i
5(7“//)—2: % 7u Z;’r = — 5"
A7), P(P-1) F
since

R A y2
o= nrn =L 1+ Z; 7

Y4 V=

Thus the formula for the Type II case is again included in the
Type I1I case. Similarly, for the /%"s,
1

[(/5:(1):(/°-’—) 7{1 , E(/‘Z‘FJ’) = -

Turning to the (779 ?s, for the Type III case,

ELOPT= & o = (- 3)(- 5) %

N
&

ELGRy (pdy] = & T (p)y = = 2 (),
P(P-1) Q RPP-1)Q
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= -(P-IN@-Dw" = - L
P(RP-1) @ -

(/-

ya
@
since

lod P N o _
= 2y (mdy = 2 A+ I (o) (rphey

¢

E[(r/;)‘,‘(rﬁ)g,] - -1 (/- —,%) o

TP J
} ‘—'—_—‘-—- —
p(p ,)@(a /) p(P )q@a-1) P&

since

Z (rp)y [r/?)u— Z(?’ﬁ) -rZ: (= )¢/ (7,0

4¢ ;/J iy e 148 ' ¢
A Q

+Z._ (70)y ()i +:z: (78 ()i

‘J*J

AQ ~a A4
= 2 = Eopy - (v * L (el (T

l‘/ 4}/ (] ‘*t,l/

and these results may be summerized in the single formula

. oyt = — -I— ( L I ) > -
[[{7,0)‘0, (7/7)‘9 J (c[“;' P) °§/o" -—-é V?‘./?
If we let P—> o0 |, Q—> o0 | the above formula gives us the
correct result for the Type II case since then
- 2z v
EL(78 (18)ij ] = ot Iy V2™ ,
In the case of the mixed model where each value of j gives us

a different independent population of size P 2p with

-
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P A
Z (780 =0 , wi = ;’-_—l Z: (7P,
z £ bt
E[ (T[ﬁ);‘o,’] = ‘_2_:, (7/5)‘4 = (/ - 7_/5) V;f:- >
P
E[[rﬁ)g(f/f);ﬂ = - %,
=]

FLerpyrp)yd = ELop), (rahy] = o

for j#j', and all these results are included in the results

for the Type III case if we let Q — oo,

Next we work out the expected values of expressions

involving {5?&». and (5?0yj. There is no problem when the

(ﬁ%b’ﬁ come from a Type I population since then these terms
are equal to zero. For all other types of populations we have
3
g . F . s
5

=z .,Z_-,)"J"M‘v 7;)('4’ _) vy Y= (o - —)/\‘7(»./-—%/)@;,

J

§
EL) (Fyed = £ L my Oy (5o
— L _ 2
(=) [ L7 -] %",

and similarly
£ L, B, ] = (4= g) [ Lo - 4] %

To evaluate E{SST), we let



Jo= w1 (7p T Ec.
_ » ~ b
pl =,$ ‘Z/ 7:;.;; = 7 rAf ‘Zg m'.jgz/(rp)g + €
— kg
=7 fA—; ‘%.‘ 729'{?79)‘)-7“2—... = 7 *(78).. + E...
so that

557‘=é 7. (7‘-~j,),’,

P

/ . —
/—V"L;}?‘./ui = O 5

.
e = E(y) = ) fﬁJZ g £L (7o) | = F(ze) = (- £, )%
M=

where o, O if the 7’ come from a Type I population and

J,=/ otherwise. Also
= Valy) <E L7 - E) v (T v E T
= FL7-Fn]™ + FI(70)Z] + E(EL)
¢ .
= (= B) vy (- B) [ L -] v

where sz O if the {7;&),‘.’.’5 are from a Type I population and

Jr=/ otherwise, Next

’l

A = con (;‘-,;/‘-/) = f{ [ -£)[7. - £ (7;,)]} r [[{777)‘-. {ﬁ’o)‘v,]

4 ‘
*JT/’P;W[/-Z,;”‘/’%]% ,

:-J7

ol



1 4
e BE SRV il R4 _L‘[Z:w*—LV 7, + 7°
T 78 AR - I 7
) :
£(557) = (10,) L e #7616 ) [y 54 b2
(=7 =/ N 2

/"’/ - N
Similarly
g
£ /
E(5B)= v r Sro [H-15 2
: =
(;-/)/V

g
Y [/‘/’LZ”-Z‘]V‘

+
A AP

To evaluate E[SS(TB) , we let

%4' = {7’/0)‘0, - (7?/".)‘ + f‘y‘. - .g‘

I -
&
+ (/- Jp)/é

73
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yz ff(;’z) = (/- J,,@)(r,e)‘;, , /J = £ Z e ple = O,
vt = Van (7.) = f{ (78 - ("Jr,,)(r/o)g' - (778 * Z‘)'. - E‘-..}L
= £ by (raly = (Fhs + By - i}
= s ELGp); ]+ ELGRL ] = adyy ELGAy (70:.]

FE(ES) + FOTE) —2 E(y &)

4 fi
2
- ! ! / YL _2ng 2 v
= -~ L |= = 7+, 2. __;*A-}
Jr{a( p){ Q N Y @ Y a e
v e o7 - 22, T
774.'}' 77(..' Wz ”tf

/2 = cow (;nﬁf) :[’[ [@9/.; (7;6)9 - (779)‘ fgg': - é:‘..)[;[f(a (7'/0)‘;,
= (TE) + E‘/J - 51]}

= o, ELapy (ra]-2 4, ELapy (700 ]+ ELGRI () ]

S (48] O ) B g}

L
= Ly [—/f—’—fzﬂ-/—%_—i Z:w.’--fi}v*”
=) 7%? a ._-/7- Q_. /V""/f/ prs a e
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3’ 2
[['SS(T'B)]-/‘\L/ ,IZ:; 7”; { Zﬁ: (/ )[7/")9 1 Z—_)’ (/ ”‘)( ['-
.?%J- /&/_" 7 7&] | ; - ;,:» }
= (/“Jr/,)g 7 (7’/0)./ fJ,{, L [/V—/é‘Z 77;?][/1/"
& . |
A;JZIH ] Ve Tt ?(f-/)rf—(/a-/)r‘)
and

% N ~ N 4 . .
L8] = v r (=) T 70 OBy [ ZJlt il
(p-2)(p=1) (p-r)(p=-1) ¥

Finally, by the theory of Chapter II; we know that
SSE is distributed as X *o~>with N-pq d.f. . Hence
E(SSE) = N-pq and E(MSE)=v*,
v_l

These results are summarized in table 4.1 where

Vad B—
a=N~2L72 7t ,£=/V—/§7?; 5
(= o/'/

Sy oy ./,/3, are zero if the 7%’s, g°s , (75),;’s come from a

Type I population and are one otherwise.



TABLE 4.1

Source of Degrees Sum of Mean
Variation |of Freedom Squares Square E(MS)
Treatments p~1 S5T :,;7761(7;-— 7) fsr =537 V“—"'Jr/ a [Z & ] 7"
Fot (,a*/)/V
-+ (/-—c/?,) ; b R
P =7
'd — o \% i 2 2
Blocks q-1 5S8= 2::723'(};‘. ‘X-.) [158= 53B8] v+ 70 JA [Z:: ne =X ]V;(d +ds by
0/ { i’/ o= P ___:_7_
(§- V* 4
+ (- )JZ/ 77,, /3
Interaction | (p-1)(q-1) | S5(8) = Z 2. ()‘7/ — A\ N5(T8)=3508] o~ * + Jre ad V;(d
~ o . (Ip-/)(g-/) (/;-/)(/-,)/V
Y -Yy. +5..)
(1= Sra) Zi 70 (72)s
P g (p=)(g=)
Error N-pq SSF=0 (){JK‘A.“ Zi,) MSE=5S5L| o *
t/ I( 4 /V“f’%
o I’J)- 1
Total N-1 (XJK‘, )

9L
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The following formulas are more convenient for com-
putation:

P _ _ P _ It
557 = Z e Vem¥.) =2 z bl - =2 Y -
=/ T ¢Fs 7. -/—V’
% N .
S§8 = 2 Y. oo Ao
J'=/ —;7; N
P,’h . l",,’))l‘a' . e .
SSE= 2 (7 ) = — L
"J’ /{/ G4 I("J. cJ G4 77")'
Pig7 ey
1 > 3
> (yy =2 T -k
‘)JK ‘)//'ﬁ)' v N
while SS(TB) may be obtained by subtraction.
If nij":l (i-’-‘l,z,...,p;j=l 2,...,Q)

’ » 113, Ylak.,
SSE = 0, and it is impossible to carry out any of the F tests,

If njj=n, Ny, =qn, n,g=pn, N = pagn,

—0a2n?
a:npqm:qn(p-l), b-_—..pn(q-l),
pan
y Z?r o Pyt - “’L]:&(/_‘E)
2 =& 4 W&l
/ Zﬂf-£>]=€1(/'ﬁ) ;
/Vp 'z, /D /V P
ot AP
e 7 - 7 S s '
oy - Fr o= and 4=/ dﬁ/ = r o= 16} .
lo__,/ /°'/ =/ i—/
If we define
. 3 . ~E -
P/ Fy



TABLE 4.2

Source of Degrees Sum of Mean
Variation of Freedom Squares Square E(MS)
£ s -— \3
Treatments p-1 55T =gn Z_:(Y'Y) MsT= ssr | v+ a(/- %)V;/;' +37z<7;’
=1 p—1 ‘
8 e . R
Blocks -1 5SB=/»‘JZ;(>;~.'>.’..) MSB= ;f/& ot nfl - E)V;f’ ,pn s
Pl -
Interaction| (p-1)(g-1) 5S(T/3)=71:4: (X;'- - NS(TB)(—-S)S(QTB)) Tr+ o V;/;
— —_ — 2 P 8-—/
Yo = Z,~.+—)(.,)
AN — 2.
Error N-pq S5S5F = Z: (){/;Q‘X/.) MSE= SSE| v *
K /\/—/73
P g _ 2
Total N-1 ;. (XJ« - y)
‘;‘/)/\’

8L
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when nyj=n for the Type I populations, we obtain table 4.2,

where we omit J%a since 1 - q =0 when Q = q.

L,5 Models with No Interaction

In this case, the Type I model is
Yong =i+ %+ g
We then find as in section 4.2 that

m':Yo.o » ti =Y "Yoo- ] b':Y"‘-Y-ooo ’

i.. J i
and
F’:fnn,'d' — - . 2
SSE, = 0 (Myey = Voo =% 4 Vo)
‘J))/(t"dl

of that section pleys the role of SSE. We also saw in section

L, .2 that
SSEy = SSE + SS{TB)

so, i1f we had accepted
Hy: (78)c; = O
and decided to change models in midstream, all that would be

necessary to obtain SSE1 would be to pool the interaction and

error sum of squares. To test Hp: 77=0 , we minimize

- feginy >
SS5£, = 2_ (X‘,@. —m«%)

G4 /(‘-'J '

where condition (4.21) may be ignored, and find

mf-"f... N bj=Y.j-Y.oc ’

L4

so that
L& ncJ'

SSE. =2 (e =5.)"

‘)// A/L'/
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Then

SST = SSEZ- SSEl

I’l?:rl‘J _ _ — _ . 2
=c > [(x g e ‘7;/‘- )7 -5)]
hr
_ é;;; (’); ¥-. z; + >/”,)
P _ r _ _ 3)”J . - _
= Z; e (Yoo = ¥ )T+ 2 ‘Z;_ (. -—}{,_)/Z (v v (.- +>f..)
£y
a - - 2
=2 5 (X.-%.)
since
— _ - _ 8 _
Jé; (% i, T Yoo = Xt 7.) = 200 Yoo = Y —)/% dZi 7. }3-. Y,
= A Voo = He e = e e AV = O
Similarly,

558= & n(¥. -%.)

and we see that the formulas for S3T and SSB are the same as
in section 4.4, and they have, as before, p-1 and q-1 degrees
of freedom. The degrees of freedom associated with SSEl are
N-1-(p-1)-(g-1) = N-p-q +1
and the same result could have been obtained by pooling the
degrees of freedom associated with SS(TB) and SSE.
An examination of the derivation of the expected values

of MST and MSB in section 4.4 shows, that to obtain the ex-
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pected values for the present case, all we need do is set all
terms involving the (775)ij's equal to zero. We have

E(SSE,) = E(SSE) + E[55(TB)]

= E(N-pq) +(p—-l)(q-lﬂ7"= (N-p-q + 1) )
a result obtained by setting the (7/)(}-:‘0 in E[358(TB)} , and
hence
E(MSEy) = v *.

In the tests of section 4.1, for the Type I model, SSEl

plays the role of SSE,

4.6 Distributions of the Sums of Sguares

Corresponding to the hypotheses
Py te, M=o,y =o

we have the hypotheses

V;'ﬁzo J V;:=o 2 7(; =O >
if the corresponding variables are from other than a Type I
population., Then, since the populations have zero means, it
follows that the corresponding variables are equal to zero,

Returning to the Type I model, the theory of Chapter II
implies that

ti = Yi"- Yca. 9 bj = Y.j.- Y.oo [} (tb)ig ZJ',- Y,)‘." Y"'-.*Y.a-

(i=1,2,.04,p-1;3=1,2,...,9-1), are distributed independently
of SSE. Therefore any function of these statistics is distribe

uted independently of SSE and, in particular, this holds for

tpr Do (tb)pj (j=1,2,...,9) and (tb)iq (1=1,2,...,p-1).

These results were obtained for the model
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g Tp T O

and they hold for the particular case where Yijk5=

Eony
¥ "Jl“,}

Hence

hnd — —

€iom Euve y, By m &, B i~ By o+ Een
(i=1,2,...,p;3=1,2,...,q9)
are distributed independently of SSE.
We shall now show that any variable of the above three
types is independent of any variable of the other two types.

Since they have normal distributions, it is sufficient to

prove that
cowr (£ = Gy &y ~E) Teow(E- Eol, Bym €y -8y +7.)
T eow (&) - Fu, By - E - Eg +En) T O

We first compute

£(E. E-,--) = ;,"/'; (VX the nunsen of Eyr,’s that Eoo.

< J _
and &/" Aanre /n dammon)
= ”“d' o= Z—z ’
Ao my N
g; . {_ = L 7.yt = rt
£( ) =, o,
F(E. 8. )= L, p*= r*
J 2‘./‘ J N ?
=2 _ L
E(Er ) = -,



Next,
_’. -7 P —F - £ - = / 7, ot
cov (&. A AL °(I (h;. "y ‘7 7, )
t V"'("_L L - L .o +4 L -1 = O
NN N Yy Ty N 2
and similarly
conr( & . - E... s o — €.~ €., FE. ) =

For the Type I model with interaction we saw in sec-

tion 4.1 that the appropriate tests for Hys Hy, and H3 were

_ MS(TB _ MST MSB
Fl—'vérzii " P, =wr ' F3 T MR

since, subject to the corresponding hypotheses,

ro& P .
S55(78) = Z ﬂg'(e.“-/-. - €. 'fy-. +5.) ssT=2 m (E. - E. ),

g Y

¢ _ 2. /?3,)',;‘" _ 2
ERY: =J4; (& - £.) , SSE =%:l/ (€uy™ E.)

are independently distributed as X e *with (p-1)(q-1), p-1,
q-~1l, and N-pq d.f. , respectively. |

For the Type I model with no interaction we replace
MSE by MSE, since then éST, SSB, and SSE; are independently
distributed as X v~ * with p-1,q-1, and N~p-q + 1 d.f. , re-
spectively.

Our problem is to determine what tests can be made

when we are not dealing with a Type I model. We recall that

—-—

587 = Z 7. [_’7‘—. - = f—(f(é)‘., —(77:),_ + & - 5.,,]":
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8

558=2njlp-B +Ga -tmp.r iy~ ]

and
_ _ _ _ _ . _ 932

55(78) = é? 7 [(7’/3 (7R (TR, HTA). 1 - — &y, £
If there is no interaction term, subject to Hj, Hj, the sums
of squares SST and 3SB reduce to the corresponding expressions
for the Type I model and the same tests apply. If there is an
interaction term, the above argument shows that the Type 1 test
can be used for Hy. Thus our problem is reduced to testing

H, and H, when there is interaction and we are not dealing with

3

a Type I model.

We first consider the Type II model where the 77,
L4

fﬁ 5 (qﬁ s are NID with zero means and variances wn ", v3”,

, respectively. When HZ: v, = 0 holds, let

7@ 7
>
= (7.4) £ o= L x . £,
P7 (7). t e = 7 oy
Then
i- ~
s = / L 3
, o — —

= £ %: 7y Ay F B = (TRt Bl

and |

$s7= 2 nly:-7)"
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where

8
E(g)z0, tn(y)= 1;[7” T, cow (%, 4u) =0

#19

™

é\sf‘

In Chapter III we had a similar situation and found that

SST/E(MST)
did not, in general, have a X*distribution unless we let
n; =n. Accordingly, we begin again, assuming njy=n and find
that
nj,=qn, n,y=pn, N=pon,
— l 2
=Ll w2 L,
[ P =/
i ha , 7
(78). = L 7 (e, = £ (v9)., (7). = (7@ -
7 g T T g & P ke = T

We no longer impose the restriction that H, holds and let
%‘. = 7: + (7?)('- 7 E_"L." 2

P —— —— am—

2 {7 + (74),. &} =T (75).. t E.

Ny

Then
f(‘~)‘—’0) %’/‘{.')=Vy-"fW 1—7’1 Con : v ] =
7 7 S A (erp)=o
557'—‘;;%(;/;‘;2)»

and, by section 4.4,

E(1sT) = v 2 ne +pn o°
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Hence
p-d

¥ 8"
by Chapter II, has a X ’distribution with p-1 d.f, . Similar-
ly, SSB is distributed as X’E(MSB) with q-1 d.f. . Consider
the three sets of variables

(T3 = (T, (70); = (F)e, (70 ~(Fpde. ~ (7)) +(73)..

We have
cow { (B = (7)., (7). = (7).} = E[GR),. (7)1~ £ (7). 7. ]
— £l p).] v LG ]

8»

/8
= 1 2 Elowy Opy] = Lo L ELapy Gpy]
)

' B 54

Zj EL (rp)y (ri0d ] + L pal EC o, (r5)e]

/05 t( Piz“ld
=fgg—;m_v;;+n%‘::o,
P % S rE”

cou { [(7a)y. = (70 J[ (rp)y - (50 - G2y + (722 ] }

—_— 3 T r a2 + L
-,{‘41{5_9__,?7;/3}- e+ £ V- T o+ BB L Vi, T =0,
g > 13 r§ rs »s P

and similarly
con {[ (), =G ], o)y - (70 = (70, + 7). ]} = o
proving that the three sets of variables are independent.

Bearing in mind that we proved the corresponding relations
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for the f%“ s earlier, it follows that the three sets of

variables
Yo = T t (7@ = (7). tE.. ~E.. L= f (7R, () tE . —C,
(7’/?)9' “(TR). ~ATE), +(TB).. + Ejo = &.— &y + E...
are independently distributed and hence so are SST, SSB, and
SS(TB).
If, in our Type I model, we set’f( , the 7%’s and the
/%’5 equal to zero and assume the (7);°s are NID(O,v55 ),

Yyu = A7@)y v Egnx 5 Yoo T (TE) + ?‘J 5

v - tvd . 2 z
ér()&u)'* o, V&a.(k&n)" V%p s ;;
and the Yij-'s are independent, We may carry out an analy-

sis of variance on the Yij-'s' According to the model of

section h.53where there is no interaction)with the N of that

section equal to pq and nij==1,
SSEqy = SSE + SS(TB)

rPrgat — 2

( (//( - ‘?/ ) t Z:( ‘ }/ )
‘IJ)K
8 _ — — z
= ()/‘/ - Y. *'Xa/'. +X)
()‘)

since, under these conditions, Yijk:ZYij- . The theory of

section 4.5 tells us that SSE; is distributed as X% V;/; t V‘)

and hence
SS(TO) = & m(ly -5 -5 ¢ 7 )"
is distributed as X (7t 7 ,; t V"') with pg-p-q +1 ={p=-1){q=-1)

degrees of freedom.
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We display the above results in table 4.3 .

TABLE 4.3

Source of Degrees Sum of Mean
Variation Of Freedom | Squares | Square E(MS)
Treatments p-1 SST MST vir AT tgnv

Blocks q-1 SSB MSB Yt noz tpa GF
Interaction |(p=1)(q-1) | SS(TB) | MS(TB) v+ onoo,

Error N-pq SSE MSE T+

Total N-1

We can determine the appropriate tests for Hy, Hy,
and H3, by examining the expected mean squares column. We
know that the sums of squares, divided by the expected values
of their mean squares are independently distributed as )(L.
If wé also divide by the corresponding degrees of freedom,
the ratio of any two has the F distribution. However, the
computation can be carried out only when,the expected mean

squares cancel out in this ratio. Thus we have
Fa = MSéTB} VR, = MST y po= MSB
1 2 M5TTB) 3 M3TTE)
to test the hypothese Hl’ H2, H3’ respéctively. All of these
results are for the case where nijzrn, If this condition
does not hold, we can carry out the test for Hl only. It will
be noted that the above tests for H, and H3 are different

from the corresponding tests for the Type I model where MSE
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is the denominator used.
For a Type III model with interaction we can not ex-
pect to obtain the X distributions necessary for F tests of

H2 and H in fact, any such test must depend on the {7qu’s

’
being noimally distributed, whatever the nature of the model,
unless the terms involving the fqa%iz reduce to zero as in
the Type I model.

' An approach similar to the one given above would be

used in the case of a mixed model.



CHAPTER V
TWO-WAY NESTED CLASSIFICATION MODELS

5.1 The Type I Model for Proportional Frequencies

In Chapter I we discussed an experiment in which the
yields of naphthalene black for different samples of H acld
were measured. It was assumed that the samples of H acid were
random samples produced from‘naphthalene by a particular tar
distiller. We shall assume that, in general, the experiment
is carried out p times, the’supplier of naphthalene being changed

for each experiment. To describe the data we consider the

model

(5.11) X",',W S Mt fﬁﬂu + & Ky
(1 =1,2,...,pP;J 21921"'1q;kij:=112""’nij)

>

where the 7.’s represent the effects upon the yields associated
with the various suppliers and the /ga,is represent the effects
due to variations between q samples from each of the suppliers.
The 697475 are NID(O,v+). Associated with the jth sample of
the (th supplier are nij observations and since we are con-

sidering proportional frequencies, we have

ni.n,j

nij - T .
The parameters are subject to the conditions

£, % ,
(5.12) 2 T A A

ey

F=

~13) i e T f WS = 0
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To show that these conditions can be satisfied, denote by S}J
the mean of a given subclass or sample, where

ft.l' :/U + 7" .’_PJ.(‘.) .

Then, if the conditions hold,

&
£ =;,’:§77v’54 MTTE
- 1% 2 ‘ e —_
5..=/'\/’/ ‘57"/ &y = 7\/7[77 So = M

Thus we must define

yZ = §.. , = fo - 5.. R f%YT) ==.§g" fg.
Defining the parameters in this way it may be verified that

conditions (5.12) and (5.13) are satisfied. For example,
P

é: A 7 = Z: P R Z n. = Nf. -N§. = 5

and

— -

Z}r//@w 2:77/ f =n. & .. = 0.

/-I

The equations (5.11) may be put in the form

(5.14) ‘/,y /64 * ,Z:-; Ui 70 + Z:; V’u')}(c') (ﬁa/"{(’) t 6{/'&'4

where

u“"' - J;/l. R \//'/(‘.’)J-(‘.) = J‘“.l g//
If we order the Yijkg"s in some way, calling them Y, (x =1,

2,...,N), the equations (5.14) may be put in the vector form

r rr ¥
(5.15) y:/(/ + ‘é u'_'l 7:1 + L%; \4'(‘7}/&//(“/) + E
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where the Uje's and Viy's are the coefficient vectors of the
7o 's and /?Qp,’s , respectively.
Denoting the elements of Ui;by Uik (¢ =1,2,...,N),

we define

N /';f)"., Zl’j_‘-
L3 U = L2 Une = 5L ny e = n
A/ o=/ ¢x /V "J’/(V e /V ‘)J J T‘\i ?
and uyug = Ui = '5,,‘/ , So that
.4 P28 P8 »
Y
O = Z "“'-lx = u /‘ = Z )7./ “ [‘ = Z 7’.'. L{"/"
< T/ (/, 4.0’ css
Define
— N PL my ~ %
V. :/Z[/._ :/Z iy o = 1 AN L Y
78 £ /, — bege . L /1 vl ] ¢
A e A Y i S A AL VAT R ./\d/—
and VJ"(«")4(= \[l.'(t“)c( = VJ"((’) .
Then
IR 2
Z A 77;0,'/17,(‘.)0/‘“.) 0

o=/ 4t « (,}
Now denote by 61. and W-I;-,(‘v) the vectors ﬁicI and -V;"([’)I respec-
tively, and set

ujr = Ui‘ = Ui‘ ’ VJ"{A"): vj'{(‘} - Vj’(t") .

We may then write (5.15) in the form

(/=/

p _ P, g -
(5.16) y =/u 7 Z: (u“' ' Uz') (G ‘%; (Ai’(i’) T \4‘1(4"))(6/'((') t+ &

Zf X,
‘./(/( + Ry H"/ Z/ L ‘43; /fa-':(‘./) /BJ'/("/) + é

since
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To apply the theory of Chapter II, it is necessary that the
uj/ 's and vj:'s form a linearly independent set of vectors.
We shall show that this is not the case. Using the methods
of Chapter IV we shall be able to remedy this situation.

First, however we need certain relations among the vectors.

We now show that

Z,:Uu :I

(=

This follows since, when we add the elements in row « of these

vectors, we have

, ¢ P
15 L/‘.‘o( = ;.’Z'l ui’c‘ = Z: 0((1" = I

&=y

Similarly we can show that
P %
; \6/(‘-1) = I
‘1)
Also
Ui-I = nj, and VJ‘(") I = niJ

and the following multiplication table gives us the values of

different dot products formed from our vectors:

Ui v
Uy n. dict 7 o
Y).l(il) 7’«."}', o’ 771.0‘ 0/4."" \4‘,’

Now
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since

Z G =1Z% =1

Hence the ui's and v

Viciy' S do not form a linearly independent
set,

To meet this dlfficuity we use the relations (5.12)

and (5.13) to eliminate 7, and Fgcil (i=1,2,...,p).

We have
o=
= i» ézz 7 Ve >
g-/
7?('; /%(‘) = 7 /Z:-_/ 77‘//{;/(() (1 L2, 0, /o)
Therefore
- A=/
> U e Z“fT‘JZ .Z:(u;"”—"'—’ “f)l" P
e = Np. (7= = 75
8 8-/ §-7
—_ Vgt .
L A frer = Gz e fan ~ & Ay frres
2 ( )
= ey T /tr(f-’l ‘)
J":/ /( 77‘} } /60/
We can now write equation (5.16) in the form
ladeid » 8-/
(sa7) V= ‘Z/ (- 7?‘7, 4y ) % 4 ZJZ (ff“"'d}"—%} A?“"')/‘-?’"(ﬂ/ teé
]
Note that
ul.' ")E__- u/; :’u‘l -U‘/ "7;.?‘_1 (UP Uﬂ)
77,.,. '
== Fe o Lo w2 Uim U
B w o N e
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Also

- 7'(.‘/'/ . = y — -_ noy! . - \/
SN —~ "f(c’) L/"(‘ ) \5"0"/ — ( Vg(t / \/5([’) )
%'g 7'y

i

\4'("’) -y Vga") - ”_‘3_"] + Wy ey T
7?‘-:} NV .
= \{‘/((.’) - 7&/ \/g ()

)7(’3,

Consider the equation
P~

’ A, -
2 Coe (. - [/f,) o

"/:/

Multiplying the equation by U, (i=1,2,...,p-1) we find that

n, ci::O, since the Uy's are orthogonal vectors. Thus the
vectors
U = ue U/, ([’=/,.2.,-- -,/o—/)
77[,.

are linearly independent. Next consider the equation
D
)?'l'/ —
Crrcery (Voo = 747\, ‘-,)- 0
{.,Zz; S S L V) vy ()
Multiplying by !/“7 (i=1,2,¢¢.,p;J=1,2,...,9-1) we find that
njjcy = O since the V,/(#’s are orthogonal. Thus the vectors
— 7["1'/ . .
lf’/‘.’} - \/i«(l./) (011-:1,11.--);_/)-‘/:/)2'..)/o)

g

are linearly independent. Also

U = (ren = 70 Vi) = e
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Therefore the two sets of vectors are orthogonal to each other.
Cur model (5.17) now satisfies the conditions required in
Chapter II.

We shall be interested in testing the two hypotheses
}H:ﬁﬁ7= 0 (j=1,2,...,9=131=1,2,...,p),
Hy: 77 = O (i=1,2,...,p0=1) .
Conditions (5.12) and (5.13) together with these two hypoth=-
eses imply that all parameters of the kind appearing in the
two hypotheses are zero.

To test Hl, we first compute

f’8)'

SSE = Z [ ’-)?1 - - J(:.)]

)/)l

where m, tjy and b are the least squares estimates of u, %

Jj
and/gﬁ) respectively and SSE is the minimized value of the

residual sum of squares. Next, we compute SSEl, the cor-

responding minimum obtained under the assumption that Hl

holds. Then

N
/?=Z:j ;/: - SSF

is the reduction in the sum of squares when all the parameters
are used, Also
A
z -
Ro=2 47 - 5S£,
&2/ «

is the reduction due to the parameters left when Hl is true.
As in the preceding chapter, R B.Rl and the additional re-

duction in the sum of squares due to the //5@,3 is
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Psg-/

A
SSB = R-Ry = SSE,~- SSE = Z,: [ ﬂ;m]

where the Qh(fs are the estimates obtained when the orthog-
onal model of Chapter II is used.

Similarly, SSE2 denotes the minimum obtained subject
to H, and the reduction in the sum of squares due to the 7:’5

is P
SST = R-R, = SSE,- SSE = Z [t:'] - :

¢ T

Finally,

AN

555?27«’—/?

-3/

/?

! IR 4 2
ﬁc:— - oy [t:)” - ; [’ﬁ;‘(q] Iy

H
Ma

-/

so that

.4
Zﬂ:’ SST + SSB +SSE .

From Chapter II we know that SST, SSB, and SSE are
independently distributed as X o=* with p~1, p(g-l) and N-pg
degrees of freedom, respectively, under the corresponding
hypotheses, The hypotheses Hy and H2 are tested by the
statistics |

2 FSE

— MSB
F1= wx

respectively.
In the next section we shall develop methods for the

computation of these statistics.
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5.2 The Sums of Squares

Qur estimates of/ﬁ<,‘x~,/@h, are m, bty and b30) re-

spectively, where these values minimize

<>{7"‘¢J— m ot "j',{m )’_

Prgsn.

SSE= 2

(.J,/.; IL‘J

subject to the conditions

P

. ’
(5.21) O wyte = Z 2o te = 0

P 2

La &
(5.22) dZ 2y = JZ g iy =0 (=1, 2, 0)

By Theorem 3.1, we can ignore condition (5,21) since its
Lagrange multiplier will be zero. However condition (5.22)
will have to be considered in the computation of SSEZ. We

shall compute SSE in the same manner as in Chapter IV,

We have
f',g,n.-" 5
§SSE=2_ (%, - &)
‘)‘/;A’,;J' / ‘d J
where E(Yijkg') = fg .w.Then
QSSC‘:—lZ:‘(XJ'/(‘.-"f(}):O >
PRy 4
o gc) 4
and our estimate of &J is ﬁj = )iyu . Then, by the
invariance property of such estimators,
— 8 A rSs;n.v" —
= = 1 o= L ;o o=
N \f:. Y7 g J;‘J /V ‘?M;’,' XK"J >/... >



A —_— —
b8 -F =% % .
and
PJ?)NcJ' —
SSE =L (Y, = %)
‘4
To obtain SSEl, we must minimize
'df)h
>
S 5S¢, Z (c//( _7”’1‘1.')
IJJ /(
We have
28,

VSSE — —2 2. (/ﬁ gt ) =

o m

S/:

J/)I

) Z (Y/«

oy

and making use of condition (5.21) we find

m=17Y... and ti-= Y
Therefore
P:n 2
S$SF, = Z (¥ %..)
Jojl/rJ
Then
SSB =‘SSE1- SSE
XTI _ . PIY,"Q‘
= ‘Z ( ‘Jk { ) - Z . (>L/ K
;/JK ()/,l(‘-l
g, _ by
= £ J (}fy‘-")f'—-) HZ:,(X;&,
“fr ke “f 24y

i

-M’ft'): o

>
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since the second sum is equal to
zZ»,M, 5T =% = o

To determine SSE2, we minimize

mgsne

55[)_ = Z: (}‘j”‘d — p7 "/Z/.((') )b

‘IJJ) K;'J

subject to condition (5.22). Thus we must minimize the ex-

pression
F/g) p 8
Q=2 (X,k —m )t L e Lomy b
Ggiky =y el
Taking partial derivatives with respect to m and bj we have
/°Jf)x
(5.23) J@ = —al_ (w com=-dyy ) =0
Jdm 0,1,/(',
.
02 O)Q - - ((" . - t¢ : ., :‘O
(5.24) iz 2 é: x“b w‘,é())fcw>9

From (5.23) we find m = Y... and from (5.24)

2njy,
Multiplying by nij and summing over J we have
Y;,,- ngm-cyN =0
2
and hence

Ci - 21’11. (Yi.." Y-- . )
N
Substituting for cy in (5.25) we obtain

Yij.‘ Y...‘bj(ﬁ)- (-Y-i..' ?coo) = O .
Therefore

50 = Y157 Yi.,
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and
a2y . .
5S4 :‘/:Z;;v (>;A’y f/ + X - ¥ )
Then
P Bin, _ ey 2
557—22—__.((}/,@ >;/ y) /Z (}c//,( r)
"J’K"J' gy Ko
P, “ &=, . - _—
DR WD S €I D IS AL

(,'J}k\.) ‘/J}/\’
/’

= (¥ - Y.)

</

since the second sum is equal to

P ¥ :
2 E (G- N7 -%) = o

“J

5.3 Other Models

We still assume that

For the Type II model we assume that the x? -/‘?ch:‘ and 6‘9‘,‘,‘.. ’s
are NID with zero means and variances v , ;;”, and v~ re-
spectively., We then have E(Y.., )= and

) l:.jk‘al L/M 2
The Type III model, as considered in Chapter IV, would not
be realistic here. Corresponding to it, we have the case
where the 7 ’s come from a finite population of size P, mean

zero, and variance

Y-/
v; __L_—.Z

A=/



102

while the f&a,% come from P populations, corresponding to the
different values of i, these populations being independent
of each other and the population of 7’s, with zero means and

!

common variance

g = _/ /6
ad _/ Y J(U

We shall still call this model the Type III model. The assump-

tion of zero means implies that
Y]

Q
Z 7= O r dg /80{(«') = 0

5.4 The Expected Values of the Sums of Squares

As before we shall arbitrarily begin with the sums of

squares obtained for the Type I model and, since

}{/', r/(/( + 7 fﬁJ'(“) t fcp[ 2
et Tt B+ E

Y|
\
N
-+
Y
4
™

where
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Prg _ .
558 = 2__— 77/(){/ - Y. )
l,J

x4 _— - = >
- é;-7ﬂJ [%%Iu @ * Eye T Ed

5"”‘)' g n .
55[ Z (X//{l ) Z (ECJA* 9'> .
"/JJ '41;/' d ‘;JM’

To use Theorem 3.2 to evaluate the expected values of
the above sums of squares we shall need the variances and
covariances of the following sets of variables,

7; 7"‘/1;:(‘.} 4 E‘c'-- ’ /d;f((') > gy‘

Hence, we must compute
E(72), E(r)  £(Fo), E(fwfm),

Elga) o Ll fra) . E B Bren ),
and {(@-(” ﬂl-/((v) )

in a form which will be valid regardless of the nature of the
porulations used.

- 2, _
If 7 comes from a Type II population, £(% ) = V=7,
and if it comes from a Type III population

y-; ,
£/7:°)f-,§—§77’=(-7'5)‘f

which gives the formula for the Type II case if we let P — <2 .
For the Type II case, £ (77 77<) =0 , and for the Type III

case
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~ P
Fler)=2- 22 = =) " = -

$F o e E
P(P-1) 7 P
since
£ P P
O:Zl.z.?;,zz:%zf—;?;fz’-/

Thus the formula for the Type II case is again included in

the Type III case. Considering the /3%7’5 for the Type III

case,

A 8
£057,) = 2 ffa =
fwd = - (1

Elfwfur) = O

AQ e
[/ﬂ/.(‘) /f/./(") ) .:‘,-,J'#J-/ ﬁ—/—_————v—k‘) (d;‘.l(d =" ; /GJ‘(‘] -7 EL ?
Pa(R-) * Pa@-1) <
since Q ' Q . ]
O :‘:L;; (7'(() ﬁ/'/(() = ; /64.((/ +J;/:/ (3‘(('/ /ﬁo/./((') J

and £ (ﬂ/‘u‘) (e ) =0
These results may be summarized in the single formula
Z’(ﬁk()/g"(t’)) = °/¢'¢" (0[,// - é“ ) %— .

If we let Q » o , this formula gives us the correct result

for the Type II case since then
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ﬁ/(/?/‘u')ﬁ/.’u"/) = et oy Z;D

Next we consider the expected values of expressions

involving /an . For the Type I model this term is zero, but

for all other types of populations we find that

f//‘;«), ﬂ_'(«")) =0,
&
E (F- (;')) = /7?/; Z 77y. )7;/" [(ﬁ'/‘(c') ﬂll’(ﬂ)

oy’
.4 . . £
" e ./Z; 7y 5//%'«1) F L L "7y ‘f(/i’“"’ (SJI"(‘))

2
A/ J'F/'/

g - ¥
(G e L) 8

3
= 2 [Z: wﬁ—-/V‘] 7
wEL e g P
since
J :

¢
To evaluate E(SST), we let

80 that
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Now

/4(‘- = £/7‘) :[/77) | /T//-.,/ 7’/ [([@J(())

£(r) = (1=d2) 7

. Z?r/a=0)

where o, = O if the 7 ’s come from a Type I population and

J~=/ otherwise, Also

T V) = L) p v En)

E[7 -] + [//'5.:,) v FCED)

(/"-) Z:» /V]rer

.

ll

where 4, = 0 if the /3-(‘-, ’s are from a Type I population and
Jﬁ =/ otherwise. Next

A= cowrly,, p.) = £{7-rir) ) —f(z-/)]}f'f[/g-m Gl

=°/7‘E )
P
; =™
e R T YR RN L
| 5 b
= - . .2' . - 1. -
5(557) (1 Jr)‘.__/ 270, T f)r(/ /_V_){Jrr/"

/[ ?z"'--é’:]rf"f v
‘{G/—V—L JZ,"J Q /0 27
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- 8
E(MST) = v+ dy L [/v—z L ;,:][):;..‘- -/_V‘] 75
) Poaan s =" Jl="¢ )"

Z}?] *+ (- Jr)_an

To evaluate E(SSB) we let
g

G B, FL T fea T B

so that

SSB =~ Za ?7;,' (1.-72)",

/‘/ =/

8
g = Ely) = (/—Jp)/{,m A R Y TR
e Venly) T - - g By )

32."[0//5‘(,'} "'C?:‘U})-
/Jf/(/j(‘))-f L& )

:e([d(/_—l&__,)vl; 74_.%';’1’ R



108

2 T conr [Z” ///) = f{[‘{e /‘?/(0 * Eg]["/ﬂ /3"(«‘) * Ey’]}

:# t—(/ﬁ/k‘)/@./{“}) = —-Q{[‘7 —aé" ,

Eissi)s 1 ln {Z»,(/ Jo Jfe férg(/- wNew - 27))

/V:’ o/"

)f 7y i b ["/ w5 v plgr) v,

2&

and

£(Ms8)= 7 +(/-,(o)Z:n J,‘,r : )[A/— ] oo,
Pg-/

pag-1) Y

Finally, by the theory of Chapter II, we know that
SSE is distributed as X 7 “with N-pq d.f. . Hence

E (éég = N-pgq and E(MSE)= v 7,

These results are summarized in table 5.1, where

p 3
-2 Z'_ )7(-"
=/

L=N-2L ) n

2 /VJ— P b

J; ,q& are zero if the 77°s , /guy’s come from Type I\popu-
lations and are one otherwise. R4

The following formulas are more convenient for com-

putation:



Table 5.1
Source of Degrees Sum of Mean
Variation of Freedom Squares Square E(MS)
) (%-8.) 4 SN ) o
Classes p-1 SST=Ln k. =1) [MST = SST| v+ Jpa_ [Z ?1/ EA'S V‘[,'
! P (PIN* G
+dra wrt- Jr)Zn7
(p-1) Pt
rr8
Subclasses p(g-1) 558+= Z?I ()' )’) MSB= S5sB8| v* toa A 4 vg + (/- d¢) Z?‘/‘J{Bﬁ,
P(g=1) AE1) P(g-1) 4
/";2»)19' —
Error N-pq SSE:Z (k;/,“‘%;) /\755= v
oy Y /°f
/"/Z,?Ig. _— 2
Total N-1 /ZAJ ( G, ~ - ) .

60T




7 _ — P A _ » N
SS7T=2 nlf - ) = La el - = 2ot o owk
1 ¢« = Pactd 7. -—/0 2
78 _ — 2 8 - 2 ~8 £
SSB:ZR (}t/ - ¢ ):.-%"l -'Z”‘¢ :Z—X- —ZX:-
()J J / ‘IJ J J a4 C,J ,J_. =1 ';;'— D
9 <o
/'J””." —_— ol KON /"18-
. J 4 2 z
= S - . — . —
536 = B gy G2 g, - B
Gy vi Y g
and
R Fsn
- J - . /’4?1)7J N
i (X/,fv')/) :( ;//f‘ __)—/—
J;a 'JK\ J /V

If nij:1 (i21;21""p;j:192""’q)’ Yi,j‘= Yijk‘}"

SSE = 0, and it is impossible to carry out any of the F tests
involving SSE.
If njj=n, nj, =qn, n,y=pn, N =pqgn,
a = npg - pg?n? =qn(p-1), b = pn(q-1)

pqn
/ + > ror o, v = - £
£ n - LEgExn /,’Jl(/ £
Py w )= L ] ot s e L)
P P
L2 7 17 2 %" an Z@p @a.
Pl p-r P(X P(g1) % 7 P(g (51 %
If we define
b
= 2 ot =
r /;—-./- prey 5 2 ld P/f'/) o /d,la) 3

when nij= n for the Type I populations, we obtain table 5.2,



TABLE 5.2

Sum of

Mean

Source of Degrees
Variation of Freedom Squares Square E(MS)
A — _— ™
Classes p-1 55T=5nZ(>{;.-X.) MST = SST v+ n(l-%)Y/“,' +gn 7 -
=/ /O’/
123 . o
Subclasses p(g-1) SSB 1712(){/ “Y) MSB=55B| o> + n 7;”
“/ Plg-1)
Fen —
Error N-pq SSF = Z (XJ'/( ”2{,) MSE= ssE| v
wf1 K /V-/’ﬁ
% 8n _— P
Total N-1 2 (Y- Y..)
L,J,,f

it
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where we omit ({8 since 1- % =0 when Q =q .

5.5 Distributions of the Sums of Squares

Corresponding to thelﬁypotheses
Hl:/q,-(‘-, 0 (i=1,2,.4.,p;3=1,2,.4.9-1)
Hz: 7‘" - O (i=l,2,ooo’p"l)
for the Type I model, we have the hypotheses

Z; =0 2 v = © s’

if the corresponding variables are from other than a Type I
population., Since the populations have zero means, the cor-
responding variables are then equal to zero.

In the case of the Type I model, the theory of Chapter II
implies that

j(l'): Yijo- Yi.o »

(i=1,2,...,p;3=1,2,4..,9-1) are distributed independently of

ti=ii"- Yo.. and, b

SSE., Therefore any function of these statistics is distrib-

uted independently of SSE and, in particular, this holds for

tp and bQH) (i 1,2,...,p). These results were obtained for
the model
>{0/K2/ "—'/M- + 7 fﬂ/(‘) + E[a,'/(y- |
and they hold for the particular case where Yijk-‘= Eagxg»,-
‘¢
Hence

£.. — €... and EQ-. - €. (1=1,2,,..,p;3=1,2,...,q)
are distributed independently of SSE.

We shall now show that these expressions in the € ’s

('/'k ‘J
are independent of each other. Since they have normal dis-

tributions, it is sufficient to prove that
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CO/U/('E".. - E... 2 EJ'. - E"..) = O
Since
E(E.E )= ny vHh= ¥"
”‘"ﬁg‘d' 77‘.-

E(&2) =1z
<P

F.or = _( - r -V
E(é;/ 6--‘) ZJ'/V )7/ v 7/ 2
£ T )= L > o
E(E".. 8..-)-)?‘;/1/)7 v - % b
we have
cor (& =By B )2 T L -t~k L) =0

In section 5.1 we tested the hypotheses Hl and H2 for

the Type 1 model by the statistics

MSB MST
F1=mwr eand Fr =@E

respectively, since subject to the corresponding hypotheses,
P . P & o
ss7=2 . (&.-%.), SSB= Z} 8y = E)

rot, n -
P . EW
SSE = Z: (eg-,(‘_,—- 59‘.) ;
QYA '/
Y
are independently distributed as X @*with p-1, p(g~-1) and

N-pq d.f. , respectively.

We shall now determine what tests can be made when

we are not dealing with a Type I model. In section 5.4 we
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saw that

f

\557 = Z 21 [—7:'~ ? 'f'/z.ﬁ‘,(() "‘/;,(.) + g¢ - g]L

=0

and
Cr &

SsB8 =2 n, [ B e 7 By - g ]

Y
Subject to Hl’ the sum of squares, SSB, reduces to the cor-
responding expression for the Type I model and the same test
applies.
Our problem is now reduced to testing H, when we are
not dealing with a Type I model, Suppose we first consider

<

the Type II model where the 72.’s and /%ﬂ];s are NID with zero

means and variances v.* and g;‘ respectively. When HZ: =0
holds, let
_ &
= . z = L a3 £
;Z‘, -'/5.(,) + €. N d-Z/ 77(-/ ﬂ/(" + &
Then
a cr b
VA L en, B, T L €
/ <—/ /‘ N oz 47 h"l /Q/(‘) A o=/ T &
2:77 /43(‘)745 ‘-=/6() + E. s
and

f(;,)‘—o , Vaa(/") = 5 VA 7
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cow ;0,;%/) =0 -
With similar situations in Chapter III and Chapter IV we con-
cluded that
SST/E(MST)
did not, in general, have a X* distribution unless nij’ n.
Assuming, therefore, that ngj=n, we find that
nj,=Qqn, 0,4 =pn, N = pqn,
s

g‘ —
/5(:) -/' 77/ ﬂ;(u = ;;PJ‘(«‘) > p-w f,& 5 (3‘/(‘)

Without imposing the restriction that H,; holds, let

—

PR I A
» —_ -_—
PARE {:(zvf/f(.-,*t’;..) =X AP F ol

Then
[{%.):O S %A(/{)r@z‘*%’j *'-g:;'_ 2
co/v'{;f«‘,/‘") =0 ,
F
ss7 = 2 gnlp-7)
and by section 5.4,
E(MST) = V' "+ 2t ~ +gxno .
Hence
, Y .
> (s -#)
SS T = = - ’
LT it %+ Z
& Vs
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by Chapter II has a X~ distribution with p-1 d.f. .

Consider the two sets of variables

/Z.(a') "/‘;'.(-) » /“’;‘a‘) - P‘(")

We have |
Conr (/g-a') ‘/";'w ’ /‘i[‘((} -‘/5~(('))= f(/i.m (@J'(")) - t’(ﬁ:‘(('})
= £l o)+ E(B fur)

g
::jf ;22‘5125%7/3h)) -jé ZZ-ZT(faa)fDVU )

Z £( /' ”/9/“)) i /5} Z £ ¢ 15/1"))

(ﬁ/’

— 1 L Y
" Z - -7 % =o
7 F P¥ 2]

Hence, the two sets are independent. Since we have already
proved the corresponding relations for the Egu’s , it follows

that the two sets of variables

/d;/‘(t') ‘ﬁ—,(‘-) + £‘J - E".. »

are independently distributed and hence so are SST and SSB.
For the Type II model we display the above results
in table 5.3:
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TABLE 5.3
Source of Degrees Sum of Mean
Variation of Freedom | Squares| Square E(MS)
Classes p-1 SST MST vYrnG g v
Subclasses p{g=-1) SSB MSB vrrnv®
Error N-pq SSE MSE v
Total N=-1

From the last column of this table we can determine
the tests for Hy and HZ’ We know that the sums of squares
divided by the expected value of their mean squares, are in-
dependently distributed as X>. 1If we also divide by the
coresponding degrees of freedom, the ratio of any two has the
F distribution. As we have seen in the previous chapter, the
computation can be carried out only when the expected mean

squares cancel out in this ratio. Thus we have

— MSB , — MST
F1 7 WSE 2 |
to test the hypotheses Hl and H, respectively, Both of these
tests can be carried out when nij==n and when this condition

does not hold only the test for Hl can be carried out. The
test for H2 differs from the corresponding test for the Type 1
model, the denominator now being MSB rather than MSE,

Finally we shall consider the Type III model. First,

we have already seen that, subject to Hl’ the same test applies
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here as for the Type I model. We can not expect to obtain 7(1'
distributions necessary for an F test of H, since such a test
depends on the /%h)“ being normally distributed unless the
terms involving the /%p)is reduce to zero asrin the Type I
model, Approximate tests have been established to enable one

1,2
to carry out the F test subject to Hz’.

1Satterthwaite, F.E., An Approximate Distribution of Estimates

of Variance Components. Biometrics Bull, 2 (1946),pp.110-114

2Welch, B.L., The Specification of Rules for Rejecting too

Variable a Product. J. Royal Stat. Soc. (Supp.),3 (1936),p. 29




CHAPTER VI
LATIN SQUARE MODELS

6.1 The Type I Model for an m Xxm Latin Square

We shall now consider an experiment that has been
designed in a manner such that each treatment is assigned at
random within a row and a column so that all treatments appear
once in each row and column. The regression model for this
design is

}{,,,=/u+o<‘-+z;-+7;( tEgk
(i,j,k =1,2,...,m)
where o, }Q , and 7 are called the row, column, and treat-
ment effects respectively. Once i and J are specified we know

k. Hence k is a function of i and j. The parameters are sub-

ject to the restrictions

> I 7
Z&-=..ZY~=2:7 = 0
« =/ 0/~/ / A=/ A

The analysis of this design has been carried out by
Bedrosian1 and the results are exhibited in table 6.1, where
Yi--’ Y,j,, and Y-'k are the means of the (th row, ,th column,
and all observations on the «th treatment respectively.

We shall be interested in testing the three hypotheses
Hy: <, = 0 (1i=1,2,...,m),

Hy: 3:,- = 0 (j=1,2,...,m),

1
Bedrosian, Peter, Orthogonal Latin Squares and Incomplete
Balanced Block Designs. Hamilton: unpublished thesis,1953,p.90.
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TABLE 6.1

Source of Degrees Sum of Mean
Variation of Freedom Squares Square
» ‘ —-— — P _
Rows m-1 S55A-= V44 Z; ( At Y.) MSA = SSA/m-1
. Koy — — r
Columns m-1 SSC=m 5_; ( ) -/ ) MSC = S5C/m-1
= S = \z
Treatments m-1 SS7 =m «Z,: ( Yo~ X ) MST = SST/m~1
Error (m=1)(m=2) | SSE= § ( Yok = U =Yy Xy 12N MSE = SSE/(m-1)(m-2)
w2 z
Total me-1 P (X}'/c -7 )

02T
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Hy: 77 = 0 (k=1,2,...,m) .

The theory of Chapter II tells us that, subject to the cor-
responding hypotheses, SS&, S5C, SST, and SSE are independent-
1y distributed as X*r*, the first three sums with m-1 d.f.
each and the last sum with (m-1)(m-2) d.f. . The hypotheses

H H,, and H3 are tested by the statistics

1 2
- MsA _ MsC — MST
FI"®E » F2"ME » F37 ®M3E

respectively.

6,2 Other Models for the mxm lLatin Square

We have that
Y S G T
For the Type II model we assume that the «’s , 27’5 T s
and 69k3 are NID with zero means and variances %, % %

and v'* respectively. Then we have
E(Yijk) = u

Var(Yijk) = (7;:"“' V;L + V;L + V“-

For the Type III model we assume that the o¢’s, ?; ’s , and

7.°’5 come from finite independent populations of size M. ,

and

Ma,, and M, , say, respectively, with zero means and varilances

/'10( /‘{l’
e _t 2L «r ., gre=_ 12 ¥yt
Mt Myt 47
r

e L2 7
AEVERTY
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The assumption of zero means implies that
My My

/e
L;oq:o,ZY-ro » Z7;=0

0/';'/ (/ A<

For the mixed model we may assume that the af°s , 5"5 , and

% ’s are of any of the types described above.

6.3 The Expected Values of the Sums of Squares for an mXxm

Latin Square

In every case we shall arbitrarily begin with the sums
of squares obtained for the Type I model. Note that for i
fixed, as J goes from 1 to m, k goes from 1 to m, although
not necessarily in that order. Similarily for J fixed, k
goes from 1 to m as i1 goes from 1 to m. Finally by Y, we.
shall mean the sum over all values of i, J, corresponding
to the «th treatment, while Y... is the sum over all values

of i, Jj, giving all values of k. Then, since

y',(=/z(+a<¢+');~f7,: 1*-5‘-/,( >

4
T..’/u+o(~-+~7+7+__, ,
7./-.=/+52+>9f/7€+’/,
5iﬁ,‘=//x + & + ¥t 7% F g 5
5?“ ’///< y X.+ 9+ T+ E.. 5
where
Zefle , VRLYy L Feilm,
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SSA

it
Y
™
~
x|
|
x|
s
r
il
¥
.[\1}.
’\
X
[]
A|
+
o
|
™)
N/
F

S8C = »m Z()j-?)AL: MZ—(?;-? + €., "2)2—,

SSE= L (W =W lp = Hp t2 ¥ )"

1

4}—.( <A :-C: - E— - g..A L4 é-:.);

To evaluate the expected values of these sums of squares
by Theorem 3.2, we shall need the variances and covariances
of the following sets of variables,
.y
Therefore we must compute
f["(z"), Fl: a ), [(6"}, f({- b:,-:); EF(7n?)  and E(r 1)

in a form which will be valid regardless of the nature of the

-—

o((' * 5".. *Z/.A ; + g.-/(

>

populations used.
If x, comes from a Type II population, £ (x*) = g™

and if it comes from a Type III population,
A

Elt) = L 2=t =(1- 5 ) ="

(s

which gives the formula for the Type II case if we let Mo > -

For the Type II case, E(«x;, «)= 0, and for the Type III case

f[a/o(/)-é: o <l —_—-__;O(_" ——EL
T (. CMM) Mo
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since

S e

Mx
O = Z: o« e = Z q/".— * Z: <y «of

- —,
. =/
ol ( CE

Thus the formula for the Type II case is again included in

the Type III case, Similarly for the %' and 7% ’s ,
2)=(1- L > (Y ¥, )= — oy T

EC)=(1- )%, E(gy)=—%",

My
and

E(?,:‘):(/-';’?—T)V;’, (7 1e)= v

Pl

Mo
To evaluate E(SSA) we let
,,‘ —
Zyi =+ &, &éa =:i£ = ;4. = X T e >

so that

554 = mé(;ﬂ-—//f)” )

A 5(/;)‘-‘5(%?:(/%&)%; ,
A = O

where ox = 0 if the «,’s come from a Type I population and
Jx = 1 otherwise. Also

o) = L - £0]
= f [ -Fe)] t FOET)

S(mF)wT oz,

"
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and in order to use corollary 3.21 we find that

”
= z _ -~ 1 2 >~
7’;‘2__;7_ "Joc(/ /"lo‘)V; "—'%

Next

A= cor(gepu) = £ { [ ][ = £ )]

= - T
M

E(ssm)=(i=d)m & &t m(me)(de WH+ T

1) Ty ) T O by L

3

and

F(/75A) =

Fﬂ

vitde m g 7"(/"0/«)___-_—-/—‘ o(

Similarly

Flasc)s vedy mig e (=) 2 22"

zr(/— J,,)%":‘/ ;;_ 7;1.

E(1ST) = v 4 o m V5

Finally, by the theory of Chapter II, we know that

Hence

SSE is distributed a2s X 7 with (m=1l)(m-2) d.f.

E(%i% ={m-1)(m=2)

and
E(MSE) = v+ .,
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If we define

oo . Vadd " ot
> _ 2 _
oo E L Z: Ko o, VpE J_._ﬁ'g. , Gt= L Zf 22” ,
A=/ =7 el -/ A

for the Type I populations, the above results are summarized

in table 6.2.

The following formulas are more convenient for com-

putation:
§sa=m I (F =) =L i - %,
x4 Py %‘,’
S§sc=m (V=% 0= 2 v - ni
P J 7 -y In

§5ST=om I (Vg =X )= 2 Yy = ¥
K=r pos

sl - o7
3 2 *
2 (K= 40" = 2 - v
l,/
and SSE is obtained by subtraction.

6.4 Distributions of the Sums of Squares for an mxm Latin

Square
Corresponding to the hypotheses
Hy: oo = 0 , Hy: %§~ = 0, Hy: 70 = 0,
we have the hypotheses
v = O

if the corresponding variables are from other than a Type I

2 2

vZ = o % =0

2

population, Then, since the populations have zero means it

follows that the corresponding variables are equal to zero.



TABLE 6.2

Source of Degrees Sum of Mean E(MS)
Variation of Freedom Squares Square
Rows m-1 55/‘\"‘”‘26{ -7 ) MSA= 254 (vl b S i
L4 2~
>, - — \Z
Columns m-1 SSC‘-‘?ﬂZ;():, A MSC= Ssc T+ m B
o P
e —
Treatments m~1 \SST:m/(Z::/(}/,t")/) MST = &ST T p o VR
. Sl
Error (m-1)(m-2) | SSE=L (= Xm 2y -Tu+2X.) | Msg = SSE| o *
“J (m=()(m~1)
Total m2-1 Z: (70,/( >/ )

L2T
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In the case of the Type I model, the theory of Chapter Il

implies that

—

Toom Yoo, Tg- T, Y= Ton 0 (4,0,6%1,2, 000 ,0m1)
are distributed independently of SSE. Therefore any function

of these expressions is distributed independently of SSE and,

in particular, this holds for ?ﬁ'.- Y... y Yop.= Y... , and

Y--m' ?... . These results were obtained for the model

X,'/'k:/“ +a(¢7"yd'7‘"fk'f E'-;/‘k
and they hold for the particular case where Yijk ='EA[K .

Hence

- —
— —

€. = & s Z/ - <., and .. — €£...
are distributed indépendently of SSE.

We shall now show that these expressions in the &£, ’s
are independent of each other. Since they have normal distri-

butions, it is sufficient to prove that

Since



129

we have
cCov( .= &.., Eo—E. )= w*( L — L _ 1 / _

(é: 5.. 2 6/. E ) v g et g -f';:’-) __O .
Similarly

CO/U'{(_E:.-'E..) €.« -—Z—“.): 604/(&;;'. -€..., Zk-'f): @)
In section 6.1 we tested the hypotheses Hy, H,, and
HB for the Type I model by the statistics

P = MSA g = MSC p = MST
1~ MSE » 2~ MSE » 3~ NSE »

respectively, since subject to the corresponding hypotheses,

SS$A=ml (&.~E..)" , Ssc= f £.)",
ST =m 2 (£,-E.)" | SsE- Z(w i Ey FraEL)
#e

are independently distributed as X , the first three sums
with m-1 d.f, each and the last sum with (m-1)(m-2) d.f. .

We shall now determine what tests can be made when we
are not dealing with a Type I model. In section 6.3 we saw

that

"rﬂs
f\\
Xl
*
M
|
My
N
“

SSA =

ssczndz’;o;--z A

and

ssr=»«g(7;- 7z o+ E-E.)"
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Subject to Hy, Hz, and HB’ the sums of squares SSA, SSC, and
SST reduce to the corresponding expressions for the Type I

model and the same tests apply.

6.5 The Type I Model for Replicated Latin Squares

We shall now carry through the above theory when we

have r identical Latin squares. Denoting the observations of

the /th Latin square by Yggk' the regression model is

) _ ) 7)) (0
Yin St + Y+ xrp ot Egn
(1,3,k=1,2,...,m;4=1,2,...,r)

«)

where oc', A A , are called the row, column,

)
treatment, and replicate effects of the {th Latin square, re-

spectively. The parameters are subject to the restrictions
fm

L« =2 5 J”/;;/ O (dea,un).

(T :/ A=/

Again we exhibit the results from Bedrosian's thesis
in table 6.3, where f;?., ?‘? are the means of the (th row
and ;th column of the fth Latin square; ?..k is the mean of
all the observations of the 4th treatment over all the lLatin
squares; Y... is the mean of all observations in the fth Latin
square and Y... is the grand mean,

We shall be interested in testing the four hypotheses

Hy: <0 = 0 (i=1,2,...,m58= 1,2,...,r) ,
By 77 = 0 (3=1,2,ee,m8=1,2,0..,1)
Hy: 7x = 0 (k=1,2,...,m) ,
Hb: /Z) = 0 (£=1,2,...,r) .



TABLE 6.3

Source of Degrees Sum of Mean
Variation of Freedom Squares Square
= = -—(I)
Rows r(m=1) $sa=ml 2 ( )" NSA= Ss4
=0 = N (om=1)
Lz — -(i/
Columns r(m-=1) 55C-= MZZ(}// ) MSC = SS5¢C
L0 47! A(pe~1)
Treatments m-1 SS7T = mn Z: (74? - X )L MST = SST
K=
% -/
=) >
Replications r-1 SSFP = )ﬂ’;()/ -—}/) MSP = SSP
=/ A—-/
Error (m=1) (mr-r-1) 55£ £ ; ;( ‘//‘ - Y. —'>; MSE = SSE
d —w (m—=t)(mr=-n~1)
- )//f Y+ }/.)
2 B &) v )+
Total m“r-1 2 Z()(/.m - >/)

Tt
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The theory of Chapter II tells us that, subject to the cor-
responding hypotheses, SSA, SSC, SST, SSP and SSE are indepen=-
dently distributed as X?r?* with r(m-1), r(m-1), (m-1), (r-1),
and (m-l)(mr-r-l) d.f. respectively. The hypotheses Hy, H,,
H3, and Hl+ are tested by the stétistics

_ MSA _ Msc _ MST _ Msp
h=wWr » "W, R=wWE , F,=WE ,

respectively.

6.6 Other Models for Replicated Latin Squares

Our regression model is

y(f) _ Ry Ece)
601‘ ‘/(A + G(L' + f + Z 1"[}) + ‘J‘k
) &)
For the Type II model we assume that the o« "’5 , ¥ "7,

A
%’s S , and €., °s are NID with zero means and variances
(v JK

z N .
Q:&T s 2;2‘, L~y z;“ , and v*respectively. Then we

have
7
E(Yijk) ’//M

and

0 .
Var(Yyg) = %o + G + G or G vt

W,
For the Type III model we assume that the «,

’Sa?;' Sy

% ’S , and Ag)’s come from finite independent populations

7/

of size M, My , My and M, , say, respectively, with zero
means and variances
Mo My
7 o=l 2 ([ )L) ry = 42| 3(;."’)”

M _l PN 4 M ""I J':I
¥ y @
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U;.‘ - / 7— 7,21« , V;_a,: _,_—/-———- Z /01—
/z-_/ A= /‘4(__/ 2=/ 0)

The assumption of zero means implies that

o algag Aig
@) _ ‘ _
(;0(;. -O)Jgg -O)K__/ ’12;/_/0

7
For the mixed model we may assume that the x‘“”s , %} s,

7S , and Ag)’s are of any of the types described above.

6.7 The Expected Values of the Sums of Squares for Replicated

Latin Squares

We shall arbitrarily begin with the sums of squares

obtained for the Type I model and, since

@l ) ) (£)

){-/,, T Mt ); + 7 +/Z)} t Ea R
-4} L) _w) _ (1)

Y LA 4 7. ‘f/z, €.,
) _ —0) — - )
Oy y?ys -

>{/ T ?/( Ty e

- (P} 194

/L
. / +a’)7‘71-{o[)+£ s
/«

where
0 s &) ) n &) - L
X. L7 . s , T L2 7
e SE ¢ 4 7”/:/ J I xz/ K 2
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= ZVf’ 7/ = A
. = L , Y, = L : - -
R B ’””g:i 7P /‘:ezgloce) ‘
we have |
A g N
v o) Ly _ _
SSA= m}_‘; Z (7.9_ 7 )”"',Z;_ ‘Z_;(qf(?/~ PR 5“({’)):;

A=) W)y L _ oy -
SSCeml Z(LT-V0) 5mZ 2 (-9 £ )

= = 7/ 650 = 4 >
m _ . T 5

55T=7n/z§(.,{‘>’.)=7m;(7/;—77+?K-3),
= = S\ ) - - )

SSP =m” (}/ - ) = o Z(a/ -&7+D’-—Y+{a -/o-rg -
L=t £=/ )

To evaluate the expected values of these sums of squares
by Theorem 3.2, we shall need the variances and covariances

of the following sets of variables,

) - (L) «) - (L) -
o(c.' t 6(,‘.. P} XD/ " g:,/ 5 7/; * 6”/" >
- =) —4)

* go.o
«, + Y fﬁ&) +

Therefore we must compute




135

ELE)] ) E(x®) | ELOPT | ey ),
5(7;;.) ’ E( ) t[(—-(l ;J} [(i.(l)a?.(w)) t—[(g(e));])
— w)_ ") -

E(%9597) £lpr) ECly o)

in a form which will be valid regardless of the nature of the
populations used. |

If «% comes from a Type II population, Ef:ﬁcfw)ﬁ]= 23?),
and if it comes from a Type III population,

ELCET] = g & = (1m )

M ce)

which gives the formula for the Type II case if we let M, w > °°.

s & 2!
For the Type II case, t(;Q )aq:,)='0 , and for the Type IIl

case
) Ao Mo 2
u ) uU av (2}, » >
E("(L °(‘~/C[) #Z "( = — Z ( ) = T Vi
=/
«7e &("(Mx(ﬂ/ ) ‘ /VK(IJ(N«W ) /‘1“(2)
since
M@ Mo /o)
N7/, £ (W
0=2 <M =L (") + L «“«
Ge - [3

Thus the formula for the Type II case is again included in the

. o ,
Type III case. Similarly for the ¥ s , 7% ’s andﬁzj’

L) 7 L
E(y ) =(1- £ )k o E(3 5%)= - B,

Ve ANT7] / —_—

y My &)
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[(7’)7(/—.1 ot Nr7) = — "%
" /7,)’ , L) .

and

FA

¥ )= - 7 2 = - "
f(ﬁv) (/ /‘4)’ o Elpypy) m "2
e

Also for a Type III population,

E[(;.w);] _ m% f— f(o(‘.(”’},(‘.(,w)

o

EELE“)] v 2 2 E(x 2wt

A 4
m: o I cES

—

"

= T
;f (7'- JLI/) Vet) — (m>=om) oo
( ma—
/YC o Mx(pj

(£ -%£,) =
e STt

fn

and
[(a?‘f//az///j) = 0

Similarly,

— )y >
E[(X()]r(_’_ A )‘7;(21 B
m My®
F(797%) = o

To evaluate E(SSA) we let

_ ) =
g = T F L,
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so that

P

SsA=m L2 (p.-70"

¢ =/

e Elg) = -) S, g =2 L u =0,

s

”n
0!,

where o, = 0 if the «?/ $ come from a Type I population

and &=/ otherwise. Also
T Ve () < £ [P+ &0 - £(=)]T
= fL <Y E0=P0]" + Ha#)]

— z >
= o/“ (/- /—;/—1)) Z:/(U + U >
a((

P A

and

2

— = 2 : 3>
mrt T k(1 g, )
P /‘Z(([) <

4™

F AN

Next

A = cons /»/‘;7‘,,) —_-_,_L’[[q,‘.(e)_ F][ a{-f”—f(«g/”]]

= _'o/;( T.((;)
/Y o (#)
— 3 — P 3
il =L Tw T,

7
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El53n)= (1 d)m o D min ) (e 5 = )

£zt =/ x @) I

TA(m=) T o /)Z Tt )m B L ()

2=r €=/
and
= )
EFINsm)s rtdy m b oo+ (1) om 5 7 (a
N L=s /!(‘)n—'/) L= e=s
Similarly,
2
E(HSC)=v vy 72 0 oy + (1= dy) 2 b Z(ar“”)
Lz/ A(we—=1r) 477 f~7/
To evaluate E{SST) we let
A EFon Z = £ é;-ﬁé = x +&..

so that

SSyr = M/L;(;/, ';?.);)

/frf%):{/“Gé—)ﬁj/?_:éé/‘:

where d;F=O if the 7’s come from a Type I population and
o,/ otherwise. Also

2

s Vanly) = FL% ~£07) ., ]
= F[ % -Fiz)] + F(EL)
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= ’ -/ . >
d}(ﬂ - ) v+
r

M. y 3
and
= z
= - Z - — / z
V:_ 3 < l 2 - b/? // S ‘7?' + 7
™ A=/ /‘17. Ty
Next

A= con (4, 40 = £ {[%- £l 72 - £ () 1]

I
O
N

‘.
A Y

F(ssT)= (1) m 2 5% + ambn-D(o 75

=(m-s) 7* + o; o (1) G f'(/‘cfr) nAN & %
and

LmsT) = 7+ o mn vz (- Jr) ’;Z,Z?‘

To evaluate E(SSP) we let

Z(ﬂ-f ? (%) ; 4 é-:(f}
S T 7T /"w SR

Z% /5 + €.

/L*"’

so that

SSP = 7;4‘}2; (71-;2)L s
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Sy = E(g) = (g (SO0 ) = (=40 p,

<
7 = 1/ =
/a‘/fxé/“l ©
where §;= o if the fee 'S come from a Type I population and

%c:/ otherwise, Also

FVanlyy) = E[RO=£(20) + X T a@ g, - opy,) +EC]

=l pz®) ] ([70-F (2] +f[ﬂ,) £l ))] + ElE

—_— 2 2
—(_i—.i )‘Cwyh_/,-_’ v w
Lgas /V;¢0 n Slyd)

1’%@(& - ]?1) Z; 7 JZT >

)ﬂa—

since, for the Type I model, M,«w = M,@) = m, and

A
—— ;
V:’:_/Z L;'": _/_ZZ(__/ V’a/+ ( )Fyﬂ/
A g Az om /‘1 27 /z L=t VM 7‘”

+ oo (/- L)V“f—-z"'
/’( 4/ Pugt
Next

X = conly, 4) = F{[2%£®) 472 ¢ - £, )]]

— ) =)y, TP =) -
- . L LY. -
S C A R R AT - o z(/;w)]j
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=E{lp, 20001 p,, - £0,,)])

= -4 5,
"

, . 7 .
D U L L o / ) )r
oA /{ 5(7" /7«(1)) < T Py (7" M yc? r

> V—/‘L
+°{o Z‘:’ * ;n—" 3

£(ssP) = (1= d.) m™ L 2"+ m*aa- ,)[ (L-£,) e+

A .
/ Loe L VT tde 7+ T
/'ijz:/-—(}n //y{ﬂ) y @ ‘{a (e =

p 3

=(1-1) v ¢ o m*(1-1) 77 7 Yo (=) Z—‘(’“ i (ﬂ) Vet

A
" »"(/a -/) Z_f(7~ % L) vy +(7- );,,25__' /?Ij
s -

and

[(/75P)=r*+a‘ZZ(,-~ rf,/Hﬂ‘Z A )r”
S g=s

)

7"4,(& ?n‘l/Z,’ + (/- 40/"/ 4 /01)

Finally, by the theory of Chapter II, we know that SSE is dis-

tributed as X v* with (m-1)(mr-r-1) d.f. . Hence
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E(§.§.E. = (m-1) (mr-r-1)

V"
and
E(MSE) = o* ,
If we define
0 a %
2 [é bR 2
VM_(I)‘:__’,_Z(‘() tym=/’«z_——(3j )L,
wm-1 <77 =/ o7
> 3
T = / Ld =~ / 2-
v, T, k= 7« ) 72 oy ;5 /71)

for the Type I populations, the above results can be summar-

ized in table 6.4.

The following formulas are more convenient for compu-

tation:
A Bcn) n
S = ?njz;-; ; (X”w_){“m):_ Z{ (f/) _ (), (l/)z—
7’1.
=2 (x8) - 2 (n®)"
2z=r vy H=r ——;—1— 2
A — - N 2 A )| 2
Ssce=al 2 (-2 = Z (O -5 ("
#=0 ;50 0 Ry LR
SST=mrn o (f =% )" =2 wi _x:
A=y A=y s oA 7

FRE 0 o R E ey
L= t.=’ A7 (}‘;"f )/ ) - 2=/ =7 J=’(>2/K) Z%—'- L]
N

and SSE is obtained by subtraction,



TABLE 6.4

Source of

Degrees Sum of Mean E(MS)
Variation of Freedom Squares Square
& = =y, 2 2
Rows r(m-1) SSA=m2 L (Y. =Y.") MSAH= SSA vie L T
j:/ (<1 A(%-'/) 2 j.—/
i 3 7 @) = N
Columns r(m=1) SSC-= MZZ(Y x. ) MSc SSC e o O Ze)
’a’o/" ;L—(—}::/) N f=a -4
Treatments m-1 557:77'/7; ()/,(_y) MS7T = ST Tt omn i
= -/
2 - @ _ g ) 2 2 -
Replications r-1 SSP= ”‘IZ ()/ ) /75P S3P v :- el
14 A=l %
w2 (= ) o
kS 2 Vé 2
+j§-£;6i —Zaan)gk”
EEF Oy | o
Error (m-1) (mr-r-1) fﬁzﬁ,‘:, = 221 ){ =X | MSE = __SSE v
4 . (m-t)(mi-1-1)
A L i
Total o) S (-5
B2y =t G4

et
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6.8 Distributions of the Sums of Sguares for Replicated Latin

Squares
Corresponding to the hypotheses
2 _ . .(4’)__ . _ . -
By: = = 0, Hye [/ = 0, 3 =0, Hp,=0,

we have the hypotheses

7 F >

Tw =0 , Ve =0 vy = O v = O
if the corresponding variables are from other than a Type I
population. Then, since the populations have zero means, it
follows that the corresponding variables are equal to zero.

In the case of the Type I model, the theory of Chapter II

implies that
o) S — ) = (4 — — — @ -

X.. -X.- 3 }5‘. }./-- > X.,( ")./.. 5 >{

(i,j,k=1,2,.00,m=1;¢ =1,2,...,r)
are distributed independently of SSE. Therefore any function
of these expressions is distributed independently of SSE and,

in particular, this holds for

NN ARSI S 2 NS SN e v
(¢=1,2,...,r). These results were obtained for the model
){,(:} =t .Y 5 37-(//-/' Kty T 55;
and they hold for the particular case where Yg%k:= 5;2
Hence
gV -e S -EY, E.-E.., &V -G

are distributed independently of SSE,
0)
We shall now show that these expressions in the EE)K’S
are independent of each other. Since they have normal dis-

tributions, it is sufficient to prove that
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- () - (R) - (4) =8 —0) (2 = —
CO/\"(&;.. €. , Ey'. - €., ) = co/u(é“-“ -ELT, EL - 6)

z = @ _ =~ - %) @ = —
=con (£L -8, 20 -8) = cow(eyf. i ELL-FE.)

- (& — e /)
= conl &5 — & E..

.o 2

- E) = oo»[z.,‘,"t?... , 5..“.7/- £ )

Since
- ~ Ll - _ - . ;
E/fc"/'ﬂfy{"e}):r%n‘ > A"(ﬂ'.. E.. )’;'7,:3?‘ = V'/rt 2
2] — s n
LCEY &)=z or =25 FLED)] = vhme
M

I

f%/d(l)" ) -Z:L ,

»min
E( ~(£) ~ )___ m ot o= 2’:"
AN P ?
) - _ . .
£ (& E.,f) 7:75 U ;;r:;ﬂ ,
f(f_u) E.)= > 2 = o7 ,
¥t PR
F(ePe., )= -
4 »mt
— ) —
F(&E.) =22 7 = 7"

L( &y EL)=74 vo = &>
2n£1; }n,ﬂ

it then follows that all the above covariances are equal to

Zero.,
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In section 6.5 we tested the hypotheses Hy, H,, H3,
and Hh for the Type I model by the statistics

MSA _ MSC __ MST P, o= MSP
= MSE » Fo™ M3E » F3" MSE » L~ MSE »

respectively, since subject to the corresponding hypotheses,

A 2 - (2) A 2 ) )z
5.5/?=,)n]{—:-—2_—( -(1)'6.(..)’; 55c=»~.:2:(£y..——€...),

Py ¢ ];’J'-'/
Raad - . . [ — !) _ P
557=2«n/«2__; (6..,(—6...) , 5.5/°=;n112;_:.(€..(. -f...) R
and
SSE = j_Z,-_‘é:/Zf(zw EX g, rECrEL)

are independently distributed as X*r?*, with r(m-1l), r(m-1),
m-1, r-1, and (m=1)(mr-r-1l) d.f. respectively.

We shall now determine what tests can be made when we
are not dealing with a Type I model. In section 6.7 we saw
that

ssaem L L (- 2@y i e )"

‘/ &=

Z > ) —
SSCemZZ (v VoW T )


http:SSc.:::.m.LL
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Subject to Hy, Hy, and HB’ the sums of squares 3SA, SSC, and
SST reduce to the corresponding expressions for the Type 1
model and the same tests apply. However it is impossible to
test Hh for the Type II or Type III models unless some approx-
imation device is employed. 1In fact, for the Type III model
we can never hope toc carry out an F test for Hl+ since such a

0 )
test requires the o(‘-( ’s and X(I

Y, s to be normally distributed.

6.9 The Type I Model for Orthogonal lLatin Squares

We shall now extend the methods of the previous sections
to the case where we have r orthogonal m xm Latin squares where
r<m-l, Denote the observations by qu.K;f"’”*' , where
i,j=1,2,...,m represent the row and column numbers respective-
ly, ks (s=1,2,...,r), takes on the values from 1 to m and rep-
resents the m treatments of the sth Latin square., Our model

is given by

3 )
2;(,.--, /L+0(‘+ A 7,: '/’7;; $ 0t T F 6,_;,*‘,..‘,,‘—4_

where o , ¥ ,z; (£ =1,2,...,r), represent the row, column,
and treatment effects respectively. The parameters are subject

to the restrictions

Puw Pyt £ e

The subscripts @e,/f =1,2,...,r are functions of i and j such
that for a fixed i (j) they take on each of the values from

1 to m exactly once in some order as J (i) takes on the values
from 1 to m. The pair of numbers (k,,k,) takes on every possible

ordered pair of numbers exactly once where k) and k, are se-
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lected independently from the numbers 1 to m . From Bedrosian's
thesis we exhibit the results for this model in table 6.5,
where Yi’ Yj are the means of %2? observations of the (th row
and /th column respectively; ?&2 (£=1,2,...,r) is the mean
of the m values of YQJM s A which have the given number
k, as the (£ + 2)nd subscript and Y is the grand mean.
We shall be interested in testing the hypotheses
Hy: «- = 0 (i=1,2,...,m) ,
L/ 0 (j=1,2,...,m),
Hy: 7% = 0 (ky=1,2,...,m)
% 0

(k

3 2= 1,2,.0.,m)

. L) [] L] * [} L] . . . . . . . . . [

cnst T T 0 (ke=1,2,...,m) .

The theory of Chapter II tells us that, subject to the cor-

responding hypotheses, SSA, SSC, SSTl,..., SST_,, and SSE are

r?
independently distributed as )(pV'*, the first r+2 sums with
m-1 d.f. and the last sum with (m-1l)(m-r-l) d.f. . The hy-

potheses H,, Hy,..o, Hpny o are tested by the statistics

Fl=%’§%§, F2=%§€r, F3=§}§%l,..., FH2=%P,
respectively.
6.10 Other lodels for Orthogonal Latin Sguares
Our regression model is
R N A AREETS A W
For the Type II model we assume that the «’Ss , y’s , nyﬂs

(¢ =1,2,...,r), and € u,s- + oan  8re NID with zero means

. P
and variances 7', V%, %7 (£ =1,2,...,r), and v * respec-



TABLE 6.5

Source of Degrees Sum of Mean
Variation of Freedom Squares Square
Rows m=1 SSA = mZ(X'y) MSA = SsA
3 -1
2 — — p .
Columns m-1 SSC=MZ(3/‘>/) MSC = S5¢C
ey =
2 ) s
Treatments m-1 SST, -‘-M;—:(); -Y) 57 = 557,
=/ Py
)a ''''''''' ® 6 8 0 8 0 0 0 ® ® 8 & 0 ¢ 8 o . . &
= = Ty
m-1 557,;=m12;(),{4 -Y) MNSTh = S5 72
ke ) — =/
Error (m-1) (m-r-1) SS£ = ; Z_[);,q i 4 “}//‘ NS E = SSE )
— (~=1) (-4
~—y) =t (2 —_—
g e ]
2 I 2o — a
Total m -1 Z 4:()1//}?“--']& _.y)

671
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tively. Then we have
E(@@,Wﬁ)iﬂ

and

Va/z-(}{‘//r,.--»,n): Tt % Gty et vt
For the Type III model we assume that the «.°’s , ¥’s , 3&”“5
(£=1,2,...,r), come from finite independent populations of
size M., My, M; (£=1,2,...,r), say, respectively, with zero
means and variances -

y ) My
s 42 <, gmre_L 2%t
C (M=) (/Vr—<) /s

2

n
wre - 2 (
P -) A

e

(1)/» (j:/),_).‘.lﬂ)

The assumption of zerc means implies that
”Y

24 ”’f /‘77,‘-_
Za/‘-: :Z 27 - Z Z:Mr L. = Z: /};A(/\) = 0
P £ =1 hor

For the mixed model we may assume that the o, s ,15' s and

L) )

% s (£=1,2,...,r) are of any of the types described above.

!

6.11 The Expected Values of the Sums of Squares for Orthogonal

Latin Squares

Again we arbitrarily begin with the sums of squares

obtained for the Type I model and, since

) z) )

X/./‘{)“.J /(A :/ 7"0(‘ I ?j * 7':, .//7;1_ LA 7/;/1 + 6")',‘{’ )y
o+ ¥+ T 7’.(”*—--‘f7{m+ £ 3

A T o«
V3 —_— bt — (1) — (1 — —
?// T +9<.+7§'+ 7 “ 7% FEM
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—_ —_— = {0 — (1) — (A - 1)
Vo TtV o+ g n e s B i
-—.(4)
_ —_ —_ — — (2 ) =)
. R T e T S e 4 tn o+ &,
vV — — — — @) — (3) =) _
Y‘/M'f‘ﬂ(.fY‘/-Tl My x5 ,
where
e Y .
~ - = _ — (£) 142 )
T - 0( - - Y -_I‘ =
L N Ry R D g (aa),

£ is the mean of the m fg&,..-w@’s associated with the

m observations of the ith row, & is the mean of the m &gy, .n, ’s

_ — )
associated with the m observations of the jth column, &,

is the mean of the m 59%:“54215 associated with the m

values of Y. 4, --,4y which have the given number k as the

2

(£-+ 2)nd subscript, and € is the grand mean of the Epes ik S s

we have

$5A= M2 (V-F)"=mZ (womzm v 8- 2)7,

SSC=m Z(F-F) =m 2 (Y% + 5 -F),

H

» - (1) — Kand _ )
SSZ %Z— >A/’, "Y/z=;nZ(;;”’_ 7'/(/,+£4:(’)¥£—)LJ
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TV =) AP & & RN S d

L 2
B o T T S RS b
-:,J-ZI

CO/K,)"J/(A 4 / Vs Aj.

To evaluate the expected values of these sums of squares
by Theorem 3.2, we shall need the variances and covariances
of the following sets of variables,
) -] ) — ()

.+ €. LAk 5-, A N A

e

Therefore we must compute
F(x), Fl< =), £(x7), £(yy),
L) (= 0e o 0)
/_’[@wz/ﬂ] (£=72, - a)

in a form which will be valid regardless of the nature of the

populations used.

2
2

If o« comes from a Type II population, Flx’)= g

and if it comes from a Type III population,

Me
(<)=L L <" = (1-2 )™,
/7“ 154 /VOC
which gives the formula for the Type II case if we let M, .
For the Type II case, & («x. «.) = O , and for the Type III
case
/7« /Vx
Z(&T‘%Q)r é; oL adil = - Z: o - —p*
¥ s =7 —_—

Mo (/7c=1) M (M) Me
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since

/7"‘ x
O = Z o, & = Z Q/‘L + Z @, C( ,
1Y =7

’E

Thus the formula for the Type II case is again included in

)
the Type III case., Similarly for the szs and 2i”x5(,/ =1,
2y000,T)

f(z;‘)=(,-/_’}/;)v;” F(x )= -;;r_‘

ELETTT=(1= 2 )%, Ususa)

and
- ~ ) v
Z 7{2 2?;’1]——-2. (j:/’2)~-')ﬂ.),
"%
To evaluate E(SSA) we let

k4

%""‘x‘--rz- > /.,'-'_Zd":a—(-,-/-f—

/
so that
55A=m L (4:-7)"

e

e =) = ()<, :;:Z,/: o,
where ox = O if the o(’s come from a Type I population and
ox =/ otherwise. Also

7=l C/) - Flou + & —£&) ]
= = "[:("C;)]t * f(f—}z)

= d;,(/-— ;é; )

2 z

+ T
2e

Ry
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and
7t 1 2 o= c/c((/"_/-) st
»n M F
Next
)' T o y(»/{’) = f{[a/‘ —f(x()][d"/ - f(d(‘/)]
'::-O[“ E" ,
Mo

~ - >
Pl A T ot T,

E(SSA) = (=) m 2o <0 4 od) (o 2 4 )

”

=ﬁ%-o)V" F o mlom=0) 05t (15 ) om 2. &7

s

and

Ersp) = Tiada m’ +(1-4) 22 D o

Similarly

gl

frsede ety i) 2 B4

. “rn )
f&“ﬁﬂvﬂfézz(2+(7~¢)jg_Zjﬁ%);J
¢ /] / ”‘_/ ‘,‘__,

Vs

[(/‘7\57/:)-'f1¢bf% Py ,?“1‘_ (/'0/7;)7—:%,; (7/:Aa/ -

Finally, by the theory of Chapter II, we know that SSE is

distributed as 7<%f‘with (m=-1) (m-r-l) d.f. . Hence
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V'l
and
E(MSE) = o * ,
If we define
Y P 2
3 _ 2 L
R N A A

-
w e o Z (") (e, a)

for the Type I populations, the above results are summarized
in table 6.6.

The following formulas are more convenient for com-

putation:

SSA=ml (7-7) =2 %" p°

-
\
~
-
"
N

SSC‘=»-Z:(;;'7)L='Zi yr_oy?
A / ,/"_f:—‘ Py s

$S

N
i
Y
/'\\
K\
2
NS
|
M
‘\\
5*;
~
{
yIX

552_ (/'\Z(A) "') f(%(ni)z _ Z_z

Z——-Z(}cj,«, —/) y«,--,/r,x)-;z—/:

(F/ J7 )

where )/ Z: )/

t)J JK”.")kA
We find SSE by subtraction.



TABLE 6.6

Source of

Degrees Sum of Mean E(MS)
Variation of Freedom Squares Square
“n. — — 2- N
Rows m-1 55/2=mf£(}.’-'/) MSA = SSA vt o
- oy
I —_— — 2 N
Columns m-1 ssc=ml (y-7) Mscs sse Tt o vy
A >~
- '—l/) _ 2.
Treatments m-1 5587 = g: Y) M57, = SST Vit w7y
24 -~/
m-1 Ssgrn/{:(z;"—ﬂ MSTi= SSB | v+ mog
‘-/ <3 7"'-/
Error (m=1)(m=r-1) | SS£+ ZZ [{/«,, e MSE = SSE v
(m=){m2t)
= ~{(1 = 2
R AR m,»/),v]
R In — 2
Total m2-1 2L ij}r,,- s T Y)

951
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6.12 Distributions of the Sums of Squares for Orthogonal

lLatin Squares

Corresponding to the hypotheses

I . “)_ “©)
Hy: o= 0, Hyr 3= 0, Hy: 707°= 0 ,..., H 7,

1 3% % =0,

we have the hypotheses

p;:o_, V;‘-’O 75:0)...’77;:0

>

if the corresponding variables are from other than a Type I

population. Then, since the populations have zero means, it

follows that the corresponding variables are equal to zero.
In the case of the Type I model, the theory of Chap-

ter II implies that

— —_ - (1) -

78 S A N A A
(1,j,kl,...,kr'= 1,2,...,m=-1)
are distributed independently of SSE. Therefore any function
of these expressions is distributed independently of SSE and,
in particular, this holds for

Yu- Y  (mth row) ,

Y- Y (mth column) ,

bt () M4 () =

Ym- Y, ..., Ym- Y .

These results were obtained for the model

Y. = X, Y “ (df' -'f7M)+'£~ .
IV RRERPYA "/7‘— ct gt 7,«: 7 T " g

and they hold for the particular case where

)‘//.’/flz"')/f/a - g";:’./(/’ R AYN

Hence
- - - (1) - ey —

£~ E-, §"53 > a@ —& ., o, By — 8,

are distributed independently of SSE.
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We shall now show that these expressions in the Eikisum, S
4 A
are independent of each other. Since they have normal dis-
tributions, it is sufficient to prove that

Cav(ép-g,é»-f ) = cmv(Z~—E) af)—g)
:COM(E--ZJ 54;2)—5)50 (/é:/)z)...)/z)
Since

E(é g

N
i

V_;/%" »

[(EE-) :7?_-::"1 V—’L: 7-3— )".V ,
E(g/'g):f,f’= V'/}n")
F(E") = 7 %me

we have

o (-8, 5 =2) = (- b= 2w 2 )= 0
P 7 771 o v
Also

£(&
£

]

|
~
N

so that
cowr (7 -E, §9-8)=0 (0=12,-,1) .
Similarly
co/u{é-‘EJ %(I)"E)ZO (/"/, z)--',/?) .
In section 6.9 we tested the hypotheses Hy, H2,...,
H for the Type I model by the statistics

r+2’
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. MSA _ MsC MST _ MST
Py =mE Fs= ¥3E > Fy = meel,.-e»  Fryp = WSET »

respectively, since subject to the corresponding hypothesis,

55/4‘7%;(8"6) SSCr)a;(EJ—E)L
SST - »&q’ ;M—C)L , 55Z§=h£;(?f)—5) s
2
5567 22 [agnpon-@ -5 -2 - rarel’
(/ =

are independently distributed as }(&V“} the first r+2 sums
with m-1 d.f. and the last sum with (m-1)(m-r-1) d.f. .
We shall now determine what tests can be made when

we are not dealing with a Type I model. In section 6.11 we

saw that
SsaA=mZ (=« +E-E),
SSC = %df—:( é; 'g)z— >
55—,7: Mé( / "‘[Il+gk’(/) 5-)1)
SSTi=m 2 (7V-7C+ E7-8)7 .

Subject to Hl, H2""’ H the sums of squares SSA, SSC, 35Ty,

r+2?
...,SSTr reduce to the corrgsponding expressions for the Type I

model and the same tests apply.
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