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puting the expected values of mean squares has been develop

ed. One chapter is devoted to the theory of regression 

analysis by the method of least squares using matrix notation 
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CHAPTER I 

INTRODUCTION 

If a set of observations.can be classified according 

to one or more criteria, then the total variation between the 

members of the set can be broken up into components which can 

be attributed to the different criteria of classification. 

By testing the significance of these components it is then 

possible to determine which of the criteria are associated 

with a significant proportion of the overall variation. To 

carry out the analysis it is necessary to assume for the data 

a model which involves a number of parameters and properties. 

1.1 The One-Wa~ Classification 

Our data might be the results obtained from dye trials 

on each of 5 preparations of naphthalene black 12B made from 

each of 6 samples of H acid intermediate as recorded in Table 

1.1. 

TABLE 1.11 

Yields of Napthalene Black 12B 

Sample of H acid 1 2 3 4 5 6 

Individual yields 1440 1490 1510 1440 1515 1445 
in grams of stand- 1440 1495 1550 1445 1595 1450 
ard colour. 1520 1540 1560 1465 1625 1455 

1545 1555 1595 1545 1630 1480 
1580 1560 1605 1595 1635 1520 

1Bennett and Franklin, Statistical Analtsis in Chemistrt and 
the Chemical Industrr. New York: John W ley & Sons, 195 ,p.320. 
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The data is classified according to the sample of acid 

used. We denote an observation by Yij (i = 1,2, ••• ,6;j-= 1,2, • 

•• ,5) where i indicates the number of the acid sample and j the 

number of the observation for this sample. These observations 

are considered to be random variables with the expected value 

where ?f is the contribution of the ith acid sample and~ is a 

constant. If we assume that the fi~s are constant, we have what 

is known as the Type I model and any conclusions we might draw 

would apply only to our six acid samples. If we wished the con

clusions to hold for a larger group of acid samples of which 

our six acid samples were a sample, we would consider the ~ 7 ~ 

themselves to be random variables. If we assume that they are 

dra~ from an infinite population,f(~) with variance~~, we 

have the Type II model. If the population is finite, we say we 

have a Type III model. Thus the nature of the conclusions we 

wish to draw determines the form of the mathematical model used. 

It is customary to write 

xj == / + 7i. -r E,j 

where E~, a random variable, denotes the difference between Yij 

and its mean value. 

1.2 Two-Way Crossed Classifications 

It is often desirable to collect experimental data so 

that they may be classified according to two factors. In this 

case our model would be 

(1.21) 



3 

when 7;: is the contribution to the mean of the i.th level of the 

first classification and ~J is the contribution of the jth level 

of the second classification. For example, five workmen might 

take turns working on four machines. Then Yijk would be the 

number of articles produced on machine i by workman j on the 

Kth day. 

In setting up the above model we have assumed that the 

1';.· '.s and /i'.s , the effects due to machines and workmen, were 

additive. If we had reason to doubt this, we would use the 

model 

(1.22) 

where (~hj is the interaction term associated with the ith 

machine and jth workman. 

If all the parameters involved in model (1.21) are con

sidered to be constants, we have a Type I model and our con

clusions would apply to only the workmen and the machines used 

in the experiment. In this case, we would be interested in 

estimating the parameters and testing hypotheses about these 

parameters. If we wish our conclusions to apply to a larger 

population of machines and workmen, we would consider all the 

parameters, with the exception of;U, to be random variables. 

We have a Type II model if the random variables are assumed to 

come from continuous populations and a Type III model if they 

are assumed to come from finite populations. In addition to 

these three models, we may set up mixed models where some of 

the parameters are constants and others are random variables. 

The model used depends on the objectives of the experimenter. 
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1.3 Two-Way Nested Classification 

In the two-way crossed classification it was assumed 

that each level of a given classification made a definite con

tribution to the mean of Yijk• This is not a realistic assump

tion for certain types of experiments. For example, in section 

1.1, we consider the yields of naphthalene black for six different 

samples of H acid. Suppose these six samples were random sam

ples of H acid produced from naphthalene supplied by a partic

ular tar distiller. Suppose further that the experiment was 

carried out four times, the supplier of naphthalene being changed 

for each experiment. If we attempt to describe the data by 

model (1.21) or (1.22), we might regard ~: (i =1,2,3,4) as the 

contribution made by the different suppliers, but it would not 

be reasonable to regard _,dj. (j: 1,2, .•• ,6) as the contributions 

of the six random samples of acid since this would suggest that 

all samples having the same number have the same effect upon 

the yield. What is required is a model of the form 

xi/( - ~ .,. ~:- -r ;;. (,·) .,. f ,;·" 

where 7i is the effect upon the yield of the i. th supplier and 

/Jti) represents the effect due to variations within samples from 

the ith supplier. Again, assumptions made about the parameters 

can lead to a variety of different models. 

1.4 Additional Assumptions 

It will be shown in the chapters that follow that we 

can impose certain linear conditions upon the parameters with

out loss of generality. These conditions simplify the math-
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ematical analysis. Also it will be assumed, when the parameters 

are considered to be random variables 1 that parameters repre

sented by different Greek letters are independently distri-

buted. Their variances, v;,", ~.a.,~;, and Q"", for the £.\i1<, are 

called components of variance since they are parts of the 

variance of the Yijk• One of our principal problems is the 

estimation of the components of variance. Finally, we shall 

always assume that the E&iK have a normal distribution and, 

depending on the model under consideration, distributions will 

be assumed for any other random parameters. 

1.5 The Scope of This Thesis 

In the next chapter the theory of regression analysis 

is presented in a form which will cover all the Type I models 

considered in the thesis and which will provide a foundation 

for the other types of models. In the third chapter the one

way classification is considered for the case of unequal num

bers of observations in the different levels of the classifi-

cation. The case where the number of observations are equal 

is then obtained as a special case and Type I,II, and III 

models are considered. In the remaining chapters models in

volving more than one classification are considered. Time 

and space do not per~it the consideration of all possible models 

but it is hoped that the methods used here will be of use 

in developing the theory of models which have not been con

sidered. 



CHAPTER II 

REGRESSION ANALYSIS 

2.1 The Model 

In this chapter we shall consider the problem of 

estimating the value of some random variable Y with a mean 

depending on certain variables x1 ,x2 , ••• ,Xr, whose values 

may be determined exactly when Y is observed. If n>r ob

servations are made, we obtain the sets of values(X,~,x 1 ~, 

••• ,X/l~;Ycc),(":l,2, ••• ,n). If x1 ,x2 , ••• ,Xr were held fixed 

at the values X,~ ,X.,aec;, ••• ,X~~· the observed value of Y, Yc, 

would vary in a random fashion about its mean value which 

we assume has the form 

(2.11) 

where 

A 

£( ~J =/1 + f /i x,C(. 

It is convenient to introduce the variables 

?'t 

::::::I ~X 
- L ifiC 
}1. -~, 

( i = I " · · · A-) # A ~ .,1 .1 

• 

Then equation (2.11) may be written in the form 

""" 
(2.12) £( Y~) =/ ~ r,. ~l· Xi~ 

where 

This is equivalent to saying that 

6 
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..., 

( 2.13) ~ ~ + f I' .X.:CO(. + E.._ .I 

where f« is defined by this equation and is called the ~ 

error. A consequence of (2.12) is that E(i)=O. 

Our objective is to estimate/ and the/,· (i=l,2, 

••• ,r) by the method of least squares and we will denote these 

estimates by? and b1 (i -==1,2, ••• ,r), where the bi 's are 

called the regression coefficients. We can then write 

.-1-

(2.14) ~ =./ .,_ f .t,· .x,·« + etl( 

where e~ is called the residual. 

The sets of equations (2.13) and (2.14) may be written 

in the form of the matrix equations 

(2.15) Y ~ + Xf +- E = _/ +X~ + e 

where 

Y= 

I 

r= I 
E.= 

J 

' J 

' e == 

and X =- (x1 ,x2 , ••• ,xr) is an n Xr matrix where xi is the 

l 



column vector with elements .X~c.(t!IC =1,2, ••• ,n). We shall 

assume that the rank of X is r. Since 

7\. 

J'X I'..x. = L ( Xl·O: - X, ) = 0 0 

' 
~ 

0( :I 

Let Z =(z1 ,z 2 , •.• ,zr) denote an n x r matrix. Then 

there exists a matrix 

wll w21 WJl • • • wrl 

0 w22 w32 • • • wr2 

w 0 0 w33 • . • wr3 

• • • . • . . • • • 

0 0 0 • • • wrr 

such that Z =XW, where the r column vectors of Z are or

thogonal and of unit length! Hence Z is of rank r. Since 

the rank of the product of two matrices does not exceed the 

rank of either of the matrices, the rank of W is also r, and 

w-1 exists. Since I'X=O, I'Z =I'X W =OW= 0. Also Z'Z ==Ir, 

the r.xr identity matrix, and A:=r.X'X=(W' f'Z'Z W-I= (WW'(/ 

T 
_, 

hus, WW' =A , and we also note that A'= A. 

and Z' =W'X' so that I: Z'Z=-W'X X'W=W'A W. r 

Therefore W-
1= W' A. 

We have Z =XW 

The matrix equations (2.15) may now be written in 

the form 

+ Z w-'Jr + e 

1
Schreier and Sperner, Modern AlE'aebra and f·iatrix Theory. 

New York: Chelsea Publishing Company, 1951, p. 141. 



or 

(2.16) Y=~ -rZr'+E 
A 

+Zc. ::/ +e 

where 

¥, c, 
"i,., 

w·; c,. 
w-~ r~ - c = -

' 
. 

'II\ c, 

2.2 Estimation of the Regression Coefficients 

The least squares estimates of the scalars 

are obtained by minimizing the error sum of squares, SSE. 

From (2.15) the error sum of squares is 

9 

SSE= t e; = e'e ~ (Y~ -Xt)
1
( Y/ -Xt) 

= ( y ~)I ( y -:P) - ,1. ( y-;;;) I X J + .J I XI X /, 

(2.21) = ( Y-/)' ( Y /)- :l ( Y~)' X J,. + J'IJ $ 

since a lX 1 matrix is equal to its own transpose. Setting 
,.. 

the partial derivative with respect to~ equal to zero we 

obtain the equation, 

JSS£ 
d A 

~ 
since I' X= 0, and therefore 

(2.22) 

Taking the partial derivatives with respect to bi (i =1,2, 

•• _,r) we obtain the equations, 1 

... 
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where tl.J is equal to an r X 1 column matrix with a one occur-
Jbi 

ing in the ith row and zeros in all the other rows. Since 

all the matrices for i = 1,2, •.• ,r are one element matrices, 

and A' = A , we have 

and 

( 2. 23) J 

I 

where y = Y - Y. Since Ab and X'y are r x 1 matrices and (Jt} 
is the 1 x r row matrix where a one occurs in ·the ith column 

and zeros in all the other columns, the normal equations (2.23) 

may be written in the matrix form 

Ab: X'y 

and hence 

(2.24) 
_, 

b=-A X'y, 
_, 

where A exists since X' is of rank r and the Gram matrix 

A =x•x must have the same rank. 

If our model is considered in the form 

we must replace X by Z in the above results and we would 

still obtain/: Y since 

I' Z =I' XW =-OW = 0 
' 

which is a 1 x r zero matrix. To obtain the normal equations, 



we would replace A= X' X by Z' Z = Ir obtaining 

C1:Z'y=W'X'y=W'A A X'y=W'A b. 

Since 'N'A-=w·',c =W-
1
b • Hence, we could have obtained c by 

substituting for b in ¥ = H-,.-fe · 

(2.3) Properties of the Regression Coefficients 

11 

We will now show that the ci's give us a unique ab-

""' -solute minimum. Replacing X by Zan~ by X in (2.21), the 

error sum of squares is 

(2.31) SSE=y'y- 2y'Zc -r c'c • 

Also 

(c - Z'y)' (c - Z'y) = (c' - y'Z) (c - Z'y) 

= c'c- 2y'Z c+y'Z Z'y • 

Therefore 

(2.32) SSE :(c - Z'y)' (c - Z'y) + y'y - y'ZZ'y • 

This expression has a unique absolute minimum for c =Z'y , 

which is y'y- y'ZZ'y, since (c- Z'y)'(c- Z'y) is the 

length of the vector c - Z'y • 

To express this absolute minimum in terms of the 

original model, we make use of the relations Z = XW , 

c ='W'Ab , WW' = A-
1 

, and substitute in (2.32) to obtain 

SSE= {b'AW- y'XW) {W'Ab - W'X'y)+y'y - y'XW'W'X'y 

-:( b 'A - y' X )\VW' ( Ab - X' y) + y' y - y' XA
1
X' y 

= ( b ' - y' XA-
1 

) AA A ( b - A1 
X' y ) -r y' y - y 'XA

1 
X' y 

{ 
-/ _, _, 

-:: b - A X ' y ) ' A { b - A X ' y ) + y ' y - y ' XA X ' y 
_, 

.:: u'Au +y'y - y'XA X'y 

where u-=- (b - A-
1X'y) • 



Now u'Au is a positive definitel quadratic form and has a 

unique minimum, 0 , when 

u = b - A
1 
X' y ~ 0 • 

-I 
This shows that SSE has a unique minimum of y'y - y'XA X'y 

-I 
when b = A X' y • 

·,-;e have 

1r = A-lx'
1 

=- 11-'x' (Xj3 + t) = f + A_, x' E . 

Thus 

E ( };) -==I + A-' X If (E) =I 
_and b1 is an unbiased estimate of ,A· (i =1,2, ••• ,r}. Re

placing X by Z in the above argument shows that E(c}=o. 

12 

Before computing the variance-covariance matrix of the bi's, 

we introduce the additional assumption that the E~s are in

dependently distributed and have a common variance, cr~ that 

is E(c E') = tr2.In. The variance-covariance matrix of the b1 's 

is 

£[(J.-f)(J-f)'} = E[;r'X'EE'XA-'] 

= vr-.).lr' X I In X ;f' :=: '17"'.%. 11 -/11 rr I = fT~ /1-l 

Thus the bi's will, in general, be correlated. On the other 

hand the ci's are uncorrelated, since, replacing X by Z, we 

find their variance-covariance matrix is ~~Ir, and each ci 

has variance C7"~. 

lAttridge, R.F., Linear Regression and Multiple Classification 
Designs. Hamilton: unpublished thesis, 1952, p. 63 • 

http:vr-.).lr
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(2.4) Reduction due to Regression 

If no attempt were made to estimate the mean of Y, 

would be called the sum of squares for Y and it could be 

thought of as giving a measure of the spread of the obser

vations about the value Y = 0 • If it is only assumed that 

E(Y} =,/A 
' 

the least squares estimate Of_/ iS Y, and 

n 
1" )J-

7'\. 

L. ( Y~- L_ l-- 7-~ o<. =- f "(,::I 

is a measure of the spread of the observations about Y, our 

estimate of E(Y) • Finally, with our model (2.12} , SSE is 

our measure of this spread. The difference between SSE and 

the sum of squares, when we assume E(Y)~ , is denoted by 

SS£ 

and is called the reduction in the sum of squares attributable 

r. ,_ 
to the regression. If SSR differs by little from ~~~ ~~ ~ 

SSE is small, and the Y~'s are close to the estimates of their 

means, indicating that little is to be gained by introducing 

additional terms into the regression equation (2.12} • 

(2.5} Tests of Hypotheses 

We will be interested in testing the hypothesis that 

;5;:0 ( i = 1, 2, ••• , r) • This is equivalent to the hypothesis 

that~ is a satisfactory expression for E(Y) • The above 

remarks suggest that the ratio SSR to SSE would be small 

when this is the case and large when the hypothesis should be 
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rejected. In practice we use the more convenient statistic 

where 

MSR= ~ 
r 

F = MSR 
1m' 

MSE _ SSE 

n - r - 1 

The question then arises as to how large F should be if we 

are to reject the hypothesis. To answer this question, we 

next determine the distribution of F. 

We now assume that the e,"'' s are normally and indepen

dently distributed with mean 0 and variance tr~, indicated 

by saying that the c,/s are NID(O,tT,~,.} • From (2.6), 

and 

(2.51) SSE 

e =- y - Zc =- y - Z r- Z ( c - '() , 

= e'e 

:::: (y -

= (y -

== (y -

-= ( y -

zy)2 -

z-r) 2 -

Zo) 
2 

-

z ?S') 2 -

2 ( y - z t) 'z ( c - y ) + ( c - 0) ' z' z ( c - 0) 

2(y'Z - o'Z'Z} (c - Y) +- (c - Y)' (c - '0) 

2 { c' - o'} ( c - ¥) + ( c - Y)' ( c - o} 

2 
(c -Y) • 

Since the scalar Y= I'Y =/ + ~ I'ro+ l = / -r c , 
n 

where 

'I 

y 

y 

y 

'l'herefore j - Z "d' = E - C., 

t-

f 
[ 

and the error sum of squares 
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becomes 

(2.52) 5 5 f - (c. - t ).l.. - ( c - o) .:~.. 

We shall make frequent use of the following results. 

If we have a set of variables x1 ,x
2

, ••• ,xn, which are NIDy. tr'"), 

X
4 j;; (x"';:A )'-

has a )(~distribution with n degrees of freedom. We often 
, ;1.._ 

that J; (X"'-/) say 
~ J, 

is distributed as X 0'" with n degrees 

of freedom (d.f.) • If~ is replaced by x, the mean of the 

x"(.'s, the resulting expression has a x"rrJ, distribution with 

n - 1 d.f. • We also use the relations 

.J 

where the second expression is the variance of X"'l7"",.and Y 

is the number of d.f. associated with)(~. Finally a statistic 

F -= x.,"-/..;, 
X~/v.z.. ' 

J. 

x~ have x..t distributions with )J, and ~.2. degrees 

of freedom and are independently distributed, has what is 

known as the F distribution with~ and y~degrees of freedom. 

Since C - tf -= ~ 1 E. , which implies that the c1 's 

are independently distributed, the ci 's are NID (0, O"'.t.) • 

Since the E~~s and the ci's both have this property, both 

.z. 
sums on the right of (2.52) are distributed as X o-.a.-, the 

first with n - 1 d.f. and the second with r d.f. • Hence 



£ ( S 5£) = ( n -1) cr.z. - /l. cr z. ( ?'1 - /l. - I ) V""..L 

and 

Thus 

2 
s -::::: SSE 

n - r - 1 

is an unbiased estimate of tt,_. We have seen, following 

( 2. 3 2 ) , that 

SSE = y 'y - y' ZZ 'y :: y' y - c' c , 

making use of the normal equations c=Z'y. Thus 

,., 

SSR= c'c = {; c~ • 

We wish to test the hypothesis H: Y, ~ Y~ = · · ::. )'./\:: 0 • 
A 

16 

Since L ( C,: - Yd .1. 
,· = { 

l-

is distributed as X cr'-, SSR is also 

distributed as x•~vwith r d.f. under the null hypothesis. 

If the hypothesis is not true SSR/v~ has a non-central X"

distribution!. 

Now we will prove that SSE is distributed as )(~cr~ 

with n - r - 1 degrees of freedom and is statistically in

dependent of SSR. Augment the r orthogonal vectors z1 ,z 2 , 

••• ,zr by n- r- 1 others, which we shall designate by 

p1 ,p2 , ••• ,pn-r-l' such that z1 , ••• ,zr,p1 , ••• ,pn-r-l form 

an orthogonal set of unit vectors. The estimation equations 

will now be 

1Patnaik, P.B., The Non-Central )C~_ and F- Distributions 
and their Applications,Biometrika, 36 {1949J, p. 202. 
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( 2. 53 } 

where 

dl fl 

d2 f2 

d and f - • • 
• • 
• • 
d 
n-r-1 fn 

We may ·0'\fri te (2.53} in the form 

{2.54) y == Zc + Pd + f = ( Z, P) ( ~) + f . 

Since (Z,P) is an.orthogonal matrix, our earlier theory shows 

that 

• 

Therefore, c -=Z'y and d: P'y • We saw earlier that z i was 

orthogonal to the n x 1 matrix I and this is also true for 

pi. From (2.54) 

c = Z' y = Z 'Zc -t Z' Pd + Z 'f , 

or c -= c + Z' f and Z 'f = 0 • Similarly P' f = 0 and If= 0 • 

These n equations in n unknowns have an n x n orthogonal matrix 

and hence f = 0 or 

y=Zc+Pd. 

Hence, (y - Zc Pd) 2 = 0, that is, 

0:: [y - Z¥- Z(c -o')- Pd]:L 

:. ( y - Zl) 
2 

- ( c - ¥) 
2 + d' P' Pd - 2y'Pd 

= (y - z a'} 2 - 2 
( c - )") -+- d 'd - 2d' d , 



making use of (2.51}. Thus 
2 2 

d' d =- ( y - Z l') - ( c - ¥ ) =- SSE • 

Hence we have broken SSE into n-r-1 orthogonal squares. 

Furthermore, 

d-=P'y=P'Y=P'~+ZD'+E)~P'E ~ 

E(d)= 0 , and the variance-covariance matrix of d is 

E{dd')=E(P'E t'P}=v-J.P'I p:o-Lptp::tr-'I • 
n n-r-1 

Therefore IT
2 (eli)== v-2.. ~ IT ( didK) = 0 ., i ~K 

The covariances for dj, c1 are given by 

£ [ d ( c - ?r) I] :::- t ( pIE f. I z) == \T ~ PI z - 0 . 

Therefore v .a ( di c ,· ) -= O 

18 

Since the dj's are orthogonal linear forms in the &~~5 

2 
which are NID ( 0, Q"".a.), they are NID ( 0, II .. ) • Hence the d j are 

;. 
independently distributed as x~~with 1 degree of freedom 

each, or SSE is distributed as ..,._~.- fl"'
4 with n-r-1 degrees of 

freedom. Also the dj's and (c1 -~·)'s, being uncorrelated 

and normally distributed, are independently distributed. 

Therefore 
A 

and 55 R == Z c~,_ 
(': ( 

are independently distributed. Under these conditions, the 

statistic 

F-= /'15/i 

1'15£ 

has what is known as the F distribution with r and n-r-1 d.f •• 

To test the hypothesis, we select a number c(, o < tX < I 
' 

called the level 2f significance, and determine from the 
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tables the value F,_~ such that the probability of F exceed

ing F1 _ Cll. is «. When this occurs we reject the hypothesis. 

Thus when the hypothesis is true, we would reject it on the 

average 100~ percent of the time. We should also notice that 

t == { c ~ - Y..) / rr 

Js/v-,. 
c.:-"t~ 

s 

has a t distribution since (c.-- y,:)jrr is N(O,l) and S/c;r~ 

is distributed as )(~with n-r-1 degrees of freedom. This 

statistic can be used to test the hypothesis that ¥.·has a 

specified value. 

Now suppose we assume Y, 1 YJ,. ~ · · · ~ ~ i= 0 and 

test the null hypothesis that { ~n , ~r.t , ... " ~ = 0} . Let 

SSRk be the reduction in the sum of squares due to 1', ~ y~, .. ·.) y~ 

and SSRr that due to y;, ~'. · · ~ ~ In the first case 

5 S E - t-. 1-: 
and in the second case 

Thus 

c;L 
' 

The additional reduction in the sum of squares due to the 

introduction of ~ .... 1 , };;,..~ , · · · -" ~ is 

..I\.. 

s s l'?n. - s s RA = L 
(. :::- K+-1 



2 0 

If this reduction is large we would reject our hypothesis 

that ~+r, ~t.L ~ · , ~:::~. We have shown that the (c1- O.J2 

we independently distributed as )("~with 1 degree of freedom 

each. Hence, under the null hypothesis that {Y.tn, ~r"', · · ·, ¥1l-=o}, 

-"" 

S S R/L - S 5 R It == ~ ct~ 
, "'Krt 

l. 

is distributed as X tr,_wi th r-k degrees of freedom. We have 

seen that 
.,. -1-1 

ss£ = L 
i=t 

is distributed as X).V"'.1 with n-r-1 d. f. and that the c 1 ' s and 

dj's are independently distributed. Hence SSE and SSRr- SSRk 

are independently distributed and 

(2. 55) F == 5 5 R/Z. - S S /Br / S S £ 
(Jl.- k) 'iT,_ / -(?1. -A-!) r::T.z. 

has the F distribution with r-k and n-r-1 d.f. • A knowledge 

of vr 4 is not required since it cancels out in the computation 

of F. This is the statistic we use to test the hypothesis 

that { ~ ... , J ~,..z. , . · , X =- o} 

In practice, the hypothesis to be tested will be that 

{ 1/rf/' ro .. I ••• ~ ;4- -::: 0} We now show that this is equivalent 

to the hypothesis that { >':r~r, ~.,..t I ••• ) ~ = 0} . We haver= \.v' y 

where 

wll w21 w)l • • • wrl 

0 w22 w32 • • • wr2 

W= 0 0 WJJ . . . wr3 .J 

. • • . • • • • • . • 

0 0 0 . • • w 
rr 
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and lwl =w11w22 ••• wrr + 0 • Then 

A. 

A =L w,i O'L· ( r == IJ J.) . /t) 
,·=,;: ) ~ 

and { ~ .. { > ),;,,..~. J • • ' )".It = 0} implies that { /,lrl'l J ~1(-i-,Z I. • • J /II":' 0 J • 
Since wii -4= 0 ( i = 1, 2, ••• , r}, the above equations can be solved 

for the X 5 in terms of the/' 's and we 

same form. Hence {!,rf; J !,r·n. I •• 

0

J r = 0} 

obtain equations of the 

implies that { ~,.,. ~ .. ).. .. 

• • • , 01}. :: 0} . It follows that we may still use the statistic F 

of (2.17) to test our hypothesis. 

While the matrix Z exists, it is difficult to construct 

it and hence to obtain the ci's and the statistic F. Accord

ingly we need to obtain SSRk and SSRr in terms of the original 

observations. The expression SSE is the unique absolute mini-., 
mum of L e; and we saw that it was obtained whether we worked 

<\;:I 

in terms of the original or the orthogonal model. Hence 

, 
5 5 R /1, -= f, ~~ - S 5 E 

does not depend on the model. Now we consider 

~ I s s RIC = !;-; t_j. - 5 5 E 
?\ 

where SSE' is the minimum of [ e: when { ~1"1 .. ~ ... .l I • 
0(: I 

But we have seen that this implies that { jl/frt , ;1/(+-.L J • 

. '~='o} 

• J ~ft = o} 

so the above conclusions still hold and we will obtain the same 

value for SSRk with either model. 

Finally, we derive a result which will be needed in 

later chapters. We saw in section 2.3 that 
I c-tr=Ze 
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Hence the (ci- ~)'s are linear combinations of NID variables 

and thus are normally distributed. Also their variance-co

variance matrix is v~Ir • Hence the joint distribution of the 

ci's is the multivariate normal distribution 

~( ) - J r c. > c .1 • • • • ~ ell - ~-f.-OJ._ii_,___v_)---:Jl 

_ _j_ ( C - ¥) 
1 
( C - Y) 

e .1 v-1 

We also found that the c1 •s were distributed independently 

of SSE so that 

f(c1 ,c2, ••• ,cr,SSE) = f(c 1 ,c2, ••• ,cr)f(SSE) • 

Since c :c w-'b, 

f(b
1
,t 2 , ••• ,br,SSE) = f(c

1
,c

2
, ••• ,cr,ssE)fw-'/ 

= f ( c l, c 2 , ••• , cr) f {SSE }j W-'} 

=f(b
1

,b 2 , ••• ,hr}f(SSE} • 

Hence the hi's are distributed independently of SSE. It also 

follows that the hi's have a multivariate normal distribution 
-I 

with the~· .. s as means and \7'1...)} as the variance-covariance 

matrix. 



CHAPTER III 

ONE-WAY CLASSIFICATION MODELS 

13 .1 The Type I f-.1odel for Unegual Numbers per Cell 

Suppose we consider a planned experiment in which p 

different treatments are applied to N different experimental 

units such that the first treatment is applied to n
1 

of these 

units, the second to n2 of these units and, in general, the 

i.th treatment is applied to n
1 

of the units (i = 1,2, ••• ,p) • 

That is, we have divided the N experimental units into p portions 

of size n1 ,n2, ..• ,np• These units are usually called plots 

and the numbers, n
1

, are often called the number of replica

tions for the corresponding treatments. It is our purpose to 

test the yield-producing ability of the different treatments. 

The yield for the 'th treatment on the fth plot of the n1 plots 

associated with this particular treatment, could be estimated 

by the model 

(3 .11) 

where ( j = 1, 2, ••• , n1 ) • The parameter t;' is the differential 

effect of the ith treatment over the mean~ 
1

• We wish to 

test the null hypothesis that [-,;' = 7;.' = · · ·, =--r;,'} • Equa-

tion (3.11) can also be written in the form 

(3 .12) 

where 

f' 

'0· =/I -t ?; 7;. I X/(,· + E,i ' 

xki = 0 for k :+: i ' 

= 1 for k = i . 

23 



I 
If we denote the mean of the ~ ~ by 

' 

and set ~ = 7;,'- ?-' in equation (3.12), we obtain 

I" 

(3 .13) 'ti / r- [; ?;; X/(,· -t e 'i , 

where 
I" 

~ -= /, -t- 7 , [; X J( (. ~ / , -r r , 

We now have the restriction that 
p 

L. 71~rl' = Nr'-Nr' = o 
)C ~I 

24 

If we order the Yij's in some way, calling them Y""" ( oc: =- 1, 2, 

• • • 'N) , the equations ( 3 .13) can be written in the form 
to 

(3 .14) '1-/ -t- E. ?A X~ 
/<: I 

-t- E. 

Also, 

X;, · X)( ::::: ~ /( n.: 
p 

, L. X/( =- I a}'\ d x~ · I == nc. 
k#l 

We define 

I" 

- z. x",· - L n, xJ(.,· 
'•J '.:I 

N N 
nl( 

N 

We also denote by Ik the vector Iki and set xk = Ik - Xk • 

Substituting in (3.14}, we obtain 
p 

(3.15} y ~ / t- f 7; (XI( + X/( ) + f. 

' 



f' I' 

=/' T L. 7i X" + L ?;; ..x ... -r E 
,f( =/ It=/ 

,. 

~ + 'L 0c .zi( -t- E 
' ~r=l 

since f' 

L. = 0 

We can also write (3.15} in the form 

(3 .16) 

where 

and 
{, 

T~.. 

I -
7p 

We have 
f' I' ,. 

L_ .x-t - L X/( E. XK 0 -
;t:: I /( :t /(:I 

since 

f' ,0 

L. X/( IL. 71/r I 
/(:I I<= I 111 

Thus the xk's are not linearly independent and the rank of 

the matrix X is not p as required in Chapter II. To meet 

this difficulty, we use the relation 

25 
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I' 

L_ = 0 

to eliminate~~ from (3.15), obtaining 

(3.17) 

Note that 

Consider the equation 

71
"' XD) = 0 

", r 

Multiplying the equation by xi (1 -=1,2, ••• ,p-1), we find that 

nici=O, since the Xk's are orthogonal vectors. Thus the vectors 

(k=l,2, ••• ,p-l) 

are linearly independent and our model is of the form given 

in Chapter II. 

As before, it is assumed that the c,; ~ s are NID ( 0, 0" 1
). 

We can now use the theory of Chapter II to test the hypothesis 

that [ r, = h_ -:- · · · -= ~-~ = 0} , which -1-s equivalent to testing 

our original hypothesis that { 7: = X = · · · = ~ ""' o} since 
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p 

L - 0 

The statistic used to make the test is 

where SSE is obtained by minimizing the residual sum of squares 

' 
and 

-55£ 

is the reduction in the sum of squares attributable to the 

regression. In order to compute SST and SSE it is necessary 

to estimate the values of the parameters involved. 

).2 Estimation of the Parameters 

We wish to estimate the values of/ and the 7.: • .s from 

the experiment and to do so it is necessary to select n1 plots 

for each treatment at random. Each treatment will then have 

the same chance of appearing on a given plot. Also, the ran

domization allows us to assume the errors to be uncorrelated. 

We could obtain our least squares estimates of/# r,, r.;J ... J ~-' 

from the equation (3.17) 

.. 

-t E 
l 



but a more convenient and equivalent method is to us the method 

of Lagrange multipliers on the equation (3.14) 

p 

y = / + f XI( t; -t E. 

with the side condition 

(3. 21) 

This means that we minimize the expression 

(3. 22) 

where m,t
1
,t2, ••• ,tp are our least squares estimates of~, 

l 
?: , ?:.. , · · · J ~ • If we make use of the following theorem , 

we can omit the second term in (3.22). 

Theorem 3.1: 
,0 

If £ ('I) ;:: /I T b XI( 7Z 

' and ( 1) I - L XI( s ~ f .J 
lt=t 

(2) xl,x2, ••• ,xs form a mutually orthogonal set, 

(3) L_ 
77}1 7; = 0 t 71/( ::f 0 

I(:: I -' ;t:: I 

(4) any number of other conditions hold for Tstt ,'t.,n.," · ;li' J 

such that the method of Lagrange multipliers may be used, then 

condition (3) may be ignored. That is, its Lagrange multiplier 

is equal to zero in the minimizing of 

1 
Mann, H.B., Ana~sis and Desi!n of Experiments. 

New York: Doverblicat1ons,949, p. 39. , 
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p 

55 E = ( Y -/ I - {-, X/( ~) ~ 

To determine m and the ti's we set the partial deriv

atives of 

(3. 23} 

fO ,~ 2--

s 5 .[ = [; f.; ( X.; - Pt - t ,· ) ~ 

with respect to m and t
1

, equal to zero, obtaining the normal 

equations 

cJ55£ = 
Jm.. 

L. 
'~ j. 

r 
'~J 

n.: 

L 
,;:. ; I 

xi -

Yc; -

xi -

~ 

N~ L. 71.- t ,· 
C •:; I 

Nnt 0 

?7• m - n,· t,· == 0 ( t" = '~ ..l .I • • .J p) 

From now on we shall replace a subscript by a dot to indicate 

summation over that subscript and we shall represent the corres

ponding mean by the addition of a bar. In terms of this no

tation, our normal equations yield the solution 

Y.. , 

and 

t, - X. - m X:. - Y.. 
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3.3 Reduction due to Regression 

Substituting our estimates of the parameters/ and 7..· 

in (3.23), the error sum of squares becomes 

s- - )2- ~ ,. f. -.L s s£ ::: ~ ( 'ii- X·. ~ ~ y;i - ~ n.; x-. 
t 'J ''J , =r 

L. 
f' -::z. 

N Y. . .1) l- (l; 1'i n~ ~-. -
•)J < -I 

f 

L_ l. L. n~ ( >:. - )" - j,i 
- Y .. 

'~J 
~-:I 

, 

where 

Yij =Yij- Y ••• 

Hence the reduction in the sum of squares due to treatments 

is 
I' 

s 5 T - L ?7~· ( x. - Y .. ) l- • 

c': I 

In terms of the original model, 

(3.31) , 

and 

(3.32) 

Therefore 
p 

.S s T == ?; 71,- (n + E.;. - l .. )l.. 

In what follows, many of the expressions for the sumo£ squares 
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will be of this form and it will be convenient to introduce 

a theorem which permits us to write down the expected value 

immediately. This theorem is a generalization of one due to 

Tukey~ 

Theorem 3.2: 

If y1 ,y2 , ••• ,yp have means/'"/~ J. • :-/P_, 

i 
~ ~ var ances cr , v; ~ · , v-;:;; ,_. and every pair has the same co-

variance, ).. , then 

~ ~ fl 

E{ r- n,:(1, -,Y.Yl = /; n.-("'·-u,)'z-r L; n4 (t- ~}(t'i~-.:t) ,., J ,_, /'/ ,_, N 

where 
~ 

~ :v ~ 7?.-JA .. , 

and 

Proof: VJe have 

and 

so that 

J 

• .,l... • I 
l _,. (. • 

Also 
~ ~ 

\ ( _)t. - ~ :Z. AI-,_ f;-; n.- f.· - 1'· - f;-; 714 -y.. - /V #'· 

1 Tukey~ J.W., Dyadic Analysis of Variance, Human Biology, 21 
(19491, pp. 65-110 . 
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Then 

E {f.) 

and 

L n. n·, .E (;.~. j,f ., ) 
. •/ ' .. ·;' I'' 

'~ ' 

But 

n.· n,"~ , 

so that 

E ( Nj.') 

Hence, 
~ ~ ~ 

£ [ f n; ( 1·· -j. )1} = f 71,· (// -t- 0: ~)-if;;-~ - j; J;'; 77,·1 r;;~ 

I' 

-A ( # - ;V £ nt) 
I' p 

~ L.- ??,· ( ~{ - j/.) ,_ -t- ?- 71,· (I- l1_!. )(Vi 1 - )) • 

,_, ~ - ~ ,:, AI 
... 

Corollary 3. 21: Setting n1 :: n and hence N = np in theorem 

3.2 we obtain 

• 



where 

:Y· 
=:: I 

p 

and 

We shall now use theorem 3.2 to find the expected 

treatment~ 2f sguares,E(SST). From equation {3.31) we 

have 

and 

Also 

E (X.) = / -t J;· 

Vall ( r;.) = E ( [.J.) = 

~ , 
,/'· ... fv f ll,· 0 + ?; ) -/ -f ,i6 .f 1/,· I~· = / 

Therefore the expected treatment sum of squares is 

[(.SST) 

IJ 

- ,;; ?( •· 7( ,_ +- { f -I) ~ z.. • 

33 

.. 



Hence, the expected val~e of the mean sum of squares due to 

treatments is given by 

E(I!JT) = £(.rsr) 
f> -I 

We have seen that 

p 

- \T ~ r _.J,_ L 71,· ?;. .,.... 
,0 -/ ,·=I 

34 

Therefore the expected sum of squares due to error, by corollary 

3.21, is given by 

p 

L ( 71.: - I ) v- !.. 

t'= I 

since 

J 

Hence, the expected value of the mean sum of squares due to 

error is 

E ( MSE ) = E ( i~~) = tr ;L. 

We could also have obtained this result by using the theory of 

Chapter II. Then SSE is distributed as X~~>with N-p degrees 

of freedom and hence E(SSE) = (N-p) r:r". From Chapter II we 

know that SST is distributed as ){~v~with p-1 d.f. under the 



null hypothesis. The analysis-of-variance table is: 

Source of 
Variation 

Treatments 

Error 

Total 

Degrees of 
Freedom 

p-1 

N-p 

N-1 

Sum of 
Squares 

f> 

s 5 T = L n, ( ~. - Y.. t 
i=t 

5 SE:: L; ( '0·- ~.)'" 
'·J 

l 

Mean 
Square 

/'1ST= SST 
p-t 

35 

E(MS) 

More convenient formulas for the computation of the 

sums of squares are 

I' 

5 s T = L >:. 2- -

{.:I n~ N 

and 

... 
Y.. 

' ;V 

while SSE is obtained by subtraction. 

In the particular case where n1=n (1==1,2, ••• ,p), 

we define 

:a.-
If our hypothesis holds, ~ = o . Then, 

(s s T + s s £) / \T 2- . = Z:: ( Yv · - 9. ) / ~ ,_ 
';rJ 

has a X_l,distribution with N-1 d.f. and 
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is an unbiased estimate of cr~. If our hypothesis is rejected, 

we estimate t7;,.. and V"",..by solving the equations 

J.4 Components of Variance for the Type II Model 

Let us estimate the yield for the ith treatment on the 

jth plot of the ni plots associated with this particular treat

ment by the model 

(3. 41) 

where the r.· 's and E.;,t 's are assumed to be NID with means zero 

and variances cr,: z. and 7"J.-res pecti vely. The assumption of nor

mality is not required for the purpose of estimating the par

ameters. However, this assumption is required if the usual tests 

of significance and confidence limits are used. From {3.41) 

we. have 

and 

The type~of experiment that we are concerned with here will be 

quite different from that in the previous sections. Here we 

want to estimate the mean~, and the variance of this estimate 

and to obtain estimates of the variance components, o-- ~and v;:. 3-. 

Our estimate of the mean is to be applicable to a wider area 

than that of the plots used in the experiment • 

.. 
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We shall arbitrarily begin with the sums of squares 

obtained in the previous section and show that they may be used 

to estimate ~ .. and o--"'. In terms of the original model, 

(3.42) 

71.-

x. -= /t.. f, ~ r 7: r £,i ) = / + -r.· 1- £.-. , 

and 

(3. 43) 

From equation (3.42} we have 

E(Yi.) =/ , 

Va./1, ( 1:.) ~ 1- [ft:· + £,·. Y] = 17?= ~ -r 

and 

CoN' ( x. , ){". ) = co,- 0 -; (.· -t- c,·. ,. / -r-- 7. t 1- £,·,, ) 

= [ [ (r.· r ~·. ) ( 1";·1 t- f;,.)] = 0 = ~ 

Also 

Therefore the expected treatment sum of squares is 

E ( s 5 T) = E { t n. · ( ~. - Y.. ) ~ } 

~ f; n,· ( ' - ~ ) ( vr 2. -r r- ,_) 
(-/ N n, 

.. 



-= {N - .l- t 71/) v:: z. -r ( D - 1) r z.. • IV t=/ r t 

Hence the expected value of the mean sum of squares due to 

treatments is given by 

( 3. 44) E ( /tf T)-= E(SJ rJ = 
p-1 

We also have 

and as before 

E(SSE):: (N-p) tr...,. • 

Therefore 

E ( 
2) _ E (SSE) t"7'"" :a-

s - N-p - v • 

J.2 Distributions of the Sums of Squares 

Corresponding to our hypothesis 7;. = o (i =1,2, ••• ,p) 

for the Type I model, we have here the hypothesis f77.- : o. 

Since £ (T) = o, this is equivalent to saying that r will always 

have the value zero and that our treatments have no effect. 

When this hypothesis is true SST and SSE have the same values 

as they had in the case of the Type I model and hence are in-

v ;a. ,_ 

dependently distributed as /\- r:r with p-1 and N-p d.f., respec-

tively. As before, SSE has aX~~vdistribution with N-p d.f., 

whether the hypothesis is true or not, since it does not depend 

on the ~·'s. Thus the test used for the Type I model may still 
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be used. ~e could then estimate ~~Y pooling SST and SSE and 

their degrees of freedom, as was done for the Type I model, 

when ~ -= o • If the hypothesis is rejected, cr.2 and r:;;..;.. may 

be estimated by equating f~T and MSE to their expected values. 

In considering the Type I model, we found that SST/t/:a.. 

had a non-central X:;~.. distribution when the hypothesis· was 

false. We shall now show that, under certain conditions, SST 

is distributed as ){ 4 after it is divided by E(YST). 

In Chapter II we found that t 1 = Y. - Y , (i=l,2, 
l.. • • 

••• ,p-1), were distributed independently of 

Therefore any function of the ti's, which includes tp, is in

dependently distributed of SSE. We obtained these results by 

making use of the fact that 

' 
If in particular, E(Y1j) ~ 0, these results will still hold. 

Hence, if we replace Yij by e~i we can show that the Ei.- E •. 

are distributed independently of 

where (i=l,2, ••• ,p). 'l·Je can write the treatment sum of squares 

in the form 

I" 

SST - E 71: ( t .. :. ' 
E .. -r 7:· --r ):L , 

,·::I 

where f' 

7"' = I . 2:: n,· 1:· 
;V ,·:I 
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Since the 74 7 5 are independent of the E4'j 's , SST is dis tri

buted independently of 

If we let~-; 7.( ~ E,. , then we have 

The covariance of the yi's is 

C OAr (;Y,;,f/,;') = CO/IT ( 7.. -t- E,;. , --,:., T €,·,,) = 0 

Therefore the y its are NID ( 0, vr 1. +- F. ... ) . If we consider the 
• 

case when n1= n, then by Chapter II, 

SST 
~ ,._ 

?; (t~ -j) 
v::: s. -r v- 1-

r -n 

has a X~ distribution with p-1 degrees of freedom since 

-
7 -r- £ •. 

I' 

= n L_ 

is the unweighted arithmetic mean of the yi's. Using the 

results of Chapter II, section 2.5, we find that 

E ( 115 T) = v ~ r ;n v; ~-

substituting n1 = n in the equation (3.44) we obtain 

E (/1ST) - \/1--7- F (nl'- ~) cry-
7l,P 

... 
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which agrees with the result already obtained. 

The question remains as to whether the above results 

might still hold when the ni's are not all equal. We shall 

show that this need not be the case. First we note that if 

SST/c has a X ... distribution with k d.f., 

and 

E(MST) =E(S~T) = c • 

If p = 2, 

and 

• 

We have 

and thus 

SST 

has a X,_ distribution with one d. f •• 

Thus, for p = 2, the result still holds but we shall 

now show that it need not hold for p=3. We have 



t 

Also 

• 

Thus , 
S 5 T = L J?· (;- ~) ,..<~_,.. - ~ ni nk # # 

i =I ;; ;V /;L :~: N t??. (1"'~ 

The moment generating function of SST is 

=- £ ( e (.S s r) t ) 
m.5ST ( t) 

42 



I , 

where 

( i = I ~ . . . D) 
' J ~ I 

and JB/ is the determinant 9f the matrix 

B 

If p = 3, 

2 7l, n.~ t 
N 

,2 "' 7/p t 
N 
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m s s 
7 

( t) ==- { I - di [ n, { ftl- n,) v; ,__ -t n,. (IV- 11 )-) v;_ J, r- 1l, ( N- n3 ) v;-~] 
IV 

In order that SST be distributed as X.t.c , its moment gener- ~ 

ating function must be _, 
(l-2ct) 

' 



44 

that is, the above quadratic in t must be a perfect square. 

It is sufficient if we prove this is not the case when n1 ;;;:. 1, 

n2 .... 2,n3 = 3 so that N: 6. Then the quadratic becomes 

I - ..2 
6
-t" ( I.Z.. V"'"' +- .:2 .7. V,: ,_) r i J):. ( 6 1/ ~ +- .1. .1. tr;: "'fT &. -t- J 1 ~ ~) 

which is not a perfect square unless ~ = 0 

Thus we can not hope that SST will be distributed as 

)(~~ when the ni's are not all equal and~ is not equal to 

zero. 

3.6 Components of Variance for the Type III Model 

We shall consider the model 

'Y_i = / -r 7;· -1- E,i , 

where (1-=l,2, ••• ,p) and (j-=1,2, •.• ,n1). The t:·'s come from 

a finite population of size P > p with mean zero and variance £?i-.:z. 

defined by 

(3. 61) 
p-I 

p 

L. p 
P-1 

and the £~'s are NID(o,~~). Since the~ •s are no longer in

dependent, we must also consider the covariance between any 

pair drawn,at random. That is, we want to find the cov( T.:, f.,)= 

£ (~ r;,) where it i' • It is possible to obtain P( P-1) ordered 

pairs of the /~· '.s so that 

(3. 62) 

Since p 

L r.-
, •: I 

p 

L. C Y.· 'IJ·) 
i*J P(P-;) 

. ·-t-~p-o 



squaring both sides we have 

p p 

L ~;.l. -r L. 
i=t l"I=J' 

Therefore, from (3.61) 

p 

~- 7; ~· = -( p - I ) 
'rJ 

- 0 

, 

and substituting this result in (3.62) gives 

E ( 7: r,.J = - ~ 
p 
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Once again we shall use the sums of squares obtained 

in section 3.3. In terms of the original model, 

(3. 63) , 

and 

I' 

Y.. = J.. L. . Y r r.: ..;.r t ._,·) == ,.u. -t- ...t- L n, 1.· -r e .. 
N (1 / ;V ;=t ' 

'JJ 
(3. 64) 

From equation (3.63) we have 

£(X.)=/ ~ 

VaJl, ( x.) = £ [( 1:· -r ~·.r·J = f ( 1/) + 

and 

p-; 
p 

CON"(~.~ x.~) == E [(r.. -r ~-. )( 1.· 1 -f ~·~.)] 

) 
p 

.J 



Also 

Therefore the expected treatment sum of squares is 

p 

4;- ( 1 - n, ) v- J. , _, N 

Hence the expected value of the mean sum of squares due to 

treatments is given by 

46 

(3. 65) £(!15T) =£(55 T) 
I' -I 

- 1/ .z.. -t- _j__ {N- J- t_ n.'") v;.,_ 
p-t N t=/ 

Once again 

and hence 

Therefore 

E(SSE) - (N-p) \/;.-. 

E(Y.SE): E(~SE) = tr.1-. 
-p 

It is interesting to note that the expected sum of squares due 

to treatments is of the same form for both the Type II and Type IIJ 
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models. 

The hypothesis we wish to test in this Type III case 

is that cr,:~ o, which implies that ?;·=o (i =1,2, ••• ,P). Sub

ject to this hypothesis, SST has the same form as in the Type I 

model and hence SST has a X~~~distribution with p-1 d.f. and 

is distributed independently of SSE, which is distributed as 

)(~~~with N-p d.f. whether the hypothesis holds or not. If 

we reject the hypothesis that o:;: -= o , we may estimate ~ .z. 

and cr~as before by equating the mean squares to their expected 

values. If we accept the hypothesis that v;:. = o, we pool the 

sums of squares and degrees of freedom to estimate ~~. 

3.7 Summary; 

For all three models we test our hypothesis, 0~ ~ = 

· · = ~ ~ o for the Type I model and Vj- = o for the Type II and 

Type III models, by the statistic F = MST/MSE with p-1 and N-p 

degrees of freedom. 

The analysis-of-variance table used in all three cases 

. is: 

Source of 
Variation 

Treatments 

Error 

Total 

Degrees of 
Freedom 

p-1 

N-p 

N-1 

Sum of 
Squares 

I' 

Mean 
Square 

55 T = l; n~· (f.. - 'i.. /. /15 T = -ill' 
f-1 

E(MS) 

p 

(i,_ + r.. '14 T..-"' 
(='/-

p-1 

(TYf'£ I) OJ-

IT~+ ll 17;1. 

(T Yfk J1" q~- 7JI) 

ss£=~('1:;··-x.J,_ !1s£=ssE (T~ 
''J N-p 



where 

.K -

If our hypothesis is accepted, our estimate of ~~is 

(SST + SSE) I ( N-1) 

and, if it is rejected, we estimate cr,::.:a.. and y--..z. by solving the 

equations 

MS£, 
for the Type II and Type III models . 

. If we have n1 -= n (i=l,2, •• .,p), so that N=np, our 

analysis-of-variance table for all three models becomes: 

Source of Degrees of Sum of Mean E(MS) 

Variation Freedom Squares Square 

I' 

Treatments p-1 S 5 T = n L (f.. - 9..)1- /157= SST rr 1 -r n 1'7: ;L 
?-

i"l ?-I 

- )~ 
Error (n-l)p 55 E = ~ ( Y'i·- ~-. liSE=~ o-.z... ,,, (n-t) p 

- )'-Total np-1 I; ( Y.i - Y.. 
<,, 

where 

?I /" 

~. - I L. Y~t" !.. = I L. X·. - -n ,;:=t .) p (=; 

and 
p 

L 
i=l 

for the Type I model. 

To compute the sums of squares we use the formulas 
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and 

.J 

where 

p 

Y.. - L. >{. 



CHAPTER IV 

TWO-WAY CROSSED CLASSIFICATION MODELS 

~.1 The Type I Model for Proportional Frequencies 

We consider an experiment in which p treatments are 

applied to q blocks. The (th treatment is applied to the jth 

block nij times. Display the nij's in a table 

Block Row 
1 2 • • • q Totals 

1 nll nl2 ... nlq nl• 

Treat- 2 n21 n22 ••• n2q n2• 
ments 

• • • • • • 

p npl np2 ••• n n 
pq p• 

Column n.l n.2 • • • n.q N 
Totals 

and let !li=L n~i • We shall assume that the nij's in a ,,d. 

given row are proportional to the nij's in any other row. Thus, 

nij = kinlj (j-==1,2, ••• ,q) 

and 

Hence 

and 
f' ,0 

ni - L J?y· - n,i L 71,·. 
i =-! 

71,. 
''.: / 
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Therefore 

(4.11) 

Consider the model 

ni n.j 
nij-= -·--

N 
• 

(4.12) XJ'K~·j / + 7;· + n· r (if8),'j. + Cc:j.l<;j. 

( i = 1, 2, ••• , p; j = 1, 2, ••• , q; kij = 1, 2, ••• , nij) 

51 

where the E.,·,.~r.'s are NID(O,v-1
) and the parameters are subject 

" •J 

to the conditions 
1'·1- I' 

(4.13) ~ l?._j f: =~I )7,·. 7:· - 0, 
'~ ,_ 

(4.14) t; "·i~ = .(;, ?J .... /'i - 0 ' 

( 4.15 J f;. 71 'il ( -r/) 'i = J; n.;; ( 7'~ ),i = 0 

Making use of (4.11), we see that the conditions (4.15) are 

equivalent to 

(4.16) t; n,. (lj4),j = t n._, ( r~)'i = 0 

To show that the above conditions can be satisfied, denote 

£ ( X;;·k.J) by !.:;· where 

J ,·,}· == / -;- -r: -t-/i -1- ( 7 ;8) 'i 
Then, if the conditions hold, 

I 

JL. = ~- L n.-,· J~.J· .. i:t (7 

and 
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Thus, we must define 

/- = ! .. 

- -
(i_~J),i -= .Sc.i - ,t. - !.J- + k .. 

It may be verified that, when the parameters are defined in 

the above way, conditions (4.13),(4.14) and (4.15) are satis-

fied. For example, 

I' I' 

"L. 11l. ". = f 11". !,·. 
,·:I 

N! .. -NJ .. -o_, 

and 

(4.17) 

where 

- - n.i N J.. + n.i !.. - 0 

N 

The equations (4.12) may be put in the form 
p g. 

X~~r- .. - p + L. u~·c: fit + ~ V'i ~~·' +- ~, 'W,J.''i (-r 8)t'i'.,.. 8'~~·. , 
{f ., / i/=' ,;'=' , u 1 u ,~, r o 'rl 

ut.t'' = ~,, , '0i' = JrJj' , W;i\i = ~(-, Jj.p 
If we order the Xj·.-r'i·"s in some way, calling them Yoc ( C(. = 1, 2, 

••• ,N), the equations {4.17} may be put in the vector form 

p ~ 

y =/ + {, U;' 71, +- ,c;;, VjtJ' +-{}' ~{/' (7f4),'/, t- t (4.18) 

http:4.13),(4.14


where the u,, 's, ~., 's and the Wi'/ '.s are the coefficient vectors 

of the ~'~,_A·' sand (7';4~~-~~ respectively. 

Denoting the elements of U~·, by u,,~ (oc.= 1,2, ••• ,N), 

we define 

and u,~ :: u,,l( -
.A/ 

o = L. Ll·t 
o('t:' I ' oC 

t.J,.,-<: 

-u ., 
c. ' 

In the same way we 

v, = l'li' 'rf 
N 

Define 

N' 

-= I L -N ,·,~, K.:.j 

so that 

L u,.,, 
t;i, Ky 

find 

L.(·,,· = I r. n.i <(,,. - n·• 
N ,, i 

_,_. 
N 

p 

- L_ ll.-i U~.··i. - L n,. ""' ,,. ··; ~·=, 
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.J 

w;i' L w,i'"' 
«=I 

L W:i'c'j. E n,i J,·,,· ltj. n .,., 
9,K~· - J_ 

N ;\/ 
t~J 

N N 

and 

Then 

f_ 
0 

o( =t 

Now denote by Ui', Vj',Wi.'j' the vectors U'~I, Vj'I and Wr_jti, respect

ively, and set 
1 

Ui' -=U;r- ui, , vj,-=Vs- vj,' Wf.j'-=W-rr wi.'j' • 

We may then write (4.18) in the form 

(4.19) 
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since 
p g /",. 

I L. 
77,-1, "'' 

- I L. n'i' fi' = I 4; ni'i' (r f)ii' = 0 - - -
IV ,·1:: I IV i'=t IV 'JJ 

If we are to apply the theory of Chapter II, it is necessary 

that the u~'s,vj~s, and wtj~s form a linearly independent set 

of vectors. Unfortunately, this is not the case. Before show

ing this and remedying the situation, we need certain relations 

among the vectors. We first show that 
/' 

L_ ~., =I 
//=I 

This follows since, when we add the elements in row cCof these 

vectors, we have 
f' p I' 

L u,,"' - z= U,·,,· - L ~t'IL' - I. 
i'= I ,·'= ( {1= I 

A similar proof establishes that 

t 1", 'I 

VI - L ~·;·I - I -
i'= I 

J 'I • I 
{ Jr/ 

Also 

Ui·I = ni· , Vj•I = n.j , Wij•I = nij 

and t~e following multiplication table gives us the values 

of different dot products formed from our vectors 
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ui v. 
J wij 

ui' n·. Jt"i-' {l,·'J. J;,·,l 17,i 

vj' n~,.i' ll.i r:l; i I <{;·/ J?,i' 

wi!j' c~(,·, Jli'; 1 
cf .. , 
'dJ n,·'i rf(,; I ~i I 71,, 

Now 
I' I> p 

L E. L. -
u..- = U~· U,· 0 

,·:I ,·=r c·::' 

since 
,P I' 

L_ U· - .1 L. n~·· I -
IV 

-,·=r ,·:;; 

Hence the u1•s, vj's and wij's do not form a linearly indepen

dent set. To meet this difficulty we use the relations (4.13), 

(4.14), and (4.15) to eliminate 7f,;1-_, flj8)t·a (i :1,2, ••• ,p}, 

and (7)ti (j -:::1,2, ••• ,q-l). We have 

?!(.·· ?;· 
' 

8-1 

= -L. /4:/ {74)c'_/ 
i:' rr I . cr 

.) 

1"-1 

71 ri(r/}~'i =- f 71Y (r/),; 

Hence 



Therefore 
J'-1 

- L. u.·, 7;, 
(':I 

s ,_, 

L. N'":, ~'I = L At"., 8l·· 
i'=' ) 1 J i'=' r1 rff 

- f (~, 
.I c/'=' 

,, 1-

) w., ., (r.8)·,., 
L. ''d r 'J ,.,. J' 

??,·! 7.:' 

1'-1 

+ ~ [ nt) (rf),.,~] 

We can now write equation (4.19) in the form 
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(4.110) 

Note that 

() ., - ~., c ,~. 

~· 

Similarly 

Also 

- I 

. n,i' 

'Z.·t ., 

' 

+ c 

u -
jO 

)7,.,, I 
N 

- n,·,_ ( U, - U f' ) 
np. 

I 

~I 
N 
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W/'i' -r 0J - 712.·1 I + ~ I-t JZ;>i' I - nrt I 
.?1t>i' n!'i Jt.-'l·t n,-,1 ~it n,...,~ 



Consider the equation 

Multiplying the equation by Ui (i=l,2, ••• ,p-l) we find that 

ni.ci=O, since the Ur's are orthogonal vectors. Thus the 

vectors 

are linearly independent. 

are linearly independent. 

( i
1 

== 1, 2' •.• 'p-1) 

Similarly the 

(j'= 1,2, ••• ,q-1) 

Consider the equation 

Multiplying by Wij (i -=1,2, ••• ,p-l;j;l,2, ••• ,q-l) we find 

that nijcij = 0 since the Wrj''s are orthogonal. Therefore 

these (p-l)(q-1) vectors are linearly independent. Also 

-!- /1. "/ . I •;; 

::1- )1(·,, J1;i 
";e. n., 

0 

Therefore the two sets of vectors are orthogonal. Next we 

have 
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U .. (w:.,., 
• _d -

ll,·'il 

and 

Therefore the third set of vectors is orthogonal to the first 

two sets. Our model (4.110) now satisfies the conditions re

quired in Chapter II. We shall be interested in testing three 

hypotheses 

Hl: (rf)v· = o 

H
2

: -r.· = 0 

H3: /i = o 

Conditions (4.13),(4.14), 

( i = 1' 2' ••• , p-1; j = 1' 2, ••• 'q-1) , 

( i -::: 1' 2, ••• , p-1) ' 

( j = 1' 2' •• 0 'q-1} • 

and (4.15) together with the above 

hypotheses imply that not only the parameters referred t~ in 

a given hypothesis are zero but also all other parameters of 

the same kind. 

To test H1, we first compute 

5 5 E = .L [ XjK,·. - ;m - t.. - Ji - ( t .t) LJ ] :L j 

'•/, K•j' J 

where m, t
1

, bj and (tb)ij are the least squares estimates of 

_? > 7: J /'i and (if)ii , respectively, and SSE is the minimized 

value of the residual sum of squares. Next, we compute SSE1 , 

the corresponding minimum obtained under the assumption that 

H1 holds. Then 

http:4.13),(4.14
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R 

is the reduction in the sum of squares when all the parameters 

are used. Also 

is the reduction due to the parameters left when H
1 

is true. 

Since more parameters are involved in the first case than in . 
the second, R ~ R

1
, and the additional reduction in the sum 

of squares due to the (7f)t;· >s is 

SS(TB)= R -R, =SSE, -SSE =,Z::'}:, [(tt>.;J', 
where the {tb)lj's are the estimates obtained when the orthog

onal model of Chapter II is used. 

In the same way, SSE2 and SSE
3 

denote the minima ob

tained subject to H2 and H
3

, tespectively, and the reductions 

in the sum of squares due to the 7;'.s and the t;· •.s 
,P-I 

are 

55 T = ,f- ;f,J. = S S £ .2. - 5 S E = L. (t:,~ )~ 
t'=l ~ 

and 

s s 8 = R- lf3 = s 5£3 - s S£ 

respectively. Finally, 

R 



so that 
AI 

L A-1'" = SST T S..S8 T SS(TJ3) T .SS£ 
,.:.=1 '"' 
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The theory in Chapter II also tells us that, subject 

to the corresponding hypotheses, SST, SSB, SS(TB), and SSE are 

independently distributed as X .tV""~ with p-1, q-1, (p-1) (q-1)' 

and N-pq degrees of freedom, respectively. The hypotheses H1 , 

and H
3 

are tested 

Fl == MSJiB) 

respectively. 

by the statistics 

F -= MSB 
3 im' 

In the next sections methods for the computation of 

these statistics are developed. 

4.2 The Sums of Squares 

Our estimates of/·-'/;'· .. ~· .. f7f)ti are m, t 1 , bj, 

(tb)ij' respectively, where these values minimize 

s 5 E == ~ ( Y.;-K,··- h7- t, - ~- - (tJ.Jc;;):J-
,,j,,(.. ';/ 

, 'tl 

subject to the conditions 
p I" 

(4.21) L. ?1.;;' i ,· - r 7:1,. t-,· - 0 
t.; I ) 

,·=I 

L 
g 

(4.22) 77y. J;· - E:. niJ· },.- - 0 -
·' /=t ct'=.; -,; 
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I" ~ 

(4.23) f 77.~ ( t .t),l = f.;, 7h. ( t.t),i = 0 

(4.24) t_ ?7 ... ( t t},·/ = t ?1ii (t J)(·_/ = 0 
t/:: I (;I I ,j ::I (T 

By Theorem 3.1, we can ignore conditions (4.21) and (4.22) 

since their Lagrange multipliers will be zero. Conditions 

(4.23) and (4.24) will have to be considered in the computa

tion of SSE
2 

and SSE3 but in the computation of SSE they can 

be avoided by expressing SSE in a different form. We have 

where E ( Y ijk,·. ) : J,i . Then 
" )'r,·. 

~ s s £ = -:1. t:! ( .Yk.·. - lv·) == o 
~ J k.:" "'' '/ . . ~ 

'J 
/.\. -

and our estimate of J 'J · is J ',; = Yv·. 
1 

variance property of such estimators, 

! .. 

""" t . ~ J. 
' 4 • 

~ 

.ti ': J.i - 17-L - Y.,j. - Y. .. 

• Then, by the in-

~ ~ ~ A -

(t.tJi = !,i - !,·. - J.J· + J .. = 0·· - 7:- .• - Y;_,,-. +- Y. .. 

and 

55 f_-

1Mood, A.M., Introduction to the Theor~ of Statistics. 
New York: McGraw-Hill Co., 1950, p. 15 • 
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To obtain SSE
1

, we must minimize 

Now conditions (4.23) and (4.24) do not apply and, as before 

we can ignore conditions (4.21) and (4.22}. We have 

and 

- /V ..,-.n -= 0 
.) 

'=" X·. . - >7,. ( }?1. +- tt) = o 

- .L ;; ssf, = Y.i. - n.i ( ]?c -rJi) = o 
). dk~;' 

as our normal equations which have been simplified by the use 

of conditions (4.21) and (4.22). We conclude that 

-
m = Y ••• t b.= Y .• - Y ••• 

J • J ' 
and 

Then 

SS(TB) = SSE1- SSE 

=== ~ ( ~·tt;·.- ){ •• - >;·. r Y. .. y-- J:_ . ( Y:j·x,. - y;i. ).2. 
'9' K~/ ' '•J, tfc;; J 



since the second sum is equal to 

To determine SSE2 , we minimize 

subject to condition (4.22), which may be ignored, and con

ditions (4.23) and (4.24). Thus, we must minimize the ex-

pression 

64 

Taking partial derivatives with respect to m and bj gives the 

same normal equations as before so 

-
m = Y • • • and b-=YJ·-Y ••• J • • 

Then 

(4.25} 

and 

by (4.11). Thus 

ssE 2 = ~ [ xi~·· - ~·· T £ ( C,j + c1~·) J ~ . 
t,J J ~· 'J ..t n.; n

4
• 

Summing (4.25) with respect to j, 

(4.26) 

g 

- :Z.J1,·. x·.. + ...l )1, .• )11 T 7lt·· ~ c,· -t- N a:. = 0 
d -/ " 

• 
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and, summing (4.26) with respect to i, 

,... ,P 

- ..1 AI Y.. . t .1 AI Y,.. ~ #f. ci r N ,!;; c{· 0 

so that 

(4.27) 

Next, sum (4.25) with respect to i to obtain 

,P 

( 4. 28) - ..1 nil· >t·. r J ni m. r- ,z n '£1. ti -t N' ~· -1 77-;' ?;; ol,· 
j3 

= -:Jn;~· (~-.- Y. .. - ~·. t-Y. .. )-tN~i rni,{J.: 
!'> 

A/ ci r ??;i f d,· =- o 

From equations (4.26) and (4.28), we find 

;tl ( c i t- J,; ) = 
.z. , . n·. 

""J • 

X· .. - Y. .. 

by (4.27). Thus 

-
h 1" _ti f ( t-,4}',/· -:= ~·· - ;:.. f- Y.. • , 

and 

( tb ) ij -= yi . - yi - y . + y. . . ) J • • • • J • 

as before. Also 

SST = SSE2- SSE 

= ?;. ( x~/1(. .. - ry·. -r -x .. -Y. .. ) ,_ - ?- ( ~k.·.- ~·.):1-
.,,, K'j· r 'J ''I' '\i ~ 

= L._ ( ~- .. - 9. .. J ~ r n,·. ( x.. - Y. .. ) l. 
.• I< . ,·:./ 
'~JI ,·J • 
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In the same way we find 

~ (- - ).1 
SSB ~ SSE

3
- SSE -::: ~ n.__~.· Y.-1· • - Y.. · 

tl=' (T v 

4.3 Other Models 

We still assume that 

X;;·-t,i = / + ?:· -t fi +- ( r t\1 +- E,iK,i 

For the Type II model we assume that the ?;· • s ~ t,;· • .s , (f't9)t.j· > S 

, ... .J,. """""".J,. 
and e,i"Ky S are NID with zero means and variances rJ7.. ~ fli ~ vrf' ~ 

tr":a., respectively. We then have E(Yijk'; )~ and 

Vall, (xi I<;,J ) ::: vrl- -f ~:a. + ~J. -t- cv ~ 

For the Type III model we assume that the 7f'.s, li'S, and frf1J,i'5 

come from finite independent populations of size P > p, Q > q, 

and PQ, respectively, with zero means and 
p 

tr-. .2. = __L L. z. ,. 
' P-1 ,·.:~ 

) 

P.,Q 

~1. - I L (!13)(:. 
rt' (P-t)(G -t) l~j I IT 

0 
p 

11he assumption of zero means implies that 
p ~ AQ 

L. ?:· -= o E_. = 0 L: (rf),i - 0 , i=/ /J " Ljd 
~ 

(:.I 

and, in addition we assume that 

p Q 

f (r!),i = ,;f; (r/)ci ~ 0 

For the mixed model we ruay assume that the ?:· 's , /i , .s , and 

(7;8~i~ are of any of the types described above. In addition, 

when the 7:: '.s , say, are of Type I and the flj J .s of Type II, 
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it is sometimes assumed that, corresponding to each~·, there 

exists a population of (r~)y 1 s consisting of p elements such 

that 
p 

,1; ( 'Yf1),i = 0 ) 

If the h 1
5 came from a Type III population, we would replace 

p by P in the above definitions, and if the roles of the ~ 's 

and ~·>s were interchanged, we would interchange i and j and 

replace p by q. We always assume the E,iK•i's are NID(O,V"~). 

4.4 The ExEected Values of the Sums of Squares 

In every case we shall arbitrarily begin with the sums 

of squares obtained for the Type I model and, since 

xi. =/ -t ?;· 
t fi 

X· .. -=/ + ?;. r /· 

Y.i. "::' ~ + {. -t i'J• 

y.,, ~ + ?: r /· 

where 

/' 

r. = 1. L. 11,. -,;. 
J 

N 

( i!J.-. = 

£ =-t 

I 

N 

-t (/f),i f f,i• , 

- -
+ (T(J )i. 7- E,· .. , 

-
r CY(i)·i + E.i. ~ 

+ (rf) .. -;- £ .•. 
~ 

8 

I· - J_ 1;. Jr ,_ /J- .} N ;-r 

' 
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I' 

SST - r_ n·. ( )':-.. - Y. · · )~ 
'=~ 

= f /z,.[-rc--7. -t frf),·. -rrf3) .. -rl,-.. -i: .. ]'-, 

s r- - ),... 
-= ~I 71 '1' Y.i • - Y.. • 

,;-
558 

i 

= ;; 77;;. [ fi -!· t- rifJ.i - (!(3) .. 
- ]"" 

t- £.;. - E... ' 

5 S ( T !J) 

55£ 

We wish to use theorem 3.2 to evaluate the expected 

values of the above sums of squares, and, to do so, we shall 

need the variances and covariances of the rollowing sets of 

variables, 

T -t- (If),. r t(··· 

{d. -r ( 7 (iJ.i -r '·i · J 

( 1"f)(i - { 1 f)i. r E,i. - t,· · · 

To obtain these, we must compute 



£ [rr;J;] _, f l fr!)·i tr;>ti'], £ [{rfJ,;; (r,oJ,·.] , £ [(If):] ) 

E [ (!(l)tj' ('YfJ),-~.J ) a.nd £ [ (/(J),i ( lfl),·'·] , 
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in a form which will be valid regardless of the nature of the 

populations used. 

If~· comes from a Type II population, 

and if it comes from a Type III population, 
p 

[ (7;•) = p ,[- ?:- • = (1 - ~ ) v;;>-- , 

which gives the formula for the Type II case if we let P -1> oo . 

For the Type II case, £ (7: ?:) = o , and for the Type III 

case 

since 

p 

- L 
(.;f4' 

p 

7:· 7;·1 

P{P-;) 

o = Z: ?':· r:, 
• • I ( 4 

'•' 

;;!... 

%= -p 

Thus the formula for the Type II case is again included in the 

Type III case. Simi~arly, for the ;1· 's, 

Turning to the (!f)'i, s , for the Type III case, 
p,ra_ 

£ [ ri4JJ] = ~ rrr)Z· == (1- _!_ )(t- !_) ~.%-
' ~ PQ p Q 

, 

p,(i, 

E[rr;)1 (rt~·;} == ,f, (--rf),i(!~·i ~ 
PfP-tJ a 

• 
P(P-Ja 



- - (P-J)(G-1) v;p~ _ 
P(P-t) G 

since 

since 

- j_ (I - j_ ) v;:: 
p Q r 

' 

and these results may be summerized in the single formula 

70 

If we let P ~ oo , Q-+ oo , the above formula gives us the 

correct result for the Type II case since then 

[ [ ( 7f),j (If),·',)·~) ::= Jt·,·, £i' -v;; :L • 
, 

In the case of the mixed model where each value of j gives us 

a different independent population of size P~p with 
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p 

'(;; ( lf),i = 0 , 

] 

p '),.. 

£ [ ( r f),; ,. f ( r; ),:i -= (' - ~) TTr; 
' 

p 

£ [ (rrJ)v·(rtJ:;-] = - ~~ 
p 

[[{!f),j"(7'(1),i'J == [[{rf),i{'Y!'~·:i']-= 0 

for j =J: j', and all these results are included in the results 

for the Type III case if we let Q ~ o0 • 

Next we work out the expected values of expressions 

involving (7;J),·. and (?'f)·i . There is no problem when the 

( Tf).j. 
7 

s come from a Type I population since then these terms 

are equal to zero. For all other types of populations we have 

s-
[ [(Tf),i (If X'.} -= fv ;:; ?1./ E [ ( rt)i { -rt),-'i'] 

"'; J ?l.i 'r.~,,,- fo H.Jir ~) rr;./· = (;,,.-f) fJ ( ~-~ -~~) v;/, 
s 

[ [f 7('), .. ( Yf),·~.J = k £ ?, n'rJ· { Yf),i ( Y{;Ji 1
-

~ 

= { r .. , _ j_) I [ > nt.· 
tlu p N'- . tJ~ 'J 

To evaluate E(SST), we let 



-
-r t .. .. 

' 

r. ..,. (iF) .. ..,.. 

so that 

t' 

-

-

72 
t. 

E ••• 

e... .,:, 

/·· = £(JJ = 1-(r,) t- i¢ f, 71i EL-(1().;;·] := [(-;:) -={;-/ 7 }~.:? 

where J,.-=- o if the r.: ~s come from a Type I population and 

.J.,.. '":::" I otherwise. Also 

v; 2. = ~~ (jc) -= 1- [ 7:· - l ( r..) -r f 'fX· + -( .•. ] 1-

= E [ r.· -£t-,;)] ,_ + E[(i/J/} -t- £ f E.-~-) 

1 

== Jr (,- ;,) vr~ -rJ,.t (;- ~)~,[{?~;- ~·J v;/ r f(~ , 
J n .. 

where J711 = 0 if the (7'f11i~s are from a Type I population and 

.Jr/= I otherwise. Next 



and 

- .N &.] p-;:(1,. ..,.. v- "&. J 
G ~,. 

,.. . 
= (o -1) v-2- -t 4t'l ...!.. {N- N.J.. [n/ ){ l;. l':- N,.] 

r JV" ,:, JL r' , G 

,.. p 

t- i,. { N - {; ~ } v;,. r ( 1- lr) ,l;, n,·. ?;. ~ 
1\1 
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Similarly 

g ~ 

-r Jtr [;t~-J; f n.:J IJ. +(I- '~J f 7l.J ",;~ • 
j-1 rl j-1 J t~ 

To evaluate E [ss ( TB )] , wtl let 

, 
p 

fi. -= J, f n,·. /• = ( ?"fl);i - (J?J .. i E.,. -E ... ~ 
.. 

so that 
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_,o 

/,· = [ f;) ::= (;- JTfl) (7f),j ' /- = ;b f n,·0· = 0 _, 

tr 1 = Va" (~.) = E { ( r,4J,i - (1- /1-t') ( r;;Jc;; - (rpJ,·. -t lei. - £, ... J ,_ 

= £ [ irf3 ( r tli - (?"'("X. -t c, i . - l:· .. ] ,..., 

- J,-~ E [(!f);] -r E lrr1J;..] - ;J./l'fl E [(rtJ,i (J?J,.] 

t [ ( f..i~ ) t £ ( ~- .~ ) - .t. f ( £ ~ ·. f... ) 

A - co~ {1,·~.,) = f- [ [J;t3 {rf)~·- (~l·. t Z:i··- ~- . .J&t9 (?'f'),~ · 

- r l'f),·,. -r li'i. - e,·' .. J} 

-= Jrf' I [ (?(lJ,i (rt'J,·,J}- .2/rp £ [ (rfJ,; { 1't);,.] -r E [(?'f)<'. ( ~),·,,) 

.. . -
= J,.~ {-; ('- ~ } -t -JN ( )1.J - %) --};;. ( f,: n; -{}} v;,• 
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= - L J { 1- ..ln·i t _L t ll./) cr;; 
p 7"(' N N ,. I -t 17 r 

j. 

~~- ,l = ,/?1' I I- .2:~ -t i~ J{ }?; J rr,:,/ t- ~~- - ~a. 

v-a. r ... )] 
??.i - ~·. 

and 

f [I/J(T8)) == 

I".J. 

'iT'- 7- (; - d:,.f1) tj 71.i (r ~)t;. + 
I" f 

rlrf' {v-j f n,1{'V-_t};~J ~~ . 
(jl·l}(j-1) (j'·l_j (,-/) /Y 

Finally, by the theory of Chapter II, we know that 

SSE is distributed as ,X:av-1-with N-pq d.f •• Hence 

E(s;~) == N-pq and E(MSE) = cr.a-. 

These results are summarized in table 4.1 where 

.Jr , If , .f,.f, are zero if the 7; ~s , f.;·~ .s , (/(-1) 1 ~/s come from a 

Type I population and are one otherwise. 



TABLE 4.1 

Source of Degrees Sum of Mean 
Variation of Freedom Squares Square E(MS) 

I" ;a. ~ 

5 5 T := [ n,. ( f.. - f..) trsr == 5 s I )- [L y N~] ~ ~ 
Treatments p-1 V -rof,.1 a. ~F' ll(j- G. ~ -r &r a v;:. 

('::I . f _, 
(f' _, ) jV a- p-I 

f' 

+ (1- Jr);.;; 71.·. ?-:·.,.. 
I' -I 

'b- ,.. 

IT,_. -r ~T~ t [ t, 71 ~. - %l-] Yr; -1-Jt1 j,. ~l-Blocks q-1 5 5 8 = ~;f 7l;;. (X,·. -Y...) /'158-==- 558 
l-1 s-' (j-t} N ~ 

8-

+ (I- j(9) s 7?->t;·~ 
IH 

.,1 "FT 

Interaction {p-1){q-1) 5 S(TB) = L;_ n,i ( fj·. - /15(18):: 55(r~ v;.. ;- J1"~ a..lr cr;.;-
''I (f ·t){g-1) (1'-JJ(t-tJN -- - - )~ x-.. ->;·. f Y. .. /'J g. 

+- r 1- J "~'t') f -n,i ( rt-JZ· 
I'J8111•"j - :I. 

(p-,Jrr'' 

Error N-pq 55£=~ ( ~i/(··- '!:;·.) t15[=S5l v-;l-
''I J K'; 'I ;V-,P~ 

P>IJ)J.. 
1 

Total N-1 [:_ ~ ( 'X:JK;.- Y. . .) 
CIJ..J J{,:; J 
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The following formulas are more convenient for com

putation: 

• 
SSB- L 

... 
Y. .. 

r/~ I 

IV 

~ r, }'\;. 1'.~ •• "•;/ ,., ,. 

5 5E = .L . ( Xj'K .. ~ ~.:)~ = ?; ),j;, .. - L ~ 
'J,J•K.i #' '•JJIC'i t/ '•i '1t.,j. 

,., i• n,i ,., ~~ >t,,/ 

.1:. ( Xi)( •. - 'I . ) ,_ =- L;. >:/: .. 
'"J l k.:,) J t~; J lr',i , ~ 

~ 

- Y. .. 
N 

while SS(TB} may be obtained by subtraction. 

-If nij=l (i=l,2, ••• ,p;j=l,2, ••• ,q), Yij.=Yijk,~• 

SSE : 0, and it is impossible to carry out any of the F tests. 

r 

If n1j-= n, n1."" qn, n.j .... pn, N s pqn, 

- npq-pg2n2 
a- pqn =qn(p-1}, b=pn(q-1), 

) 

·II f i 

L. n,·. ?:,_ 2: ~ E. /((/·f/ r"'? fj ~~ ~ 
,·.::I t "'.: / 

a'J1d - r/"' I -
f' -I I' -I ,-1 .f- I 

If we define 
p 3- I'J 8 

z: 7;~ L 
1. 

~ (r~J,j 
1 17:"1 t'J 1. l7j: ~ t•: / ..) ~ = o~'tl t7? = , 

''rl 
I"- I s-{ (f'-t){g -I) 

z... 



TABLE 4.2 

Source of Degrees Sum of Mean 
Variation of Freedom Squares Square E(MS) 

I' 

Treatments p-1 5 S T = 8n ,1;-J f...- Y..)l- !1ST= ~ 
~ ( g. ) ~ y 

tr -r n 1 - a c:r; f' -r 3 n '77 
f' -I 

~ z... 

\TJ--t -n.(J-Blocks q-1 5 SB "'f)l L ( Yot·· - x..) /'158:: .558 
p) ~ v:;;:J.o - p t?it + pn. ~ .f=t 

~-1 

f'J It 

Interaction (p-l)(q-1) 5S(TB) = )1. ~ ( Y:i. - /1S(T8)= 5S(T8) v,..+ 7--

/l v;~ ''J 
(p-t)(g-1) 

X· .. - Z·. +- Y. .. )'"" 
1", I• n - 2. 

Error N-pq ssE = .L... (xi~- ~-.) f?S[ = SSE. tr:L 
{,;'I( N-r$ 

p;j.>! - )2 Total N-1 r_ ( x;;l( - Y. .. 
'~i) I( 
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when nij=n for the Type I populations, we obtain table 4.2, 

where we omit ~~ since 1 - q = 0 when Q = q. 
Q' 

4.5 Models with No Interaction 

In this case, the Type I model is 

0Ky' ~ -+ ?;· -1- li r E,iK.~ 
We then find as in section 4.2 that 

m -== Y... , 

and 

of that section plays the role of SSE. We also saw in section 

4.2 that 

SSE
1 

= SSE+ SS (TB) 

so, if we had accepted 

a
1

: ( r;J,·i = o 

and decided to change models in midstream, all that would be 

necessary to obtain SSE
1 

would be to pool the interaction and 

error sum of squares. To test H2: 1; "' o , we minimize 

- I':.J..!. l'l<J ) ,_ 

~ 5 £ :l. == ~ . ( Yt.i f<.. . - Jrt - iJ· 
,, ,jl I( '-J 'J 

where condition (4.21) may be ignored, and find 

so that 

55 E;._ 



$0 

Then 

since 

Similarly, 

and we see that the formulas for SST and SSB are the same as 

in section 4.4, and they have, as before, p-1 and q-1 degrees 

of freedom. The degrees of freedom associated with SSE1 are 

N-1-(p-1}-(q-1) = N-p-q +1 

and the same result could have been obtained by pooling the 

degrees of freedom associated with SS(TB) and SSE. 

An examination of the derivation of the expected values 

of MST and MSB in section 4.4 shows, that to obtain the ex-
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pected values for the present case, all we need do is set all 

terms involving the (1(9 )ij's equal to zero. We have 

E(SSE1 ) = E(SSE) + E[SS(TBfl 

= [(N-pq) -r ( p-1) ( q-1 D V" l-- = ( N-p-q + 1) 

a result obtained by setting the (if),i = o in E[3S(TB)J, and 

hence 

E ( IVJSE
1

) =- tr .a.. 

In the tests of section 4.1, for the Type I model, SSE1 

plays the role of SSE. 

4.6 Distributions of the Sums of Sguares 

Corresponding to the hypotheses 

H1 : ( 1(1)~/ =- o , 

we have the hypotheses 

vr = o t:7,;; - 0 ! -

= 0 

if the corresponding variables are from other than a Type I 

population. Then, since the populations have zero means, it 

follows that the corresponding variables are equal to zero. 

Returning to the Type I model, the theory of Chapter II 

implies that 

(i =1,2, ••• ,p-l;j =1,2, ••• ,q-1), are distributed independently 

of SSE. Therefore any function of these statistics is distrib

uted independently of SSE and, in particular, this holds for 

tp' bq, (tb)pj (j=l,2, ••• ,q) and (tb)iq (i=l,2, ••• ,p-l). 

These results were obtained for the model 
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and they hold for the particular case where Y ijk,j- £.",i11·;i • 

Hence 

£i.··- E. ••. ~ E:;;··- e ... _ e,i·- £,· •. - E:~·· +-c •.. 

(i=-1,2, ••• ,p;j=l,2, ••• ,q) 

are distributed independently of SSE. 

We shall now show that any variable of the above three 

types is independent of any variable of the other two types. 

Since they have normal distributions, it is sufficient to 

prove that 

coN"(€.-.'.- E ••• , e.i. -l ... ) =t-o-<J(i, .. - € ... ~ Er.i--'i.r .. -(·,,1· -t-7. .. } 

= c OAI ( ri. - e ... , E",·J· - ~· .. - "E • .:r· -~- i ... ) = o . 
We first compute 

n.- i v-- t. -

n,. n.i 

I f (£:· .. { ... ) --?fc·.;V 

£ ( - - ) - ( 'lo.,· .....- a. f. 1'. E , • . - - ,,, r 
q ""iiV 

£ ( [.~. ) == 
' 

and 

p-Z 

N 

p-' -;V 

rL -N 

, 

, 

-.l
N 

E,/k .. ~s t!.J/Lt 
tl ., 

Co>P<1'KO:n) 

-L 0. 



$) 

Next, 

t- tr~(- i t- J_ - _£.. nii rJ. rL - ;, ) 0 
!11 11Ji N N 1\1 > 

and similarly 

cov- ( 0·· -
t- t" ... ) - [. ... ' £,. -c ..... e·.r· = 0 '.r. 

For the Type I model with interaction we saw in sec-

tion 4.1 that the appropriate tests for H1 , H2, and H
3 

were 

Fl -= MSl'·~tB) , F _ MST , F Iv!SB 
2-~ 3-=~ 

since, subject to the corresponding hypotheses, 

,..., . 
} (- - - )J. S 5( 18)-= ~ 71,:,;" E.-;· - (· .. - f;;·· t[ ... ~ 
''J tl 

are independently distributed as )(~~~with (p-l)(q-1), p-1, 

q-1, and N-pq d.f. , respectively. 

For the Type I model with no interaction we replace 

MSE by MSE1 since then SST, SSB, and SSE1 are independently 

X 
.. ,... 

distributed as ~ with p-l,q-1, and N-p-q + 1 d.f. , re-

spectively. 

Our problem is to determine what tests can be made 

when we are not dealing with a Type I model. We recall that 
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5 5 B = J: n) [ ~· -~. f ( rl)'i - t i(BJ .. f t ;;·. - Z ... ] )". 

and 

If there is no interaction term, subject to H2 , H3, the sums 

of squares SST and SSB reduce to the corresponding expressions 

for the Type I model and the same tests apply. If there is an 

interaction term, the above argument shows that the Type I test 

can be used for H1• Thus our problem is reduced to testing 

H2 and H
3 

when there is interaction and we are not dealing with 

a Type I model. 

We first consider the Type II model where the '?" •.s, 

fj· '5 , (rf)~i s are NID with zero means and variances v;. ... , v;; ~, 
v.;~ , respectively. When H

2
: ~ == 0 holds, let 

g 

;Yt· = ( 7l. -t c".. - ;& {: Jti (rf~j + c, .. 

Then 
I" 

f/· • ~ l; 71,./t" 

t>>t 

=; ?i /1'). (7),/ f- E ... = (II).. -t E ••• 

and 



where 

In Chapter III we had a similar situation and found that 

SST/E(MST) 

did not, in general, have a )(~distribution unless we let 

n1 = n. Accordingly, we begin again, assuming nij:;:. n and find 

that 

ni. = qn , n. j-= pn , N = pqn , 

p 

r. -= J... L n .. t:· == 
IV (:I ' ~ 

, 

(/f) .. 

We no longer impose the restriction that H2 holds and let 

;Y.- = ,, -r ( ??JJ,·. -r- 1, .. 
p 

;; = 1 ~ { 7;: -r ( r .9 )i. r E.-. . } = 
"" f' ,::/ ( 

r. -r frt) .. +t ... 

Then 

? 

SST 

and, by section 4.4, 
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E(/1ST) ~ c;r:; .... p- 1. 

tr.;: -t 7-f' r -a: 8)'1.. 

$6 

' 

by Chapter II, has a /(~distribution with p-1 d.f. • Similar

ly, SSB is distributed as /(~(~~B) with q-1 d.f. • Consider 

the three sets of variables 

(rf)t·· -(rl) .. ~ t1{J:i -(7(1) .. > (!f)'i -(/;;)". -(rf):i + (7~) .. 

We have 

co"'"[(J?J,·. -(rf) .. J {rf)i -ri;J .. j = EL{r(J,. (r/);;]-E[rr;x.( 71 .~; .. ] 

- E [ (Tf1)~· (/f) .. ) r E [ (7(.1):.) 

~s ~s 

t E. E[(?p_},.;, (r#)i'/} - ...!..3- L E[tr/IJ,·/ (re);,'"'J 
f' a (:;t , { ' ~ ~ 6 i~i•J I ( . f7' ( rT 

t"J a. ,, a-

-+ !;_ £ [ (r(i),i (r!),:;.,] r-'- I; ., E [ {lt)ci (r;9),·:;·,] 
~ s t,<J P~!% t,(JJI,J 

= ~z {Vi-/ - f v;!it.} - v;t3~. + L vr; - ~ -t !. ~~ r ~ V';~ -~~ ~;':;'o, 
, ---p ;r ?j:L f'l 1'/l f1 t p''fJ. 

and similarly 

CO>tr [ r (rf1)..r - (r('J .. ], [{rf)y·- (7'~),·. - (!'f)•i 7- (i'f) . .] } ::::: 0 ~ 

proving that the three sets of variables are independent. 

Bearing in mind that we proved the corresponding relations 
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- ' for the E~.'i. s earlier, it follows that the three sets of 

variables 

r,·- /. t fi;h. -{7~) •. tf: .. -£. ... ~ ~·- i + (-i(J)~· -(r~) .. -tc"i. -8 ... ~ 

( r'(.l) ("; - ( 7' ~) i. . - ( 7 ~) -.i f" ( r t9).. 1- E 'i. - i:. . - "f.,j. t- c. .. ., 

are independently distributed and hence so are SST, SSB, and 

SS (TB). 

If, in our Type I model, we set)-< , the 1i • s and the 

f,;·'S equal to zero and assume the h?J)tj. )5 are NID(O, rr,.;; ) , 

X;~ = (rfl)'i ,. [~·/( ' Y;;,.· • = (rfl),i -;- €,;;·· ~ 

and the Yij· 's are independent. We may carry out an analy

sis of variance on the Yij• 'a. According to the model of 

section 4.5;where there is no interaction)with theN of that 

section equal to pq and nij = 1, 

SSE
1 

= SSE + SS ( TB) 

~- .. v )t
Y::i· + I• .. 

since, under these condi tiona, Y .. k= Y
1

. The theory of 
~J J• 

section 4.5 tells us that SSE
1 

is distributed as Xz.{rr:,.; -t ~~) 

and hence 

is distributed as ;x'{n v;:; t- tr
2
·) 

degrees of freedom. 

with pq-p-q +1 = ( p-1) ( q-1) 



We display the above results in table 4.3 • 

Source of 
Variation 

Treatments 

Blocks 

Interaction 

Error 

Total 

Degrees 
Of Freedom 

p-1 

q-1 

( p-1 )( q-1) 

N-pq 

N-1 

TABLE 4.3 

Sum of 
Squares 

SST 

SSB 

SS(TB) 

SSE 

Mean 
Square 

MST 

MSB 

MS(TB) 

MSE 

gg 

E(MS) 

We can determine the appropriate tests for H1 , H2 , 

and H
3

, by examining the expected me.an squares column. We 

know that the sums of squares, divided by the expected values 

of their mean squares are independently distributed as)(~. 

If we also divide by the corresponding degrees pf freedom, 

the ratio of any two has the F distribution. However, the 

computation can be carried out only when the expected mean 

squares cancel out in this ratio. Thus we have 

MST 
' F2 - Ms (TB) 

' F i\1SB 
3 

==- MS ('1'B) 

to test the hypothese H1 , H , H , respectively. All of these 
2 3 

results are for the case where n
1
j:n. If this condition 

does not hold, we can carry out the test for H1 only. It will 

be noted that the above tests for H2 and H
3 

are different 

from the corresponding tests for the Type I model where MSE 
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is the denominator used. 

For a Type III model with interaction we can not ex

pect to obtain the )(~distributions necessary for F tests of 

H2 and H
3

, in fact, any such test must depend on the (~f)~~ 

being normally distributed, whatever the nature of the model, 

unless the terms involving the {rf)~~ reduce to zero as in 

the Type I model. 

An approach similar to the one given above would be 

used in the case of a mixed model. 



CHAPTER V 

TWO-WAY NESTED CLASSIFICATION MODELS 

5.1 The Type I Model for Proportional Frequencies 

In Chapter I we discussed an experiment in which the 

yields of naphthalene black for different samples of H acid 

were measured. It was assumed that the samples of H acid were 

random samples produced from naphthalene by a particular tar 

distiller. We shall assume that, in general, the experiment 

is carried out p times, the supplier of naphthalene being changed 

for each experiment. To describe the data we consider the 

model 

(5.11} % i~r.'d· =./-"' -t' 7;· f /iti} -t- E. 'J l(~i , 

( i = 1, 2, ••• , p; j .,.. 1, 2, ••• , q; kij = 1, 2, ••• , nij) 

where the ~~represent the effects upon the yields associated 

with the various suppliers and the f,;(,J "...s represent the effects 

due to variations between q samples from each of the suppliers. 

The c,·;K··' s are NID(O,'IT..&.). Associated with the ;'th sample of 
, ~ . 

the ith supplier are n1j observations and since we are con-

sidering proportional frequencies, we have 

• 

The parameters are subject to the conditions 

,. =) 
77,·. 

90 

?":· = t 
0 

0 

' 
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To show that these conditions can be satisfied, denote by Jij 

the mean of a given subclass or sample, where 

l'"" -==? -t- t:· +- f3i (d 

Then, if the conditions hold, 

~ -
J, .. = _LL 

ll<i l.:j ~/- + t:· n,. i=' ' 
;o, a. p -s .. = J_ L. 71,)· J,j.· - I r 71,·. 1,·. 'l -N ,·,i N 

,::, 

Thus we must define 

/ 
:::; s .. r - 1,·. .5 •. fJ'(t) - S,i- J, . 

~ ' :> 

Defining the parameters in this way it may be verified that 

conditions (5.12) and (5.13) are satisfied. For example, 

j> p to 

,{ 7l'". ?:· = .f n,·. J .. - ! .. ,J; /?,;. = N J .. - N l .. =- o .) 

and 

The equations (5.11) may be put in the form 

where 

' 
If we order the Y ijk,i 's in some way, calling them Y 0(. ( «:. = 1, 

2, ••• ,N), the equations (5.14) may be put in the vector form 

~' r,a.-

(5.15) Y / + f LfL, 7;1 -t- {;;; \j 1{i') 15,/'(t'') + E. 
, ,,, I' 
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where the U i' 's and Yi't'"'J 's are the coefficient vectors of the 

/,·1 's and fi'(i'J '.s , respectively. 

Denoting the elements of ui' by U~·ID( (~ = 1,2, ••• ,N}, 

we define 

1'1 I"J IJ >ro:;. 
'"' 1-

Ll,·, -::: I L U,·'"' 
I L u.,. - j_ ~ n,j· ~;-,,_. - n,·,. -Jj IV . . ' ' N ' o(:t '',/'Ky. ''J N 

and u ''4<.. - u,, oc: - u,, so that - ' 
N ,..,,,>r.:,;' '"' ~ I" 

0 - 2:: u., ~ U,·,,· = L }1.i £,(·,,; - L. 71,·. U,"~i. 
Clll( -:; '~ ,,,, k,i '~J t"=/ 

Define 

N' /'1 ,, »,i "''. 
~·'(i') = L L. ~·I((") IX: = J_ ~ . '0'(i')i(•'J = .L L. n,i ~.,., ~J' = n,·'t 

;V N N '•J'.t';/ ''J o( :I 

and vi'tc''}<t(-= v.f'(i')«. -

Then 

N 

0 

Now denote by Ui' and V,i't,.') the vectors U:ri and Vi',,·,;I respec

tively, and set 

Ui' : U i' - U i' Vi'li'J-: ~''ti') - Vi'('') • 

We may then write (5.15} in the form 

(5.16) 

u ., -,..:/ 
' F/• + t. 

since 

) 
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To apply the theory of Chapter II, it is necessary that the 

ui' 's and vj' 's form a linearly independent set of vectors. 

We shall show that this is not the case. Using the methods 

of Chapter IV we shall be able to remedy this situation. 

First, however we need certain relations among the vectors. 

We now show that 

I 

This follows since, when we add the elements in row ~ of these 

vectors, we have 
p 

L_ ~-i' -
('"'! 

Similarly we can show that 

Also 

u1 .r = n· 
~-

and ~·t<; • I = n1 j 

and the following multiplication table gives us the values of 

different dot products formed from our vectors: 

ui v 

ui' n J. .. , 
'·. '' n.i J.:l.' 

~-'(i') ?1. ·I r:l· ·I ,· 'J l. " ll.:J 1.: L ' {,i I 

Now 

0 
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since 
... 

r. Q. I 
I. :-I 

Hence the u1 's and ~·{n 's do not form a linearly independent 

set. To meet this difficulty we use the relations (5.12) 

and {5.13) to eliminate~ and fau'J (i-=1,2, ••• ,p). We have 

s-~ 

J; 7l.i/Jrd ( i = /.J .l J • • • .J f ) 

Therefore 
I" -I 

='L 
Ll: I 

g g-1 

,~-{ fiiJ'r<'! fi'm - ;;; "'i't•'J fi'''') 

We can now write equation (5.16) in the form 

{5.17) 

Note that 

Ul·' 
- n .. r. 

~ 
u., -u,, 71i.!;. ru?- uf) 

' }ll" 711'. 

U(· 
)1,,_ 

v~ n·, I 1-~ I = u(.,- ')1 ., 

"0 - - n~. 
4. - ' . 

~- IV ~.,. N "~· 



• 
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.Also 

Consider the equation 

Multiplying the equation by U i ( i = 1, 2, ••• , p-1) we find that 

ni.ci=O, since the U~'s are orthogonal vectors. Thus the 

vectors 

~-I 
,.,,, 
, C I • ( i I = IJ .2.. ' • • • J ,P - I ) 

are linearly independent. Next consider the equation 

Y- t' ( v - )1t"'i I \ I . ) = 0 k /'=' Cite,·') '/'C,.') -;:;; VS'('') 
,; '&-

Multiplying by Vi(iJ (i =1,2, ••• ,p;j: 1,2, ••• ,q-1) we find that 

nijCj = 0 since the Vi'{c.'J 's are orthogonal. Thus the vectors 

~'(c"') - 71.',/' ~{,·') 

~"' 
( i 1=f.z ··· !1-1'( 1=/l ··;,P) 

({ J J JtJ J J 1 I 

are linearly independent. Also 

u • 0 ( v. "J 'I) -
L d (' 0 



96 

Therefore the two sets of vectors are orthogonal to each other. 

Our model (5.17) now satisfies the conditions required in 

Chapter II. 

\iJe shall be interested in testing the two hypotheses 

Hl: fr;/c') -= 0 

H2 : 7;· -= 0 

(j-= 1,2, ..• ,q-l;i = 1,2, .•• ,p)' 

( i -= 1 ' 2 ' • • • ' p-1 ) • 

Conditions (5.12) and {5.13) together with these two hypoth-

eses imply that all parameters of the kind appearing in the 

two hypotheses are zero. 

where m, t 1 and bjW are the least squares estimates of~, ?";· 

and /ic,) respectively and SSE is the minimized value of the 

residual sum of squares. Next, we compute SSE1 , the cor

responding minimum obtained under the assumption that H
1 

holds. Then 
_N 

R =: f 1oez, -SSE 

is the reduction in the sum of squares when all the parameters 

are used. Also 

is the reduction due to the parameters left when H1 is true. 

As in the preceding chapter, R ~ R1 and the additional re

duction in the sum of squares due to the nc,·J ~5 is 



97 

I ' where the bci,,.J s are the estimates obtained when the orthog-

onal model of Chapter II is used. 

Similarly, SSE2 denotes the minimum obtained subject 

to H2 and the reduction in the sum of squares due to the r. ~ s 

is 
p-t 

E. [t'.]~ 
·- ( { -I 

Finally, 

N 

.5s£ L. ,. 
- o<:f ~ R 

so that 

SST + SSB + SSE • 

From Chapter II we know that SST, SSB, and SSE are 

independently distributed as X2.cr;.. with p-1, p(q-1) and N-pq 

degrees of freedom, respectively, under the corresponding 

hypotheses. The hypotheses H1 and H
2 

are tested by the 

statistics 

and 

respectively. 

F - MST 
2-~ 

, 

In the next section we shall develop methods for the 

computation of these statistics. 
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5.2 The Sums of Squares 

Our estimates of~ , r. , /I(,'J are m, ti and b j<d re

spectively, where these values minimize 

subject to the conditions 

(5.21) 

(5.22) 

By Theorem 3.1, we can ignore condition (5.21) since its 

Lagrange multiplier will be zero. However condition {5.22) 

will have to be considered in the computation of SSE 2• We 

shall compute SSE in the same manner as in Chapter IV. 

We have 
f'. g, "'·I· 

s 5 E =- L . ( 'i;;~r ... - J .. J ),_ 
'JJJK.:J J 

where E{Yijk,i ) 

c) sst: 
;) tJ· 

- J,J · • Then 

- J_ '?:, ( XJ•v - !,; ) 
"',/ 

-and our estimate or S,.i is -"'J - Xi. 
in variance property of such estimators, 

1', f 

" 
~ s .... J 

f.. -::: I L. Jt;;' 
I L Yv~< .. ?;n= -

AI '·i ,N .;, 'K,~ •,J 

$ 
~ 

I L Xj·. t ,· ':' :(. - ;m - /7') - >n 
n· i=t '. 

-

: 

0 

Then, by the 

Y. .. 

'{ .. Y. .. -
:1 
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X .. 

and 

To obtain SSE1 , we must minimize 

We have 
I'J f·"·.~· 

- b1- t,·) J55E -.2.- L. ( Yt;;~r. - 0 

d?r' 
,jiJ /(., •J 

'-'II.;, 

t,·) :JSsE, --2. L. ( X;;ir,i - );n- - 0 

~ -t-,· ~j k,,/ 

) 

and making use of condition (5.21) we find 

m -=- Y • • • and t. = Y. - Y ••• 
1 1• • • 

Therefore 

Then 



since the second sum is equal to 

? ·'b 

~ l;_ J?'i ( t·· - ~·· )( Yy·· - Y.· .. ) = o 
t,J 

To determine SSE2, we minimize 

'"·8·1l.:i l-

.s 5£:2. =- ~ ( >.)~r.i- /?1 - _J./(0) 
''J> /(.;J 

100 

subject to condition (5.22). Thus we must minimize the ex-

pression 

Taking partial derivatives with respect to m and bj we have 

I"J f.~.i 

( 5. 23) J Q = - .,2 ~ ( >':iA;·. - J-?r - ji(l) ) == 0 
J"" (J,IJI(il' J 

( 5. 24) ~ Q -= - 2. f:_ ( X;; A-•. . - .,.. - ~ ·(,·)) -t c. L ~;i =- 0 
J .biw ,r'd 11 

From (5.23) we find m ~ Y ••• and from (5.24) 

(5.25) Yi. -J• • 

Multiplying by nij and summing over j we have 

Y1..- ni.m - ciN = 0 

and hence 

2 

ci = 2ni. (Yi• .- Y ••• ) 
N 

• 

Substituting for ci in (5.25) we obtain 

Yij.- r. .. -bj{n- (Yi··- r ... )- o 

Therefore 

• 
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and 

>;J·. t- X.. - Y. .. ),_ 

Then 

fO s )9 • . I', ,, "'·",J l.. 

S S T == t;_ ., ( ~A< · - Yv ·. r X·· - Y. .. ) ~- 2;. ( /6 k,· - Yy ·.) 
''JIK<j 'J ''/'k'j ',) 

/ .. 
= L. ~·. ( >{.. - Y.. . ) ~ 

'·:: / 

since the second sum is equal to 

f'J ~ 

2 ~ n~· { ~~ - >[;·.)(X .. - Y. . . ) = 0 

5. 3 Other r:1odels 

We still assume that 

Xk~· =/ ~-- r. · -r f'l·(o -r c.,i/(·'i 
For the Type II model we assume that the X Js , f_;(o ~ and f..'i~<•J 's 

are NID with zero means and variances c;: ~, ?4' ~ , and t7'"'~ re

spectively. We then have E(Yijk,;i) -/ and 

Var(Y1J.k··) = r::r;~-r- ~;a.. -riTz-
'rf-

The Type III model, as considered in Chapter IV, would not 

be realistic here. Corresponding to it, we have the case 

where the ?; '.5 come from a finite population of size P, mean 

zero, and variance 
p 

I -- L. 
P-1 
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while the /)rtl 's come from P populations, corresponding to the 

different values of i, these populations being independent 

of e8ch other and the population of ~'s, with zero means and 

common variance 

I 
Q -/ 

We shall still call this model the Type III model. The assump-

tion of zero means implies that 
p 

L r. = o 
t ·:I ' 

Q 

E_ B· · = 0 
i~~ rv<•> 

5.4 The ExEected Values of the Sums of Squares 

As before we shall arbitrarily begin with the sums of 

squares obtained for the Type I model and, since 

X'i· =~ T 7. t (3J(') -t- [,/. .) 

>: .. ==~ -f ?:· + /·en + f, .. .) 

Y. .. =/ -f I. -t (1•(•) --r t ... , 

where 

I' 

I. = _!_ ?- ?1,·. ?;· 
N t-=t 

.) 

S-

f· (i} = ; ;; 11 'i fJ'(i) ,., 

SST 

I' 

- L.. 7/. . ( X·. . - Y. · · ) ,__ 

I' 

!.;- n,·. [ t:· - r. t f· ( ,'J - f· <·J -t-
-c .. 

).. 

- [ ... J ~ 
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!'> fr 

5 5 B - t;_ ni ( ~ ·. - %· .. ) l. 
'JJ 

To use Theorem 3.2 to evaluate the expected values of 

the above sums of squares we shall need the variances and 

covariances of the following sets of variables, 

7;· r ;s'· m -1 ~- • • 

Hence, we must compute 

and E ( ~-u 1 (3i'(t"'J ) 

in a form which will be valid regardless of the nature of the 

populations used. 

If r.· comes from a Type II population, £ !7.: a..) ':::' p;a.." 

and if it comes from a Type III population 
p 

£(?:~)-=- ~ { /;~ = (1--:}5) ~~ 

which gives the formula for the Type II case if we let P ~ ~ 

For the Type II case, E (?;. 7:.-) = 0 , and for the Type III 

case 



, 
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= -p 

since 
p 

0 - ?; 7.· 7;1 -.. ( 

p 

L. 
~·= / 

Thus the formula for the Type II case is again included in 

the Type III case. Considering the ~~ 1 's for the Type III 

case, 
p, B. p 

E f(;;t)) z: ~~') I L_ Q-t 
J,. 

(;- ~) Y'::":l-= v; = - - (3 .I 

''J PG. p c·= I Q 

£ ( /i(,'J ~·(,'') ) - 0 

p,~ Ati 

E {;;/o f!;·'<O) L_ -L 
'1-

- /,;ro ft·'(IJ fJ·c,J -- -
,·,i-..i' 

PG.{Q-t) 
f/J 

P&rr;-1) 

since 

J 

These results may be summarized in the single formula 

If we let Q ~ ~ , this formula eives us the correct result 

for the Type II case since then 



105 

E ((1·,4) f!t·,,,,)) -== J; ... , J;i' ~~ 

Next we consider the expected values of expressions 

involving ~-~ 1 • For the Type I model this term is zero, but 

for all other types of populations we find that 

8 . 1-

- ( I ) I ) 1- "- /;11~ y- a..) z.. 
- I- - - .. L- if.· V':" - i.-a. ( 1 - L 17. · ~ 

G N ,/=/ 'I 11 JV ,/=/ J -
~ 

since 

To evaluate E(SST}, we let 

-
.#. :::- 7..· + JJ.,,·; t- E_. •• ,/"t { . , 

t> 

1· = ;{; ,1; /?.·. /' -

I' 8 

7.' t- .L ?;.. 11, . .!.. L n., fJ,·(,·J -r-
!V '-I IV ,/::.' t? ( (/ 

[ ... 

, 

so that 



Now 

= £(r..) = (t-J'r)7.· 

0 

where J..,.. = o if the 7.· •.s come from a Type I por:;ula tion and 

J?--:::: I otherwise. Also 

Cf,. = VaA {;t.·) == E [ 7;· -£ (r..J -r 1·(0 +- €' , •• ] ~ 

= f { "%- £ (r.J),. + E (f·~'J) + E ( ~·~) 

J 
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-== 4 I; - .!.. } v; " t- I. _!_ [ L n ,. - AI~} P':' :a. r '&. 

(I p (9 ;rz. tf :;/ ~ /") t' -r - ;, 
lX J1,·. 

where ~ "' o if the !,;·(cJ • .s are from a Type I population and 

Jf = I otherwise. Next 

J,. 

-=J v;: r - , 
p 
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and 

To evaluate E(SSB) we let 

g. -

~· :;;,(t;l t [;/· ; /- ~ J ./~ 7/;i/f = !(•1 

so that 

s 

/0. = £ ( /i) =- ( 1 - J rs ) fi c <) 7 / ~ ;it {.-; ll ;)/i = 0 J 

cy,. = Val\(/;.) = £ { /i(t) - (;-Jf) /;r·) -t l~i· }).-

~ E I~ !J ., t) t [ ~i. J ~ 

= elf E ((i~') ) i f f f,i~) 
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.J 

and 

Finally, by the theory of Chapter II, we know that 

SSE is distributed as Xl-(i"""'"-.,dth N-pq d.f •• Hence 

E ( s;.~) = N-pq and E (MSE) == v- ]..-. 

These results are summarized in table 5.1, where 
I' I 

a_== ;V- _j_ L 17,·~ .lr = N- .!.. L "?1.~. 
;V I'=/ .} N ,/= / (I ' 

1,- , {J are zero if the 7(, .s , /)ti.J ) .s come from Type I popu-

lations and are one otherwise • 
.,.. 

The following formulas are more convenient for com-

putation: 



Table 5.1 

Source of Degrees Sum of Mean 
Variation of Freedom Squares Square E(MS) 

p - - l. 

r;r • -r dp a [ t 1/.· - N •] V.: >-Classes p-1 S 5 T = [_ n,. ( X... - Y. . .) !'1ST"' SST 
r=; p-1 (?-t) Nz. i= I d G. I' 

I' 

+J.,. a. v-;=). -t (1- Jr) s; 77.. /.: "-
• 

(f' -I) f'- I c 

,.,,ff 
1'-Y, 

Subclasses p(q-1) 558 = L,. n;· {~ .. - ~ . .)1- f/5!3 = S SB rr)p t~_J_ ~.1- -r {;-If) l;.11.ifr~~"J 
'•J -P(rt) tfs. -tJ tra-'J ''J 

""f•l1<j. 

Error N-pq S 5 E = _[_ . ( ~ff!l.- t-)~ /'15E= 55£ tT.).. 

''P~ ;V-f'j 

I",J,n-;;. - .:Z.. 

Total N-1 1:- (ijk, .. - Y...) t 
tJ,/~K'J ',/ 



?, g /"J 8 I' ~ g 
L. (- - )2.. E -1- ' 

5 S B =- .. n·~· X'cJ··. - X.. = .. 71.·/ X~·· - [ 11.·. X:~ = ~ Y.-/: 
''J 1:1 ''J " (I ':' '•J _17 . 

71;J 

and 

110 

z.. 

Y. . . , 
N 

~ 

- L >::~ 
('=I ___. 

Jt, ·• 

' 

If n if= 1 ( i = 1 , 2 , ••• , p; j = 1 , 2 , ••• , q ) , Y i j • 2 Y i j k •i , 

SSE = 0, and it is impossible to carry out any of the F tests 

involving SSE. 

If n1j=n, n1• = qn, n.j=pn, N =pqn, 

a == npq - pq2n2 -:::: qn ( p-1}, b = pn ( q-1), 
pqn 

_!_ { L n; -AI,_} = l- [ t ... ! /l "- /. '"t'" :n ... 7 = t n. ( 1 - L) 
;VJ. ,) =t (f Q /V'" Q J N G 

f' 

_j_ L 71,·. ;;. J- - ')'r 
, -I (" I /1 - I 

If we define 

) 

' 

when n1j= n for the Type I populations, we obtain table 5.2, 

) 



TABLE 5. 2 

Source of Degrees Sum of Mean 
Variation of Freedom Squares Square E(MS) 

I' 

Classes p-1 55 T = !TL ,!; (~~.- 'l.t /151= SSI ",_ + n(1-~)v;~-rgn <:?:.a... - r 
!' -( 

f'J 8- :1. 

Subclasses p(q-1) 5 S B = 11 r; ( Y.j·. - t) M58 = SSB IT ,. -t- lZ 7': 1-' 

''J P{'J -I) f 

E~ 
Error N-pq SSE= . . (Ycj·A -~·.r /15£= 55[ rv-;._ 

''I'K ;V-~g. 

/'J 8> n 

L_ - )l-
Total N-1 ( )t;'i/( - Y. .. 

'~ i> /( 



where we omit ~ since 1- ci = 0 when Q = q • 

5.5 Distributions of the Sums of Squares 

Corresponding to the ~ypotheses 

Hl: /Ji('J = 0 

H2 : ?;· - 0 

( i -= 1, 2, ••• , p; j ::: 1, 2, ••• q-1) 

( i :: 1, 2, ••• , p-1) 

for the Type I model, we have the hypotheses 

~=0 vr- o 
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" 

if the corresponding variables are from other than a Type I 

population. Since the populations have zero means, the cor

responding variables are then equal to zero. 

In the case of the Type I model, the theory of Chapter II 

implies that 

t i = y i • • - y • • • and , b j (0 -= y i j • - y i ~ • 

(i = 1,2, ••• ,p;j = 1,2, ••• ,q-1) are distributed independently of 

SSE. Therefore any function of these statistics is distrib

uted independently of SSE and, in particular, this holds for 

tp and bq(O (i 1,2, ••• ,p). These results were obtained for 

the model 

xi K~· / + --r: · .,. !J· ((} + f. ,·j I<'). 

and they hold for the particular case where Y ijk .. = €. •;it< •i 
'I 

Hence 

(i =1,2, ••. ,p;j = 1,2, ••• ,q) 

are distributed independently of SSE. 

We shall now show that these expressions in the E,il<•j J.s 

are independent of each other. Since they have normal dis

tributions, it is sufficient to prove that 
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E. . . :> c~i. - E, •• ) = o 

Since 

, 

t ( ( .. ~) 
) 

) 

v;e have 

CO'\/ ( ~- .• 
-- {. ... ~ 

In section 5.1 we tested the hypotheses H1 and H2 for 

the Type I model by the statistics 

F 
MSB 

1= m and 
' 

respectively, since subject to the corresponding hypotheses, 

are independently distributed as x~~~with p-1, p(q-1) and 

N-pq d.f. , respectively. 

We shall now determine what tests can be made when 

we are not dealing with a Type I model. In section 5.4 we 
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saw that 

I' 

.55 T = ,I; 77. [ r. - I. +l·<U - /(·) + E, .. - E.. .r-
and 

Subject to H1 , the sum of squares, SSB, reduces to the cor

responding expression for the Type I model and the same test 

applies. 

Our problem is now reduced to testing H2 when we are 

not dealing with a Type I model. Suppose we first consider 

the Type II model where the 7;· 's and fJN ) 5 are NID with zero 

means and variances v;..z.. and v;.z.. respectively. When H
2

: !7T :: 0 

holds, let 

8-

/-,· ~ !· (t) ~ [ ,·.. - f; ;; 71;/ fi(•'J .,. £,· .. 

Then 

1- £ •.. 

and 

55 T 

where 
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With similar situations in Chapter III and Chapter IV we con

cluded that 

SST/E(MST) 

did not, in general, have a )(~distribution unless nij= n. 

Assuming, therefore, that nij = n, we find that 

ni. = qn, n.j = pn, N = pqn, 

8 ? 

/·{t) = ;{; f ??;;" fi(l} = j. ,{ fi(IJ ) 

Without imposing the restriction that H2 holds, let 

~· = t:· -f f·(,·) +- t,·.. , 

,. 
:JI· = fi {;; ( r.. t-f·<•') -f f.: .. ) - r. -t f·(·J t- c ... 

Then 

and by section 5.4, 

Hence 

E ( ~ ST) t'"r"" z- .-.----- .:a. + ,_.. )..-
L'1 = V T 77. ~ t ~ · Vr ' 

ss r 
£(111 T 

, 



by Chapter II has a )(~distribution with p-1 d.f •• 

Consider the two sets of variables 

-
/• ('') - ((•) -' ('J'tc'J - f•(,) 

We have 

Co~~r{f(d -f,.J ~ f,itd -i§.,,·))= E(f·r.1 f3J·(c))- E{f~(c}} 

- £ (f·(•J (3/(•J) r f (f·(') f •(•"J) 
~ ~ 

= j ql{-; E (~·'M f;{,J) - jf, Jr; E( f,c,'J {i'tcl ) 

~g ~· 

- I'~ ,!]-, £ ( l/'u'1 ;Bi'u ) + !'~ • ,?;:, , E ( (3i'<''J f3i (i} ) 
, 

0 
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Hence, the two sets are independent. Since we have already 

proved the corresponding ~lations for the E~·· >s , it follows 
• 

that the two sets of variables 

are independently distributed and hence so are SST and SSB. 

For the Type II model we display the above results 

in table 5.3: 
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TABLE 5.3 

Source of Degrees Sum of Mean 
Variation of Freedom Squares Square E(MS) · 

Classes p-1 SST MST 
a.- ,_ J-

tr -r n-v; t-ell-~ 

Subclasses p(q-1) SSB MSB v-.,.,.. 1t v::). 
I' 

Error N-pq SSE MSE 
\1,_ 

Total N-1 

From the last column of this table we can determine 

the tests for H1 and H2• We know that the sums of squares 

divided by the expected value of their mean squares, are in

dependently distributed as /(~. If we also divide by the 

coresponding degrees of freedom, the ratio of any two has the 

F distribution. As we have seen in the previous chapter, the 

computation can be carried out only when the expected mean 

squares cancel out in this ratio. Thus we have 

F 
_ MSB , 

1 - MS"E" 

to test the hypotheses H
1 

and H2 respectively. Both of these 

tests can be carried out when nij = n and when this condition 

does not hold only the test for H1 can be carried out. The 

test for H
2 

differs from the corresponding test for the Type 1 

model, the denominator now being MSB rather than MSE. 

Finally we shall consider the Type III model. First, 

we have already seen that, subject to H
1

, the same test applies 
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..t.. 
here as for the Type I model. We can not expect to obtain)( 

distributions necessary for an F test of H2 since such a test 

depends on the ~~J 7
5 being normally distributed unless the 

terms involving the (IJ·(4) 's reduce to zero as in the Type I 

model. Approximate tests have been established to enable one 
1,2 

to carry out the F test subject to H2 • 

1
satterthwaite, F.E., An Approximate Distribution of Estimates 
of Variance Components. Biometrics Bull, 2 (1946),pp.l10-114 

2
Welch, B.L., The S ecification of Rules 
Variable a Product. tat. Soc. 



CHAPTER VI 

LATIN SQUARE MODELS 

6.1 The Type I Model for an m xm Latin Square 

We shall now consider an experiment that has been 

designed in a manner such that each treatment is assigned at 

random within a row and a column so that all treatments appear 

once in each row and column. The regression model for this 

design is 

XJ..r ~ + o.::: ,· -t ~· 1- ~ f' E .. ir.. 

{i,j,k = 1,2, ••• ,m) 

, 

where oe,· , ~· , and 7,; are called the row, column, and treat

ment effects respectively. Once i and j are specified we know 

k. Hence k is a function of i and j. The parameters are sub

ject to the restrictions 

The analysis of this design has been carried out by 

Bedrosian
1 

and the results are exhibited in table 6.1, where 

Yi··' Y·j•' and Y .. k are the means of the ith row, jth column, 

and all observations on the ~th treatment respectively. 

We shall be interested in testing the three hypotheses 

Y,· -
J 

0 

0 

(i=l,2, ••• ,m), 

(j =1,2, ••• ,m), 

119 



TABLE 6.1 
.. 

Source of Degrees Sum of Mean 
Variation of Freedom Squares Square 

Rows m-1 5 511 = JJ1 f_ (>:-.. - Y. .• )~ MSA -:: SSA/m-1 ,·= / 

Columns m-1 s s"c = "It\.~ ( Y:i. - /.. .)).. MSC = SSC/m-1 

-
Treatments m-1 55 T = m L ( Y../( - X .. ) :L MST = SST/m-1 

/(=I 

Error (m-1) (m-2} 5 s t = t ( Xd'~<- >: .. - ~·.- Y..lf + 1 Y. .. / MSE = SSE/(11\.-1)("'--..2-) 
(,J 

m2-1 
,.._ ( - )~ 

Total L. xi/(- Y. .. 
''I 
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0 (k=l,2, ••• ,m) • 

The theory of Chapter II tells us that, subject to the cor

responding hypotheses, SSA, SSG, SST, and SSE are independent

ly distributed as X 2 rr:A-, the first three sums with m-1 d.f. 

each and the last sum with (m-l)(m-2) d.f •• The hypotheses 

H
3 

are tested 

F = MSA 
1 ~ 

respectively. 

by the statistics 

F 
MSC 

2 = MSE' F 
_ llflST 

3- m-E 

6. 2 Other Models for the m )( m Latin Sguare 

We have that 

0 ./( / -r o<.,: -t )J. t- 0t + E. '"i/( 
For the Type II model we assume that the ooC,· 1 .s ~ >J· ~.s., ~ Js 

,_ :1.- ).-

and c'j~ ~.s are NID with zero means and variances g" , t7Y' , ~ , 

and 7;.. respectively. Then we have 

and 

For the Type III model we assume that the oi .. ~.s, ~· >s , and 

~ 1 5 come from finite independent populations of size Moe , 

M"t , and Mr , say, respectively, with zero means and variances 

I I 

' !ftx. _, 
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, 
The assumption of zero means implies that 

/1-y 

L. n = o 
k =I 

For the mixed model we may assume that the ~·, s , ~- > .s , and 

~ ~ are of any of the types described above. 

6. 3 The Expected Values of the Sums of Sguares for an m x m 

Latin Square 

In every case we shall arbitrarily begin with the sums 

of squares obtained for the Type I model. Note that for 1 

fixed, as j goes from 1 to m, k goes from 1 to m, although 

not necessarily in that order. Similarily for j fixed, k 

goes from 1 tom as 1 goes from 1 tom. Finally by Y •• k we 

shall mean the sum over all values of 1, j, corresponding 

to the Kth treatment, while Y ••• is the sum over all values 

of i, j, giving all values of k. Then, since 

\;I< =/' +- co::: . .. -t- (f· 
pi r t:c t" f,/A .? 

x .. = /M + «· +- Y. + /. +- E (·. • ) 

~-. -:;:/ ~ IX. t 't· 
) 

t /. -1- E-;·· , 

Y..k =/ -t ~. -t- '(. + 7;t T- t .. /r 
) 

Y. .. -::/ ¥. 7: -
+ ~. +- -t- -t- c ... 

J 

where 

"' ')oo. ...... 

oC. 
I I_ ~~· ¥. - I L y. r. -= 1 L ?A = m (~I 

.) ;,... i=/ (} ~ 
~ lr =,. ~ 
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...... 

55 A = :m ~(t· .. -Y. .. )~= - - )'-
t- c~··. - £... ' 

.._ -. 

55T=nt{;(f."'--9. .. )~= /-Hf,('lk-7.+-E..,r- c ... )z.., 

.,.... 

5 S E = E,. ( 0·-t - X.. - -:;·. - X.~ -t- -2 Y. .. ) z. 

('J 
..,.._ 

E ( -- -- - - )1. 
. . {,_."" (·.. f../. - E. ··...t t ,2 E ... 

'•J ~ 11 

To evaluate the expected values of these sums of squares 

by Theorem 3.2, we shall need the variances and covariances 

of the following sets of variables, 

J 

Therefore we must compute 

£(c</)> F(c<.·a,,)J E(~-1-)~ ,F(~·'Ifl·,)~ E(n 1
) and E(11c-r;.r) 

in a form which will be valid regardless of the nature of the 

populations used. 

If ot. comes from a Type II population, £ ( ae/) 

and if it comes from a Type III population, 

Me 

E («.') = L z:_ c</ == (~ - M.' ) t7;(" ~ J 
• 11.x (:: / ...: 

which gives the formula for the Type II case if we let Mel(-+ 00 
• 

For the Type II case, E ( <X.- 1 «4,) = 0, and for the Type III case 

l'f~ 

L CX·J-

t'::/ 110(. ( /'1q;- 1) 



since 

h-t 

o - L o<.- tJ(,-, 
(~ ,·t 

Thus the formula for the Type II case is again included in 

the Type III case. Similarly for the ~- >.s and 
d . 

and 

E(Y. ~-,)= -
J (f 

To evaluate E(SSA) we let 

.,.. 

.;;. = 1 t;:, ~- - ~. r €: ••• 
c:/ J11 ' -1 I' ' 

so that 

'}I' 

5 5/1 = Jn E. ( 4; - ¥. ) ,.. J 
,·:/ /'' / 

/<' -= £ ~,) -;;:- E ( o(_.)-== (t- JO(. ) o{'L 

..._ 

A.A. -= .!.. ;; .t(· == 0 
/ ?1'1 (-1 / 
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where J"' :::- 0 if the or:,·~ s come from a Type I population and 

Jo( • 1 otherwise. Also 

\if~ = v.;A (jc) : £ [ ot',· f- ~- .. - f (fiC .. )] :2- . 

- E [ o<,· - E ~~- J)Z- -t- E ( £:-.~ ) 

' 
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and in order to use corollary ).21 we find that 

Next 

- - JD( 17:"":1. 
c>( -

Hoc. 

- ll ). ~ V-.J. -r £:"' tr. - - < .I 
??t 

?'01 

£{SSil)= (J- J"') m(J; o</ f J'n(~?t.--l){rl"' p-;1.-r f:J..) 
-m 

-::: (;11 -1) r- ~ -t-r4 ;m ( JK-1) ~ s. -r (1- /« ) ~ 
1

t;; 
• 

and 

Similarly 
>n 

[(!lJC)= 'V~+J-yJrtvy-z.+ (;-J'lf):;?--; f;~·l- ~ 

-
£ ( 11 S T) == r/ ,. + J?" "Pr ~,. r (; - d r) ::; f; 7,; z.. • 

Finally, by the theory of Chapter II, we know that 

SSE is distributed as X'"tr,.ivith (m-l)(m-2} d.f •• Hence 

E( 3 !~) '=(m-l}(m-2) 

and 

E { MSE) = tr '- • 
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If we define 

for the Type I populations, the above results are summarized 

in table 6.2. 

1'he following formulas are more convenient for com-

putation: 

'" .,. 
s S/f -=- /rt E ( i .. - Y. . .) ~ = L.. 

(':=/ ,·:t 

1.. 

Y.· .• 

and SSE is obtained by subtraction. 

~ 

Y. .. 

;J.. 

Y. .. 
~a. 

........ 

Y. .. -» ..... ' 

6.4 Distributions of the Sums of Squares for an mxm Latin 

Sguare 

Corresponding to the hypotheses 

0 0 0 

we have the hypotheses 

Po(. = 0 _, ~ = 0 _, D"i = 0 , 

if the corresponding variables are from other than a Type I 

population. Then, since the populations have zero means it 

follows that the corresponding variables are equal to zero. 



TABLE 6. 2 

Source of Degrees Sum of Mean E (Y!S) 
Variation of Freedom Squares Square 

~(- - )~ 
Rows m-1 S5A: m LX .. - Y. .. N 511 == SS/1 vr-2.-r ~ 

/n~ 
,·:I 

?X-1 

Columns m-1 s s c = }71 j; ( >;;·· - x .. ) ,_ /'1SC= sse '\T).-r 1-
/n.-yY 

"b<. -I 

Treatments m-1 SST= m f_ (y./\'- Y...},_ /'15/.=: ~ 'iT 1 +- ')?<.. vrl. 
li'.: I 

?H--1 

"' 
Error (m-1) (m-2) 5 s E == L./ ~-1(- t.- ~·. -)(.A -t- ,z Y. • .)1- /15£ ~ SS£ t- v-'-

'•,) (-.-t)("~K -J) 

2 ?M- - )~ 

Total m -1 l; ( X;;-~c - >!.. 
'JJ 
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In the case of the Type I model, the theory of Chapter II 

implies that 

Yi··- Y ••• , Y.j.- Y ••• , Y •• k- Y ••• , (i,j,k==l,2, ••• ,m-l) 

are distributed independently of SSE. Therefore any function 

of these expressions is distributed independently of SSE and, 

- - -in particular, this holds for Ym··- Y ••• , Y.m.- Y ••• , and 

-y... . These results were obtained for the model 

~iA =~ + d.: -r ~ · -t 7k -t E '/lr 

and they hold for the particular case where Y ijk - c,·iK • 

Hence 

-c,· .. - E... , f. "-J.. - C • .. and c .. ,._ ~ ... 

are distributed independently of SSE. 

We shall now show that these expressions in the E,;;ic 3 5 

are independent of each other. Since they have normal distri

butions, it is sufficient to prove that 

Since 

- Co,v-( t;/. -t ... ~ E •• k- E ... ) 0 

£ ( t;;·. € ... ) =: 

£ ( [.~.) -

, 
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we have 

Co!V( [. ... - £ ... , - - ) - 1--( I I 
E;i.- t ... - tT ?X""- .?ll" 

I -- -r..!..... ) - 0 
'"'&.. 

Similarly 

COA.r{[ .. - c ... _, £ .. A; -c ... )= Co4(ii·- z ... 7 Z .. k- £ ... ) = 0 . 

In section 6.1 we tested the hypotheses H1 , H2, and 

H3 for the Type I model by the statistics 

respectively, since subject to the corresponding hypotheses, 

Wf 

55 /l = frt z;_ ( l.· .. - l ... ) ~ 
( -/ ...) 

,.. 

.5 s r = )" L (c .. ~ - l ... ) J-

~t= I 

are independently distributed as )(~~~, the first three sums 

with m-1 d.f. each and the last sum with (m-l)(m-2) d.f •• 

We shall now determine what tests can be made when we 

are not dealing with a Type I model. In section 6.3 we saw 

that 

~ 

.5 SA = /?1 [:. ( ~.: 
( ;; 

.,... 

S 5 C = J?t- ,;{; ( ~- - Y. r c;i. )

l.-

c: .. . 

and 
.,.. 

5 5 T = wr j; ( t;; - r. -f ["A - '1 .•. ) :L- • 
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Subject to H1 , H
2

, and H
3

, the sums of squares SSA, SSC, and 

SST reduce to the corresponding expressions for the Type I ..,. 

model and the same tests apply. 

6.5 The Ty£! I Model for Replicated Latin Squares 

We shall now carry through the above theory when we 

have r identical Latin squares. Denoting the observations of 
(PJ 

the ith Latin square by Yijk• the regression model is 

r.P J a J r.e) fi) 

~iA ~ -f ~~· + ~· + ~ i- if;) + f.,j"K ' 

(i,j,k::::l,2, ••• ,m;£= 1,2, ••• ,r) 

where cX,.m, ~· (.f~ ~· J /'iJ'J are called the row, column, 

treatment, and replicate effects of the lth Latin square, re

spectively. The parameters are subject to the restrictions 

f- (J.) .,.. (.1) ~ r-
L ~· = L y. :::: L- 7: = L- jJ_ = 0 

(::I ' /.:I ' ,<-:: 1 /( _["'I /(.f) 
(1=1-l ... ... ) 

' .) ,J /&.. • 

Again we exhibit the results from Bedrosian's thesis 
-(1) - (i) 

in table 6.3, where Yi••' Y.j. are the means of the Lth row 

and jth column of the ith Latin square; Y .• k is the mean of 

all the observations of the Kth treatment over all the Latin 
- {J) • 

squares; Y ••• ~s the mean of all observations in the ith Latin 

square and y ••• is the grand mean. 

We shall be interested in testing the four hypotheses 

Hl: 
(.RJ 

(i =l,2, ••• ,m;P= 1,2, ••• ,r) o(· - 0 
' 

H2: 
{f,_(.t) 

- 0 (j =1,2, ••• ,m;1 = 1,2, ••• ,r) 'J 

H3: ~ 0 (k::l,2, ••• ,m) , 

H4: ~) 
- 0 (1'=1,2, ••• ,r) • 



TABLE 6.3 

Source of Degrees Sum of Mean 
Variation of Freedom Squares Square 

.It ..,.. -rPJ 
Y..(~} )" Rows r(m-1) ssA=·Jn E L.. ( r .. - /15/1= SS/1 

.~~I ("'I ft (;,c.-1) 

t_ [_ ( -(.f) - (1} ):l-
Columns r(m-1) 5 s c = }n 1=1 ;=I t;·. - Y. .. 1'1 5 c - sse 

/l(J"f--1) 

-L_ (- - )~ 
Treatments m-1 55 T = J1t!t Y..~ - /( .. MST = s.s T 

K~1 ...,..,._, 
') 

~ 

1\. - (_f) - J.-

Replications r-1 35P = )J'1 J- L ( Y. .. - >: . .) /'1SP :::: SSP 
.,.1 = { ./L-1 

.. t. .... -- ( [i} - (f} -{/) 

Error (m-1) (mr-r-1) 55£ =Jl=t r;;. ]; );jir -X· .. - ~·. /'1SE = .SSE 
(,._, ){'l11.1l-4 -I) 

- -(f) - );J.. 
- t* +Y... +Y. .. 

Total 2 m r-1 
"'" - ._ fiJ - ) :L [; f J.; ( xik - Y. .. 
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The theory of Chapter II tells us that, subject to the cor

responding hypotheses, SSA, SSC, SST, SSP and SSE are indepen

dently distributed as ;x.).v-.,. with r(m-1), r(m-1), (m-1), (r-1}, 

and (m-l){mr-r-1) d.f. respectively. The hypotheses H1 , H
2

, 

H3 , and H
4 

are tested by the statistics 

Fl:; a- F2 = ~ F3 = ~ 

respectively. 

6.6 Other Models for Replicated Latin Sguares 

Our regression model is 

m m ~ w 
~(K / T <X.· 1- } + t .;-- (!tJ -t- E,,/x 

For the Type II model we assume that the 

, 

v (.f)) 
, ~- s , 

(eJ> 
E,i" ..s are NID with zero means and variances jJ 

3
.5 and 

' I (fl ' 
~ 

~(0 ' 
rJf .J.. , and tT1. respectively. Then we 

have 

and 
(i} - ,.. ,.. v:-~ ,_ .)..-

Var( Y ijk) - ~eJ + ~RJ +- r -t- r7f r v-

For the Type III model we assume that the o</11 
"s , ~-(1}-' s , 

7,; '5 , and /£> • .s come from finite independent populations 

of size MoctiJ, ~(.eJ, Mr and Mf , say, respectively, with zero 

means and variances 

= 
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I 

The assumption of zero means implies that 

M"'t.AJ l"fy<ll 11~ 

I: <J(.{f) = o L- 11·(
1
} : o E x ==-a 

(:/ • ~ i=' d ~ /(:/ /( ;I 

For the mixed model we may assume that the o<. (.£) l s 
• 

v (..RJ J 

, od· s , 

~ , £ , and I' 's are of any of the types described above. 
/{f) 

6.7 The Expected Values of the Sums of Squares for Replicated 

Latin Squares 

We shall arbitrarily begin with the sums of squares 

obtained for the Type I model and, since 

(f} 
(/J r. {f) (.I) 

){j·tY =; / ~ o{. t . + 7; -t- (rp) -t- t,il{ • ~ 
, 

-r1J (.IJ .:;: (,() - (.R) x .. =/ - + + C(.. +- • -1- r. + {c;; (· .. 
' 

-{l) _(£) ;y_fl) + - - (1.) 
Y.i. = / -r .::;(. + J 7. -1- !:.t) -t f.;i· ' 
-
Y..K -:;/ + c(, + ~ +~ +f + Cool( 

!> 

- (1) - (R} - (/..} - -(.IJ 

Y. .. ~ + ..(. +- ;r. f r. 
+- lrRJ 

-r E.. JJ • 
~ 

-Y. .. / + oc', + d". -+ -r. +- -
f r c ... 

J 

where 

- (-0 
..,.. 

(/) -{.f) ?tt (.1) .,.., 

~. = I L. tt:. Y. :: I L y. 7: = .1 L. ~ 
?YL. ~.·::, ' 

} .,. /:;' d .J ..,. 
1(.::/ :J 
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"''" 
eX. : _!_ L. 

JolA ,~£ 

.II 

-:::. I L 
f /l .t=' ftR) 

, 

we have 

A -.... A ,._ 

SS LJ= 'r" )(X !.b_ -vet;),.= > >( rPJ -aJ -r.R.J_ -rJ'J):l-
n ht L- f:::- , • . 1... }11 I'-::- ~ ~ - .c. -t c,·.. E... • 

..(::.1 ( -1 ,1 ,::r _, 

~ ~ { -t!J -(R)) :z. i- ~ ( tiJ - aJ -r.RJ - c..n )2-
ssc = }fl-k fr; t·· - r... = ~ b fr; ~ - Y. f t:;i· - c:... ~ 

.It /l.. 

c ,... ) ( v fiJ '/..- ) :a. 2. ~(- (PJ -<~1 - -f1} - )"" 
-..J 5 P -= J7t. L ; ... - ... = Jn L- «'. - ;;j", + Y. - Y. -tl' -f- -tt ... -t ... 

~::t . ~""I f(RJ 

~ r r ( f-R) -(f/ -OJ - -r.PJ - ),_ 
s 5 E = L ~ !:- ~K - ){ .. - ~-. - Y..tt -r- Y... f Y. .. 

~=/ ,~; ,t=l 

A .,..... .,._ 

) ) '> ( (_f) -(fJ -cfJ - - (i) - )~ 
=- L- L- L E.,, I< - £, ... -E..,/· - {. •1< + E... +- E •.• 

;:: f '·.=I i= I f7 

To evaluate the expected values of these sums of squares 

by Theorem 3.2, we shall need the variances and covariances 

of the following sets of variables, 

(1:) - (R.} (.() - (£) 

oe.: t e,... , ~ · -r E 'j . 

- (fJ - <1) 
o<. -f' Y. t f!.tJ 

Therefore we must compute 

- r.l) 
+ E •.. 
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- ( - (.£} -(.f.')) 
L Y. Y. J 

in a form which will be valid regardless of the nature of the 

populations used. 

If c;(/')comes from a Type II population, E[ (<5.q'/J=- ~<~J, 

and if it comes from a Type III population, 

, 

which gives the formula for the Type II case if we let M ,.._(PJ ~ 00 
• 

- (. (R.) (R/) 
For the Type II case, L:. o(L. or::,., = 0 , and for the Type III 

case 

11oc.ll.l 

- - L. ( ot/JJ) ,_ 

(::I /1-<:(£) ( /'1,,/ii f) 

since 

0 

Thus the formula for the Type II case is again included in the 
• 

vUJ' Type III case. Similarly fO!" the oi s , ?;; ' s and p 
/(£} 

£ U.J ~ ) 2. ( (f) ~J) 1.. ( ~- ) ==-(!- ..!- . v;;:P) _, E ~- 7 = - VycRJ ) 
/Y)' (0 ""' {) 

rtyC.:.} 

) s ' 

J 



£(?;')=('- ;/) c;cz.. E(-;; -,;,) == r , 

and 

£ (/(.) = (' - j_ ) v;:Z-
(f) ~ 

.) £ ( /(~; f!t'J ) 

Also for a Type III population, 

and 

Similarly, 

£ ( -ctJ _ (.t'J) _ 
Y. Y. 0 . 

To evaluate E(SSA) we let 

r.R) -tPJ 
~· = <Xi t- £,·.. ~ 

136 

- c::o:::~ r - ' M...,. 

= - v::-~ 
f -nt 

,_ 
v;;(.l} 

/1 D(.rRJ 

J 



- (_R} - (_£} 

-::: ~ -t- G ..• 

so that 

where I (PJ' 
IY ~ = o if the o<c· s come from a Type I population 

and JO( = I otherwise. Also 

r;r- ~ -= ~ll (f,) = L- [ ~_riJ + i/~) - E (x/";)) ,_ 

and 

- ~ cr. 

Next 

- * 1 17;'"" -A 

==- £ L- c< •. rfJ- E ( «;._(RJ)) z. + E[( i/~J) j 

~ 

V""'cLJ 

/'1 DC tRJ 

137 
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A /t ..,_ 

- /l (/?<-I) p- z.. -~- ~ p.. (,.. -;)E ~~ ..,. (;-~"«),...I ?.; ( «/-1) )~ 

and 

"" .,.., 
+ (t- ofoc) .,__ L [:_ ( ~·(./}) 1-- • 

.!1(-,_. -/) .1=' '=/ 

Similarly, 

To evaluate E(SST) we let 

(. -r £ •.. , 

so that 

711. 

55 T =- m/l. ~ (tfk -;~. ))_ / 

where ..!r=o if the ?,;Js come from a Type I population and 

ely= I otherwise. Also 

~ ~. = VaA- ( ~) ~ f [ 7; - E ( 7;) r- 1.. k ] ~ 

===: E [ 7; - E ( lir ) } z- +- L_:: (f. ~;r ) 
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and 

Next 

) 

.,., 

£ (s s r) = (;- /.,.) rn/1 £ 7; ~ -r /l )n (1#1. -;)( rl;. v;: a.+- £,'-) 
--= (M-1) v-"" r c! ft )?\ (p< -;) v;'" r (;-/.,) Jn./l L ?,;"-

r ,t-=r 

and 
]?l 

£(!1sT)= v:z. ~ J"" /?!A ~,_ -r (1- rfr-) mJL L '?,k
4 

, ??t-/ ..t~l 

To evaluate E(SSP) we let 

- (.R} - (.R) -(f) 
<=<. -r ~ t ({f; -t [ ... .J 

# = J. t._ Jf.A :: ~. T ¥. r- p t" 
r/• .1\.. _i-1 /'"..i.. { 

-
c.. . :> 

so that 

SSP J 
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£( ) { )( -(12) -(1) ) 
A -:: ;/j = 1-+ o(, f- /: T ~~ -

-'l 

;; =.LL.u ~ o 
/ • /1,. _R::t / '1 " 

where f := o if the /(RJ 's come from a Type I population and 

+::I otherwise. Also 

-[ - r RJ ( - r-RJ) - a J - a1 f ) - {fJ 7 .z. Van (1,;) = f oc. - E ~. + Y. - E(Y. +-fr.l,) - E,/(11 f f. .. J 

= f [ ;_t11_E(~r 1 ~] 2-t E[ y_m_E ('(. [RJ)j~ +f[((PJ- f0~)J). + E/(1..~
1
~1 

s inca, for the Type I model, M"'tiJ = Myc~J = m, and 

Next 

) [ { [
-(f) / -(,/}') -(I} -( - (fl~ E~ )ll[ 

). = c ~/11 { 1J ) ft' ::: ~ - E ( «. + Y. - t ¥. f ~ 1 - (r.;; 'J 
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and 

Finally, by the theory of Chapter II, we know that SSE is dis

tributed as /(~~~with (m-l)(mr-r-1) d.f •• Hence 



E( 3 !~) - (m-1) (mr-r-1) 

and 

E(MSE) = tr.z... 
• 

If we define 
..,.. ,.,. 

1 L (&~(.a')" 
J,. r ( <!)·0)) .a... (T"aJ = I 

170PJ = / - J - , 
<X t •: I l .,.,... -I o/·: I ?1(-/ 

}-. .A 

17:""" I E ?';, ~ v;::-::2-- I ~ 
:1.-

- t:.l) ?- - ) f1 - _ _p:; I 
~ -1 ~= / A - I 

for the Type I populations, the above results can be summar

ized in table 6.4. 

The following formulas are more convenient for compu-

tation: 

' 

sse. t:: ~ -a; -a; :a. 

- :;\. .I=/ ,;?;, ( ~-. - Y. .. ) 

-- ,.. 
L__ - - )• L 

.. ... 
.55 T = /X A ( Y. . ..t - Y. .. Y..* Y. .. 

A =t ,1(.: I 

' ~.II ~a-./t 

• 
.... 

~ ~ 

Y..~RJ E ( - (_l) - ) ,. 
.. 

SSP= ~ Y... -Y. .. =L Y, .. }1'1 

' 1=1 ...I=/ - .. 
~ ~a.A 

' 

and SSE is obtained by subtraction. 



TABLE 6.4 

Source of Degrees Sum of Mean E(MS) 
Variation pf Freedom Squares Square 

A- - - (iJ -cc.J ,_ A 

Rows r(m-1) SSfl=mL [. (!;· .. - Y. .. ) /'15/i =: 17~ + ~ L. ~ 

.55/j ~£} 
_i=l ,·=1 

.Jt r-- 1) 
/l.. .£=-t 

/\. .,..,_ - (.() - ( i.) ,_ .1\ 

Columns r(m-1) 55 c :;;. ?n F. dl;, ( Y.i· - Y... ) HSC = s ..sc vr'"-r ~ L 
). 

v;;R) 
-;;:c;;:: I) ./\. ~=I 

S S T = 771/1 i. ( 1../C - Y.. · ) ~ !1ST= SsT cr-).. + l-

Treatments m-1 :m/1 v;: 
I<=' "711. -I 

.1\ L (-a' - ) 2- V'"" J,... -t" ~ z. 17.::"' .l. -1-Replications r-1 .SSP= ??1
2 Y. .. - Y. .. /fSP = SSP 
_£-:/ A.-I A {"' "1-

}7\-... z: ( .1. - .l.. ) L?:{_q} 
A: _£: 1 7>\ 11ac 1 ~' ~ 

~~ i (' I ) ._ + fi f=/ i=. -/'!yeO v;c£J 

-t -- -. ( (.R} - (..RJ - (/) 

Error (m-1) ( mr-r-1) SSE=_i; f o~S 0:t -,>.<:. - t·· 115£ = SSE cr'-
(,.-,) (1ft./l-~ _,) 

- - (f/ - ).z... 
- Y..A -+- Y... r Y. .. 

Total m2r-l 
/l -- ~ (.R) - )... ]; [; r; ( ~k - Y. . .) 
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6.8 Distributions of the Sums of Squares for Replicated Latin 

Squares 

Corresponding to the hypotheses 

fi) ¥. _(.RJ -
H l : v< •· - 0 , H 

2 
: "I - 0 , H J : ?;; == 0 , H 

4 
: fa; = 0 , 

we have the hypotheses 

rv;; (.() = 0 V'T = 0 c:;;- = 0 

if the corresponding variables are from other than a Type I 

population. Then, since the populations have zero means, it 

follows that the corresponding variables are equal to zero. 

In the case of the Type I model, the theory of Chapter II 

implies that 
- {1.) -(I.) 

>:.. - Y... ) 
- (1/ -(.f) -

~-. - Y... , Y..tr - .>:.. ;> 

- (.R} 

Y. .. - Y ... 

( i, j, k = 1, 2, ••• , m-1 ; 1 = 1, 2, ••• , r) 

are distributed independently of SSE. Therefore any function 

of these expressions is distributed independently of SSE and, 

in particular, this holds for 
- U.J - U) - 0> - UJ -t.£) 

X, .. -Y. .. .) Y..,....-Y. .. .1 Y..~-Y. .. ~ Y. •. Y. .. ~ 

(.1: 1,2, ••• ,r). These results were obtained for 
(.P) 

7: t-~~~) -t- E. 'il( 

the model 

v (.R) - (/J v (/) 
/y:t -/ -t ~· -f ~. +-

and they hold for the particular h Y (..() -
case w ere ijk-

Hence 
- CR) - (£} - (£1 -(.f) 

E,·.. - C.... , f..t!·. - [... . , E .. ,., - t . .. 
-rJ) 
c ... -c ... J 

are distributed independently of SSE. 

W h 11 h th h i · the r.RJ ' e sa now sow at t ese express ons 1n e .. s 
"J I( 

are independent of each other. Since they have normal dis

tributions, it is sufficient to prove that 
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( 
- (~J -(.N.J - rRJ -(.RJ) ( -r~J -til - - ) 

Co/\)" £, .. -G ••. ~ C;i· -e... = (!.ON £;; •. -c ... J £ .. "' - (. ... 

( 
_ (.L J _ u J - r.RJ _ ) (- rPJ _(.f) 

: COA.J £;.· .. -f ... 
1 

C ... -c .. • = CoN- Ci/' - [ .. · J E .. 'f'- E ... ) 

(
-{f/ -(.LJ -f..LJ - ) r- - -rRJ - )-

: coAt' ';>· -e ... ;1 t ... - £... = eoN c.·~ -E ... , c. .. -c ... -:-o 

Since 

( - (£) - ) £ t,·.. [ ... -

£ (-a; - ) € •• . t .. A' = 

£( -{.1) - )<f-l 
E... t. ... = 

£( - Cl)- ) 
Ei. {.'IT = 

-(.1) - ) 
E( Ei. [ ... = 

, 

~ v-~ =-
~lA 

}n v-z. -
?kJA 

_!!:! 
»JA 

r; 

£(E .. ~ £ ... ) -;- ~ t/1-

;n.:' /l,. 

r~... 

~"'A ' 
v-l. 

~:a.A ' 

.) 

p--1. - - ) 
;.. a._,z 

tr~ 

' ---,;, z. A 

it then follows that all the above covariances are equal to 

zero. 
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In section 6.5 we tested the hypotheses H1 , H2 , H
3

, 

and H4 for the Type I model by the statistics 

fv!SA MSC F _ MST 
Fl-= MSE t F2 = MSE , 3- MSE t 

respectively, since subject to the corresponding hypotheses, 

.)\,. .,.. - (£) - (_f) ) 1-

.SSc.:::.m.LL(£.{.-e ... , 
..R::.t J=' , 

.;:. (- (./} - );,... 
S S? = /Pt.• .t- c ... -c... . 

..t::./ , 

and 

.., ._ '"" 
. - > 7 / ( (/J - UJ - cfJ - (PJ - ) .z. 

.SSt = £- ~ ~ (·/~c - (· .. - e./. - t .. K -r c ... +- t ... 
_.P:/t.-',/-r "d CT 

are independently distributed as x~~~, with r(m-1), r(m-1), 

m-1, r-1, and (m-l)(mr-r-1) d.f. respectively. 

We shall now determine what tests can be made when we 

are not dealing with a Type I model. In section 6.7 we saw 

that 

710-. 

s 5 T= peA L ( 7;;- 7: -r E. "A 
k=/ 

) a. .. t:. . . -" 

and 

Ss
o-_ -u..~ ...t-{;;-.flJ_;;;, -<.IJ- _ -(P) _ )'" 
,- HI. f;; +:r. - Y. -t (cf)-I -1- {... - [... • 

http:SSc.:::.m.LL
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Subject to H1 , H2 , and H
3

, the sums of squares SSA, SSC, and 

SST reduce to the corresponding expressions for the Type I 

model and the same tests apply. However it is impossible to 

test H
4 

for the Type II or Type III models unless some approx

imation device is employed. In fact, for the Type III model 

we can never hope to carry out an F test for H
4 

since such a 

(RJ J (f) 
test requires the c::(· .s and a;· 's to be normally distributed. 

6.9 The Type I Model for Orthogonal Latin Squares 

We shall now extend the methods of the previous sections 

to the case where we have r orthogonal m x m Latin squares where 

r ~ m-1. Denote the observations by YijK,, 1(,, ... , t<~ where 

i,j =-1,2, ••• ,m represent the row and column numbers respective

ly, ks ( s == 1, 2, ••• , r), takes on the values from 1 to m and rep

resents the m treatments of the sth Latin square. Our model 

is given by 
V (II (1.) (A) 

/~K 1 , • ··•K.,. :/ + c(~ + ~- -t ?;;' -r ~ f ... + ~ + C,/k, • ·· ·, lr/1... 

(J) 

where ex'~ , ~-, 7; (1 :::- 1,2, ••• ,r), represent the row, column, 
".1 

and treatment effects respectively. The parameters are subject 

to the restrictions 
..... .,.,_ .,..... .,..._ 

L oc.· L.x- L 
( 1/ E 

(Jt.} 

- ::- ?.;, = == ~/l 0 
',. r:F=t ",) A;: I A\-::: ( 

The subscripts k_.e,_l = 1,2, ••• ,r are functions of i and j such 

that for a fixed i {j) they take on eech of the values from 

1 to m exactly once in some order as j (i) takes on the values 

from 1 tom. The pair of numbers {k~,k~) takes on every possible 

ordered pair of numbers exactly once where~ and k~are se-



lected independently from the numbers 1 to m . From Bedrosian's 

thesis we exhibit the results for this model in table 6.5, 

where Yi, Yj are the means of the observations of the Lth row 
- (tJ 

and ith column respectively; Yk; (J = 1,2, •.• ,r) is the mean 

of the m values of Y.:.il(, , ... 11 /V which have the given number 

~ as the (1+ 2)nd subscript andY is the grand mean. 

We shall be interested in testing the hypotheses 

Hl: c<.- -=- 0 (i=l,2, ••• ,m) 

H2: 4':· - 0 (j;;l,2, ••• ,m) ',1 

H3: 
7.: {I) :-

k, 0 (k = 
1 1,2, ••• ,m) 

H4: 
?; (a) -::: 

.fl. 
0 ( k

2 
-== 1, 2, ••• , m} 

• • • • • • 
,..,.., {Jt) 

H • '" -r + 2 · .f)\ 
0 ( kr = 1, 2, ••• , m) • 

The theory of Chapter II tells us that, subject to the cor

responding hypotheses, SSA, SSC, SST1 , ••• , SSTr, and SSE are 

X
~ ,... 

independently distributed as rr , the first r + 2 sums with 

m-1 d.f. and the last sum with (m-l)(m-r-1) d.f •• The hy-

potheses H1 , H
2

, ••• , Hr+ 2 are tested by the statistics 

F 
_ ?>1ST

1 3- mE, ... , 

respectively. 

6.10 Other f•:odels for Orthogonal Latin Squares 

Our regression model is 
(I) (l/ 

F ::. MSTr 
r-t-2 MSE , 

(/II 0K, J ... J/f--a -+ ¥· =/ + o(· -t 7/ -1 7,;, f ... f ~ r E 'i~' .. ·.,~t" • J I 

For the Type II model we assume that the ()(. ) .s 
' ' 

~' 5 
~ 

?:a; .. .5 

''!£ 

( 1 = 1, 2, ••• , r) , and ~ · ·.., v '-" 'J "I ) • • • J 'l""-
are NID with zero means 

and variances ~ .. , v;a. , ~,_ (j-:: 1,2, ••• ,r), and v"" respec
:t 



Source of 
Variation 

Rows 

Columns 

Treatments 

Error 

Total 

Degrees 
of Freedom 

m-1 

m-1 

m-1 

L. 

m-1 

(m-1) (m-r-1) 

2 
m -1 

SSA 

TABLE 6.5 

Sum of 
Squares 

,.... 
- ~ L. (f. - 9 ),_ 

'·:, 

.,.,_ 

s 5 c :;: )n ~;;; ( r- - y) ~ 

. . . . . . . . . . . . . . . . . . . 

55£= /t; t [>:;~····KA -X -J 
-!;, c''- ~:~'- · · ·- >;;(

11
f(lln) Y) l. 

Mean 
Square 

t1SA = SSA 
h'<- I 

t15 T, = 5 s J; 
~-I 

. . . . . . . . . . . . . . . 

!1S~ - 55~ 

n...-1 

/'f.S£ - S:SE 
(::..-l}r~-A.-1) 
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tively. Then we have 

E ( Xjk, I .. 'J>t'A) _./ 

and 

Va..A ( x,At I •• ·~ Jt,. J = ~ .. -r YC" .. +- ~ .. -f v; .. ...,. . . . t- tie" '1. .,.. IT",. . 
tJ' (I I rs. z;, 

(J) 

For the Type III model we assume that the «.- 's , l' s , ~ ~ s 

(1 = 1,2, ••• ,r), come from finite independent populations of 

size~' My, Mrn (L= 1,2, ••• ,r), say, respectively, with zero 
:£ 

means and variances 

;2... •• _, 
, 

The assumption of zero means implies that 

1'1'..: !'!y l'fr. ~?.;. 

'L~·- E ~· - L.' r'') = = L. (11) - 0 . - 1;/1. 
(. -·, .;'= / II -t, =t ( ,(4, =r 

For the mixed model we may assume that the ex',_· '.s , ~· , .s and 

c-e J' 
~ s (1 =-1,2, ••• ,r) are of any of the types described above. 

6.11 The Expected Values of the Sums of Squares for Orthogonal 

Latin Squares 

Again we arbitrarily begin with the sums of squares 

obtained for the Type I model and, since 

v v' __,.... (t} - (z.) - (./1} 

It· - /~ 'f K', · t- 11. + r • -t- T. f- · · · + t;' +- E c.· 

- -..../ ...y (t) _:y (<) -(A) 

- / j- o(_, f- ~. -(- I. + /. -t- • · ' f /. f-
J 
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- (1) 

X, -/" 
(t) - (J) - (A} - (I) 

-t <><'. -r ¥. t- ?;. -r r. r · ·· t-T. + E~e 
I 

- /4) 
( Jt} -(>\) 

~ =/ -t- ({. 
- (/} - (>j 

-r ~. -r r. + r. -t ... t?; -r [/( 

" )\ ) 

y ¥. 
- (1) - (:-) -(A} 

-/ ..;- d . i -t- -r. t Y. -f . ·t-7: +- € 
.) 

where 

V-=: •• (J = 1, ,_., • · ·, --i ) _, 

f.. is the mean of the m 
' 

associated with the 

m observations of the ith row, ~· is the mean of the m e,i~t, ... :-tr,.. •s 

- (JJ 
associated with the m observations of the jth column, e~ 

is the mean of the m associated with the m 

values of Y,/~,, ..... Kl\. which have the given number k as the 

(1 + 2)nd subscript, and e is the grand mean of the 

we have 

ss~ r f.-- z):z.-, 

5 sc _) .... 
E' 0 - { 0 

d , 

""' --..,__ ) ( v''J- vPO = > ( )1,.. = rrt i-- /..- 7/ '"- L-- {I) - {I) -(I} _;_ [ • 
A;:/ -r, tt;sl ~ - /. f-[k, _, 

ss;; 
...,. )'< 

> ( - (II) -) 1. _ l ( (A} ..,Y (Jt) - (.11} ) a,.. 

=- 77t L- ~ - Y - Jrt L ?;; - r. + E~ - [ , 
A,t=r :II k,.:r 10 
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SSE 

To evaluate the expected values of these sums of squares 

by Theorem 3.2, we shall need the variances and covariances 

of the following sets of variables, 
(/.} - (t} 

4 + EA-: 
' I 

Therefore we must compute 

E ( ~/) .> E(~. ~·) ) E(~') ~ 

,- [ ( {(1)1 
:_v 

.2 ... /l) 
.> J 

(J=t:L ... Jl) 
) ) J 

in a form which will be valid regardless of the nature of the 

populations used. 

If oC,· comes from a Type II population, [ (IX'/) = ~:a.~ 

and if it comes from a Type III population, 

11-c 

£(~/)-: I L. :a. (t - _!_ ) 7.; 2-a('. - ( .) 

l1cx. 
,·, ( 

!'foe. 

which gives the formula for the Type II case if we let M~~ ~ 

For the Type II case, ~- ( oe; 0('~.,) = 0 , and for the Type III 
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since 

,;riO( 

o(.: ~., =- z 
(. #. / • • I 

(I ( 

Thus the formula for the Type II case is again included in 

( . .fJ 
the Type III case. Similarly for the ~· J.s and :fi, .Js (_j = 1, 

2, ••• ,r) 

and 

To evaluate 

so that 

55/1 

2 . 
~ 

v.:::- .... 
.l 
1'1~ 

(f = 1:. 2 J • • • .J A) . 

E(SSA) we let 

eX. 

' 
= ce. + E , 

~ 

L (4· -~) .... 
(·= / r' /. ~ 

' 

where ~"'-::- 0 if the o<.· ~.s come from a Type I population and 

JO( = I otherwise. Also 

tr ~ =:; ~/1 V. ·) =- E [a(, + f;. - E ( ~ .· ) ] l. 

= ~:- [ «:,; - ,_-{.-<:,)] 1- f £ ( 1/) 

= J (1 - _!_ ) ~~ -t r,. 
tK « - .> 

1'1tX .he. 



154 

and 

Next 

= -Jt>( ~). , 
H.x:. 

- .a A ::- ~ ~a. -t r>-v. -
<'(; :t .,... 

,... 

£ (55 /1) = (;- ~) >n f.; «/ r /" r~-) ( ~« r;r;;-;,. + £.a.) 
~ 

= ~-/) IT~ t ./"' /?2 ( nr -/) c;; '- -t (1- ,/,.) -,. f a/-

and 
,... 

£ r/?J4) :::c v). -f.!« ,., ~ ~ -r (1- .£-) ~ L o{,-,_ 
;, -I '·:::." 

Similarly 
")opt 

E ( 11 s c ) = v .2 t J 1r :;m ~ .. t- (; - .!11 ) :2-f {; o;- 1- .J 

-£ ( ;t'f J -r; ) ::- vr- l- I JJ;. }/? ~ ;a. f" (1 - /7;. ) 2 I ;; ( 7;;/l(A/) ~ • 

Finally, by the theory of Chapter II, we know that SSE is 

distributed as /(~~~with (m-l)(m-r-1) d.f •• Hence 
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E(s;~}- (m-l)(m-r-1) 

and 

E ( lv1SE) 

If we define 

-
> 

( }::J .Z ••• A) 
~ > ;) ./1 

for the Type I populations, the above results are summarized 

in table 6.6. 

The following formulas are more convenient for com-

putation: 

?Po 
~ 

SSA = »z L. (>:- 9)1- = L x:1. y~ 

/:=I ,·=/ ;;; ... 
> 

ho. 

.,.... -
ss~ ~ Jr;, ( {- -)z. L 

].. 

r~ -= -Y - r -,.~·::-I , 
,..... .1JK ... 

~ ( ii: (tl_ 9) ~ - ( Y;, {f) l. 
55~ = p.. = L - y,. 

Jt;-:./ I k, = / -,_ ..,._ 

s 57; 
' 

.,.._ ( ,_ ) - y~ E. ~·!(, .> • • ·~ lfA ) 
'.>,/ t? ..;;; ... 

~ 

where y-= ~ X·J·K,. 
( >J t7 I 

.. .) k" 

We find SSE by subtraction. 



Source of 
Variation 

Rows 

Columns 

Treatments 

Error 

Total 

Degrees 
of Freedom 

m-1 

m-1 

m-1 

... 

m-1 

(m-1) (m-r-1) 

2 
m -1 

TABLE 6.6 

Sum of 
Squares 

-} r-rt) -)J.. 
557;= J?!L- 4 -Y 

K,:: I I 

. . . . . . . . . . . . . . . . . 

Mean 
Square 

/15/1 - S S/-1 
~-1 

M5C= ~ 
~-/ 

1157;= SS?; 
;ht- I 

........ 

t1SJ;= SSu 
-??<--1 

}liS£ - 5 S£ 

("M•t){'lt<-JI-1) 

E(MS) 

. . . . . . . . . . 



6.12 Distributions of the Sums of Squares for Orthogonal 

Latin Sguares 

Corresponding to the hypotheses 

0 ' ••• ' 
(A) 

H :7: = 0, 
r. 2 "A 

we have the hypotheses 

or = o.J 
I 

~ = 0 
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if the corresponding variables are from other than a Type I 

population. Then, since the populations have zero means, it 

follows that the corresponding variables are equal to zero. 

In the case of the Type I model, the theory of Chap

ter II implies that 

Y.·- y !' 

- (t) y 
>;;-, - .) 

v (A) \1 
~ /_KIJ - / , 

(i,j,k1 , ••• ,kr: 1,2, ••• ,m-l) 

are distributed independently of SSE. Therefore any function 

of these expressions is distributed independently of SSE and, 

in particular, this holds for 

Ym- y (!!!th row) • 
y -m 

y ( mth column) 
' 

-(I) 

Y, 
-(11) -

y - • • • , y - y • m m 

These results were obtained for the model 

and they hold for the particular case where 

Hence 

- -c..-£ 
il 

f '/K, , 

- (I} c:
C - c k, 

. . . 

are distributed independently of SSE. 

.) 
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We shall now show that these expressions in the EciK,, .. ·,~;" •s 

are independent of each other. Since they have normal dis

tributions, it is sufficient to prove that 

( 
- - - ) ( - - -CR.) ;;-) 

CO/IJ" t,; - E. > c,;· - E. =- CON" E.- - [. > €-!t - c 

=CoN'( f · - [ .. E ~~ -[_)::::: 0 
"d ~ 

Since 

E(t; ~)

E( (. l) 

t(l· [) =
"/ 

E(l'-)-

we have 

co,v-(t;_. -&, ~· -z)-

Also 

£(t,. 
-(1)) r:r /?x ,_ [k: = 

:( 

(1 = /,~ 2 .1 • • ·) A) 

(_j ~ I ,.l... 

"' 
.. _, A) 

> 

£ (l 
- (J,}) 

""- r~.. = lf~ 1.- (i=t .l ... /l) E-t: = ;;;' I J .,J ) 
:( 

so that 

c 0/lJ ( 1.· -
£._, 

Similarly 

CON ( ~ · - C, _, 

l) = (J 

- (f} -) 
CA. -c. :::0 
~ 

In section 6.9 we tested the hypotheses H1 , H
2

, ••• , 

H~ 2 , for the Type I model by the statistics 
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F 
_ MST

1 3 - ~ ' ••• ' 
MST 

F r+ 2 =- ifsti' ' 

respectively, since subject to the corresponding hypothesis, 

SSC=»£(~-l)z-> 

.,. 

SST.= I 

r (- ttJ -) z.. 

""' L- St - [ ' -i/:, I 

?M .,.. 

S 5 c =- L > r): - z - z/- z~,'J- ... -z~:) +-(!1-r,)"E ]..:t. 
/.... L L~,·iK,,···~trt\ .. 17' " "'-· " 

(·=I ,./=I d 

are independently distributed as X.a-v ........ , the first r + 2 sums 

with m-1 d.f. and the last sum with (m-l)(m-r-1) d.f •• 

We shall now determine what tests can be made when 

we are not dealing with a Type I model. In section 6.11 we 

saw that 

..,... 
>( _))...... 

5 5 rf '::' ;m., L- «',: - ~. + {.- - €. , 

55 17 = 

Subject to H1 , H2 , ••• , Hr+2 , the sums of squares SSA, SSC, SST1 , 

••• ,SST reduce to the corresponding expressions for the Type I 
r j 

model and the same tests apply. 
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