doi: 10.1515/umcsmath-2015-0009

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXIX, NO. 1, 2015

SECTIO A

1 - 4

EDOARDO BALLICO

Components with the expected codimension in the moduli scheme of stable spin curves

ABSTRACT. Here we study the Brill–Noether theory of "extremal" Cornalba's theta-characteristics on stable curves C of genus g, where "extremal" means that they are line bundles on a quasi-stable model of C with $\sharp(\operatorname{Sing}(C))$ exceptional components.

1. Introduction. For any integer $g \ge 2$ let \overline{M}_g denote the moduli space of stable curves of genus g over an algebraically closed field \mathbb{K} such that $\operatorname{char}(\mathbb{K}) = 0$. Fix any $Y \in \overline{M}_g$. The topological type (if $\mathbb{K} = \mathbb{C}$) or the equisingular type (for arbitrary \mathbb{K}) τ may be described in the following way. Fix an ordering Y_1, \ldots, Y_s of the irreducible components of Y. The type τ is uniquely determined by the string of integers listing the geometric genera of Y_1, \ldots, Y_s , the integers $\sharp(\operatorname{Sing}(Y_i)), 1 \le i \le s$, and the integers $\sharp(Y_i \cap Y_j),$ $1 \le i < j \le s$ (see [1], p. 99). Recently, the Brill–Noether theory of thetacharacteristics of smooth curves had a big advances due to a solution by L. Benzo ([3]) of a conjecture of G. Farkas ([6], Conjecture 3.4). In this note we show that such a result may be used for the study of the Brill–Noether theory of Cornalba's theta-characteristics we are looking for in this note the existence of such a theta-characteristic on \overline{M}_g . Indeed, we will check that for the extremal theta-characteristics on Y with prescribed number of

²⁰¹⁰ Mathematics Subject Classification. 14H10; 14H51; 14H42.

Key words and phrases. Stable curve, theta-characteristic, spin curve, Brill–Noether theory.

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

linearly independent sections, r + 1, is equivalent to the existence of thetacharacteristics E_1, \ldots, E_s on the normalizations C_1, \ldots, C_s of Y_1, \ldots, Y_s and with $\sum_{i=1}^s h^0(C_i, A_i) = r + 1$.

Let $\mathcal{S}_q, g \geq 2$, be the set of all theta-characteristics on smooth genus g curves, i.e. the set of all pairs (C, L) with $C \in M_g$, $L \in Pic(C)$ and $L^{\otimes 2} \cong \omega_C$. For all integers $r \geq -1$ set $\mathcal{S}_g^r := \{(C, L) \in \mathcal{S}_g : h^0(L) = r+1\}$. The set \mathcal{S}_g^r is a locally closed subset of \mathcal{S}_g and each point of it has codimension at most $\binom{r+1}{2}$ in \mathcal{S}_g ([8], part (ii) of Theorem 1.10). Maurizio Cornalba proved the existence of a compactification $\overline{\mathcal{S}}_g$ of \mathcal{S}_g equipped with a finite morphism $u_g: \overline{\mathcal{S}}_g \to \overline{M}_g$ such that each fiber of u_g has cardinality 2^{2g} ([5], Proposition 5.2 and first part of §3). There are many topological types for which the Brill-Noether theory of theta-characteristics with r+1linearly independent sections never occurs in the expected codimension, i.e. in codimension $\binom{r+1}{2}$ (see [2] for a description of all theta-characteristics with g linearly independent sections). The claim of this note is that to study the Brill–Noether theorem of $\overline{\mathcal{S}}_g \setminus \mathcal{S}_g$ one needs to distinguish the quasi-stable model on which a Cornalba's theta-characteristic lives as a line bundle. In other compactifications of \mathcal{S}_q (as in [9]) torsion-free sheaves are used; prescribing the non-locally free points of these sheaves on some $C\in \bar{M_g}$ is equivalent to prescribe the images in $\operatorname{Sing}(C)$ of the quasistable model of C on which a Cornalba's theta-characteristic "is" a line bundle (it is not quite a line bundle L, but a line bundle up-to inessential isomorphisms and we also need to prescribe the line bundle $L^{\otimes 2}$ ([5], Lemma 2.1 and first part of $\S(3)$). None of these problems affect the Brill–Noether theory for the theta-characteristics we will consider in this note (we call them the maximally singular ones). For these theta-characteristics the computation of h^0 is reduced to the computations of h^0 for theta-characteristics on the normalizations of all the irreducible components of the given $C \in \overline{M}_q$. Hence the existence part is reduced to an existence part on smooth curves for all genera up to g. There is a natural injective morphism from \overline{S}_g into Caporaso's compactification $\overline{P}_{g-1,g}$ ([4]) of the set of all degree g-1line bundles on M_g ([7]). A Cornalba's theta-characteristic associated to a stable curve C is said to be maximally singular if it is a line bundle on the quasi-stable model C' of C obtained blowing up all singular points of C. A Cornalba's theta-characteristic on C is maximally singular if and only if it induces a theta-characteristic on the normalization of C ([5], Lemma 1.1). If C has compact type, then each theta-characteristic on C is maximally singular, because for each $S \subset \operatorname{Sing}(C)$, the quasi-projective curve $C \setminus S$ has $\sharp(S) + 1$ connected components.

Obviously $\binom{a}{2} = 0$ for a = 0, 1. Define the function $\alpha : \mathbb{N} \to \mathbb{N}$ in the following way. Set $\alpha(0) := 1$ and $\alpha(1) := 1$. For all integers $q \ge 2$ let $\alpha(q)$

be the maximal positive integer such that $\binom{\alpha(q)+1}{2} \leq q$. We have $\alpha(2) = 1$ and $\alpha(3) = 2$.

Theorem 1. Fix a type τ for genus g stable curves. Let q_1, \ldots, q_s be the geometric genera of the irreducible components of stable curves with type τ . Fix integers a_i , $1 \leq i \leq s$, such that $0 \leq a_i \leq \alpha(q_i)$ for all i and set $r \coloneqq -1 + \sum_{i=1}^{s} a_i$. Then there is an irreducible component Γ of the set of all maximally singular Cornalba's theta-characteristics for stable curves with type τ with codimension $\sum_{i=1}^{s} {a_i \choose 2}$ and such that for a general $(Y, L) \in \Gamma$ with $Y = Y_1 \cup \cdots \cup Y_s$, each Y_i of geometric genus q_i and $h^0(C_i, L|C_i) = a_i$ for all i, where C_i is the normalization of Y_i .

In most cases no component satisfying the thesis of Theorem 1 may be smoothable, i.e., it is in the closure inside \overline{S}_g of an irreducible component of S_q^r , just because r may be very high.

2. The proof.

Remark 1. Fix an integer $q \ge 0$ and a smooth genus q curve D. If $q \ge 3$, then assume that D is general in its moduli space. A corollary of Gieseker–Petri theorem (case $q \ge 3$) ([1], Proposition 21.6.7) or Riemann–Roch gives that every theta-characteristic A on D satisfies $h^0(D, A) \le 1$. We will only use the existence of theta-characteristics A, B on D such that $h^0(D, A) = 0$ and $h^0(D, B) = 1$.

Remark 2. Notice that S_3^1 has codimension 1 in M_3 , because the hyperelliptic locus of M_3 has dimension 5. By [6], Theorem 1.2, S_g^1 has a component of the expected codimension, 1, for all $g \geq 3$.

Lemma 1. Let Y be a reduced projective curve such that $Y = C \cup T$ such that $T \cong \mathbb{P}^1$, $\sharp(C \cap T) = 2$ and each point of $C \cap T$ is a nodal point of Y. Let R be any line bundle on Y such that $\deg(R|T) = 1$. Then $h^i(Y, R) = h^i(C, R|C)$, i = 0, 1.

Proof. We have the Mayer–Vietoris exact sequence:

(1)
$$0 \to R \to R | C \oplus R | T \to R | C \cap T \to 0$$

Since $\deg(C \cap T) = 2$, $\deg(R|T) = 1$ and R is a line bundle, the restriction map $H^0(T, R|T) \to H^0(C \cap T, R|C \cap T)$ is an isomorphism. Hence (1) gives $h^i(Y, R) = h^i(C, R|C), i = 0, 1.$

Proof of Theorem 1. Fix a stable curve $Y = Y_1 \cup \cdots \cup Y_s$ with each Y_i of geometric genus q_i . Let $C = C_1 \sqcup \cdots \sqcup C_s$ be the normalization of Y with C_i the normalization of Y_i . Assume for the moment the existence of a theta-characteristic A_i on C_i such that $h^0(C_i, A_i) = a_i$ and let A' be the line bundle on $C_1 \sqcup \cdots \sqcup C_s$ with $A'|C_i = A_i$ for all i. Let Y' be the quasistable curve with Y as its stable reduction and with $\sharp(\operatorname{Sing}(Y))$ exceptional components. Let A be any line bundle on Y' with A' as its pull-back to

C and $\deg(A|J) = 1$ for each exceptional component J of Y'. Applying $\sharp(\operatorname{Sing}(Y))$ times Lemma 1, we get $h^0(Y', A) = r+1$. A is a totally singular Cornalba's theta-characteristic. Now we count the parameters. By the definitions of the integers $\alpha(q_i)$ and a_i we have $q_i \geq \binom{a_i+1}{2}$ for all i if $a_i \geq 2$. By [3], Theorem 1.2, there is an irreducible component $\Gamma_i \subset S_{q_i}^{a_i-1}$ if $a_i \geq 2$. For the case $a_i = 0$ use Remark 1. For the case $a_i = 1$ use Remark 2. Taking all (Y, A) coming from all $(C_i, A_i) \in \Gamma_i$, we get a family of curves Y with codimension $\sum_{i=1}^{s} \binom{a_i}{2}$ in the subset $M(\tau) \subset \overline{M}_g$ with type τ . This is a maximal family (i.e. an open subset of an irreducible component of $\overline{\mathcal{S}}_g^r$), because each Γ_i is a maximal family and for all $Y \in M(\tau)$ the fiber $u_g^{-1}(Y)$ has the same number of elements.

References

- Arbarello, E., Cornalba, M., Griffiths, P. A., Geometry of Algebraic Curves. Vol. II, Springer, Berlin, 2011.
- Ballico, E., Sections of theta-characteristics on stable curves, Int. J. Pure Appl. Math. 54, No. 3 (2009), 335–340.
- Benzo, L., Components of moduli spaces of spin curves with the expected codimension, Mathematische Annalen (2015), DOI 10.1007/s00208-015-1171-6, arXiv:1307.6954.
- [4] Caporaso, L., A compactification of the universal Picard variety over the moduli space of stable curves, J. Amer. Math. Soc. 7, No. 3 (1994), 589–660.
- [5] Cornalba, M., Moduli of curves and theta-characteristics. Lectures on Riemann surfaces (Trieste, 1987), World Sci. Publ., Teaneck, NJ, 1989, 560–589.
- [6] Farkas, G., Gaussian maps, Gieseker-Petri loci and large theta-characteristics, J. Reine Angew. Math. 581 (2005), 151–173.
- [7] Fontanari, C., On the geometry of moduli of curves and line bundles, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16, No. 1 (2005), 45–59.
- [8] Harris, J., Theta-characteristics on algebraic curves, Trans. Amer. Math. Soc. 271 (1982), 611–638.
- [9] Jarvis, T. J., Torsion-free sheaves and moduli of generalized spin curves, Compositio Math. 110, No. 3 (1998), 291–333.

Edoardo Ballico Department of Mathematics University of Trento 38123 Povo (TN) Italy e-mail: ballico@science.unitn.it

Received August 15, 2013