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Abstract A linear complementarity problem (LCP) is formulated for the price
of American options under the Bates model which combines theHeston stochas-
tic volatility model and the Merton jump-diffusion model. Afinite difference dis-
cretization is described for the partial derivatives and a simple quadrature is used for
the integral term due to jumps. A componentwise splitting method is generalized for
the Bates model. It is leads to solution of sequence of one-dimensional LCPs which
can be solved very efficiently using the Brennan and Schwartzalgorithm. The nu-
merical experiments demonstrate the componentwise splitting method to be essen-
tially as accurate as the PSOR method, but order of magnitudefaster. Furthermore,
pricing under the Bates model is less than twice more expensive computationally
than under the Heston model in the experiments.

1 Introduction

During the last couple of decades, the trading of options hasgrown to tremendous
scale. The most basic options give either the right to sell (put) or buy (call) the un-
derlying asset with the strike price. European options can be exercised only at the
expiry time while American options can be exercised any timebefore the expiry.
Usually American options need to be priced numerically due to the early exercise
possibility. One approach is to formulate a linear complementarity problem (LCP)
or variational inequality with a partial (integro-)differential operator for the price
and then solve it numerically after discretization. Since the books by Glowinski, Li-
ons, Tŕemolìeres [17] and by Glowinski [15], these problems have been extensively
studied.

For pricing options, a model is needed for the behavior of thevalue of the under-
lying asset. Many such models of varying complexity have been developed. More
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complicated models reproduce more realistic paths for the value and match be-
tween the market price and model prices of options is better,but they also make
pricing more challenging. In the Black-Scholes model [5], the value is a geometric
Brownian motion. The Merton model [27] adds log-normally distributed jumps to
the Black-Scholes model while in the Kou model [23], the jumps are log-doubly-
exponentially distributed. The Heston model [19] makes thevolatility also stochas-
tic in the Black-Scholes model. The Bates model [4] which is also sometimes called
as the Heston-Merton model adds to the Heston model log-normally distributed
jumps. The correlated jump model [12] allows also the volatility in the Bates model
to jump.

Many methods have been proposed for solving the resulting LCPs. The Bren-
nan and Schwartz algorithm [6] is a direct method for pricingAmerican options
under the Black-Scholes model; see also [20]. Numerical methods pricing under the
Heston model have been considered in [8], [21], [22], [24], [35]. The treatment of
the jumps in the Merton and Kou models have been studied in [2], [3], [9], [10],
[26], [32]. Pricing under the Bates model has been considered in [7] and under the
correlated jump model in [13].

In this paper, we consider pricing American call options under the Bates model.
We discretize the spatial partial derivatives in the resulting partial integro-differential
operator using a seven-point finite difference stencil. Theintegral term is discretized
using a simple quadrature. The Rannacher scheme [29] is employed in the time
stepping. We treat the LCP by introducing a generalization for the componentwise
splitting method in [21]. The numerical experiments demonstrate that the proposed
method is orders of magnitude faster than the PSOR method.

The outline of the paper is the following. The Bates model andan LCP for an
American call option is described in Sect. 2. The discretization of LCPs is con-
structed in Sect. 3. The componentwise splitting method is proposed in Sect. 4. Nu-
merical experiments are presented in Sect. 5 and conclusions are given in Sect. 6.

2 Option Pricing Model

In the following, we give coupled stochastic differential equations describing the
Bates model. Then, we give an LCP for the price of an American call option when
the market prices of the volatility and jump risks are zero.

2.1 Bates model

The Bates stochastic volatility model with jumps [4] combines the Merton jump
model [27] and the Heston stochastic volatility model [19].It describes the behavior
of the asset valuex and its variancey by the coupled stochastic differential equations
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dx = (µ −λξ )xdt +
√

yxdw1+(J−1)xdn,

dy = κ(θ − y)dt +σ
√

ydw2,
(1)

whereµ is the growth rate of the asset value,κ is the rate of reversion to the mean
level of y, θ is the mean level ofy, andσ is the volatility of the variancey. The two
Wiener processesw1 arew2 have the correlationρ . The Poisson arrival processn
has the rateλ . The jump sizeJ is taken from a distribution

f (J) =
1√

2πδJ
exp

(

− [lnJ− (γ −δ 2/2)]2

2δ 2

)

, (2)

whereγ andδ define the mean and variance of the jump. The mean jumpξ is given
by ξ = exp(γ)−1.

2.2 Linear complementarity problem for American options

We define a partial integro-differential operatorL acting on a price functionu as

Lu = uτ −
1
2

yx2uxx −ρσyxuxy −
1
2

σ2yuyy − (r−q−λξ )xux

−κ(θ − y)uy +(r+λ )u−λ
∫ ∞

0
u(Jx,y,τ) f (J)dJ,

(3)

whereτ = T − t is the time to expiry andq is the dividend yield. For computations,
the unbounded domain is truncated to be

(x,y,τ) ∈ (0,X)× (0,Y )× (0,T ] (4)

with sufficiently largeX andY .
The initial value foru is defined by the payoff functiong(x,y) which gives the

value of option at the expiry. In the following, we consider only call options. A
similar approach can be also applied for put options. The payoff function for a call
option with the strike priceK is

g(x,y) = max{x−K, 0}, x ∈ (0,X), y ∈ (0,Y ). (5)

The priceu of an American option satisfies an LCP
{

Lu ≥ 0, u ≥ g,
(Lu)(u−g) = 0.

(6)

We pose the boundary conditions

u(0,y,τ) = g(0,y), u(X ,y,τ) = g(X ,y), y ∈ (0,Y ),

uy(x,Y,τ) = 0, x ∈ (0,X).
(7)
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Beyond the boundaryx= X , the priceu is approximated to be the same as the payoff
g, that is,u(x,y,τ) = g(x,y) for x ≥ X . On the boundaryy = 0, the LCP (6) holds
and no additional boundary condition needs to be posed.

3 Discretization

We approximate the priceu on a space-time grid defined by the grid points(xi,y j,τk),
0≤ i ≤ m, 0≤ j ≤ n, 0≤ k ≤ l.

3.1 Discretization of spatial differential operator

We use a uniform space grid with the grid steps in thex-direction andy-direction
being∆x = X/m and∆y = Y/n, respectively. Fig. 1 shows a coarse space grid. A
semidiscrete approximation for the priceu is given by the time-dependent grid point
values

ui, j(τ)≈ u(xi,y j,τ) = u(i∆x, j∆y,τ), 0≤ i ≤ m, 0≤ j ≤ n. (8)

We need to discretize the spatial partial derivatives inL given by

a11uxx +a12uxy +a22uyy +b1ux +b2uy + cu, (9)

where

a11 =−1
2

yx2, a12 =−ρσyx, a22 =−1
2

σ2y,

b1 =−(r−q−λξ )x, b2 =−κ(θ − y), and c = r+λ .
(10)

The spatial partial derivatives are discretized using finite differences. For the non
cross-derivatives, we use the standard central differenceapproximations

-

6
y

Y

0
0 X x

Fig. 1 A coarse 17×9 uniform grid for the computational domain(0,X)× (0,Y ).



Pricing American Options under the Bates Model 5

uxx(xi,y j,τ)≈
1

(∆x)2 (2u(xi,y j,τ)−u(xi −∆x,y j,τ)−u(xi +∆x,y j,τ)) ,

uyy(xi,y j,τ)≈
1

(∆y)2 (2u(xi,y j,τ)−u(xi −∆x,y j,τ)−u(xi +∆x,y j,τ)) ,

ux(xi,y j,τ)≈
1

2∆x
(u(xi +∆x,y j,τ)−u(xi −∆x,y j,τ)) , and

uy(xi,y j,τ)≈
1

2∆y
(u(xi +∆x,y j,τ)−u(xi −∆x,y j,τ)) .

(11)

In this paper, we assume that the correlationρ is negative and we use a seven-
point stencil shown in Fig. 2. A similar stencil has been described in [7]. For a
positive correlationρ , a suitable seven-point stencil is given in [21], [22]. The cross-
derivativeuxy is approximated by

uxy(xi,y j,τ)≈
1

2∆x∆y

(

2u(xi,y j,τ)−u(xi −∆x,y j +∆y)−u(xi +∆x,y j −∆y)

+(∆x)2uxx(xi,y j,τ)+(∆y)2uyy(xi,y j,τ)
)

.

(12)

Due to additional derivative terms in (12), we define modifiedcoefficients foruxx

anduyy as

ã11 = a11+
1
2

∆x
∆y

a12, and ã22 = a22+
1
2

∆y
∆x

a12. (13)

It is well-known that the central finite differences can leadto positive weights
in difference stencil when the convection dominates the diffusion. To avoid positive
weights, we add some artificial diffusion according to

â11 = min

{

ã11, −
1
2

b1∆x,
1
2

b1∆x

}

(14)

and

â22 = min

{

ã22, −
1
2

b2∆y,
1
2

b2∆y

}

. (15)

This is equivalent to using a combination of one-sided and central differences for the
convection. The resulting matrix is an M-matrix. Its off-diagonals are nonpositive
and the diagonal is positive. It is strictly diagonally dominant whenc = r+λ > 0.

Fig. 2 A seven-point finite
difference stencil used with
a negative correlationρ < 0
between the Wiener processes
for the asset valuex and its
variancey.
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3.2 Discretization of integral term

The integral term due to the jumps in (3) needs to computed at each grid pointx= xi.
We denoted it by

Ii =
∫ ∞

0
u(Jxi,y,τ) f (J)dJ. (16)

In order to perform the integration, we make a change of variableJ = es which leads
to

Ii =
∫ ∞

−∞
u(esxi,y,τ)p(s)ds, (17)

wherep is the probability density function of the normal distribution with the mean
γ −δ 2/2 and the varianceδ 2 given by

p(s) =
1√
2πδ

exp

(

− [s− (γ −δ 2/2)]2

2δ 2

)

. (18)

We decomposeIi into integrals over grid intervals as

Ii =
n−1

∑
j=0

Ii, j +
∫ ∞

lnxn−lnxi

g(esxi,y)p(s)ds, (19)

where

Ii, j =
∫ lnx j−lnxi

lnx j+1−lnxi

u(esxi,y,τ)p(s)ds. (20)

The price functionu(x,y,τ) needs to be approximated between each grid point pair
(xi,xi+1). For this, we use a piecewise linear interpolation

u(x,y,τ)≈ xi+1− x
xi+1− xi

u(xi,y,τ)+
x− xi

xi+1− xi
u(xi+1,y,τ) (21)

for x ∈ [x j,x j+1].
By performing the integration, we obtain

Ii, j ≈
eγ

2

[

erf

(

si, j+1− γ −δ 2/2

δ
√

2

)

−erf

(

si, j − γ −δ 2/2

δ
√

2

)]

α jxi

+
1
2

[

erf

(

si, j+1− γ +δ 2/2

δ
√

2

)

−erf

(

si, j − γ +δ 2/2

δ
√

2

)]

β jxi,

(22)

where erf(·) is the error function,si, j = lnx j − lnxi,

α j =
u(x j+1,y,τ)−u(x j,y,τ)

x j+1− x j
, and β j =

u(x j,y,τ)x j+1−u(x j+1,y,τ)x j

x j+1− x j
. (23)



Pricing American Options under the Bates Model 7

3.3 Semidiscrete LCP

The space discretization leads to an LCP

{

uτ +Au+a ≥ 0, u ≥ g,
(uτ +Au+a)T (u−g) = 0,

(24)

whereA is (m+ 1)(n+ 1)× (m+ 1)(n+ 1) matrix, a is a vector resulting from
the second term in (19),u and g are vectors containing the grid point values of
the priceu and the payoffg, respectively. In the above LCP, the inequalities hold
componentwise. The entries in the rows ofA corresponding to the grid points on
the boundariesx = 0 andx = X are set to zero. The submatrix ofA corresponding
to the grid points not on the boundariesx = 0 andx = X is an M-matrix. When the
numbering of the grid points first goes through the grid points in thex-direction and
then in they-direction, the(n+1)× (n+1) diagonal blocks ofA are essentially full
matrices due to the jump term.

3.4 Time discretization

We use the Rannacher scheme [29] with nonuniform time steps.It takes a few
first time steps with the implicit Euler method and then it uses the Crank-Nicolson
method. This leads to better stability properties than using just the Crank-Nicolson
method. The solution vectoru is approximated at times

τk =

{

(

k
2l

)2
T, k = 0,1,2,3,

(

k−2
l−2

)2
T, k = 4,5, . . . , l.

(25)

In order to simplify the following notations, we define time step sizes∆τk = τk+1−
τk, k = 0,1, . . . , l −1.

In order to simplify the notations in the following, we denote by LCP(B,u,b,g)
the linear complementarity problem

{

(Bu−b)≥ 0, u ≥ g,
(Bu−b)T (u−g) = 0.

(26)

The Rannacher time stepping leads to the solution of the following sequence of
LCPs:

LCP(B(k+1),u(k+1),b(k+1),g), (27)

whereu(k) denotes the vectoru at the timeτk. For the first four time stepsk =
0,1,2,3, we use the implicit Euler method defined by

B(k+1) = I+∆τkA and b(k+1) = ∆τku(k)−∆τka. (28)
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The rest of the time stepsk = 4,5, . . . , l−1 are performed using the Crank-Nicolson
method defined by

B(k+1) = I+
1
2

∆τkA and b(k+1) =

(

I− 1
2

∆τkA
)

u(k)−∆τka. (29)

4 Componentwise Splitting Method

Componentwise splitting methods are inspired by ADI (Alternating Direction Im-
plicit) schemes which were introduced in [11], [28]. Instead of treating a part of
operator explicitly, we use fully implicit splittings considered in [14], [16], [25],
[33], for example. For the Heston model, the componentwise splitting method were
introduced in [21] with a positive correlationρ . In [7], the splitting method was
considered in the case of a negative correlation.

A

@
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@

@
@r

r

r

Fig. 3 The matrix splitting ofA and the corresponding splitting of the finite difference stencil.

The matrixA is split into three matrices which correspond to the couplings in
thex-direction,y-direction, and diagonal direction. Fig. 3 shows the matrixsplitting
and also the corresponding splitting of the finite difference stencil. The simplest
fractional step method based on the implicit Euler method isgiven in Fig. 4. The
formal accuracy of this method isO(∆τl−1) = O

(

1
l

)

.
We increase the accuracy of the splitting method by performing a Strang sym-

metrization [30] and use the Crank-Nicolson method; see also [14]. This leads one
time step to have the following fractional steps:

1. LCP
(

I+ ∆τk
4 Ay,u(k+1/5),

(

I− ∆τk
4 Ay

)

u(k),g
)

2. LCP
(

I+ ∆τk
4 Ad ,u(k+2/5),

(

I− ∆τk
4 Ay

)

u(k+1/5),g
)

3. LCP
(

I+ ∆τk
2 Ax,u(k+3/5),

(

I− ∆τk
2 Ax

)

u(k+2/5)−∆τka,g
)

4. LCP
(

I+ ∆τk
4 Ad ,u(k+4/5),

(

I− ∆τk
4 Ay

)

u(k+3/5),g
)

5. LCP
(

I+ ∆τk
4 Ay,u(k+1),

(

I− ∆τk
4 Ay

)

u(k+4/5),g
)

In order to maintain the good stability of the Rannacher scheme, we use the implicit
Euler method instead the Crank-Nicolson method for the firstfour time stepsk =
0,1,2,3 in the above symmetrized splitting method.
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1. LCP(I+∆τkAy,u(k+1/3),∆τku(k),g)
Solve the sequence of one-dimensional LCPs:

2. LCP(I+∆τkAd ,u(k+2/3),∆τku(k+1/3),g)
Solve the sequence of one-dimensional LCPs:

3. LCP(I+∆τkAx,u(k+1),∆τku(k+2/3)−∆τka,g)
Solve the sequence of one-dimensional LCPs:

Fig. 4 Three fractional splitting steps for performing the time step from τk to τk+1.

4.1 Solution of one-dimensional LCPs

For an American call option, typical early exercise boundaries at different times are
shown in Fig. 5. The boundary can be described by a relationy = h(x,τ), whereh
an increasing function with respect tox. Thus, a given point(x,y,τ) belongs to

• the hold region ify > h(x,τ) or
• the early exercise region ify ≤ h(x,τ).

Similarly, the early exercise boundary divides eachx-directional line,y-directional
line, and(1,−1)-directional line into two parts. Due to this solution structure and the
tridiagonal matrices defining the LCPs in they-direction and(1,−1)-direction, the
Brennan and Schwartz algorithm can used used to solve these problems. The LCPs
in thex-direction have full matrices due to the integral term. A solution procedure
for these problems is described in Sect. 4.1.2.

4.1.1 Brennan and Schwartz algorithm

The Brennan and Schwartz algorithm for American put optionsunder the Black-
Scholes model was described in [6]. The algorithm can be modified to use a standard
LU-decomposition [1], [20]. We formulate it for a tridiagonallinear complementar-
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ity problem:

Tx =













T1,1 T1,2

T2,1
. . .

. ..
. . . Tm−1,m−1 Tm−1,m

Tm,m−1 Tm,m























x1

x2
...

xm











≥











b1

b2
...

bm











= b, (30)

x ≥ g, (Tx−b)T (x−g) = 0. (31)

The algorithm assumes the solutionx to be such that for some integerk it holds that

xi > gi, i = 1, . . . ,k, and

xi = gi, i = k+1, . . . ,m.
(32)

The Brennan and Schwartz algorithm withLU-decomposition is described in Fig. 6.
After a suitable numbering of unknowns the assumption (32) holds for the one-

dimensional LCPs in all three directions. The Brennan and Schwartz algorithm can
be use directly to solve the one-dimensional LCPs in they-direction and in the
(1,−1)-direction.

4.1.2 LCPs with full matrices associated to the x-direction

A matrix associated to one one-dimensional LCP in thex-direction is denoted byB.
It has a regular splitting [34]

B = T−J, (33)

where−J is a full matrix resulting from the integral term andT is the rest which a
tridiagonal matrix. We generalize a fixed point iteration described in [31] and used
in [2], [10], [32]. The fixed point iteration for LCP(B,x,b,g) reads

LCP(T,x j+1,b+Jx j,g), j = 0,1, . . . (34)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400

y

x

Fig. 5 The time evolution of the early exercise boundaries for an American call option.
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Computation ofLU-decomposition and forward substitution:
U1,1 = T1,1

y1 = b1

Do i = 2, . . . ,m
Li,i−1 = Ti,i−1/Ui−1,i−1

Ui−1,i = Ti−1,i

Ui,i = Ti,i −Li,i−1Ui−1,i

yi = bi −Li,i−1yi−1

End Do
Backward substitution with a projection:
xm = ym/Um,m

xm = max{xm, gm}
Do i = m−1, . . . ,1

xi = (yi −Ui,i+1xi+1)/Ui,i

xi = max{xi, gi}
End Do

Fig. 6 The Brennan and Schwartz algorithm in which the only modification to a standard solution
with LU-decomposition is the additional projection in the backward substitution.

Each iteration requires the solution of an LCP with the tridiagonalT and the multi-
plication of a vector byJ. The Brennan and Schwartz algorithm can be used to solve
the LCPs (34). The iteration converges very rapidly and onlya couple of iterations
are needed to reach sufficient accuracy for practical purposes.

5 Numerical Experiments

In the numerical experiments for call options, we use the model parameter values:

• the risk free interest rater = 0.03,
• the dividend yieldq = 0.05,
• the strike priceK = 100,
• the correlation between the price and variance processesρ =−0.5,
• the mean level of the varianceθ = 0.04,
• the rate of reversion to the mean levelκ = 2.0,
• the volatility of the varianceσ = 0.25,
• the jump rateλ = 0.2,
• the mean jumpγ =−0.5, and
• the variance of jumpδ = 0.4.

The computational domain is(x,y,τ) ∈ [0,400]× [0,1]× [0,0.5].
Our first experiment compares the PSOR method and the Strang symmetrized

componentwise splitting method for call options under the Heston model, that is,
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λ = 0. In this case, the LCPs in thex-direction are tridiagonal and they can be
solved using the Brennan and Schwartz algorithm without theiteration (34).

Table 1 reports the numerical results. It and also Table 2 have the following
columns: Grid(m,n, l) defines the number of grid steps inx, y, andτ to bem, n, are
l, respectively. Iter. gives the average number of PSOR iterations on each time step
with the relaxation parameterω = 1.5. With the componentwise splitting method
iter. specifies the number of iterations (34) to solve the LCPs in thex-direction at
each time step. Error column gives the root mean square relative error given by

error=

[

1
5

5

∑
i=1

(

u(xi,θ ,T )−U(xi,θ ,T )
U(xi,θ ,T )

)2
]1/2

, (35)

wherex = (80,90,100,110,120)T andU is the reference price. Ratio is the ra-
tio of the consecutive root mean square relative errors. CPUgives the CPU time
in seconds on a 3.8 GHz Intel Xeon PC. The reference prices under the Heston
model at(xi,θ ,T ), i = 1,2, . . . ,5, are 0.131563, 1.255396, 4.999888, 11.680219,
20.325463 which were computed using the componentwise splitting method on the
grid (4096,2048,512).

We can observe from Table 1 that the discretizations with both methods appears
to be roughly second-order accurate as the ratio is four on average. Furthermore,
the splitting increases the error only about 2%. On the coarsest grid, the splitting
method is five times faster than the PSOR method, and on the finest grid it is 32
times faster.

Table 1 The numerical results for the Heston model

method grid(m,n, l) iter. error ratio CPU

PSOR (64,32,8) 34.6 0.14470 0.05
(128,64,16) 42.3 0.05607 2.58 0.48
(256,128,32) 95.3 0.01006 5.58 8.18
(512,256,64) 196.6 0.00350 2.87 128.51
(1024,512,128) 372.2 0.00066 5.31 1890.76

comp.wise (64,32,8) 0.14412 0.01
splitting (128,64,16) 0.05621 2.56 0.06

(256,128,32) 0.01019 5.51 0.51
(512,256,64) 0.00355 2.87 6.36
(1024,512,128) 0.00067 5.28 58.27

In our second experiment, we performed the same comparison under the Bates
model. The reference prices computed using the componentwise splitting method on
the grid(4096,2048,512) are 0.328526, 2.109397, 6.711622, 13.749337, 22.143307.
In the componentwise splitting method, the LCPs in thex-direction lead to full ma-
trices and the iteration (34) is employed to solve them. Based on a few experiments,
we observed that already after two iterations the accuracy is sufficient. Thus, we use
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two iterations in our comparison. The multiplication by thematrix J is the most ex-
pensive operation in the iteration. In order to perform it efficiently, we collected all
n multiplications corresponding to allx-grid lines together and then performed the
resulting matrix-matrix multiplication using the optimized GotoBLAS library [18].

The numerical results under the Bates model are given in Table 2. Absolute er-
rors are comparable to the ones under the Heston model, but asthe option prices are
higher under the Bates model the relative errors reported inthe table are smaller.
Again roughly second-order accuracy is observed with both methods. The CPU
times with the componentwise splitting method were less than twice the times un-
der the Heston model. The componentwise splitting method is16 times faster on the
coarsest grid, and it is about 2500 times faster on the finest grid. On finer grids, the
PSOR method leads to infeasible CPU times while the times with componentwise
splitting method are still reasonable.

Table 2 The numerical results for the Bates model

method grid(m,n, l) iter. error ratio CPU

PSOR (64,32,8) 39.6 0.10887 0.16
(128,64,16) 48.1 0.03803 2.86 2.14
(256,128,32) 108.2 0.00670 5.68 138.92
(512,256,64) 222.6 0.00209 3.20 8605.09

(1024,512,128) 420.5 0.00034 6.13 275191.73

comp.wise (64,32,8) 2.0 0.10833 0.01
splitting (128,64,16) 2.0 0.03790 2.86 0.09

(256,128,32) 2.0 0.00668 5.67 0.81
(512,256,64) 2.0 0.00210 3.19 10.18

(1024,512,128) 2.0 0.00035 6.07 109.45

6 Conclusions

We described a linear complementarity problem (LCP) for pricing American op-
tions under the Bates model and we considered a finite difference discretization. We
proposed a componentwise splitting method to solve approximately the LCPs. It
leads to a sequence of LCPs with tridiagonal matrices. The Brennan and Schwartz
algorithm can solve these LCPs efficiently.

Our numerical experiments showed that the additional splitting error do not es-
sentially increase the discretization error. The componentwise splitting method is
orders of magnitude faster than the PSOR method under the Bates model. Pricing
under the Bates model was at most two times more expensive than under the Heston
model with the componentwise splitting method.
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