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Abstract A linear complementarity problem (LCP) is formulated foetprice
of American options under the Bates model which combinedHéston stochas-
tic volatility model and the Merton jump-diffusion model. fkite difference dis-
cretization is described for the partial derivatives anthg$e quadrature is used for
the integral term due to jumps. A componentwise splittinghud is generalized for
the Bates model. It is leads to solution of sequence of omesional LCPs which
can be solved very efficiently using the Brennan and Schvedgiarithm. The nu-
merical experiments demonstrate the componentwiseisglithethod to be essen-
tially as accurate as the PSOR method, but order of magniaster. Furthermore,
pricing under the Bates model is less than twice more expergimputationally
than under the Heston model in the experiments.

1 Introduction

During the last couple of decades, the trading of optionsgnawn to tremendous
scale. The most basic options give either the right to self)(pr buy (call) the un-
derlying asset with the strike price. European options caexercised only at the
expiry time while American options can be exercised any tbaéore the expiry.
Usually American options need to be priced numerically duthe early exercise
possibility. One approach is to formulate a linear completagty problem (LCP)
or variational inequality with a partial (integro-)diffemtial operator for the price
and then solve it numerically after discretization. Sirfeelbooks by Glowinski, Li-
ons, Témolieres [17] and by Glowinski [15], these problems have beeserskiely
studied.

For pricing options, a model is needed for the behavior oftidae of the under-
lying asset. Many such models of varying complexity havenbéeveloped. More
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complicated models reproduce more realistic paths for #leevand match be-
tween the market price and model prices of options is bditgrthey also make
pricing more challenging. In the Black-Scholes model [Bg value is a geometric
Brownian motion. The Merton model [27] adds log-normallgtdbuted jumps to
the Black-Scholes model while in the Kou model [23], the jsnape log-doubly-
exponentially distributed. The Heston model [19] makesviblatility also stochas-
tic in the Black-Scholes model. The Bates model [4] whicH3$® aometimes called
as the Heston-Merton model adds to the Heston model logaltyrrdistributed
jumps. The correlated jump model [12] allows also the viitgtin the Bates model
to jump.

Many methods have been proposed for solving the resultingd.d’he Bren-
nan and Schwartz algorithm [6] is a direct method for prickgerican options
under the Black-Scholes model; see also [20]. Numericahaukt pricing under the
Heston model have been considered in [8], [21], [22], [285][ The treatment of
the jumps in the Merton and Kou models have been studied if32][9], [10],
[26], [32]. Pricing under the Bates model has been consitlier¢7] and under the
correlated jump model in [13].

In this paper, we consider pricing American call options emithe Bates model.
We discretize the spatial partial derivatives in the résglpartial integro-differential
operator using a seven-point finite difference stencil. ifitegral term is discretized
using a simple quadrature. The Rannacher scheme [29] isogatlin the time
stepping. We treat the LCP by introducing a generalizatarttie componentwise
splitting method in [21]. The numerical experiments denti@is that the proposed
method is orders of magnitude faster than the PSOR method.

The outline of the paper is the following. The Bates model and_CP for an
American call option is described in Sect. 2. The discréitraof LCPs is con-
structed in Sect. 3. The componentwise splitting methodapgsed in Sect. 4. Nu-
merical experiments are presented in Sect. 5 and conchlusi@ngiven in Sect. 6.

2 Option Pricing M odel

In the following, we give coupled stochastic differentigjuations describing the
Bates model. Then, we give an LCP for the price of an Ameriahoption when
the market prices of the volatility and jump risks are zero.

2.1 Bates model

The Bates stochastic volatility model with jumps [4] congsrnthe Merton jump
model [27] and the Heston stochastic volatility model [18flescribes the behavior
of the asset valugand its variancg by the coupled stochastic differential equations
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dx = (u —A&)xdt + \/yxdwy + (J — 1)xdn,

1
dy = k(6 —y)dt + g/ydwo, @

wherey is the growth rate of the asset valueis the rate of reversion to the mean
level ofy, 6 is the mean level of, ando is the volatility of the variancg. The two
Wiener processes; arew, have the correlatiop. The Poisson arrival process
has the ratd . The jump sizel is taken from a distribution

o1 _[In3—(y—8%/2)
f(J) = mexp( 257 >, 2)

wherey andd define the mean and variance of the jump. The mean j€isiven
by § = exp(y) — 1.

2.2 Linear complementarity problem for American options
We define a partial integro-differential operatoacting on a price function as

1 1
LU= Ur — ZYXPUxx — POYXUsy — = 02YUyy — (I — §— A & XUy
2 . 3)
—K(@—=y)uy+(r+A)u—A / u(JIx,y, 7)f(J)dJ,
0

wheret =T —t is the time to expiry and is the dividend yield. For computations,
the unbounded domain is truncated to be

(X, T) € (0,X) x (0,Y) x (0, T] (4)

with sufficiently largeX andY.

The initial value foru is defined by the payoff functiog(x,y) which gives the
value of option at the expiry. In the following, we considary call options. A
similar approach can be also applied for put options. Thefidiynction for a call
option with the strike pric& is

a(x,y) = max{x—K,0}, xe(0,X), ye(0,Y). (5)

The priceu of an American option satisfies an LCP

Lu>0, u>g
— Y% - 6
{(Lu)(u—g):O. (©)
We pose the boundary conditions
u0,y,1) =g(0,y), u(X,y,1)=g(X,y), ye(0,)Y), @

uy(x,Y,T) =0, xe (0,X).
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Beyond the boundany= X, the priceuis approximated to be the same as the payoff
g, thatis,u(x,y, 7) = g(x,y) for x > X. On the boundary = 0, the LCP (6) holds
and no additional boundary condition needs to be posed.

3 Discretization

We approximate the priagon a space-time grid defined by the grid poipésy;, 1«),
0<i<mO0<j<nO0<k<l.

3.1 Discretization of spatial differential operator

We use a uniform space grid with the grid steps in xkdirection andy-direction
beingAx = X/mandAy = Y/n, respectively. Fig. 1 shows a coarse space grid. A
semidiscrete approximation for the prigés given by the time-dependent grid point
values

Ui j(T) = u(x,yj, T) = u(iax jay,t), 0<i<m, 0<j<n (8)
We need to discretize the spatial partial derivativek given by
11Uk + A12Uxy + az2Uyy + b1 Uy + bouy +cu, 9)

where

a _ Ly ajp = —po a ——}02
11 = ZYX7 12 = —POYX, axp= 5 Y, (10)

bi=—(r—q—A&)x, bp=—k(6-y), and c=r+A.

The spatial partial derivatives are discretized using diiifferences. For the non
cross-derivatives, we use the standard central differappeoximations

0 >
0 X X

Fig. 1 A coarse 1% 9 uniform grid for the computational domaff, X) x (0,Y).
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1
U (X, Y}, T) ~ ( (2u(x;,yj, T) —u(Xi — AX,Yj, T) —u(X +AX.Yj, T)),

Ax)?
1
Uyy(Xi»YjaT) ~ (Ay)z (ZU(Xi,yj,T) - U(X. 7AX,yj,T) - U(X| +AX7)’17T)),
(11)
1
UX(Xi 7y] ) T) ~ E( (U(Xi +AX3 y] ) T) - U(X| _AX7 yJ ) T)) ) and

1
Uy(Xi, Y, T) =~ E(u(xi +AX,Yj, T) —u(X —AX,Yj, T)).
In this paper, we assume that the correlatis negative and we use a seven-
point stencil shown in Fig. 2. A similar stencil has been diégacl in [7]. For a
positive correlatiorp, a suitable seven-point stencil is given in [21], [22]. Thess-
derivativeuyy is approximated by

1
Usy(Xi,Yj, T) =~ MI (ZU(Xi,YjvT) —Uu(X —Ax,yj +Ay) —u(x +Ax,y; — 4y)

+ (AX)2Ux(%, Yj, T) + (AY)?Uyy (X, Y, T)) -
(12)

Due to additional derivative terms in (12), we define modifteefficients foruy
anduyy as
~ 1Ax - 1Ay
dp1=an+-—a and & =agp+ - —aj. 13
11 11+2Ay 12, 22 =82+ 5~ A1 (13)
It is well-known that the central finite differences can lg¢adpositive weights
in difference stencil when the convection dominates thieisiidn. To avoid positive
weights, we add some artificial diffusion according to

éll =min {élla 7%b1AX, ;-blAX} (14)

and 1 1
&2 =min {522, —Ebzﬂy, 2b2Ay} : (15)

This is equivalent to using a combination of one-sided amdrakdifferences for the
convection. The resulting matrix is an M-matrix. Its offadionals are nonpositive
and the diagonal is positive. It is strictly diagonally downt wherc=r +A > 0.

Fig. 2 A seven-point finite
difference stencil used with

a negative correlatiop < 0
between the Wiener processes
for the asset valug and its
variancey.
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3.2 Discretization of integral term

The integral term due to the jumps in (3) needs to computedddt grid pointx = X;.
We denoted it by

li = /m u(JIx,y, 7)f(J)dJ. (16)
0

In order to perform the integration, we make a change of bégid= €° which leads
to

= [ uex.y 1P (17)

wherep is the probability density function of the normal distritmrt with the mean
y— &°/2 and the variancé? given by

_(v_’2 2

1
= —— exp( -
V2md p( 202

We decomposg into integrals over grid intervals as

n—-1 0
DAY S CARCLE (19)
= Inxpn—Inx
where —
b= [ uEx.ynp(sds (20)
InXj11-Inx

The price functioru(x,y, 7) needs to be approximated between each grid point pair
(%i,%+1). For this, we use a piecewise linear interpolation

Xipt1—X X=X
U(X7 Y, T) ~ X::;_lf X; U(X| 2 Ys T) + Xi 11— X u(xi+17y7 T) (21)

for x € [Xj, Xj41].
By performing the integration, we obtain

¢ S,j+1—y—0%/2 sj—y—0%/2\1

1 S, y+062/2 S.j—y+062%/2 (22)
42 erf( LT /S > erf(’J — )] %,
2 [ ( 32 32 Pix
where erf-) is the error functions j = Inx; —Inx;,
aj = U(Xj+1,Y,T) —U(ij)’J)’ and B — U(Xj, Y, T)Xj+1 — U(Xj11,Y, T)X; L (23)

Xj+1— X Xj+1—Xj
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3.3 Semidiscrete LCP
The space discretization leads to an LCP
(24)

ur+Au+a>0, u>g,
(ur +Au+a)T (u—g)=0,

whereA is (m+1)(n+ 1) x (m+1)(n+ 1) matrix, a is a vector resulting from
the second term in (19) and g are vectors containing the grid point values of
the priceu and the payoffy, respectively. In the above LCP, the inequalities hold
componentwise. The entries in the rowsAfcorresponding to the grid points on
the boundaries = 0 andx = X are set to zero. The submatrix Afcorresponding

to the grid points not on the boundaries- 0 andx = X is an M-matrix. When the
numbering of the grid points first goes through the grid peintthex-direction and
then in they-direction, the{n+ 1) x (n+ 1) diagonal blocks oA are essentially full
matrices due to the jump term.

3.4 Time discretization

We use the Rannacher scheme [29] with nonuniform time stépgakes a few
first time steps with the implicit Euler method and then itaiige Crank-Nicolson
method. This leads to better stability properties thangigist the Crank-Nicolson
method. The solution vectaris approximated at times

2
(ZL(I) Ta k:O,l,2737
fe= 25
‘ {<.k-§>2T, k—a5. I (25)

In order to simplify the following notations, we define time|s sizeA 1y = Ty 1 —
T, k=01,....1 - 1.

In order to simplify the notations in the following, we deadty LCRB,u,b,g)
the linear complementarity problem

(26)

The Rannacher time stepping leads to the solution of theviitig sequence of
LCPs:
LCP(B(k+1),U(k+1), b(k+1),g), (27)

whereu® denotes the vectan at the timet,. For the first four time stepk =
0,1,2,3, we use the implicit Euler method defined by

Bk D —1+AnA and b&Y =Aru®—Ara (28)
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The rest of the time steggs=4,5,...,1 — 1 are performed using the Crank-Nicolson
method defined by

Bkt —| + %ATkA and bkl = (I — %A rkA> uk —Ara  (29)

4 Componentwise Splitting Method

Componentwise splitting methods are inspired by ADI (Aiging Direction Im-

plicit) schemes which were introduced in [11], [28]. Insteaf treating a part of
operator explicitly, we use fully implicit splittings coidered in [14], [16], [25],

[33], for example. For the Heston model, the componentwisitiag method were
introduced in [21] with a positive correlatiop. In [7], the splitting method was
considered in the case of a negative correlation.

A = Ax + Ay + Ay

Fig. 3 The matrix splitting ofA and the corresponding splitting of the finite difference stenci

The matrixA is split into three matrices which correspond to the cowgdim
thex-direction,y-direction, and diagonal direction. Fig. 3 shows the magpltting
and also the corresponding splitting of the finite differerstencil. The simplest
fractional step method based on the implicit Euler methogiven in Fig. 4. The
formal accuracy of this method 8(A1i_1) = € (1).

We increase the accuracy of the splitting method by perfogna Strang sym-
metrization [30] and use the Crank-Nicolson method; see [A4]. This leads one
time step to have the following fractional steps:

1. LCP(I + %Ay’u(kH/S), (| _ %Ay) u(k)7g)

2. LCP(I +AkAG ukt2/5), <| _ %Ao u(k+1/5)’g)

3. LCP(1 + 85 A ulke¥9) (1 - 2, ) ul2/9) At g)
4. LCP(I + Ak Ay, ukH4/5) ( ArkAy> y(k+3/5) g)

5. LCP(I +A%A ulktD) <| _ %Ay) u(k+4/5)7g)

In order to maintain the good stability of the Rannacher swhave use the implicit
Euler method instead the Crank-Nicolson method for the finst time stepk =
0,1,2,3 in the above symmetrized splitting method.
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1. LCH —|—ATkAy,u(k+1/3)7A'[ku(k)7g)
Solve the sequence of one-dimensional LCPs:

2. LCR(I +AtAg,uk+2¥ Aqukit/d) g)
Solve the sequence of one-dimensional LCPs:

3. LCP(l + AtAx, uktD Aut2/3) — Area, g)
Solve the sequence of one-dimensional LCPs:

Fig. 4 Three fractional splitting steps for performing the time steprfmy to Ty 1.

4.1 Solution of one-dimensional LCPs

For an American call option, typical early exercise bouietaat different times are
shown in Fig. 5. The boundary can be described by a relatierh(x, ), whereh
an increasing function with respectxoThus, a given pointx,y, T) belongs to

¢ the hold region ify > h(x,T) or
e the early exercise regionyf< h(x, 7).

Similarly, the early exercise boundary divides eaefirectional line,y-directional

line, and(1, —1)-directional line into two parts. Due to this solution stiwre and the
tridiagonal matrices defining the LCPs in thelirection and(1, —1)-direction, the
Brennan and Schwartz algorithm can used used to solve theskems. The LCPs
in the x-direction have full matrices due to the integral term. Autimin procedure
for these problems is described in Sect. 4.1.2.

4.1.1 Brennan and Schwartz algorithm
The Brennan and Schwartz algorithm for American put optionder the Black-

Scholes model was described in [6]. The algorithm can be fiealdio use a standard
L U-decomposition [1], [20]. We formulate it for a tridiagorisdear complementar-
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ity problem:
T11 T2 X1 by
X2 b,
Tx=| T2 =] =e @0
Tm-1m-1 Tm-1m )
Tm.m—l Tm,m Xm bm
x>g,  (Tx=b)T (x—g)=0. (31)
The algorithm assumes the solutwio be such that for some intedeit holds that
Xi>g, i=1...,k and
i >0 ! (32)
Xi=¢g, i=k+1...,m

The Brennan and Schwartz algorithm withJ-decomposition is described in Fig. 6.

After a suitable numbering of unknowns the assumption (3&sfor the one-
dimensional LCPs in all three directions. The Brennan artdn&ctz algorithm can
be use directly to solve the one-dimensional LCPs inyttirection and in the
(1,—1)-direction.

4.1.2 LCPswith full matrices associated to the x-direction

A matrix associated to one one-dimensional LCP intlrection is denoted bi.
It has a regular splitting [34]
B=T-J, (33)

where—J is a full matrix resulting from the integral term aridis the rest which a
tridiagonal matrix. We generalize a fixed point iteratiorsc#bed in [31] and used
in [2], [10], [32]. The fixed point iteration for LCHB, X, b, g) reads

LCP(T,x1 "1 b+Jx),g), j=0,1,... (34)

1

0.8

0.6
>

0.4

0.2

0
0 50 100 150 200 250 300 350 400

Fig. 5 The time evolution of the early exercise boundaries for an Acaericall option.



Pricing American Options under the Bates Model 11

Computation ol U-decomposition and forward substitution:

Up1=Ti11

y1=b1

Doi=2,....m
Lijic1=Tii—1/Vi—1i-1
Ui1i=Ti1;

Ui =Tii—Lii-1Ui 1
yi=bi—Liji-1yi1
End Do
Backward substitution with a projection:
Xm = Ym/Umm
Xm = Max{Xm, Om}
Doi=m-1,...,1
Xi = (Yi — UijitaXir1) /Ui
Xj = max{xi, gi}
End Do

Fig. 6 The Brennan and Schwartz algorithm in which the only modiiiceto a standard solution
with L U-decomposition is the additional projection in the backwartusstution.

Each iteration requires the solution of an LCP with the &gginalT and the multi-
plication of a vector byl. The Brennan and Schwartz algorithm can be used to solve
the LCPs (34). The iteration converges very rapidly and entpuple of iterations
are needed to reach sufficient accuracy for practical p@gos

5 Numerical Experiments

In the numerical experiments for call options, we use the ehpdrameter values:

the risk free interest rate= 0.03,

the dividend yieldy = 0.05,

the strike priceK = 100,

the correlation between the price and variance procgsses-0.5,
the mean level of the variande= 0.04,

the rate of reversion to the mean lekek 2.0,

the volatility of the variancer = 0.25,

the jump rated = 0.2,

the mean jumpy = —0.5, and

the variance of jum@ = 0.4.

The computational domain {,y, 7) € [0,400 x [0,1] x [0,0.5].
Our first experiment compares the PSOR method and the Styammetrized
componentwise splitting method for call options under thestdn model, that is,
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A = 0. In this case, the LCPs in thedirection are tridiagonal and they can be
solved using the Brennan and Schwartz algorithm withouttération (34).

Table 1 reports the numerical results. It and also Table 2 ke following
columns: Gridim,n,1) defines the number of grid stepsxyy, andt to bem, n, are
I, respectively. Iter. gives the average number of PSORtitgra on each time step
with the relaxation parameteo = 1.5. With the componentwise splitting method
iter. specifies the number of iterations (34) to solve the £ @Pthex-direction at
each time step. Error column gives the root mean squarevekatror given by

| | 7 1/2
L8 U(x.,O,T)—U(XnevT))} | (35)

error= [5;( U(.6.T)

wherex = (80,90,100,110,120)" andU is the reference price. Ratio is the ra-
tio of the consecutive root mean square relative errors. QREs the CPU time

in seconds on a 3.8 GHz Intel Xeon PC. The reference pricesruhé Heston
model at(x;,0,T), i =1,2,...,5, are 0.131563, 1.255396, 4.999888, 11.680219,
20.325463 which were computed using the componentwisgisglmethod on the
grid (4096 2048512).

We can observe from Table 1 that the discretizations with lbe¢thods appears
to be roughly second-order accurate as the ratio is four enage. Furthermore,
the splitting increases the error only about 2%. On the @sargrid, the splitting
method is five times faster than the PSOR method, and on thet finiel it is 32
times faster.

Table1 The numerical results for the Heston model

method gridim,n,l) iter. error ratio CPU
PSOR (64,32,8) 34.6 0.14470 0.05
(128 64,16) 42.3 0.05607 2.58 0.48

(256,128 32) 95.3 0.01006 5.58 8.18

(512,256,64) 196.6 0.00350 2.87 128.51

(1024512128 372.2 0.00066 5.31 1890.76
comp.wise (64,32,8) 0.14412 0.01
splitting (128 64,16) 0.05621 2.56 0.06
(256,128 32) 0.01019 5.51 0.51

(512 256,64) 0.00355 2.87 6.36

(1024512 128) 0.00067 5.28 58.27

In our second experiment, we performed the same comparisderuhe Bates
model. The reference prices computed using the componsaspiitting method on
the grid(4096 2048 512) are 0.328526, 2.109397, 6.711622, 13.749337, 22.143307.
In the componentwise splitting method, the LCPs imtitérection lead to full ma-
trices and the iteration (34) is employed to solve them. Bagea few experiments,
we observed that already after two iterations the accumsyfficient. Thus, we use
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two iterations in our comparison. The multiplication by thatrix J is the most ex-
pensive operation in the iteration. In order to perform ftaéntly, we collected all
n multiplications corresponding to attgrid lines together and then performed the
resulting matrix-matrix multiplication using the optineid GotoBLAS library [18].

The numerical results under the Bates model are given ineTabRAbsolute er-
rors are comparable to the ones under the Heston model, but aption prices are
higher under the Bates model the relative errors reportatiértable are smaller.
Again roughly second-order accuracy is observed with bo#thods. The CPU
times with the componentwise splitting method were lesa thace the times un-
der the Heston model. The componentwise splitting meth&@ temes faster on the
coarsest grid, and it is about 2500 times faster on the finast@n finer grids, the
PSOR method leads to infeasible CPU times while the timds @amponentwise
splitting method are still reasonable.

Table 2 The numerical results for the Bates model

method gridim,n, 1) iter. error ratio CPU
PSOR (64,32,8) 39.6 0.10887 0.16
(128 64,16) 48.1 0.03803 2.86 2.14
(256,128 32) 108.2 0.00670 5.68 138.92
(512 256,64) 222.6 0.00209 3.20 8605.09
(1024512 128 420.5 0.00034 6.13 275191.73
comp.wise (64,32,8) 2.0 0.10833 0.01
splitting (128 64,16) 2.0 0.03790 2.86 0.09
(256,128 32) 2.0 0.00668 5.67 0.81
(512,256,64) 2.0 0.00210 3.19 10.18
(1024512 128 2.0 0.00035 6.07 109.45

6 Conclusions

We described a linear complementarity problem (LCP) focipg American op-

tions under the Bates model and we considered a finite difterdiscretization. We
proposed a componentwise splitting method to solve apprataly the LCPs. It

leads to a sequence of LCPs with tridiagonal matrices. Tleaian and Schwartz
algorithm can solve these LCPs efficiently.

Our numerical experiments showed that the additionaltsgiiterror do not es-
sentially increase the discretization error. The compbmise splitting method is
orders of magnitude faster than the PSOR method under thes Baddel. Pricing
under the Bates model was at most two times more expensinaititer the Heston
model with the componentwise splitting method.
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