

Composability and Predictability for Independent Application
Development, Verification and Execution
Citation for published version (APA):
Akesson, K. B., Molnos, A. M., Hansson, M. A., Ambrose, J. A., & Goossens, K. G. W. (2010). Composability
and Predictability for Independent Application Development, Verification and Execution. In M. Huebner, & J.
Becker (Eds.), Multiprocessor System-on-Chip: Hardware Design and Tool Integration (pp. 25-56-). Springer.
https://doi.org/10.1007/978-1-4419-6460-1_2

DOI:
10.1007/978-1-4419-6460-1_2

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://doi.org/10.1007/978-1-4419-6460-1_2
https://doi.org/10.1007/978-1-4419-6460-1_2
https://research.tue.nl/en/publications/98b9e532-6ffa-4053-9351-9086e41788bd

Chapter 2

Composability and Predictability

for Independent Application Development,

Verification, and Execution

Benny Akesson, Anca Molnos, Andreas Hansson,

Jude Ambrose Angelo, and Kees Goossens

Abstract System-on-chip (SOC) design gets increasingly complex, as a growing

number of applications are integrated in modern systems. Some of these applica-

tions have real-time requirements, such as a minimum throughput or a maximum

latency. To reduce cost, system resources are shared between applications, making

their timing behavior inter-dependent. Real-time requirements must hence be

verified for all possible combinations of concurrently executing applications,

which is not feasible with commonly used simulation-based techniques. This

chapter addresses this problem using two complexity-reducing concepts: compo-
sability and predictability. Applications in a composable system are completely

isolated and cannot affect each other’s behaviors, enabling them to be indepen-

dently verified. Predictable systems, on the other hand, provide lower bounds on

performance, allowing applications to be verified using formal performance analy-

sis. Five techniques to achieve composability and/or predictability in SOC resources

are presented and we explain their implementation for processors, interconnect, and

memories in our platform.

Keywords Composability � Predictability � Real-Time � Arbitration � Resource
Management � Multi-Processor System

2.1 Introduction

The complexity of contemporary Systems-on-Chip (SOC) is increasing, as a growing

number of independent applications are integrated and executed on a single chip.

These applications consist of communicating tasks mapped on heterogeneous

multi-processor platforms with distributed memory hierarchies that strike a good

B. Akesson (*)

Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands

e-mail: k.b.akesson@tue.nl

M. Hübner and J. Becker (eds.), Multiprocessor System-on-Chip: Hardware Design
and Tool Integration, DOI 10.1007/978-1-4419-6460-1_2,
Springer Science+Business Media, LLC 2011

25

balance between performance, cost, power consumption and flexibility [14, 22, 38].

The platforms exploit an increasing amount of application-level parallelism by

enabling concurrent execution of more and more applications. This results in

a large number of use-cases, which are different combinations of concurrently

running applications [15]. Some applications have real-time requirements, such
as a minimum throughput of video frames per second, or a maximum latency for

processing those video frames. Applications with real-time requirements are referred

to as real-time applications, while the rest are non-real-time applications. A use-case

can contain an arbitrary mix of real-time and non-real-time applications.

To reduce cost, platform resources, such as processors, hardware accelerators,

interconnect, and memories, are shared between applications. However, resource

sharing causes interference between applications, making their temporal behaviors

inter-dependent. Verification of real-time requirements is often performed by

system-level simulation. This results in three problems with respect to verification,

since inter-dependent timing behavior requires that all applications in a use-case are

verified together. The first problem is that the number of use-cases increases rapidly
with the number of applications. It hence becomes infeasible to verify the exploding

number of use-cases by simulation. This forces industry to reduce coverage and

verify only a subset of use-cases that have the toughest requirements [14, 37]. The

second problem is that verification of a use-case cannot begin until all applications

it comprises are available. Timely completion of the verification process hence

depends on the availability of all applications, which may be developed by different

teams inside the company, or by independent software vendors. The last problem is

that use-case verification becomes a circular process that must be repeated if an

application is added, removed, or modified [23]. Together these three problems

contribute to making the integration and verification process a dominant part of SOC

development, both in terms of time and money [22, 23, 34].

In this chapter, we address the real-time verification problem using two

complexity-reducing concepts: composability and predictability. Applications in

a composable system are completely isolated and cannot affect each other’s

functional or temporal behaviors. Composable systems address the verification

problem in the following four ways [17]: 1) Applications can be verified in isolation,

resulting in a linear and non-circular verification process. 2) Simulating only a

single application and its required resources reduces simulation time compared to

complete system simulations. 3) The verification process can be incremental and

start as soon as the first application is available. 4) Intellectual property (IP)

protection is improved, since the verification process no longer requires the IP of

independent software vendors to be shared. These benefits reduce the complexity of

simulation-based verification, making it a feasible option with a larger number of

applications. An additional benefit is that composability does not inherently make
any assumptions on the applications, making it applicable to existing applications

without any modifications.

Predictable systems, on the other hand, bound the interference from the platform

and between applications. This enables bounds on performance, such as upper

bounds on latency or lower bounds on throughput, to be provided. Applications

26 B. Akesson et al.

in predictable systems can hence be verified using formal performance analysis

frameworks, such as network calculus [9] or data-flow analysis [36]. The benefit of

formal performance verification is that conservative performance guarantees can be

provided for all possible combinations of initial states of resources and arbiters,

all input stimuli, and all concurrently executing applications. The drawback is

that formal approaches require performance models of the software, the hardware,

and the mapping [8, 25], which are not always available. Composability and

predictability both solve important parts of the verification problem and provide a

complete solution when combined.

The two main contributions of this chapter are: 1) An overview of five techniques

to achieve composability and/or predictability in multi-processor systems with

shared resources. 2) We show how to design a composable and predictable system

by applying the proposed techniques to three typical resource types: processor tiles,

interconnect (a network on chip), and memory tiles (with either on-chip SRAM or

off-chip SDRAM).

The rest of this chapter is organized as follows. Section 2.2 describes a number

of techniques to achieve composability and/or predictability for shared resources.

We then proceed in Sections 2.3, 2.4, and 2.5 by explaining which of these

techniques are suitable for our processor tiles, network-on-chip, and memory

tiles, respectively. Section 2.6 then demonstrates the composability of our SOC

platform by showing that the behavior of an application is unaffected at the

cycle-level, as other applications are added or removed. Lastly, we end the chapter

with conclusions in Section 2.7.

2.2 Composability and Predictability

The introduction motivates how composability and predictability address the

increasingly difficult problem of verifying real-time requirements in SOCs. The

next step is to provide more details on how to implement these concepts. Firstly,

we establish some essential terminology related to resource sharing, which allows

us to define composability and predictability formally. We then discuss five tech-

niques to achieve these properties and highlight their respective strengths and

weaknesses. This illustrates the design space for composable and predictable

systems, and allows us to explain how different techniques are suitable for different

resources depending on their properties, such as whether execution times are

constant or variable, and whether the resource is abundant or scarce.

2.2.1 Terminology

Our context is a tiled platform architecture following the template shown in

Fig. 2.1. At the high level, this platform comprises a number of processor tiles

2 Composability and Predictability 27

and memory tiles interconnected by a network-on-chip. We return to discuss the

details of this architecture in Sections 2.3, 2.4, and 2.5, respectively. An applica-
tion consists of a set of tasks that may be split across several processor tiles to

enable parallel processing. We assume a static task-to-processor mapping, which

implies that task migration is not supported. Non-real-time tasks can communicate

in any way they like using distributed shared memory, obeying only the restrictions

shell

delay

atomizer

video

shell

delaydelaydelaydelay

shellshell

timer VFCU

MicroBlaze

DMA

dmem

imem timer VFCU

MicroBlaze

DMA

dmem

imem

RR

NINI

NI

NI NI

RRR

bus bus

shellshellshellshellshellshell

shell shellshell shell

atomizer atomizer

delay

atomizer

bus

NINI

atomizeratomizer

shell

in
te

rc
on

ne
ct

bus

SDRAM
back−end

SRAM
back−end

m
em

or
y

til
e(

s)
pr

oc
es

so
r

til
e(

s)

C
D

C
C

D
C

Fig. 2.1 The architecture of the considered MPSoC platform

28 B. Akesson et al.

on processors, discussed later in Section 2.3.1. However, tasks of real-time applica-

tions operate in a more restrictive fashion to ensure that their temporal behavior can

be bounded. Each real-time task continuously iterates, which means that it reads its

inputs, executes its function, and writes its outputs. Inter-task communication is

implemented using FIFOs, according to the C-HEAP protocol [31], with blocking

read and write operations. Inside a FIFO token, data can be accessed in any

order. We choose this programming model because it perfectly fits the domain of

streaming applications and enables overlapping computation with communication.

It furthermore allows modeling an application as a data-flow graph, which enables

efficient timing analysis. Communication between processor tiles and memory tiles

takes place via the interconnect.

Requests are defined as uses of a resource, such as a processor, interconnect,

or a memory. The originators of requests, and hence the users of the resources,

are referred to as requestors. Requests for a processor resource correspond to

application tasks that are ready for execution. In case of a memory or an inter-

connect, requests are transactions originating from ports on IP components. These

transactions are communicated using standardized protocols, such as AXI [6],

DTL [33], or OCP [32]. Common examples of transactions are reads and writes of

either single data words or bursts of data to a memory location.

The execution time (ET) of a request determines the amount of time a request uses

a resource before finishing. However, a requestor may not have exclusive access to

the resource, due to interference from other requestors. Interference may prevent a

request from accessing the resource straight-away and its execution may be pre-

empted several times before finishing. This is considered in the response time (RT)
of a request, which accounts for both the execution time and the interference. The

response time is hence the total time it takes from when the request is eligible for

scheduling at the resource until it has been served. The point in time at which a

request is scheduled to use the resource for the first time is referred to as its starting
time. It is important to note that the execution time, response time, and starting time

of a request from a requestor often depend on other requestors. The execution time

may depend on others if a request from one requestor alters the state of a resource in

a way that affects the execution time of a following request. A common example of

this is when a memory request from a requestor evicts a cache line from another

requestor, turning a future cache hit into a cache miss. The response time and starting

time both typically varywith the presence or absence of requests from other requestors

in systems with run-time arbitration, such as round robin or static-priority scheduling.

This results in a varying interference that causes both the starting time and response

time to change.We now proceed by defining composability and predictability in terms

of the established terminology.

The functional behavior of a request is defined as composable when its output

is independent of the behavior of requestors belonging to other applications.

The temporal behavior of a request from a requestor using a resource is defined

as composable if its starting time and response time are independent of requestors

from other applications, since this implies that the request starts and finishes using

the resource independently of others. We refer to a resource as a composable

2 Composability and Predictability 29

resource if both functional and temporal composability holds for any set of

requestors and their associated requests. A composable system contains only com-

posable resources. Such a system enables independent verification of applications,

as their constituent requestors and requests are completely isolated from each other

in the time and value (functional) domains. The verification complexity hence

becomes linear with respect to the number of applications. It also makes the resulting

system more robust at run time, because there is no interference from unknown,

failing, or misbehaving applications. In this chapter, we focus on verification of real-

time requirements. We hence limit the discussion to temporal composability and

do not further discuss how to achieve functional composability. For simplicity, we let

composability refer to temporal composability in the rest of this chapter.

For predictability, every request on a resource must have both a useful worst-
case execution time (WCET) and worst-case response time (WCRT). Unlike com-

posability, which inherently considers multiple requestors and applications on a

shared resource, predictability can be considered for a non-shared resource with

only a single requestor. For shared resources, the WCRT can be determined if there

is a bound on the interference from other requestors. A resource is a predictable
resource if all requests from all the requestors mapped on it are predictable.

Similarly, a predictable system is a system only comprising predictable resources.

Predictable systems enable formal verification of real-time requirements, since

applications are sets of requestors for different resources that all provide bounded

WCRT. For a complete end-to-end analysis, these WCRTs have to be used in a perfor-

mance analysis framework. We use data-flow [36] analysis to compute bounds on

throughput and latency for real-time applications, although time-triggered [23] or

network calculus [9] methods can also be used.

It is important to realize that predictability and composability are two different

properties and that one does not imply the other. Predictability means that a useful

bound is known on temporal behavior and is hence a property of a single applica-
tion mapped on a set of resources. Composability, on the other hand, implies

complete functional and temporal isolation between applications and is a property

of multiple applications sharing resources, where each application may be predict-

able or not. We illustrate the difference by discussing four example systems, shown

in Fig. 2.2, that cover all combinations of composability and predictability. The first

system, depicted in Fig. 2.2a, consists of two processors (P), each executing a single

application (A1 and A2, respectively). We assume that both applications are

predictable and hence that worst-case execution times are known for all tasks

when running on predictable hardware. Data is stored in a shared remote zero-

bus-turnaround SRAM that is reached via a bus. This type of SRAM has an execution

time of one clock cycle per read or written word that is independent of other

requestors. The SRAM is shared using time-division multiplexing (TDM) arbitration,

which is a composable and predictable arbitration scheme, since the WCRT of a

requestor is both bounded and independent of other requestors. This makes this

system as a whole both composable and predictable. For our second system in

Fig. 2.2b, we replace the TDM arbiter with a round robin arbiter (RR). This system is

not composable, since response times of requests vary depending on the presence or

30 B. Akesson et al.

absence of requests from other requestors. However, it is still predictable, since this

interference is easily bounded. We create our last two systems by adding private L1

caches ($) with random replacement policies to the processors in both previous

systems. A private cache is composable, since it is not shared between applications.

However, the random replacement policy makes the systems unpredictable, since a

useful bound cannot be derived on the time to serve a sequence of requests. The

third system, in Fig 2.2c, is hence composable, but not predictable. The last system,

shown in Fig 2.2d, is neither composable, nor predictable.

2.2.2 Composable Resources

This section discusses designing composable resources that may or may not be

predictable. As previously explained in Section 2.2.1, composability implies that

the starting time and response time of a request from a requestor must be

completely independent of requests from requestors belonging to other applica-

tions. Composability is trivially achieved by mapping applications to different

resources, an approach used by federated architectures in the automotive and

aerospace industries [24]. However, this method is prohibitively expensive for

B
us SRAM

TDM

P

P

A1

A2

Composable and
predictable system

B
us SRAM

RR

P

P

A1

A2

Predictable system

$

B
us SRAM

TDM

$

P

P

A2

A1

Composable system

$

B
us SRAM

RR

$

P

P

A2

A1

Neither composable nor
predictable system

a b

c d

Fig. 2.2 Four systems demonstrating all combinations of the composability and predictability

properties.

2 Composability and Predictability 31

systems that are not safety-critical. We proceed by looking at two alternatives to

composable sharing of resources. These correspond to the two paths ② ! ⑤ ! ⑦

and ① ! ④ ! ⑦ in Fig. 2.3, which provides an overview of the five techniques
presented in this chapter.

The first technique is called composable scheduling of preemptive resources and
corresponds to following the edges ②, ⑤, and ⑦. This approach considers that
the execution times of requests may be variable and unknown a priori. An example
of this is the time required by a video decoding task executing on a processor to
decode a frame, which is highly dependent on the image contents. This results in non-
composable behavior, as the starting time of a request becomes dependent on the
execution time of the previous request, which may have been issued by a requestor
belonging to a different application. A solution to this problem is to preempt an
executing request after a given time, referred to as the scheduling interval (SI) of the
resource arbiter. This is shown in Fig. 2.4a, where the request of requestor 2 is

Shared resource

et and si may both be infinite
Predictable resource

∀et ≤ wcet

Resource

et and si may both be infinite

Reschedulable resource

∀si ≤ wcsi, et may be infinite

Shared predictable resource

∀rt ≤ wcrt

no preemption
(si=et)

Composable predictable resource

∀rt = wcrt ∧ ∀si ≤ wcsi
Composable predictable resource

∀rt ≤ wcrt ∧ ∀si = wcsi

Composable resource

∀si = wcsi, et may be infinite

Technique:

Composable scheduling of preemptive resources

Predictable resource scheduling with worst−case delay

Worst−case predictable resource scheduling

Predictable resource scheduling

Composable scheduling of non−preemptive predictable resources

Path:

[2, 5, 7]

[1, 4, 7]

[1, 3] and ([2, 5, 6] or [1, 4, 6])

[1, 3, 9] and ([2, 5, 6] or [1, 4, 6]) and [7, 10]

[1, 3, 8] and ([2, 5, 6] or [1, 4, 6])

9

6

4

7

10

5

21

3

8

and

or

and

preemption

delay all rt to wcrt

composable arbiter

independent et

delay all si to wcsi

predictable arbiter

Fig. 2.3 Overview of techniques to achieve composability and predictability

32 B. Akesson et al.

preempted before finishing its execution. We refer to a resource with a worst-case

scheduling interval (WCSI) as a reschedulable resource, as shown in Fig. 2.3, since it
is guaranteed to take new scheduling decisions within a bounded time. Such a

resource ensures progress of all requestors if it is paired with a starvation-free
arbiter, which is a class of arbiters that guarantee that all requestors are scheduled in

a finite time. Both round robin and TDM are examples of arbiters in this class. A static-

priority scheduler, on the other hand, is not free of starvation, since a low-priority

requestor starves if high-priority requestors are constantly requesting.

The next step with this technique is to make all scheduling intervals equal to the

WCSI by delaying the arbiter in case the request finishes early, as shown in Fig. 2.4a.

This step decouples the starting time of a request from the execution time of the

preceding request, which is one of the two requirements to achieve composability.

The second requirement is that the response time must be independent from reques-

tors of other applications. We achieve this by using a composable arbiter, such as

TDM, where the presence or absence of other requestors does not affect the interfer-

ence. This results in independent response times for resources where the execution

time is independent of previous requests, such as a zero-bus-turnaround SRAM.

We have now fulfilled both requirements for a resource to be considered composable.

Note that this type of composable resource is not necessarily predictable. It may, for

example, include a cache that is private or shared between requestors belonging to the

same application, which results in non-useful bounds on execution time for memory

requests, although they are independent of other applications.

Next, we explore a second method of designing composable resources called

composable scheduling of non-preemptive predictable resources, which follows the

edges ①,④, and⑦ in Fig. 2.3. This method is motivated by the main limitation of the
first approach, which is restricted to preemptive resources. Some important resources,
such as SDRAMmemories cannot be preempted during a burst, as they require all the data
associated with a request to be transferred on consecutive clock cycles to function

execution time

delay scheduling until wcsi

Legend

c
Resource preempts after WCSI

time

requestor 1

requestor 2

requestor 3

wcsi=wcet

rt1

rt2
rt3

Non-preemptive resource with WCSI=WCET

si=wcsi
time

requestor 1

requestor 2

requestor 3

rt1

rt2
rt3

a b

Fig. 2.4 Composable scheduling for preemptive and non-preemptive resources, respectively

2 Composability and Predictability 33

correctly. Achieving composability with non-preemptive resources is still possible,
assuming that the resource is predictable and hence has a known WCET. For these
resources, we make the scheduling interval equal to the longest WCET of any request
executing on the resource. This is illustrated in Fig. 2.4b, where the request from
requestor 2 is assumed to have the longest WCET. This technique makes starting times
independent of requests from other applications, which is required for composability.
Supporting non-preemptive resources with bounded execution times is the major
benefit of this technique. However, this method arrives at a reschedulable resource by
characterizing the requests and the resource rather than by enforcement,which has three
drawbacks. Firstly, it cannot be applied to mixed time-criticality systems where real-
time applications share resources with non-real-time applications that do not have
bounded WCET. Secondly, the system is less robust, as it becomes non-composable if
the characterization is incorrect or if a requestor misbehaves. Finally, making the
scheduling interval equal to the longest WCET results in low resource utilization if
there is a large difference between the average and worst-case execution time. This is
not acceptable for scarce resources, such as SDRAM memories.

Since composable scheduling of non-preemptive predictable resources implies

that the WCET of requests have to be bounded, it may result in a system that is

also predictable. This depends on whether or not the composable arbiter is also

predictable. Although this is typically the case, such as for TDM, it is not inherent

to composability. For example, an arbiter that randomly schedules requestors

every WCSI is composable, as it is independent of applications, but it is unpredict-

able, since the WCRT can be infinite. We will return to discuss techniques to share

resources in ways that are both composable and predictable in Section 2.2.4.

The proposed techniques for composable resource sharing make the temporal

behaviors of the requestors independent of each other, thus implementing compo-

sability at the level of requestors. This is a sufficient condition to be composable at

the level of applications, which is the actual requirement from Section 2.2.1.

However, composability at the level of requestors is stricter in the sense that

requestors belonging to the same application are allowed to interfere with each

other in a composable system. It is hence possible to let requestors benefit from

unused resource capacity (slack) reserved by requestors belonging to the same

application to increase performance or reduce power [27]. This can be accom-

plished by using a two-level arbiter, as proposed in [17], where the first level is a

composable inter-application arbiter, and the second an intra-application arbiter

that does not have to be composable. This type of arbitration enables requestors

from the same application to use slack created in the intra-application arbiter to

boost performance without violating composability at the application level.

2.2.3 Predictable resources

Having discussed two ways of building resources that are composable, but not neces-

sarily predictable, we proceed by discussing how to build resources that are

34 B. Akesson et al.

predictable, but not necessarily composable.Aspreviouslymentioned inSection 2.2.1,

this requires useful bounds on both the WCET and the WCRT.

Our approach to predictable resource sharing is based on combining resources

and arbiters, each with predictable behaviors. In Fig. 2.3, this intuitively corre-

sponds to following the edges ① and ③ from a general resource to a predictable
shared resource. More specifically, we require bounds on the WCET for each request
executing on the resource, since these characterize the worst-case behavior of the
unshared resource. Some resources, such as zero-bus-turnaround SRAMs, are predict-
able and have constant execution times that are easy to determine. However, other
resources, such as SDRAM, have variable execution times that depend on earlier
requests and cannot be usefully bounded at design time in the general case [1].
In this case, the resource controller must be implemented in a way that makes the
resource behave in a predictable manner. We discuss how to accomplish this for an
SDRAM resource in Section 2.5.

If the resource is shared, we require predictable arbitration that bounds the time

within which a request finishes receiving service. Note that by this definition,

all predictable arbiters are starvation free. Predictable arbiters enable the WCRT

to be computed if the resource is reschedulable and hence makes new scheduling

decisions within a bounded time, determined either by a chosen scheduling interval

(preemptive resource) or by the longest WCET of any request executing on the

resource (non-preemptive resource). This is illustrated in Fig. 2.3, where a predict-

able shared resource has to be both predictable and reschedulable and there are two

possible paths to achieve the latter. Computing the WCRT takes the effects of sharing

the resource into account.

An important property of our approach is that it is based on combining indepen-
dent analyses of the resource and the arbitration. The arbiter analysis bounds the

number of scheduling decisions that are made by the arbiter from a request is

eligible for scheduling until it finishes receiving service. The WCRT is then con-

servatively computed by multiplying the number of decisions with the WCSI and

adding the number of pipeline stages between the request buffer and the response

buffer in the architecture. Note that this conservatively accounts for both the

execution time of the request and any preemptions from other requestors during

the execution. The strength of this approach is the generality, as any combination
of predictable resource and predictable arbiter results in a predictable shared

resource. This makes it easy to change the arbiter to fit with the response time

requirements of the requestors in the system, which is exploited by the processor

tile in Section 2.3 and the memory tile presented in Section 2.5.

2.2.4 Composable and predictable resources

Section 2.2.1 explained that composability and predictability are different proper-

ties and that one does not imply the other. We then showed in Sections 2.2.2 and

2.2.3 how to make resources that are either composable or predictable. In this

2 Composability and Predictability 35

section, we discuss two ways of making resources that are both composable and

predictable.

The first and most straight-forward technique to get composable and predictable

resources is to simply combine the approaches in Sections 2.2.2 and 2.2.3. We call

this technique worst-case predictable resource scheduling and it corresponds to

moving from a predictable shared resource via edge ⑨ and from a composable
resource via edge ⑩ to a composable and predictable resource. This implies that the
resource is predictable and that each request has a useful bound on WCET that is
independent of other requestors. It also means that the resource is shared using an
arbiter that is both composable and predictable, such as TDM. Such an arbiter provides
bounded interference from other requestors that is independent of their actual
behaviors, making the resource composable and bounding the WCRT. Since the
original approaches to composable and predictable resources apply to both preemp-
tive and non-preemptive resources, the same property holds for this combination. It
furthermore inherits the possibilities for slack management, previously explained in
Section 2.2.2.

A benefit of this approach to make resources composable and predictable is that

it is easy to conceptually understand and implement. A drawback is that it only

applies to resources where the execution time of a request is independent of

requests from requestors belonging to applications other, as previously described

in Section 2.2.2. If this is not naturally the case, it can be achieved by delaying all

executions to be equal to the WCET. However, this may be costly if the variation in

execution time due to other applications is large, preventing it from being effi-

ciently applied to scarce resources, such as SDRAM. Instead, this technique is used in

the processor tile presented in Section 2.3 and for composable and predictable SRAM

sharing using TDM in [17].

The second technique is called predictable resource scheduling with worst-case
delay and addresses the problem of efficiently dealing with variable execution times

and extends composability to support any predictable arbiter. The problem with

most predictable arbiters is that they typically cause the times at which the resource

accepts requests and sends responses to a requestor to change due to variable

interference from other requestors, making it non-composable. The key idea behind

this technique is to make the system composable by removing the variation in

interference, both from other applications and the resource itself. We accomplish

this by starting from a predictable shared resource and then delay all signals sent to

a requestor to emulate maximum interference from other requestors. A requestor

hence always receives the same worst-case service no matter what other requestors

are doing. This technique corresponds to achieving composability for a predictable

shared resource using edge⑧ in Fig. 2.3. The implication of this approach is that the
interface presented towards the requestor is temporally independent of other reques-
tors. Variation in starting times and response times may be visible on the resource
side of the interface, but not on the requestor side. This is similar to the composable
component interfaces proposed in [23].

The technique implies delaying responses in a response buffer until their WCRT

to prevent the requestor from receiving it prematurely if there is little interference,

36 B. Akesson et al.

or if the variable execution time is short. However, making the WCRT independent of

other applications is only one of the two requirements for a composable resource.

The second requirement states that the starting time must also be independent. This

is not the case if a request is scheduled earlier than its worst-case starting time.

In this case, another request may be admitted into the resource prematurely,

resulting in a different starting time. This problem is addressed by basing request

accept signals on worst-case starting times of previous requests, as opposed to

actual starting times. Requests are hence admitted into the resource in a composable

manner, regardless of the interference experienced by others.

Figure 2.5 compares ‘predictable resource scheduling with worst-case delay’ to

‘composable scheduling of preemptive resources’, previously discussed in

Section 2.2.2. Figure 2.5a illustrates that requests are scheduled immediately after

a finished execution using ‘predictable resource scheduling with worst-case delay’,

but that responses are delayed until the WCRT. In contrast, Fig. 2.5b (identical to

Fig. 2.4a) shows that ‘composable scheduling of preemptive resources’ delays

scheduling until the WCRT, but releases responses immediately after a finished

execution.

‘Predictable resource scheduling with worst-case delay, has two major benefits

compared to ‘composable scheduling of preemptive resources’: 1) It extends the

use of composability beyond resources and arbiters that are inherently composable.

It is hence not limited to resources where the execution times of requestors are

independent, but can efficiently capture the behavior of any predictable resource.

2) It supports any predictable arbiter, enabling service differentiation that increases

the possibility of satisfying a given set of requestor requirements [2]. For example,

using an arbiter that is more sophisticated than TDM can lead to reduced over-

allocation, and allow lower latencies or higher throughput on a resource. These

time

requestor 1

requestor 2

requestor 3

si1=et1

wcrt1

wcrt3

si2=et2

wcrt2

Rescheduling after SI=ET and delaying
responses until WCRT

si=wcsi time

requestor 1

requestor 2

requestor 3

rt1
rt2

rt3

Rescheduling every WCSI and releasing
responses immediately after execution

execution time

delay scheduling until wcsi

delay responses until wcrt

Legend

a

c

b

Fig. 2.5 Delaying scheduling until WCSI vs. delaying responses until WCRT

2 Composability and Predictability 37

characteristics make the approach suitable for memory tiles with SDRAM, as we will

further explain in Section 2.5.

The main drawback of this technique is related to slack management. This

approach makes the temporal behaviors of the requestors independent of each

other, thus implementing composability at the level of requestors instead of at the

level of applications. It is hence not possible to benefit from unused resource

capacity reserved by requestors belonging to the same application, which may

negatively impact performance.

2.3 Processor tile

Having reviewed the different approaches to achieving composability and

predictability, we proceed by looking at how it is actually implemented in a

multi-processor system, starting with the processor tile. We consider a mixed

time-criticality system, where the processor executes a mix between real-time and

non-real-time applications. In this section, we first present the strategy to achieve

composability of applications on a processor tile, followed by our approach to

implementing predictability. The architecture of the processor tile is shown in

Fig. 2.1. The components of this tile are discussed in the following sections.

2.3.1 Composability

Processors execute requests, corresponding to task iterations. The execution time

of a request is hence the time it takes to execute a task iteration on the processor.

Real-time tasks must have a WCET, which means that they complete an iteration in

bounded time. This is not necessarily the case for non-real-time tasks. In mixed

time-criticality systems, where these types of tasks share resources, the WCRT of

real-time tasks can only be bounded if resources are preemptive. Composability in

the processor is hence implemented using the technique ‘composable scheduling of

preemptive resources’. The key ingredients to achieve composability in this

resource are thus found on the path ②, ⑤, and ⑦ in Fig. 2.3 and constitute:
1) preemption, 2) enforcing a constant scheduling interval equal to WCSI, and
3) using a composable arbitration scheme.

For a processor, the WCSI defines a task slot with bounded duration when a

task can utilize the processor. After a task slot finishes, an operating system (OS)

decides which task to execute next during an OS slot. To ensure independent

starting times and response times of tasks, required for composability, not only

the task slots, but also the OS slot, must have a constant duration and fixed starting

times.

The execution time of the OS may depend on the number of applications and tasks

it has to schedule. If the OS slot is not forced to a constant duration at least equal to its

38 B. Akesson et al.

WCET, it is impossible to ensure that task starting times and response times are

independent of the presence or absence of other applications in the system. Further-

more, common OSes check if tasks are ready to execute, which depends on the

availability of their input data and output space. For composability, the time at

which this check is performed must be independent of other applications. ‘Compo-

sable scheduling of preemptive resources’ requires the execution times of tasks to

be independent. The functional state of the processor tile at a task switch must hence

be unable to affect the execution time of the scheduled task. This may imply that the

processor instruction pipeline should be empty, and that potential caches should

be cleared of all data to avoid cache pollution. In the following sections, we present

the mechanisms to enforce constant‐duration task and OS slots. Following this, we

describe the scheduling of applications and tasks, which relies on this property.

2.3.1.1 Constant task slots

To enforce a task slot with constant duration and fixed starting times, we use a timer

that interrupts the processor after a programmable fixed duration. When receiving

an interrupt, the first instruction of the interrupt service routine jumps to OS code,

giving control to the OS. This can be implemented with a dedicated timer per tile

that is accessed via a memory-mapped peripheral bus or an instruction-mapped

port. By using a timer outside the processor, in an always-on clock domain, the

processor can enter a low-power state during idle periods without stopping the

timer [13].

To get a constant-duration task slot, the processor should be interruptible in

(preferably short) bounded time. However, processors are typically not interruptible

while instructions are still in the pipeline. The time to start the interrupt service

routine, referred to as the interrupt latency, thus depends on the execution time of

the currently executing instructions. The time it takes to finish executing an

instruction depends exclusively on the processor, except for instructions that

involve other resources. For example, a load from non-local memory also uses

the interconnect and a remote memory. Depending on the predictability and sharing

of those resources, such a load may take thousands of cycles to complete (e.g. when

it has a low priority in the NOC and memory tile).

By restricting the number of outstanding remote-read transactions, the WCET of a

task and its worst-case interrupt latency can be computed, but will be prohibitively

high (thousands of cycles). We hence use an alternative approach by restricting the

processor to only using local (instruction and data) memories and use Remote Direct

Memory Access (RDMA) engines to communicate outside the processor tile. Remote

accesses may stall the RDMA, while the processor only polls locally, resulting in a

short interrupt latency. Note that evenwith only local reads, the execution time of the

interrupt service time is bounded, but not constant. For example, division and

multiplication instructions take more cycles than NOP or jump instructions.

2 Composability and Predictability 39

The processor programs the RDMA to read or write data on remote memories

residing inside another processor tile, or in a memory tile. Programming the RDMAs

is done using only local load and store instructions. An additional advantage of

using RDMAs is that they decouple computation and communication, enabling them

to be overlapped in time. In this chapter, we assume that the local memories of

processor tiles are large enough to store the following state for all tasks mapped on

the tile: 1) instructions, 2) (private) data, and 3) all the buffers (for input and output

tokens) needed for an iteration. RDMAs are hence only used for inter-task communi-

cation between tasks mapped on different processors. This communication is

implemented using uni-directional FIFO buffers with finite size. These FIFO

buffers are located either in the local memory of the consumer (if the memory

space in the processor tile is sufficiently large), or in a remote memory tile. The

producer always posts the data in the buffer via a RDMA write. In Fig. 2.1, the data

travels from the data memory in the producer tile, through the RDMA to the

interconnect. The interconnect then delivers it to the local memory in the consumer

tile. Alternatively, the producer RDMA places the data in a remote memory tile, from

where it is copied by the consumer RDMA to the data memory in its tile. In all cases,

the FIFO administration [31], consisting of read and write pointers, is located in

the producer and consumer tiles.

To achieve composability, a RDMA has to be composable if shared between

applications. Since RDMAs are simple finite state machines, we do not share them

between applications. Instead, each application has its own RDMA, but for maximum

performance, each FIFO of each task can be given its own RDMA. For simplicity,

Fig. 2.1 shows only one RDMA per tile. Note that the local memory should also be

made composable using the techniques detailed in Section 2.5.

2.3.1.2 Constant OS slot

As previously explained, the OS slot should have a constant starting time and

duration. Given a constant task slot duration, the only requirement to achieve a

constant OS starting time is that the task-to-OS switching time should be constant.

The task-to-OS switching time is equal to the interrupt latency of the timer, which

depends on the instructions in-flight on the processor. We force the interrupt latency

to be constant and equal to its WCET via a mechanism to delay actions (execution)

until a fixed future moment in time, as described below.

Our approach to enforce a constant OS slot is to inhibit execution on the processor
until its WCET is reached, thus making the OS execution composable. This corre-

sponds to the technique ‘composable scheduling of non-preemptive resources’,

which uses edges ①, ④, and ⑦ in Fig. 2.3. This can be implemented in several
ways. Polling on a timer [10] is the simplest, but prevents clock-gating of the
processor. If the processor has a halt instruction, the processor can be halted after
the OS finishes its execution. The tile timer, programmed before the halt instruction,
wakes up the processor at the WCET. When a halt instruction is not available, the

40 B. Akesson et al.

processor clock can be disabled by a voltage-frequency control unit (VFCU in
Fig. 2.1) until the WCET.

Figure 2.6 presents the time line with the seven main events when performing

a task switch: 1) the interrupt is raised, 2) the interrupt is served, 3) the processor

ungate moment in time is programmed, 4) the clock is gated up to the WCET of the

interrupt latency, 5) the OS is executed, 6) the processor ungate moment in time

is programmed, and finally 7) the clock is gated up to the WCET of the OS.

2.3.1.3 Two-level application and task scheduling

The constant-duration task and OS slots ensure that task slots start at fixed points

in time, and that there is a bounded WCSI. A task iteration that has a WCET on a

non-shared processor tile hence has bounded WCET and WCRT on a shared tile.

As mentioned before, the functional state of the processor tile at the start of a

task slot must be independent of other applications to avoid possible interference.

By using a composable scheduler, interference between all tasks is removed.

However, this is unnecessarily strict, since it also prevents slack from being used by

tasks belonging to the same application. Moreover, different applications benefit

from using different schedulers, such as static-order, TDM, or Credit-Controlled

Static-Priority arbitration [5] (CCSP, further described in Section 2.5). The processor

addresses this problem by using a two-level arbitration scheme: a composable inter-

application arbiter (TDM) that schedules applications, and an intra-application arbi-

ter that schedules tasks within an application. The composable inter-application

arbiter ensures the isolation between applications, while the intra-application arbi-

ters are chosen to fit the requirements of the application tasks. The intra-application

arbiters are free to distribute slack to improve performance of the tasks.

2.3.2 Predictability

As already mentioned, we target mixed time-criticality systems that concurrently

execute a set of real-time and non-real-time applications. For real-time appli-

cations, we require the WCET of each task iteration to be known. The execution

time of a task on a processor is hence required to be predictable, which excludes the

Task 2 OS OS Task 1Task 3

clk
gate

interrupt clk
ungate

clk
gate

clk
ungate

constant service unit

OS
constant

execution time

OS
constant

execution time

interrupt

constant service unit

clk
gate

interrupt clk
ungate

clk
gate

clk
ungate

constant service unit

interrupt
serviced

interrupt
serviced

Fig. 2.6 Processor slots and task switching time line

2 Composability and Predictability 41

use of out-of-order execution, speculation, and caches with random replacement

policies [40].

To derive the end-to-end application performance (e.g. throughput, latency,

etc.), applications are modeled as data-flow graphs [25, 36]. The nodes in the

data-flow graphs are referred to as actors that are connected via directional edges.
Each actor fires whenever its firing rule is satisfied. A firing rule specifies for each

incoming and outgoing edge, the number of input tokens required and the number

of output tokens produced, respectively. The data-flow model naturally describes a

streaming application: a task is an actor, and a task iteration is an actor firing. FIFO

communication between two tasks is represented as a pair of opposing edges, one

modeling the communicated data, and the other modeling the available inter-task

buffer space.

If several tasks share the same processor, predictable inter-task arbitration is

required. Examples of such arbitration are TDM, CCSP, and round robin. Moreover,

the sharing and arbitration effects should be taken into account when calculating the

end-to-end application performance. Modeling of different arbitration policies as

data-flow graphs is presented in [19, 28].

2.4 Interconnect

The processor and memory tiles in the system communicate via a global

on-chip interconnect, as shown in Fig. 2.1. Typically, processors act as memory-

mapped initiators and memory tiles as memory-mapped targets. This is seen in

the figure, where initiator and target ports are colored black and white, respec-

tively. When tasks execute on a processor, they give rise to read and write

requests that are delivered to the appropriate memory tile based on the address,

and a response is potentially delivered back to the processor. The requestors of
the interconnect, according to Section 2.2.1, are thus the ports of the processor and

memory tiles.

To deliver the aforementioned functionality, the interconnect is subdivided into

a number of architectural components [16]. We first present a brief overview of

the components and then continue to discuss how they provide composability

and predictability. When a request is presented to the interconnect by an initiator,

it is serialized by a protocol shell into a sequence of words. These words are then

passed through a clock domain crossing (CDC) to transition from the clock domain

of the initiator to that of the network, making the platform globally-asynchronous

locally-synchronous (GALS) [30]. The data is then sent through the network,

comprising Network Interfaces (NI) and routers (R), through a logical connection.
The NI packetizes the data and determines the route through the network. The

routers merely forward the data to its destination NI where it is depacketized, before

transitioning to the clock frequency of the target in another clock domain crossing.

The shell then deserializes the request and presents it to the actual target port.

A response, if present, follows the same logical connection back through the

42 B. Akesson et al.

network until it reaches the initiator. The interconnect resource hence comprises

protocol shells, clock domain crossings, NIs, routers and links.

2.4.1 Composability

The protocol shells are not shared by connections and thus require no special

attention to deliver composability. They are furthermore simple state machines

that can be considered predictable. Moreover, the shells serialize the memory-

mapped transactions of the tiles independently of their protocol, burst size, type

of transaction etc. Thus, when presented to the NIs as a stream of words, the level of

flow control and preemption is a single word (using a FIFO protocol).

Once the serialized transactions are delivered to the NIs, each logical connection

has dedicated input and output buffers in the NIs. At this level, the network can thus

be seen as a set of composable distributed FIFOs, interconnecting pairs of protocol

shells. The NIs packetize the individual words of data in units of flits and send them

through the network links and routers. Each packet starts with a header (flit) with

the path to the destination output buffer. In contrast to many on-chip networks, our

interconnect does not perform any arbitration inside the network. The routers

simply obey the path encoded in the packet headers, and push the responsibility

of scheduling and buffering to the NIs. Thus, all arbitration takes place in the NI, and

the routers merely forward the flits until they reach the destination NI, making the

network appear as a single (pipelined) shared resource.

To make the network as a whole composable (and predictable), we use the

technique ‘worst-case predictable resource scheduling’. We describe the imple-

mentation of this technique in three steps, corresponding to edges ⑤, ⑦, and ⑩ in
Fig. 2.3. Firstly, the network resources are preemptive at the level of flits (edge⑤). A
scheduling decision is thus taken for every flit, independent of the length of the
packets. Furthermore, as we have already seen, the data in the NI FIFOs has no notion
of memory-mapped transactions, and there is consequently no correspondence
between transactions and packets. As there is no buffering inside the router network,
the NIs use end-to-end flow control to ensure the availability of buffer space.

Consequently, flits are only injected if they are guaranteed not to stall anywhere

inside the network.

Secondly, the flit size is fixed at three words, resulting in a constant scheduling

interval of three cycles. If a connection’s input buffer is empty or if it runs out of

flow control credits, it uses only one or two words of the three-word flit. The

constant flit length corresponds to making all scheduling intervals equal to the

WCSI, indicated by edge ⑦ in Fig. 2.3. It is worth noting that there is no need to
determine how long it takes for other requestors flits to reach their destination, only
how long it takes until a new flit can be scheduled, i.e. the execution time and
response time of other requestors is irrelevant.

Thirdly, the fixed flit length is combined with a global schedule of the logical

connections, where each NI regulates the injection of flits using a TDM arbiter [11],

such that contention never occurs on the network links. The schedule relies on a

2 Composability and Predictability 43

(logical) global synchronicity of the network components, but the concept has been

demonstrated on both mesochronous and asynchronous implementations of the

network [18]. The TDM schedule is programmed at run time according to the running

use-case, but is typically determined at design time.

The last part of the interconnect composability is enforced insertion of packet

headers for non-consecutive flits. That is, if another connection could have used the

link, assume it did (even if it did not), and insert a new packet header. The header

insertion ensures that the arbiter is stateless in terms of influence from other

requestors.

2.4.2 Predictability

With the aforementioned mechanisms in place, the interconnect offers composability

at the level of connections, between pairs of protocol shells. Predictability additionally

requires worst-case response times for the shared resources. As discussed in detail

in [19], the temporal behavior of a connection depends on the TDM scheduler settings,

the path length, and the size of the input and output buffers. The scheduler determines

how long words have to wait in the input buffer until injected into the network, once

eligible. The path, in turn, determines the time required to traverse the network

(without stalling). The input and output buffers affect the time at which words are

accepted and become eligible for scheduling. All these contributions can be bounded

and captured in a data-flow graph, thus offering predictability.

2.5 Memory tile

This section presents our memory tile and discusses the techniques employed to

implement composability and predictability. The architecture of the memory tile,

shown in Fig. 2.1, is divided into a front-end and a back-end. The front-end is

independent of memory technology and contains buffering, arbitration, and com-

ponents to make the memory tile composable. The back-end interfaces with the

actual memory device and makes it behave like a predictable resource. The back-

end is hence different for different types of memories, such as SRAM and SDRAM, as

indicated by the figure. The components in the architecture are discussed further in

the following sections.

Although our memory tile is general and supports both SRAM and DDR2/DDR3 SDRAM,

we will focus the discussion on SDRAM, since these memories have three important

characteristics that make the implementation of composability and predictability

challenging. 1) The execution time of a request and the bandwidth offered by the

memory is variable and depends on other requestors. 2) Some memory requestors

are latency critical and require low response time to reduce the number of stall cycles

on the processor. 3) For cost reasons, SDRAM bandwidth is a scarce resource that must

44 B. Akesson et al.

be efficiently utilized. This section is organized as follows. Firstly, Section 2.5.1

explains how to make an SDRAM behave like a predictable shared resource. Sec-

tion 2.5.2 then discusses how to make the predictable shared memory composable.

2.5.1 Predictability

Section 2.2.1 states that a predictable resource must provide a useful bound on WCET

to all requests. In addition, a memory tile must bound the bandwidth offered to a

requestor to ensure that bandwidth requirements are satisfied. This section elabo-

rates on how our memory tile delivers on these requirements. The memory tile

follows our general approach to predictable shared resources and combines a

predictable resource with predictable arbitration. First, the concepts behind an

SDRAM back-end that makes the memory behave like a predictable resource,

corresponding to edge ① in Fig. 2.3, are explained. We then discuss how to share
the predictable memory between multiple requestors, covering edge ③.

2.5.1.1 Predictable SDRAM back-end

SDRAM memories are challenging to use in systems with real-time requirements

because of their internal architecture. An SDRAM memory comprises a number of

banks, each containing a memory array with a matrix-like structure, consisting of

rows and columns. A simple illustration of this architecture is shown in Fig. 2.7.

Each bank has a row buffer that can hold one open row at a time, and read and write

operations are only allowed to the open row. Before opening a new row in a bank,

the contents of the currently open row are copied back into the memory array. The

elements in the memory arrays are implemented with a single capacitor and a

resistor, where a charged capacitor represents a logical one and an empty capacitor

a logical zero. The capacitor loses its charge over time due to leakage and must be

refreshed regularly to retain the stored data.

The SDRAM architecture makes the execution time of requests highly variable for

three reasons. 1) A request targeting an open row can be served immediately, while

row buffer

bank

read write

precharge
(close)

activate
(open)

Fig. 2.7 The architecture of

an SDRAM memory and

behaviors of some important

SDRAM commands

2 Composability and Predictability 45

it otherwise needs the current row to be closed and the required row to be opened.

2) The data bus is bi-directional and requires a number of cycles to switch from read

to write and vice versa. 3) The memory must occasionally be refreshed before

executing the next request. The impact of these factors may cause the execution

time of an SDRAM burst to vary by an order of magnitude from a few clock cycles to a

few tens of cycles.

The behavior of an SDRAM memory is determined by the sequence of SDRAM

commands that are communicated from the back-end of the memory tile to the

memory device. These commands tell the memory to activate (open) a particular

row in the memory array, to read from or write to an open row, or to precharge

(close) an open row and store its contents back into the memory array. There is also

a refresh command that charges the capacitors of the memory elements to ensure

that the contents of the memory array are retained. The behaviors of some of these

commands are illustrated in Figure 2.7. Scheduling SDRAM commands is not a trivial

task, since there are a considerable number of timing constraints that must be

satisfied before a command can be issued. These timing constraints are typically

minimum delays between issuing particular SDRAM commands, such as two

activates, or an activate and a read or a write.

Existing SDRAM controllers can be divided into two categories, depending on

how they schedule SDRAM commands. Statically scheduled controllers [7] execute

precomputed command schedules that are guaranteed at design time to satisfy all

timing constraints of the memory. Executing precomputed schedules makes these

controllers predictable and easy to analyze. However, they are also unable to adapt

to the dynamic behavior of applications in contemporary SOCs, such as bandwidth

requirements or read/write ratios that vary over time. The second category of

controllers uses dynamic scheduling of commands, which requires the timing

constraints to be enforced at run time. These controllers [20, 21, 26, 29, 35] have

sophisticated command schedulers that attempt to maximize the average offered

bandwidth and to reduce the average latency at the expense of making the resource

extremely difficult to analyze. As a result, the offered bandwidth can only be

estimated by simulation, making bandwidth allocation a difficult task that must

be re-evaluated every time a requestor is added, removed or is modified.

We use a hybrid approach to SDRAM command scheduling that combines ele-

ments of statically and dynamically scheduled SDRAM controllers in an attempt to

get the best of both worlds. Our approach is based on predictable memory pat-
terns [1], which are precomputed sequences (sub-schedules) of SDRAM commands

that are known to satisfy the timing constraints of the memory. These patterns are

dynamically combined at run-time, depending on the incoming request streams.

The memory patterns exist in five flavors: 1) read pattern, 2) write pattern, 3) read/

write switching pattern, 4) write/read switching pattern, and 5) refresh pattern.

The patterns are created such that multiple read or write patterns can be scheduled

in sequence. However, a read pattern cannot be scheduled immediately after a

write pattern. In this case, the read pattern must be preceded by a write/read switch-

ing pattern. This works analogously in the other direction. The refresh pattern can be

scheduled immediately after either a read pattern or a write pattern. Both read and

46 B. Akesson et al.

write patterns can be scheduled immediately after a refresh without any preceding

switching patterns.

The read and write patterns consist of a fixed number of SDRAM bursts, all

targeting the same row in a bank. The bursts are issued to the different banks in

sequence, since the data bus is shared between all banks to reduce the number of

pins on the SDRAM interface. The fixed number of bursts is hence first sent to the first

bank, then to the second, and so forth in an interleaving fashion until all banks have

been accessed. This way of accessing the SDRAM results in a short period with

frequent accesses, followed by a longer period without any accesses. The patterns

exploit bank-level parallelism by issuing activate and precharge commands to the

banks during the long intervals in which they do not transfer any data. The read and

write patterns are hence very efficient in terms of bandwidth, since it is possible to

hide a significant part of the latency incurred by activating and precharging rows.

This limits the overhead cycles incurred by always precharging a bank immediately

after it has been accessed, which is known as a closed page policy. We implement

this policy, as it effectively removes the dependency on rows opened by earlier

requests by returning the memory to a neutral state after every access. Removing

this dependency between requests is a key element in our approach, since it reduces
the variation in the offered bandwidth and latency, enabling tighter bounds on

bandwidth and WCRT to be derived.

Although interleaving memory patterns allow us to bound the offered band-

width, they come with two drawbacks. The first drawback is that continuously

activating and precharging the banks increases power consumption compared to if a

single bank is used at a time. The second drawback is that the memory is accessed

with large granularity and hence requires large requests to be efficient. An efficient

access requires at least one SDRAM burst to every bank. A typical burst size for SDRAM

is eight words and the number of banks is either four or eight. The minimum

efficient request size for a 32-bit memory interface is hence between 128-256 B,

depending on the size and generation of the DDR SDRAM [3]. Working with large

requests in a non-preemptive manner also means that urgent requests can be

blocked longer, resulting in longer WCRT.

Requests are dynamically mapped to patterns in a non-preemptive manner by the

command generator in the SDRAM back-end. A scheduled read request maps to a read

pattern, possibly preceded by a write/read switching pattern. Similarly, a write

request is mapped to a write pattern and potentially a preceding read/write switch-

ing pattern. Refresh patterns are scheduled automatically by the SDRAM back-end

on a regular basis between requests. The mapping from requests to patterns and

from patterns to SDRAM bursts is shown for an SDRAM with four banks in Fig. 2.8.

The figure illustrates that the execution time of a request of four bursts varies

depending on whether or not a switching pattern is required and if a refresh is

scheduled before the request.

The benefit of memory patterns is that they raise SDRAM command scheduling to a

higher level. Instead of dynamically issuing individual SDRAM commands, like a

dynamically scheduled SDRAM controller, our back-end issues memory patterns that

are sequences of commands. This implies a reduction of state and constraints that have

2 Composability and Predictability 47

to be considered, making our approach easier to analyze than completely dynamic

solutions.Memory patterns allow a lower bound on the offered bandwidth andWCRT to

be determined, since we know the execution time of each pattern, howmuch data they

transfer, and what the worst-case sequence of patterns is. This analysis is presented

and experimentally evaluated in [3]. The use of memory patterns gives our approach

the predictability of statically scheduled memory controllers. In addition, our

approach has some properties of dynamically scheduled controllers, such as the ability

to dynamically choose between read and write requests, and the use of run-time

arbitration. The latter is discussed in the following section.

2.5.1.2 Predictable arbitration

After the previous section, we assume that we have a predictable memory, such as

a zero-bus-turnaround SRAM or our SDRAM back-end based on predictable memory

patterns, where useful bounds on both the offered bandwidth and the WCET of

requests are known. In this section, we consider the effects of sharing the predictable

memory between multiple requestors. As mentioned in Section 2.5.1, we require a

predictable arbiter, where the number of interfering requests before a particular

request is served is bounded. This enables the WCRT to be determined. There are a

large number of predictable arbiters described in literature, such as TDM and round

robin. However, most of these arbiters are unable to provide low response time to

critical requestors, making them unsuitable for memory tiles. This problem is

addressed by priority-based arbitration, but as previouslymentioned in Section 2.2.2,

conventional static-priority scheduling is not starvation-free and cannot be used to

build predictable or composable systems. To address this issue, we have developed a

Credit-Controlled Static-Priority (CCSP) arbiter [5]. The CCSP arbiter consists of a rate

regulator and a static-priority scheduler. The rate regulator isolates requestors by

enforcing an upper bound on the provided service, according to an allocated budget.

It furthermore decouples allocation granularity and latency, which enables band-

width to be allocated with an arbitrary precision without affecting latency [4].

A clean trade-off is hence provided between over allocation and area, allowing

Bursts/
Banks

Read Write

Read Refresh Write W/R Read Read R/W Write

Write

0 2 3 3201 1 0 2 31 0 2 31 0 2 31

Requests

Time

Memory
patterns

Read Read

Fig. 2.8 Mapping from requests to patterns to SDRAM bursts

48 B. Akesson et al.

over allocation to become negligible. This is essential for scarce SOC resources with

very high loads, such as SDRAMs. The static-priority scheduler schedules the highest

priority requestor that is within its budget. The use of priorities decouples latency

and rate, thus enabling low latency to be provided to requestors with low bandwidth

requirements without wasting bandwidth. The combination of rate regulator and

static-priority scheduler makes the arbiter predictable, while still being able to

satisfy the requirements of latency-critical requestors.

A rate regulator creates a separation of concerns and makes it possible to bound

the WCRT of a requestor in a static-priority scheduler without relying on the coopera-

tion of higher priority requestors. Instead, the bounds on WCRT are based on the

allocated bandwidths and burstinesses, which are determined at design time. How-

ever, to be completely robust, we also need to be independent of the sizes

of scheduled requests to prevent a malfunctioning requestor from preventing access

from others by issuing very large requests. We solve this problem using preemptive

service, which is enabled by the atomizer [17] block, shown in Fig. 2.1. The atomizer

splits requests into smaller atomic service units, which are served by thememory in a

known bounded time. This effectively makes the memory preemptive on the granu-

larity of an atomic service unit. The size of the atomic requests are fixed and

determined at design time. It is chosen to be the minimum request size that can be

efficiently served by the resource. For an SRAM, the natural service unit is a single

word, but it is much larger for an SDRAM with predictable memory patterns. For these

memories, the appropriate size might be between 16 and 256 words, depending on

the memory device and the desired trade-off between efficiency and latency.

2.5.2 Composability

Composability in the memory tile is achieved using the technique called ‘predict-

able resource scheduling with worst-case delay’. This is for two reasons related to

the characteristics of SDRAM, presented earlier. Firstly, because SDRAMs have highly

variable execution times that depend on other requestors. This prevents the use of

‘worst-case predictable resource scheduling’ unless the execution time is made

independent of other requestors. This is possible by delaying all executions until the

WCET by setting WCSI=WCET. For most patterns, this involves assuming a read/write

switch for every memory request. Although possible to implement, this may

increase the response time and decrease the offered bandwidth by up to 20% [3].

This is not a feasible option, considering that SDRAM bandwidth is a scarce and

expensive resource. The second reason is that the first technique is limited to

composable arbiters, such as TDM or static scheduling, which cannot distinguish

requestors with low response time requirements. However, the second technique

works with any predictable arbiter, such as our priority-based CCSP arbiter.

The technique is implemented by the delay block, shown in Fig. 2.1. This compo-

nent emulates worst-case interference from other requestors to provide a

2 Composability and Predictability 49

composable interface towards the atomizer. This makes the interface of the entire

front-end composable, since the atomizer is not shared.

It is worth noting that the delay block could have been placed in the processor

tile, as opposed to in the memory tile. The advantage of this is that it offers

composability to platforms with predictable, but not composable, interconnect

by eliminating interference from both the interconnect and the memory tile at

once. However, our interconnect is composable in itself using another technique,

defeating the purpose of moving the delay block. Delaying in the processor tile

furthermore comes with the drawback of making debugging of the platform more

difficult, since the states of both the interconnect and memory tile change if

applications are added, removed, or modified.

2.6 Experiments

The proposed composability inducing mechanisms are implemented for each

resource of an SOC prototyped on FPGA having four processor tiles with one Micro-

Blaze core each, one memory tile and an Æthereal NoC [12]. On this platform, we

execute several use-cases constructed using the following applications: a simple

synthetic application (A1), an H.264 video decoder [39] (A2), and a JPEG decoder

(A3), each consisting of a set of communicating tasks. Figure 2.9 presents the task

graphs and the task-to-processor mapping of these applications.

If the SOC is composable, the behavior of an application should remain the same

regardless of the presence or absence of other applications. We investigate compo-

sability in two ways: first by checking the cycle-level differences between some

signals of the MicroBlaze interface in multiple simulations, and second by verifying

whether the response time and starting time of an application remains constant

when other applications are added in the system.

Tile 1 Tile 2 Tile 3 Tile 4

Synthetic

H.264

JPEG

T2 T3 T4 T5

outdeblkintraidctcavlcnal

T1

vld idct cc

(A1)

(A2)

(A3)

Fig. 2.9 The applications and mappings used in the experiments

50 B. Akesson et al.

To investigate composability at the cycle level, we run two simulations and

compare a number of signals in the first MicroBlaze core. For our simulations, we

utilize the synthetic application, A1, and the H.264 application, A2. The int_out signal
(the timer interrupt) indicates the border between the end of a task slot and the

beginning of an OS slot. This signal is kept high until the processor acknowledges

that the interrupt is being served. In the first simulation, A1 transfers data tokens of

4 KBytes and in the second it transfers data tokens of 16 Bytes. Figure. 2.10 presents

the signal differences between the two simulations. The application TDM slot assign-

ment is shown at the bottom of the diagram.We observe that signals in the task slots of

A2 are identical, whereas, the signals in A1’s slots change, as expected. The striped
zone represents cycles that differ between the two runs. As seen in Fig. 2.10, the timer

interrupt signals are not always identical in the two simulations. The reason for this is

that different instructions are interrupted in different simulations, thus the int_out
signal has different timing. The comparison between the two traces clearly shows that

the only signal differences occur in the time slots of the changed applications and in

the OS slot, indicating that cycle-level composability is achieved.

To investigate the potential variations in the starting time and response time

of applications, we run the H.264 and JPEG applications alone (H.264-single and

JPEG-single, respectively), and in combination with the synthetic application

(H.264-multi and JPEG-multi, respectively) on the FPGA. In these cases, we compare

the response times and starting times of each iteration of each H.264 and JPEG task.

If the system is composable, these times should be identical in different runs,

regardless of the presence or absence of the synthetic application. Figures 2.11

and 2.12 present the response time differences for a JPEG and a H.264 task in two

cases: 1) when all applications share a single RDMA engine (one RDMA per tile), and

2) when each application has its own RDMA engine (one RDMA per application).

As shown in the figures, the response times differ when using a single RDMA per tile,

thus revealing interference. On the other hand, the response time difference is zero

when using a single RDMA per application, showing no interference. Due to lack of

space,wedonot present the response times and starting timesof all tasks.Theobserved

behavior is the same,whichmeans that the system is composablewhen using one RDMA

per application. However, sharing a RDMA engine results in interference between

applications, and variations in application timing behavior, just as expected.

In conclusion, we experimentally show that the processor behavior remains the

same at both the cycle level and at the task-iteration level, indicating that our SOC is

temporally composable. The inspected signal traces in this section only cover the

processor. However, the experiments strongly suggest that the interconnect and the

Fig. 2.10 MicroBlaze signal differences when A1 varies its behavior

2 Composability and Predictability 51

memory tile are also composable. Otherwise, the timing variations in these

resources would have resulted in variations in the response time of the tasks, or at

the cycle-level timing of the processor signals.

2.7 Conclusions

This chapter addresses the verification and integration problem in embedded

multi-processor platforms that have resources shared by a mix of real-time and

non-real-time applications. We discuss two complexity-reducing concepts:

Fig. 2.12 H.264, deblock task response time difference between RDMA per tile or per application

Fig. 2.11 JPEG, vld task response time difference between RDMA per tile or per application

52 B. Akesson et al.

composability and predictability. Applications in a composable system are

completely isolated and cannot affect each other’s functional or temporal beha-

viors. Applications in a use-case can hence be verified individually instead of

together, resulting in smaller state spaces. This enables a faster verification process,

e.g. using simulation-based techniques, that can start as soon as the first application

in a use-case is available. Predictable systems, on the other hand, provide lower

bounds on application performance, such as latency and throughput. This enables

applications to be verified at design time using formal performance analysis frame-

works. The benefit of formal performance verification is that conservative perfor-

mance guarantees can be provided for all possible combinations of initial states of

resources and arbiters, all input stimuli, and all concurrently executing applications.

However, formal approaches require performance models of the software, the

hardware, and the mapping, which are not yet widely adopted by industry. Compo-

sability and predictability hence both solve important parts of the verification

problem and provide a complete solution when combined.

Composability and predictability are different properties in the sense that

predictability implies the existence of useful bounds on temporal behavior and is

hence a property of a single application mapped on a set of resources. Compo-

sability implies complete isolation between applications and is a property of

multiple applications sharing a resource, each of which may be predictable

or not. We formally consider temporal composability achieved if the starting

times and response times of an application, i.e. when it is scheduled for reso-

urce access and when it finishes receiving service, are independent of other

applications.

The contributions of this chapter are twofold. Firstly, we present a thorough

overview of five techniques for achieving composability and/or predictability and

highlight their respective strengths and weaknesses. Secondly, we show how to

build a composable and predictable system by applying the proposed techniques to

three common resource types: processor tiles, interconnects (networks-on-chip),

and memories (both on-chip SRAM and off-chip SDRAM).

On an unshared resource, predictability means that a request with finite size has a

bounded worst-case execution time (WCET). On a shared resource, we achieve

predictability by combining resources and arbiters, each with predictable behaviors.

This enables the worst-case response time (WCRT) of requests to be determined for

any combination of predictable arbiter and resource.

Composability can be achieved in four ways, described in the following para-

graphs. The first way is useful if the execution times of all requests cannot be

bounded. However, this requires that they can be preempted after a chosen worst-

case scheduling interval (WCSI), which is the maximum time between two arbitra-

tion decisions. To create the premises of independent starting times, all scheduling

intervals must have constant length equal to the WCSI. This decouples the starting

time of a request from the execution times of previous ones. To enforce independent

starting and response times, requests must be scheduled by a composable arbiter,

such as time division multiplexing (TDM). The main limitation of this way to

implement composability is that it only applies to preemptive resources in which

2 Composability and Predictability 53

the execution time of a request is independent of requests from other requestors.

This is the case for zero-bus-turnaround SRAM memories, but not for SDRAM.

The second way to implement composability applies particularly to

non-preemptive resources. This technique requires that the resource is predictable

and has a known WCET. The idea is to set the scheduling interval equal to the largest

WCET of a request on the resource to make starting times independent of previous

requests. Combining this with composable arbitration ensures that the worst-case

response times are also independent. The two drawbacks of this technique are:

1) that execution times of requests have to be independent of requests from other

requestors, just like for the previous method, and 2) making the scheduling interval

equal to the longest WCET results in low resource utilization if there is a large

difference between the average and worst-case execution time, which is the case

for SDRAM memories.

The third and fourth ways to implement composability are based on predictabil-

ity, resulting in resources with both properties. The third method is an extension of

the first with an additional requirement that the composable arbiter is also predict-

able, such as TDM. This enables the WCRT to be computed for predictable applications

with known WCET that is independent of other requestors.

The last way to implement composability (and predictability) applies to both

preemptive and non-preemptive resources and supports variable execution times

that depend on other requestors. It can furthermore be used with any combination of

predictable resource and predictable arbiter. The key idea behind this approach is to

make the system composable by enforcing maximum interference from other

requestors to remove variation caused by other applications. This is accomplished

by starting from a predictable shared resource and delay responses to emulate

maximum interference from other requestors.

We experimentally demonstrate some of the proposed techniques on a tiled

multi-processor system with MicroBlaze cores connected to an SRAM memory tile

via a network-on-chip. Netlist simulations of this platform show that the cycle-level

behavior of an application is unaffected, as the behavior of other applications

changes, indicating composable execution.

References

1. B. Akesson, K. Goossens, and M. Ringhofer. Predator: a predictable SDRAM memory

controller. In CODES+ISSS ’07: Proceedings of the 5th IEEE/ACM international conference
on Hardware/software codesign and system synthesis, pages 251–256, 2007.

2. B. Akesson, A. Hansson, and K. Goossens. Composable resource sharing based on latency-

rate servers. In 12th Euromicro Conference on Digital System Design (DSD), 2009.
3. B. Akesson, W. Hayes, and K. Goossens. Classification and Analysis of Predictable Memory

Patterns. In Int’l Conference on Embedded and Real-Time Computing Systems and Applica-
tions (RTCSA), 2010.

54 B. Akesson et al.

4. B. Akesson, L. Steffens, and K. Goossens. Efficient Service Allocation in Hardware Using

Credit-Controlled Static-Priority Arbitration. In Int’l Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA), 2009.

5. B. Akesson, L. Steffens, E. Strooisma, and K. Goossens. Real-Time Scheduling Using Credit-

Controlled Static-Priority Arbitration. In Int’l Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), 2008.

6. ARM Limited. AMBA AXI Protocol Specification, 2003.
7. S. Bayliss and G. Constantinides. Methodology for designing statically scheduled application-

specific sdram controllers using constrained local search. In Field-Programmable Technology,
2009. International Conference on, pages 304 –307, Dec. 2009.

8. M. Bekooij, A. Moonen, and J. van Meerbergen. Predictable and Composable Multiprocessor

System Design: A Constructive Approach. In Bits&Chips Symposium on Embedded Systems
and Software, 2007.

9. R. Cruz. A calculus for network delay. I. Network elements in isolation. IEEE Transactions on
Information Theory, 37(1):114–131, 1991.

10. M. Ekerhult. Compose: Design and implementation of a composable and slack-aware

operating system targeting a multi-processor system-on-chip in the signal processing domain.

Master’s thesis, Lund University, July 2008.

11. K. Goossens, J. Dielissen, and A. Rădulescu. The Æthereal network on chip: Concepts,

architectures, and implementations. IEEE Design and Test of Computers, 22(5):414–421,
2005.

12. K. Goossens and A. Hansson. The aethereal network on chip after ten years: goals, evolution,

lessons, and future. In DAC ’10: Proceedings of the 47th Design Automation Conference,
pages 306–311, 2010.

13. K. Goossens, D. She, A. Milutinovic, and A. Molnos. Composable dynamic voltage and

frequency scaling and power management for dataflow applications. In 13th Euromicro
Conference on Digital System Design (DSD), Sept. 2010.

14. P. Gumming. The TI OMAP Platform Approach to SoC. Winning the SoC revolution:
experiences in real design, page 97, 2003.

15. A. Hansson, M. Coenen, and K. Goossens. Undisrupted quality-of-service during reconfigu-

ration of multiple applications in networks on chip. In Proc. Design, Automation and Test in
Europe Conference and Exhibition (DATE), pages 954–959, 2007.

16. A. Hansson and K. Goossens. An on-chip interconnect and protocol stack for multiple

communication paradigms and programming models. In CODES+ISSS ’09: Proceedings of
the 7th IEEE/ACM international conference on Hardware/software codesign and system
synthesis, pages 99–108, 2009.

17. A. Hansson, K. Goossens, M. Bekooij, and J. Huisken. CoMPSoC: A template for composable

and predictable multi-processor system on chips. ACM Transactions on Design Automation of
Electronic Systems, 14(1):1–24, 2009.

18. A. Hansson, M. Subbaraman, and K. Goossens. aelite: A flit-synchronous network on chip

with composable and predictable services. In Proc. Design, Automation and Test in Europe
Conference and Exhibition (DATE), Apr. 2009.

19. A. Hansson, M. Wiggers, A. Moonen, K. Goossens, and M. Bekooij. Enabling application-

level performance guarantees in network-based systems on chip by applying dataflow analy-

sis. IET Computers & Digital Techniques, 2009.
20. S. Heithecker and R. Ernst. Traffic shaping for an FPGA based SDRAM controller with

complex QoS requirements. In DAC ’05: Proceedings of the 42nd annual conference on
Design automation, pages 575–578, 2005.

21. E. Ipek, O. Mutlu, J. Martinez, and R. Caruana. Self-optimizing memory controllers: A rein-

forcement learning approach. In Computer Architecture. ISCA ’08. 35th International
Symposium on, pages 39–50, 2008.

22. International Technology Roadmap for Semiconductors (ITRS), 2009.

2 Composability and Predictability 55

23. H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of the IEEE,
91(1):112–126, 2003.

24. H. Kopetz, C. El Salloum, B. Huber, R. Obermaisser, and C. Paukovits. Composability in the

time-triggered system-on-chip architecture. In SOC Conference, IEEE International, pages
87–90, 2008.

25. E. A. Lee. Absolutely positively on time: what would it take? IEEE Transactions on Compu-
ters, 38(7):85–87, 2005.

26. K. Lee, T. Lin, and C. Jen. An efficient quality-aware memory controller for multimedia

platform SoC. IEEE Transactions on Circuits and Systems for Video Technology,
15(5):620–633, 2005.

27. A. Molnos and K. Goossens. Conservative dynamic energy management for real-time data-

flow applications mapped on multiple processors. In 12th Euromicro Conference on Digital
System Design (DSD), 2009.

28. O. Moreira, F. Valente, and M. Bekooij. Scheduling multiple independent hard-real-time jobs

on a heterogeneous multiprocessor. In EMSOFT ’07: Proceedings of the 7th ACM & IEEE
international conference on Embedded software, pages 57–66, 2007.

29. O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling: Enabling High-

Performance and Fair Shared Memory Controllers. IEEE Micro, 29(1):22–32, 2009.
30. J. Muttersbach, T. Villiger, and W. Fichtner. Practical design of globally-asynchronous

locally-synchronous systems. In Proceedings of the Sixth International Symposium on
Advanced Research in Asynchronous Circuits and Systems, pages 52–59, 2000.

31. A. Nieuwland, J. Kang, O. Gangwal, R. Sethuraman, N. Busá, K. Goossens, R. Peset Llopis,

and P. Lippens. C-HEAP: A heterogeneous multi-processor architecture template and scalable

and flexible protocol for the design of embedded signal processing systems. Design Auto-
mation for Embedded Systems, 7(3):233–270, 2002.

32. OCP International Partnership. Open Core Protocol Specification, 2001.
33. Philips Semiconductors. Device Transaction Level (DTL) Protocol Specification. Version 2.2,

2002.

34. R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G. Lemieux, P. Pande, C. Grecu,

and A. Ivanov. System-on-chip: Reuse and integration. Proceedings of the IEEE,
94(6):1050–1069, 2006.

35. J. Shao and B. Davis. A burst scheduling access reordering mechanism. In Proceedings of the
13th International Symposium on High-Performance Computer Architecture, pages 285–294,
2007.

36. S. Sriram and S. Bhattacharyya. Embedded multiprocessors: Scheduling and synchronization.
CRC, 2000.

37. L. Steffens, M. Agarwal, and P. van der Wolf. Real-Time Analysis for Memory Access in

Media Processing SoCs: A Practical Approach. ECRTS ’08: Proceedings of the Euromicro
Conference on Real-Time Systems, pages 255–265, 2008.

38. C. van Berkel. Multi-core for Mobile Phones. In Proc. Design, Automation and Test in Europe
Conference and Exhibition (DATE), 2009.

39. S. Verdoolaege, H. Nikolov, and T. Stefanov. PN: a tool for improved derivation of process

networks. EURASIP J. Embedded Syst., 2007, 2007.
40. R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and C. Ferdinand. Memory

hierarchies, pipelines, and buses for future architectures in time-critical embedded systems.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
28(7):966–978, 2009.

56 B. Akesson et al.

	Chapter 2: Composability and Predictability for Independent Application Development,Verification, and Execution
	2.1 Introduction
	2.2 Composability and Predictability
	2.2.1 Terminology
	2.2.2 Composable Resources
	2.2.3 Predictable resources
	2.2.4 Composable and predictable resources

	2.3 Processor tile
	2.3.1 Composability
	2.3.1.1 Constant task slots
	2.3.1.2 Constant OS slot
	2.3.1.3 Two-level application and task scheduling

	2.3.2 Predictability

	2.4 Interconnect
	2.4.1 Composability
	2.4.2 Predictability

	2.5 Memory tile
	2.5.1 Predictability
	2.5.1.1 Predictable SDRAM back-end
	2.5.1.2 Predictable arbitration

	2.5.2 Composability

	2.6 Experiments
	2.7 Conclusions
	References

