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Composable ad hoc location-based services
for heterogeneous mobile clients

Todd D. Hodes and Randy H. Katz

Computer Science Division, University of California, Berkeley, CA, 94720, USA

This paper introduces a comprehensive architecture that supports adapting a client device’s functionality to new services it discovers
as it moves into a new environment. Users wish to invoke services – such as controlling the lights, printing locally, gaining access to
application-specific proxies, or reconfiguring the location of DNS servers – from their mobile devices. But a priori standardization of
interfaces and methods for service invocation is infeasible. Thus, the challenge is to develop a new service architecture that supports
heterogeneity in client devices and controlled objects while making minimal assumptions about standard interfaces and control protocols.
Four capabilities are needed for a comprehensive solution to this problem: (1) allowing device mobility, (2) augmenting controllable
objects to make them network-accessible, (3) building an underlying discovery architecture, and (4) mapping between exported object
interfaces and client device controls. We motivate the need for these capabilities by using an example scenario to derive the design
requirements for our mobile services architecture. We then present a prototype implementation of elements of the architecture and some
example services using it, including controls to audio/visual equipment, extensible mapping, server autoconfiguration, location tracking,
and local printer access.

1. Introduction

Researchers have predicted that wireless access coupled
with user mobility will soon be the norm rather than the
exception, allowing users to roam in a wide variety of ge-
ographically distributed environments with seamless con-
nectivity [52]. This ubiquitous computing environment is
characterized by a number of challenges, each illustrating
the need for adaptation. One challenge is the continuously
available but varying network connectivity [7], character-
ized by high handoff rates exacerbated by the demands of
spectrum reuse. Another is the variability in client devices:
impoverished devices need to push computation into the
local infrastructure to allow for application-specific adapta-
tion [15]. A third characteristic is the variability in available
services as the environment changes around the client.

It is this third feature that has been least addressed by
previous research. This paper investigates novel uses of a
ubiquitous network, focusing on variable network services
in the face of changing connectivity and heterogeneous de-
vices. We propose that providing an “IP dial-tone” is not
enough. We must augment basic IP connectivity with adap-
tive network services that allow users to control and interact
with their environment.

In developing this architecture, we have designed, im-
plemented, and deployed in our building the following ex-
ample services:

• untethered interaction with lights, video and slide pro-
jectors, a VCR, an audio receiver, an echo canceller,
motorized cameras, video monitors, and A/V routing
switchers from a wirelessly connected laptop computer;

• automatic “on-the-move” reconfiguration for use of
local DNS/NTP/SMTP servers, HTTP proxies, and
RTP/multicast gateways;

• audited local printer access;

• interactive floor maps with a standardized interface for
advertising object locations;

• tracking of users and other mobile objects.

In realizing this architecture, we employ a few key tech-
niques:

• augmenting standard mobility beacons with location in-
formation, scoping features, and announcements from a
service discovery protocol;

• using interface specifications that combine an interface
definition language with the semantics of a model-based
user interface; and

• hosting scripts in the infrastructure that

∗ map exported object interfaces to client device control
interfaces,

∗ compose object interactions, and

∗ automatically remap the destination of object invoca-
tions to changing server locations.

The testbed for our experiments [26] includes Intel-based
laptop computers with access to a multi-tier overlay net-
work including room-sized diffuse infrared cells (IBM IR),
floor-sized wireless LAN cells (AT&T WaveLAN), and a
wide-area RF packet radio network (Metricom Richocet).
We also leverage facilities in two seminar rooms, a labo-
ratory, and a student office; all contain devices that can be
accessed and/or controlled via our software. The physical
components of the testbed in one of the seminar rooms (our
first prototype, 405 Soda Hall) are illustrated in figure 1.

Our infrastructure builds on and extends the substan-
tial work in mobility support provided by the networking
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Figure 1. Part of the project operating environment: 405 Soda Hall.

research community. The Mobile-IP working group of the
IETF [35], among others, has made great strides in the rout-
ing aspects of the problem. Overlay networking [45] has
demonstrated the feasibility of seamless handoff between
interfaces to different Internet service providers and the re-
ality of ubiquitous connectivity. The developing Service
Location Protocol [49], the Domain Name Service [33],
and the Session Announcement Protocol [19] address some
concerns in resource discovery and management; DNS and
the Session Description Protocol [20] address naming. Such
efforts have been instrumental in motivating this work and
in driving its design.

The rest of this paper is structured as follows. In sec-
tion 2, we discuss the problems of service provision and
provide a framework for describing a service architecture’s
core functionality. We motivate this with a scenario, de-
riving a set of functional requirements to be achieved. In
section 3, we detail our architecture’s prototype implemen-
tation and the protocols that allow mobile clients to access
the infrastructure. In section 4, we describe the suite of
example ad hoc mobile services incorporated into our test-
bed. In section 5, we unify the design and implementation
with some discussion and a layered view of the compo-
nents. In section 6, we discuss the relevant related work.
In section 7, we summarize future and continuing work,
and finally in section 8, we present some conclusions.

2. Designing a service interaction architecture

Consider the following scenario:

You are on your way to give an invited lecture.
After parking on campus, you take out your PDA with a
wireless network interface. Turning it on, a list of local
services is presented. You click on the map service icon,
and are presented with a campus-wide map that includes
a rough indication of where you are. You select “Com-
puter Science Division” from a list, and a building near

you is highlighted. You walk toward it.
As you enter the building, you glance down at your PDA
and notice that the list of available services changes. The
campus map is now replaced with the building floorplan.
Using the new map, you find and enter the lecture hall.
In preparation for your talk, you select “audio/visual
equipment” and “lights” from the list of services, caus-
ing a user interface for each to appear. Your selections
also cause the rooms’ equipment to be indicated on the
floorplan. You walk to the VCR and insert a tape.
The lecture begins. As you finish the introduction, you
dim the lights and start the VCR with taps on your PDA.
At that moment, you realize you have forgotten your
lecture notes. Using your personalized printer user in-
terface, you retrieve a file from your home machine and
instruct the closest printer to print the file. The printer’s
location appears on the floorplan.
A minute later, you are notified the print job has com-
pleted, retrieve your printout, and return to finish the
lecture.

Using this scenario, we imply that users wish to invoke
services – such as controlling the lights, printing locally,
gaining access to application-specific proxies, or reconfig-
uring the location of DNS servers – from their mobile de-
vices. But it is difficult to obtain wide-spread agreement
on “standard” interfaces and methods for such service in-
vocation, and thus assure the lecturer that his or her device
will be interoperable with the advertised capabilities. Thus,
the challenge is to develop an open service architecture that
allows heterogeneous client devices to discover what they
can do in a new environment while making minimal as-
sumptions about standard interfaces and control protocols.

Implementing such a service architecture makes it pos-
sible to turn client devices into “universal interactors”. An
interactor is, broadly, a device that allows a user to inter-
act with and modify his or her environment. Examples in-
clude electronic equipment remote controls and thermostats.
A universal interactor, on the other hand, is a device that
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adapts itself to control many devices. It does so by dis-
covering their control interface. A universal interactor thus
exploits what it finds in the environment, and varies its abil-
ities as a function of location. It is not a particular hardware
component, but instead a way of using an existing device.

Realizing universal interactors requires four technical ca-
pabilities: (1) device mobility, (2) network-accessible con-
trollable objects, (3) an underlying discovery architecture,
and (4) mapping between exported object interfaces and
client device control interfaces. These are detailed in the
following subsections.

2.1. Device mobility

A critical component of the scenario is device mobility.
The client moves from a wide-area network to a local-area
network, and between points in the local-area. Basic mo-
bile routing support is an underlying assumption of our
architecture. This functionality is available through Mobile
IP [35] or similar handoff infrastructure, and can be aug-
mented with network overlays [25] and local multicast [41].
Mobile IP supplies IP-level transparency to changes in lo-
cation, overlay networking augments this functionality with
a policy layer for managing connectivity to multiple avail-
able network interfaces (multi-homing), while local mul-
ticast provides seamless, low-latency handoff. We build
upon this network-layer functionality.

2.2. Controllable objects

Most physical objects provide only manual controls.
A controllable object, on the other hand, responds to control
requests or transmits status information through an exposed
interface accessible over the network. This property was il-
lustrated in the scenario when the visiting lecturer controls
the VCR and lights from his or her PDA.

To fit into our architecture, it is crucial that objects be
augmented with this ability for network-based access. Is-
sues in doing so include aggregation of objects into a con-
trollable unit, addressability/naming, and conflict resolu-
tion.

2.2.1. Aggregation
At what granularity must controllable objects be imple-

mented? In keeping with our goal of adaption, we allow it
to be arbitrary. Requiring fine-grained controllable objects
is difficult because individual objects may be too numer-
ous or the expense of individual control may be too high.
For example, while it is possible to make every lightbulb
its own controllable object, the sheer number of them in
a typical building, the expense of assigning processing to
each one, the difficulty of wiring each to the network, etc.,
would mitigate such a decision. Instead, control function-
ality could be assigned to a bank of lights, and what is
augmented is the switch bank rather than all of the individ-
ual lightbulbs. In general, the granularity at which object
capabilities are exported should not be specified by the ar-
chitecture. The difficulty, then, is to allow client controls

to aggregate and subset controllable objects components in
a manner transparent to the client interfaces above them.

We support this feature by providing clients with a facil-
ity for hosting scripts that map exported object interfaces to
client device control interfaces and compose object interac-
tions. The scripts leverage the use of interface specification
languages for object description, allowing access to sub-
components and composition of remote objects. This disas-
sociates controllable object granularity from actual control
granularity.

2.2.2. Naming
Another impact of making controllable objects accessi-

ble is that the current infrastructure for naming must be
extended to include them. These objects do not have in-
dividual IP addresses or session descriptions, but instead
are accessible through servers and, due to location-based
usage, often have fine geographic scope. Users want to
make queries based on geographic information (location),
data type (position in a class hierarchy), scope (accessibility
range), and the control authority (the “owner” and/or posi-
tion in an organization hierarchy for dealing with access-
control). These properties can dynamically change, and the
hierarchies are not strict (i.e., there can be multiple paths
from the root). It is unclear whether these four orthogonal
components need to coexist in the globally-visible naming
scheme (augmenting or acting together as a fully-qualified
unique object name), or whether some can be treated as
“properties” rather than elements of the name.

Existing methods for naming include using the Domain
Name Service (DNS) [33] for objects with unicast IP ad-
dresses or the Session Description Protocol (SDP) [20] for
lightweight sessions. DNS is a widely-deployed distributed
name service. SDP is a container protocol for associating a
single name with a collection of application-specific multi-
media transports and their (most often multicast) channels.
SDP messages are delivered via the Session Announcement
Protocol (SAP) [19], an announce/listen protocol that uses
scoped constant-bandwidth allocations.

Alternatives for the implementation of object naming
include extending DNS with new record types, extending
SDP/SAP with new application types and finer scoping,
hybridizing the two, or developing a separate hierarchy
to match this need rather than overloading DNS and/or
SDP/SAP. Further implications of this decision are noted
in section 2.3, where we describe service announcement
and discovery.

2.2.3. Shared control conflicts
When multiple users attempt to share a controllable ob-

ject, there is the potential for conflicts in the requests. Ex-
isting systems manage this difficulty by providing well-
formed application-specific solutions and limiting the set
of conflict states. One example is the elevator. Requests to
an elevator are not commands, but are instead idempotent
inputs to an algorithm that decides an order for actions to
take place (if at all). Individual elevators react to input



414 T.D. Hodes, R.H. Katz / Composable ad hoc location-based services

combinations differently, and this is acceptable. We pro-
pose using such application-specific algorithms for control-
lable objects (encapsulated behind the remote object invo-
cation specification). Leveraging “authentication” features
such as locking (minimally coarse-grain, possibly finer) and
access levels (“capabilities”) can assist in reducing the con-
flict state set and is very practical; i.e., the “owner” of the
device can always override “users”, etc.

2.2.4. Cameras as object interfaces
Another approach for interacting with objects is to use

video capture augmented with image processing (“computer
vision”) where applicable. Example uses of this approach
include fine-grain object tracking, directionality sensing,
and event triggers keyed to particular circumstances [30].
For example, a camera can be used to detect the opening
of a door or window. In this case, it is the camera that ex-
ports the control interface. Using cameras for such duties
has extensive implications for security and privacy control,
but is a viable alternative to direct manipulation.

2.3. Service advertisement and discovery

One property of the scenario is that the lecturer was
able to discover the existence and location of services while
moving. This requires some form of discovery subsystem:
a service discovery protocol. The function of a service dis-
covery protocol is to allow for the maintenance of dynamic
repositories of service information, advertise the availabil-
ity of this information, and support attribute-based queries
against it.

Service advertisement must scale with both the number
of advertised services and the wide-area. Even as larger
numbers and classes of devices become network-accessible
(e.g., “IP light bulbs”), the bandwidth consumed by these
advertisements must scale sub-linearly. Fortunately, though
objects can be addressed globally, repository queries may be
assumed to show locality, and eventual consistency seman-
tics are acceptable. This allows for the use of a soft-state
update approach such as an announce/listen protocol [11].
Thus, these announcements and queries can be scoped and
this scoping can provide the basis for hierarchy. Difficulties
include that the scoping granularity may be very fine – at
the level of individual rooms or network subnets/cells – and
that scopes must dynamically adapt to support incremental,
independent local deployment of various services.

Our observation is that this requires a technique com-
bining the properties of a distributed name service (e.g.,
DNS) and an announcement protocol (e.g., SAP). The lat-
ter “pushes” unknown names/descriptions to the client to
facilitate discovery, while the former allows the client to
“pull” information about objects given their names. The
hybrid technique is to advertise the location of local name
services in addition to object descriptions. This allows a
single message to, in effect, advertise a collection of ob-
jects, and provides advertisement hierarchy (possibly, but

not necessarily, aligned to the naming hierarchy like DNS)
with scaling sub-linear in the number of advertised objects.

The Service Location Protocol [49], a resource discovery
protocol under development by the IETF Service Location
working group, is one proposal for implementing a local-
area version of such a service. In SLP, query processing is
performed at directory agents and/or in a distributed man-
ner via multicast. SLP is amenable to a wide-area extension
leveraging its query grammar, message formats, and secu-
rity specification.

For basic operation of the system we have running, the
only mechanism necessary is a function to allow mobiles
to map names to values. These mappings can be set and
obtained by querying a local server or via multicast (our
current prototype operates via the former.) We describe
our own mechanisms for finding the correct local server or
multicast addresses and initializing the mappings. Finding
one of the correct local servers is similar to delivering the
correct SCOPE attribute to the mobile host in SLP. (The
SLP SCOPE attribute is used to administratively aggregate
an otherwise disparate set of services.)

2.4. Mapping client controls to exported objects

In our scenario, the lecturer’s PDA UI widgets remained
in familiar locations and in a familiar form even as the
devices that the widgets control were changed (e.g., the
printer). We now describe some mechanisms for enabling
this behavior.

2.4.1. Transduction protocols
A transduction protocol maps a discovered object in-

terface to one that is expected by a given client device.
It supports interoperability by adapting the client device’s
interface to match the controllable object’s interface. It al-
lows for custom user interfaces to ad hoc services, such
as allowing a virtual “light switch” on a control panel to
always control the closest set of lights. Without a mapping
function, every change in location might require that a new
interface be retrieved.

An issue with transduction protocols is how to map con-
trol functions into a UI supported by the portable device.
As an example, assume a client device has a two-position
switch widget for use with the local light controller. At
a visited location, the light controller supports continuous
dimming. In this case, the client may substitute a slider
widget for the switch. If it cannot do this (or chooses not
to), then the purpose of the transduction protocol is to map
the on/off settings of the UI to one of the two extremes of
the actual dimmer control.

To support interoperability, we allow services to transfer
an entire GUI to the client in a language it understands,
avoiding the need for transduction. (This is similar to the
Java applet usage model but with multiple language support
where necessary.) Whenever possible, though, we augment
the GUI (or replace the GUI completely) with an interface
specification (further described in section 3.7.2). Through
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the interface specification, the system discovers the two
data types that need transduction. This allow the mapping
function to be inferred (heuristically, from a library, or by
querying the user) and then installed at the local transducing
proxy that sits between the two endpoints. The interface
specification can also be used directly to generate a rough
GUI when no interface implementation appropriate for the
client is available, or when only portions of the controllable
objects’ interface are of interest to the user (i.e., to conserve
screen real estate or to add a button into a user-defined
control panel).

The interface descriptions not only allow for data type
transducers between client and server, they also provide
the critical layer of indirection underneath the user inter-
face. Example uses of this indirection include composing
“complex” behaviors and remapping the destination of ob-
ject invocations to account for mobility.

2.4.2. Complex behaviors
Objects have individualized behaviors. We wish to cou-

ple and compose these individual behaviors to obtain more
complex behaviors within the environment. For example,
consider a scenario where music follows you as you move
around a building. One behavior of the sound system is
to route music to specific speakers. A behavior of loca-
tion tracking services is to identify where specific objects
are located. A “complex” behavior allows us to compose
these more primitive behaviors of sound routing and lo-
cation tracking to obtain the desired effect of “music that
follows”.

A key problem is that there is no common control inter-
face for individual components. Furthermore, some behav-
iors may require maintenance of state that is independent of
both subcomponents. An example of the latter is instructing
the coffee maker to brew only the first time each morning
that the office door opens. Another issue is a policy-level
difficulty implied by this scenario: resolution of incompat-
ible behaviors. If other users consider music to be noise,
the visiting user’s music may or may not need to be turned
off in their presence, depending on seniority, social con-
vention, explicit heuristics, or otherwise. At a minimum,
the system must guarantee that it will detect such incom-
patibilities and notify the user(s) involved in order to avoid
instability (e.g., music pulsing on and off as each individual
behavior is interpreted).

Once again, as in transduction, our solution is to use in-
terface discovery (learning new objects’ input/output data
types), paired with the data type transducers (for manipu-
lating those data types) to allow objects to be cascaded to
achieve the desired complex behaviors. Additionally, we
supply intermediate entities (“proxies”) that maintain state
that is independent of the constituent subcomponents. This
allows for the incorporation of such features as conditional
statements and timing information.

3. Implementing service interaction

This section describes some of the implementation de-
tails of our architecture.

3.1. Basic operation

The prototype allows a mobile host to enter a cell, boot-
strap the local resource discovery server location, and ac-
quire and display a list of available services. It also allows
users to maintain a database of client-side scripts to be ex-
ecuted when particular services are discovered for use in
reconfiguration, local state updates, and to trigger location-
dependent actions. Similarly, a set of scripts are maintained
in the infrastructure at each site for locale-specific adaption
such as transduction and composition. The prototype also
allows for simple, incremental addition, deletion, and mod-
ification of available local services.

The key components of the compete system are the
“service interaction proxy” (SIP), the “service interaction
client” (SIC), and the “beaconing daemon” (beacond) pro-
grams. These prototypes implement and integrate selected
infrastructure components of our overall mobile services ar-
chitecture. The SIC runs on the client device and provides
the base functionality for discovering and managing ser-
vices. SIPs run at domain-specific granularities and aggre-
gate a group of services with a single set of advertisements.
The SIPs also manage the proxies used between client de-
vices and individual services (when necessary). Beaconing
daemons run at each base station and are affiliated (not
uniquely) with the SIP it is advertising.

An example SIC screenshot is shown in figure 2. SIP
and beacond use configuration files and command-line
switches, and thus do not have graphical user interfaces.

3.2. System setup

Each SIP process maintains a database of the services
and service elements that it provides to mobile hosts. An
example startup file for such a database is listed in fig-

Figure 2. The SIC application GUI is currently a series of buttons that
can be used to retrieve and invoke application interfaces.
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Figure 3. An abridged SIP services database example.

ure 3. It contains three types of entries: SERVICES, VAL-
UES, and PROPERTIES. VALUES are used for generic (key,
value) lookups. These are useful for, e.g., detecting the
need to update server addresses. SERVICES and PROPER-
TIES are used to specify what, where, and how services are
available from that particular location. Each SERVICE has
a unique name, and maintains PROPERTIES such as the ver-
sion number, a pointer to an associated ISL file (described
in section 3.7.2), pointers to particular language implemen-
tations of user interfaces for the service, and the geographic
location (if any) for use with maps. VALUES and PROPER-
TIES may just be pointers to another SIP, allowing simple
incremental deployment to subdomains and yielding a no-
tion of topology.

3.3. Message-level detail

The client enters a cell with a beaconing daemon. The
daemon sends periodic broadcasts that contain the bootstrap
address and port number of that cell’s SIP. The client reg-
isters with the base station to establish IP connectivity if
it needs to. It then requests the well-known meta-service
INDEX, which returns a list of the services available. Based
on the contents of the reply, the client renders labelled UI
buttons for unknown services, executes scripts in a data-
base to allow for locale-specific reconfiguration, and tells
the local SIP to remap the location of running services and
set up any necessary widget binding remappings.

When a user wishes to use a particular service, the client
software checks its local cache of applications. If an inter-
face supporting the requested application is not there, it
asks the SIP for the service’s “properties”. This is a list of
available interface descriptions and/or implementations. It
also receives any service metadata (such as version num-
bers). It then chooses either to download a particular inter-
face implementation (e.g., as a Java applet), or the generic
interface description, or both. The SIC then unpacks the
received archives, sets up transducers matching the inter-

Figure 4. Protocol message timings for a client moving between SIP
servers (dashed lines are beacons): (a) INDEX #1 request/reply, (b) re-
quest/reply for “lights” ISL file and interface, (c) INDEX #2 request/reply,
(d) “lights dim” button press retrieves new ISL file to remap RPC, then

completes.

face description to the device characteristics, and finally
executes the GUI.

An example exchange of protocol messages for a client
moving between SIPs is illustrated in figure 4. Illustrated
in this example is a situation where the client retrieves an
interface to a light switch in one scope, but then has a later
invocation of the service transparently remapped to a new
light due to the occurrence of a scope change.

3.4. Client bootstrap

For a client to use services, it must first find the address
of the local resource discovery server or the local multicast
address where services are advertised. In our architecture,
this bootstrap above IP is minimal: there is an indirection
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embedded in the mobility beacons. This minimal bootstrap
standardizes the mechanism without constraining its inter-
pretation, thereby allowing variation in resource discovery
protocols as they evolve.

3.5. Beaconing

Beaconing is required in a system to facilitate notifi-
cation of mobility-based changes in the relative position
of system components. Its use is motivated by inherent
availability of physical-level hardware broadcast in many
cellular wireless networks and the need to track mobiles to
provide connectivity.

Two issues arise once the decision to beacon has been
made. The first is which direction to send them: uplink,
downlink, or both. The second is what information to put
on the beacons, if any at all. (An empty beacon acts as
a simple notification of the base station address, available
in the packet header.) These issues are discussed in the
following subsections.

3.5.1. Beaconing direction
In terms of choosing whether to have client devices or

infrastructure servers beacon, existing systems can be found
which have made either choice. Client beaconing is used
in both the Active Badge [21] and PARCTAB systems [37],
while server beaconing is used in Columbia Mobile IP [22].
IETF Mobile IP [35] utilizes both periodic advertisements
and periodic solicitations.

One might expect that the different policies optimize for
different applications’ operating modes. This is indeed the
case: there are trade-offs in such a decision, as it varies al-
lowances for privacy, anonymity, particular protocols’ per-
formance, and scalability.

There are a number of metrics for considering qualitative
trade-offs between the two decisions:

• Power: Less power is consumed at the mobile by peri-
odically listening than by periodically transmitting, but
this difference can be mitigated by hardware/MAC de-
sign [44].

• Detection: When base stations (BSs) beacon, mobiles
need not transmit to detect when all contact is lost.
When clients beacon, BSs need not transmit to detect
user mobility.

• Multiples: With BS beaconing, detection of multiple
beacons can be used to assist handoff. With client bea-
coning, the number of received beacons specifies the
number of clients in the cell.

• Location anonymity: When BSs beacon, anonymity
is preserved for non-transmitting mobiles; when clients
beacon, the granularity of the infrastructure is invisible
to users.

• Geographic mapping: BS beaconing maintains a con-
sistent mapping between geography and beacon broad-
cast cell; client beaconing maintains a mapping of
clients to multiple cells.

• Bandwidth scaling: BS beaconing implies less beacon
traffic per cell given a natural many-to-one mapping of
mobile hosts to base station cells. Conversely, client
beaconing optimizes for very small overlapping cells.
(Assuming other parameters remain constant.)

Our system uses base station beaconing. We believe this
is the correct design choice for three key reasons: the sup-
port for user (rather than infrastructure) anonymity, better
bandwidth scalability in a network where there are many
MHs per BS, and because power is more precious on mo-
bile devices.

3.5.2. Beacon augmentation
The second question is whether to augment mobility

beacons with additional data. Augmenting beacons with
application-specific data does two things. It makes data
available to mobiles before registration (in the Mobile IP
sense), allowing the possibility of “anonymous” access to
this broadcast data (at a cost of management overhead and
increased beacon size due to the piggybacking). It also
aligns the mobility beacons with a form of announce/listen
protocol that has limited announcement timer adaptability.
The announcement timer can only be set to discrete multi-
ples of the base beaconing rate (where the base beaconing
rate is the rate determined to be sufficient to detect handoff
within some acceptable latency.)

Possible uses for such piggybacked beacon data include:

• merging of other periodic broadcasts to amortize header
and MAC overhead (e.g., NTP beacons [32], Mobile IP
foreign agent advertisements);

• pricing information useful to the host to determine
whether to register;

• any form of commonly accessed time-variant data;

• a list of some or all of the available services in the cell;

• “tickets” for providing scoped access control (discussed
in section 3.6).

The utility of beacon payload augmentation is highly de-
pendent on the direction of the beaconing, traffic patterns,
and application mix. An argument against augmenting bea-
cons at all is that orthogonal applications should not mix
their data units that may have been “properly” sized by
the application (cf. application-level framing [12] or joint
source-channel coding [31]).

We choose to augment our beacons with bootstrap infor-
mation, a ticket for scoping of services, and a dynamically
configurable application-specific payload. The encoding is
shown in figure 5. One common application-specific pay-
load is the contents of the cells’ INDEX, allowing for anony-
mous assessment of available services and a reduction in
service discovery latency.

Whether merging data into beacons is a benefit depends
on the metric of evaluation; our choices are only heuristics.
We are still trying to quantitatively determine which data, if
any, is best dedicated to these bits for optimizing reasonable
client-driven workloads.
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Figure 5. The service beacon encoding includes bits for the service interaction bootstrap and location queries. Not shown are the details of any
particular mix of application-specific payloads.

3.6. Scoped access control

Making services available to visitors brings up a host of
general security issues, including those specific to the wire-
less domain [5,9,16]. In addition to the need for standard
cryptography-based security at the granularity of admin-
istrative domains, service interaction systems require lo-
calized access control: the expectation that environmental
changes can only be affected by people in that environment
(e.g., lights cannot be turned off by a person across the
country) has been broken. Maintaining this norm is impor-
tant when extending existing human social metaphors into
an environment with controllable objects.

We address this by embedding tickets, random fixed-
length bit vectors, in the mobility beacons and requiring that
current ticket be included in all communications to servers.
Periodically changing the tickets in an unpredictable way
(randomly) and scoping the broadcast (implicitly via the
cellular wireless network broadcast cell1 or explicitly with
IP multicast scoping) prevents remote access from nodes
even on the access control list that are not local. This
pairs the geographic scoping of the environmental controls
(what we cannot control) to the topological scope (what we
can control). This ticket-based exclusion can be overrid-
den by having a local agent separately multicast or unicast
the ticket when necessary, but by making access topolog-
ically restricted by default, we better emulate the existing
paradigm.

3.7. Client interfaces

3.7.1. Motivating interface specifications
Clients can be computationally impoverished, have vari-

ations in display (color depth, resolution, screen size), sup-
port different interface paradigms (keyboard, pen, touch),
and are often not preconfigured (allowing them to be inter-
changeable).

Due to the need to support such end devices, especially
extremely resource-poor PDAs, our architecture focuses on
providing thin client interfaces and offloading processing
to proxies. Recognizing that expecting custom UIs to be
available for all services on all different types of hardware
is not realistic, we propose exposing controllable objects
through an interface specification language (ISL). The ISL
exposes the syntax of each service’s control interface. The
ISL is used in addition to implementations of an interface in

1 RF localization is at best approximate due to effects such as multipath.
IR may be a preferable transmission media for tightly controlled local-
ization.

various languages, thus allowing for compatible but inde-
pendent coexisting interfaces. Upon discovery of a service,
the client device checks to see if a language implementa-
tion is available that it can support, and if not, it uses the
ISL file to learn the syntax of RPC calls and call parame-
ters that can be used to access the service. It additionally
allows the device to adapt the representation to a format
appropriate for the device’s characteristics (possibly trans-
duced at a proxy), and allows the user to place the elements
manually and independently of one another for fine-grain
control. Automatic UI layout heuristics can also be used
on an ISL file directly.

3.7.2. Interface specification
The conventional notion of an Interface Definition Lan-

guage (IDL) (e.g., the CORBA IDL [34]) is to spec-
ify method names, parameters, parameter data types, and
parameter-passing conventions for remote object invoca-
tion. The basic function of a Model-based User Interface
[46] is to specify interfaces as structured widget hierarchies
along with sets of constraints. The actual interface is de-
rived from the model at run time or through a compilation
step. This allows interfaces to be amenable to arbitrary
adding and deleting of elements. Our goal is to unify these
approaches, allowing remote object API descriptions to be
augmented with UI models. This hybrid would allow both
composition of the object invocations (RPCs), and separate
subsetting/aggregation of object UI elements. We call this
combination an interface specification, and its grammar an
Interface Specification Language, or ISL.2

As concrete examples, we would like to allow an appli-
cation to buffer DNS queries (calls to one object method)
through a local cache (calls to another object), while in-
stantiating the new functionality through the original UI.
Similarly, an RPC spawning an audio conference can be
rerouted to a client script that first reduces the volume of
the room’s music player and then passes along the origi-
nal RPC. In both cases, if the individual components were
built as monolithic “applications” without an accompany-
ing ISL, there would be no exposed indirection allowing us
to perform the remappings below the user interface. The
use of an ISL explicitly exposes this layer of indirection,
allowing transparent remapping of individual interface ele-
ments. This indirection is critical for allowing services to
be composed.

An important design criteria in such a IDL/model-based-

2 The ISL, though called a ‘language’, can be implemented atop another
high-level language syntax or document format, such as in Java or as an
XML schema [14].
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UI hybrid is that it be robust enough to be applicable to
various classes of client devices (each with their own im-
plicit assumptions about widget implementation), yet sim-
ple enough to be manageable in terms of syntax parsing and
authoring difficulty. Our current implementation has inter-
faces manually implemented in Tcl/Tk and an ISL built atop
an ad hoc grammar tuned to Tk; we are moving to XML
for the ISL.

An example of a very similar need but in a different
domain is the Universal Remote Console Communication
Protocol [48]. This work allows different interfaces to be
made available to disabled users by requiring applications
to expose their UI as a well-defined interface. As in our
case, it is the exposed indirection that is critical to enabling
the work.

3.7.3. Prefetching
As an optimization, clients can prefetch the ISL files for

active services. We illustrate with a concrete example from
our prototype. As the user moves between rooms, the light
controller application UI remains the same. When the user
changes the lighting in a previously unvisited cell, the client
application must first send the new SIP a request for the
lights ISL file. This enables the RPC command invoked by
the existing interface to be remapped to the new lighting
server. (This particular message exchange was illustrated in
figure 4.) Such late-binding is used to conserve bandwidth
on the wireless link; the total number of ISL files may be
large and the client may use one only infrequently.

The problem with late-binding is that the entire opera-
tion latency is seen by the end user; in practice it can be
perceived as a possible error condition. (The button “does
not work” for a number of seconds after it is invoked, and
for this period it should probably be greyed out in the UI.)
This delay can be minimized by transparently remapping
the interface elements to the new server as soon as possi-
ble. To do so, we add one bit of per-service state, “active
vs. inactive”. This flag is set to “active” whenever there
is an RPC call to that service, and reset to “inactive” by
a timeout. Upon receipt of any beacons with a new SIP,
services with the “active” bit set (and available in the new
location) have their new ISL files prefetched automatically,
thereby reducing their invocation latency. (Additionally,
the INDEX meta-service is always prefetched in our current
implementation.) Delays can be further minimized through
mobility prediction [28], allowing prefetching in response
to assumptions about user mobility patterns.

Prefetching is important in this domain because the de-
lay experienced by an end user using a high-latency, low
bandwidth wireless interface can be substantially mitigated
through the use of prefetching rather than demand-paging.

3.7.4. Client-side security
Client interfaces may be passed to the user from a visited

infrastructure in a number of forms. Because in most cases
we are only transferring interface code rather than fully
general “mobile code”, it is probable that a sandboxed en-

vironment (such as with Java applets, Safe-Tcl, or Janus
[17]) can be used without constraining the service’s func-
tionality. This is another benefit of the proxy-based access
model: it segments the security domain, thereby screening
more of the system internals from the user. This approach
also aligns well to the restricted Java applet communica-
tion security model, where messages can only be sent to
the applet provider (the SIP in our case).

3.8. Naming scheme

We express controllable object names as a globally-
unique fully-qualified object name (FQON) and a tuple of
properties. Some properties are required while others are
optional but standard. (Service-specific properties are also
allowed, of course.) The set of basic properties includes:

• geographic location as a name hierarchy of maps that
contain the object,

• the data type of the object as a class in a class hierarchy
and a version number,

• the name of the “owner” of the object to indicate where
and how to obtain authenticated credentials (if neces-
sary),

• a pointer to the controlling server process (machine/
port).

A common additional property is a set of pointers to
“peer” controllable objects and tags that note the I/O data
flow that makes them peers. These are useful for specify-
ing, for example, that the (analog) input source to a monitor
is a particular A/V switch.

We have not as of yet incorporated scope information
into the object names/properties, but this remains as a crit-
ical area for future research.

4. Prototype mobile services

In addition to the prototype service discovery and in-
teraction implementation, we have developed a number of
services using the framework. These include maps that
specify discovered objects’ positions, autoconfiguration, lo-
cation tracking with privacy allowances, audited printer ac-
cess, and interfaces to audio/visual equipment. We now
describe each in turn.

4.1. Maps

Given a widely distributed service interaction system
supporting very fine-grained services, management of even
the subset of information available to the client becomes
non-trivial.

We have experimented with using maps for explicit man-
agement of these services at multiple locations. Map con-
tent can be separated into three domains: network connec-
tivity (topology and link characteristics), physical geogra-
phy (object locations and floorplans), and administrative
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Figure 6. Map with discovered object locations, configured for a user in
the RF cell including room 405. Clicking on entries spawns the interface

to that entity.

domain (access rights, pricing, hierarchy). Our prototype –
of which an example view is shown in figure 6 – focuses
on physical geography: allowing objects to note their loca-
tion on multiple overlapping maps and to receive requests
passed through the map interface via a button press on the
service indicator on the map. Map positioning in the pro-
totype is based on using relative coordinates. It is designed
to allow objects to position themselves without knowing
exactly which map(s) the user is viewing, and allows maps
to maintain hierarchical (“containment”) relationships in a
distributed, extensible manner.

It works as follows: services express their location rela-
tive to some map by holding a pointer to the map itself and
specifying a bounding box or point on the map. To provide
the hierarchical containment, maps may themselves have
pointers to other maps, and similarly indicate their relative
location and size in the “neighbor” maps just as services
do. In this way, (coarse-grained) positioning of disparate
services on disparate maps may be maintained without re-
quiring any absolute positioning information (i.e., requiring
that everything use GPS coordinates) – represented objects
and locations can be relocated to new maps where a chain
of containment can be found, and can be sized in accor-
dance with the scale of the map(s) they are directly located
on. The map hierarchy thereby maintains the same char-
acteristics as a SIP hierarchy: it can be arbitrarily nested
and extended to subdomains without affecting other maps
or requiring objects to relocate themselves.

This technique can be extended for use with an absolute-
positioning-based notation for physical geography, as in the
proposed “LOC” DNS record type [13] extended to objects
without IP addresses. In a system with absolute positioning,
neighbor pointers are unnecessary; the relative-positioning-

based approach, though, is more robust to precision errors
and usable when no reference absolute positions are avail-
able.

This very simple approach sits in stark contrast to the
various complex transform mappings used in Geographic
Information Systems. Though there is an obvious funda-
mental limitation in accuracy and consistency a relative ap-
proach can achieve, the novelty is the simplicity – it is easy
for a non-expert to add a new map to a collection in any
form, ignoring difficulties like rotation orientation (“which
way is North?”) and maintaining object constancy (“are
these two roads the same?”).

4.2. Proxy and gateway autoconfiguration

There are a number of useful local intermediate agents
(“gateways” or “proxies”) that could be made available to
visiting users. Examples include web proxies that perform
on-demand dynamic transcoding [15], WWW data caches,
real-time media transcoders [3], and multicast-to-unicast
gateways for multicast-unaware client devices (i.e., most
PDAs).

Additionally, though, proxy/gateway/server autoconfig-
uration is important in a mobile environment for more than
just efficiency. Using the “best current practice” technique
of hard-coding DNS servers as /etc/resolv.conf en-
tries or in the Windows registry, if a user were to move
from a location behind a firewall to one that is not, all
lookups will fail until an out-of-band technique is used to
find a new server and manually update the entry. The Net-
work Time Protocol is dependent on server location due to
its use of RTT estimation, and is therefore especially suit-
able for use with automatic reconfiguration. A failure to
keep accurate time can break some security systems, no-
tably Kerberos. Spawning a local RTP gateway/transcoder
for unlayered data in MBone sessions may be necessary if
movement has changed the bottleneck link to sources or
to facilitate local management of inter-session bandwidth
sharing [1].

Autoconfiguration also adds a level of fault tolerance.
If a network link goes down, SIP beacons coming across
the failed link will stop. The client can wait for other bea-
cons to be obtained (cf. in an overlay network with vertical
handoff [45]), and reconfiguration to the new servers will
happen transparently.

Our current implementation simply allows for callbacks
to be set that track VALUE entries in the SIP databases.
A more complete and detailed solution to this problem ap-
plied to media gateways is described in [2].

4.3. Location tracking

Location tracking has been addressed in other sys-
tems [21,39], and can be implemented by allowing queries
against foreign agent registrations or routing table entries
(as appropriate). These systems suffer from the limitation
that client devices must be turned off or not carried to en-
sure users are not vulnerable to continuous detection (e.g.,
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while in a restroom). Additional effort can be expended to
mitigate this limitation, such as by having queries sent to
a group of cells rather than a single cell [43], but a com-
plete solution ensuring security must avoid a traffic analysis
attack even when the infrastructure is trusted.

In our system, devices may be carried continuously
while still allowing for detection avoidance. This is due
to the fact that clients do not periodically transmit (as de-
scribed in section 3.5).

4.4. Printer access

One of the most common examples in the resource dis-
covery literature (and commonly requested end user ser-
vice) is local printer access. In our implementation, after
the discovery protocol finds the local printer and notes it
on the map, clicking on it (or on the “print” SIC button)
pops up a dialog box that can be used to send a postscript
file on the client to the local print server. The server then
checks the data, logs the request, prints the file, and returns
any status and/or error messages.

4.5. Motorized cameras

We have built software to control both the Sony EVI-
D30 and Canon VCC1 motorized cameras. A unified user
interface for the four cameras in 326 Soda is shown in fig-
ure 7. Operations supported include pan, tilt, zoom, speed
control, and setting of software presets.

The camera controls were used extensively by members
of a UCB class (“CSCW using CSCW”) with remote par-
ticipants in the Fall of 1997. The controls provide better
remote monitoring of whoever is speaking and allow for
framing a group of speakers into a single view.

Figure 7. Screenshot of the user interface to the camera controls.

4.6. 405 Soda Room interaction

The “high-tech seminar room”, where weekly MBone
broadcasts of the Berkeley Multimedia and Graphics Sem-
inar take place, is equipped with a variety of equipment:
two slide projectors, a light controller, a video projector, a
VCR, a receiver, a DEC workstation, and an Intel PC. All
the devices are attached to an AMX corporation control
switcher or routed via an AMX router. The DEC work-
station talks to the AMX via a RS-232 serial connection,
which allows the workstation to act as the control interface.

In 1993, Bukowski and Downs designed a library for
accessing the AMX from a workstation for use in a similar
room [10]. They also produced a client/server package
utilizing the library. We leverage their work, along with
a new version of Tcl-DP [42] as the RPC interface, and
extend it for use in our environment.

4.6.1. Design and architecture
The application, like others in our architecture, is built

using the principle of application partitioning [51]. Due
to the potential lightweight nature of clients, the server is
required to bear the brunt of the effort to support fault
tolerance, access control, and other such duties. Features
can be added to make the internal system interactions more
robust with little or no change to the client-side code.

The server runs on an extended Tcl/Tk wish shell which
includes the base AMX functions. The server opens an
RPC socket and listens for requests to convert to AMX
commands. It is also responsible for maintaining the hard
state of the system. This leaves the clients free to act as
only a UI and cache for soft state.

All communication with the AMX is done through an
intuitive scripting language (e.g., pushButton vproj
power-on). As an example, if the client executes a
command such as pushButton receiver power, the
routines of AMXHelperLib.tcl translate it into a remote
procedure call for send-AMX-command 1 3 75. The
request is forwarded through the wireless base station to the
server application. The server, in turn, maps this request
into a packet for the AMX, which it sends down the RS-
232 serial link. Upon receipt of the message, the AMX’s
embedded controller routes the signal to its third slot (the
one for the receiver) instructing it to to turn on channel 75
(power). This causes the correct stored IR frequency to be
broadcast down a wire connected to the standard remote
control IR port on the receiver. Other wires use mechan-
ical calipers for manipulation of the slide projectors and
variations in voltage levels to adjust the lights.

4.6.2. Room interfaces
Our initial implementation of the room controls includes

two separate monolithic Tcl/Tk programs for the room’s
control, one a superset of the other. The first handles only
the lights, while the second handles the most useful but-
tons (showing them all is excessively complex). The latter
interface is shown in figure 8.
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Figure 8. Screenshot of the monolithic user interface to the A/V equip-
ment.

It was these implementations that led us to observe the
utility of functional inclusion and the need for variability
in the interfaces. It also led us to realize that indepen-
dent objects should be composable. With such a design,
users could create unique UIs that makes the most sense
for themselves by leveraging the scripting language and
ISL. We are working on allowing the user to maintain sets
of service elements by manipulating the interface specifica-
tions transparently, for example by dragging-and-dropping
individual elements to and from a toolbar.

4.6.3. State management
Ideally, requests to the AMX could be idempotent, and

no state would have to be maintained in the system. How-
ever, by the nature of the equipment to which it is attached,
AMX requests are not idempotent, and cannot be coerced
into idempotent versions. For example, if we want to turn
on the receiver, the only request we can give is equivalent
to “toggle receiver power”, which may very well turn the
receiver off. The only way to know the effect of this request
beforehand is if long-lived state variables are maintained.

Because bandwidth between the client and server is of-
ten valuable, state variable updates need to be minimized.
Our server is responsible for maintaining consistent state
between and during client sessions. Clients are responsible
for querying the server for the state info upon connection
initiation. For consistency, clients are required to send an
update request to the server to ask for state changes. Clients
may only commit the change upon receipt of an acknowl-
edgment.

Another issue is dealing with inconsistencies due to man-
ual events. Devices are unable to inform the AMX when a

user presses a button on their front-panel. If a user wants
to insert a video cassette into the VCR, he or she must first
turn it on; the AMX does not register this manual event.
Since this is such a common problem, we accept that the
state will, at times, become corrupt. We equip the user to
correct such inconsistencies via the two buttons at the bot-
tom of the client interface labelled “Deactivate Panel” and
“Activate Panel”. Whenever a discrepancy in the state oc-
curs, the user can deactivate the panel. All the state-related
buttons will then only modify the state variables (on both
the client and the server) and not make requests to the
AMX. This means the user can reconcile the information
on the panel with reality, then reactivate the panel and once
again right the system to a consistent state.

5. Discussion

Section 2 described the design issues and problem char-
acteristics of service provision. Sections 3 and 4 gave de-
tails of a prototype implementation. We now attempt to
better unify and situate these views.

A layered view of our architecture is presented in fig-
ure 9. This representation exposes how the various mecha-
nisms described in this paper interrelate. It also illustrates
how alternative mechanisms could replace the particular
ones we have chosen without affecting the overall service
architecture. For example, if some to-be-determined Ser-
vice Location Protocol SCOPE delivery mechanism were to
replace our augmented beaconing mechanisms for location
management, the interface discovery and data type trans-
duction could remain unaffected.

The lowest layer is the Announcement layer. It lies di-
rectly above the network and transport layers and imple-
ments the basic service bootstrap mechanisms. This in-
cludes the embedding of local server information in the

Figure 9. A layered view of the mobile services architecture.
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beacon payload, the ability to implement scoping mecha-
nisms through the indirection gained by the beacons, and
the possibility for additional application-specific payload
augmentation as a performance enhancement. Its most ba-
sic function is to find servers and users.

The Query layer uses server location information from
the announcement layer. It adds the ability to interact with
found entities such as resource servers and service interac-
tion proxies, and provides a structure for attribute queries
(e.g., requests for a device-specific service applet interface).
Its most basic function is to allow entities to talk to other
entities.

The Interface Descriptions layer is built on whatever
query protocol is exposed by the query protocol layer. It
defines the set of possible interface descriptions and their
semantics. Its most basic functionality is to map between
the client device interface and the interface advertised by
discovered objects.

The highest layer is the Application Protocols layer. It
uses the interface description language exposed by the inter-
face description layer. It encapsulates application-specific
state or data not captured by the lower layers. Examples in-
clude attaching semantic meaning to particular names (i.e.,
“camera”, “power”) and defining relationships between data
values (i.e., the map hierarchy).

Though we have focused on access for wireless mobile
clients, facets of our approach are applicable to wired net-
working. Examples include automatic reconfiguration of
server location (for fault tolerance) and scoping of access
to services through limited broadcast of tickets.

6. Related work

The Rover [23] and Wit [51] systems also recognized
the need to split applications into a lightweight front-end
and more heavyweight proxy at the last hop wireless link.
Rover allows the pieces that comprise the partitioned whole
to migrate between these two points, but the implemented
prototype applications generally only exploit this for mov-
ing application data units such as mail messages, news ar-
ticles, web pages, or calendar entries.

The Service Location Protocol (SLP) [49] is an example
resource discovery and service registration mechanism that
can also function as a fine-grained name service. Open is-
sues include its lack of an explicit scope hierarchy and peer-
ing equivalent to our use of pointers in a service database.
Our mechanism for dynamically updating the current SIP
location could be adapted as a scope discovery mechanism
and coexist with other such mechanisms in the proposal
(i.e. having a SCOPE DHCP option).

The seminal PARCTAB [37] and Active Badge [21] sys-
tems, along with related work by Schilit [38–40], were
among the first to attack the issues of client applications and
network support for mobility in tandem. We borrow much
from this work, including the focus on mapping, event no-
tification, and support for impoverished devices. There are

some key differences. We support distributed servers, rather
than a centralized repository. We employ discovery mech-
anisms, interface code mobility, and generalize to hetero-
geneous devices; these are unnecessary in their local-area,
homogeneous environment with pre-installed custom appli-
cations. We use server beaconing rather than client beacon-
ing, and allow the beacons to bootstrap resource location,
define scope, assist fault detection, and provide for some
location management.

A transportable X display [53] is a variation on inter-
face code mobility; it moves users’ existing interfaces as
they move, not unknown applications’ interfaces or inter-
face descriptions. It has the advantage that applications
need not change at all, but suffers from the limitations that
(1) it does not support transformations of the interface to
formats more suitable to particular client devices, and (2) it
does not expose a layer of indirection underneath widget
invocations.

The Mobisaic [50] and Dynamic Documents [24] pro-
jects support a HTML-based structure for varying, location-
dependent interfaces. Our scheme generalizes these ap-
proaches by incorporating resource discovery and aggre-
gating/subsetting different interface elements.

The Georgia Tech CyberGuide project [29] focuses on
prototyping applications augmented with various position-
ing systems, potentially without communications at all. Us-
ing such an approach requires that devices be manually
adapted to new environments.

Our conception of a “proxy server” is based on the
model expressed explicitly in the Berkeley Client/Proxy/
Server model [15] and implicitly in other work [3,8] that
places application-level or network-level entities near, but
not at, the endpoints of communications. This is another
way of thinking about Active Networks [47], driven by end-
to-end design principles [36]: push agents as close to the
endpoints as possible, but no further. This concept of lever-
aging the well-connected, computationally powerful side of
the wireless link (via “proxies” or “agents”) pervades mo-
bility research. It is also driven by the growing availability
of workstation farms [4] designed to provide compute re-
sources for just such applications.

7. Continuing work and future directions

Our continuing work involves iterating over the design,
refining the implementation, and investigating various other
approaches.

7.1. Wide-area issues

The current implementation has been tested only in a lo-
cal area environment; work is continuing as to the specifics
of how such servers aggregate (with union and intersec-
tion operations) and their hierarchy. This relates to naming
issues and query semantics.
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7.2. Building control and support

We are working with building architects and engineers
at the Center for the Built Environment3 to incorporate de-
vices such as the centralized heating and air conditioning,
vents, fans, and temperature/humidity sensors into our sys-
tem. This could allow users to close the environmental con-
trol loop and adapt areas in accord with user preferences
as they move. Additionally, we hope to apply this model
to the corporate environment team-based work process, al-
lowing per-user location-based interfaces. For example, a
R&D person visiting the Accounting Division is probably
interested in different services than the local workers in the
same area.

7.3. Delegating operations

In general, mobiles may be allowed controlled access
to CPU resources directly rather than configured services.
This allows custom installation of “last-hop” network pro-
tocols, codecs, and security modules that are too compute-
intensive to run on the end-client (e.g., for allowing the
use of end-to-end session keys in an untrusted domain, for
delta-encoding data, or for deploying private handoff pre-
diction.) This requires a management layer for implement-
ing policy decisions granting access to bandwidth, disk, and
CPU. It also requires a mechanism for securely delegating
operations [27].

7.4. Queued RPC

Queued RPC mechanisms [6,23] support disconnection
and link variability by incorporating application-managed
messaging state. Queued RPC and asynchronous notifica-
tion support is not incorporated into our system, but could
be. On the other hand, applications should also be able to
ignore failed RPCs rather than queuing them, a more ap-
propriate paradigm for situations such as with equipment
interaction – the client interface is designed to express the
current state of external processes and messages can specify
idempotent operations.

7.5. Maps

We wish to add additional functionality to our map ap-
plication, including the ability to tie together physical geog-
raphy to network connectivity. Servers could be pinned to
their location on the floorplan and the connectivity graph
automatically overlayed as it is discovered. Also to be
added are the specifics of the administrative domains: over-
laying the list of services available at groups of servers on
the map, and extensions to illustrate hierarchy.

7.6. Interface specification grammar and compiler

A full specification of the ISL grammar and UI genera-
tion for different platforms is work-in-progress. Candidate

3 http://www.ced.berkeley.edu/cedr/cbe.

base languages include HTML, XML, Java, the CORBA
IDL, or a hybrid.

7.7. Geographic locality

Currently there is no notion of requiring the tie between
physical geography and network topology to be explicit.
Users given IP access are expected to navigate through
the global Internet where little or no locality is exposed
even though it can be exploited. For example, the only
hints of geographic information are out-of-band channels,
heuristically through the IP interface domain name (“white-
house.gov” in Washington, DC), IP address-to-city regis-
tration mappings available through the WHOIS service, or
possibly the experimental DNS “LOC” record type [13].

Work has been done to allow clients to recreate these
topological relationships for a small class of services us-
ing limited support from the network [18]. We would like
to overload our hierarchical service infrastructure with this
functionality directly. To do so, each service interaction
server maintains “pointers” to others in the hierarchy and
to peers. The pointers are then links in a geographic chain
similar to the more familiar concept chains used in the
WWW. In other words, just as HTML hyperlinks asso-
ciate data based on content without regard to geography,
neighbor links associate network topological locality with-
out regard to content. Such links can be set up either manu-
ally with multi-lateral peering agreements (people agree to
link topological neighbors), through occasional multicast
expanding ring searches, or by inferring neighbors through
the name and scope embedded in service advertisements.
This requires no router support and can be incrementally
deployed. As more links maintain a service advertise-
ment beacon with these pointers, the leaves of the hierarchy
would be filled out, allowing clients to infer a view of the
geographic structure from their location. This gives us the
possibility to enable a form of “window shopping” on the
Internet, where neighbor networks can be queried to see
what is available “next door”.

7.8. Multimedia collaboration control architecture

The current suite of multimedia collaboration tools (vic,
vat, wb, etc.) is focused on use at the desktop, with lo-
cal control of each application through its user interface.
In other words, the participant is also expected to be the
controller.

These applications are now finding use in less traditional
environments. One concrete example of this is the MASH
Collaboration Laboratory, where media streams are sourced
and sinked from a large number of non-computer devices.
These devices (cameras, TV monitors, A/V routing con-
trols, etc.) require remote (distributed) control to allow for
the development of aggregate control applications that can
configure such devices in combination.

We are developing a control infrastructure that can sup-
port such applications and developing prototypes for us-
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ability studies. The hope is to provide users with ro-
bust, intuitive room controls rather than requiring an at-
tending technician to take care of such details. Addi-
tionally, the distributed control infrastructure will provide
the mechanisms through which remote participants’ ap-
plications can be controlled out-of-band (modulo policy-
level access controls). Such mechanisms would relieve the
need for users to receive control instructions (i.e., “Please
turn down your source volume”) from technicians or ad-
vanced users through a sideband (or worse, in-band) chan-
nel.

7.9. Conference control primitives for lightweight sessions

The goal is to design a set of control mechanisms from
which a wide variety of conference control (e.g., floor con-
trol) policies can be built. The base component is an
announce/listen protocol to support “voting”, much like
SCUBA sender-interest messages or RTCP receiver re-
ports. Atop this message-passing framework are mecha-
nisms for specifying the style of shared control (i.e., how
votes are tabulated) for each element in the collaboration
session. Also, we envision incorporating standard strong-
crypto solutions for authentication and encryption to sup-
port access control lists and for assigning participants to
“ownership classes” for the various objects in the environ-
ment.

A related open issue we are exploring is whether individ-
ual receivers and application-specific gateways should unify
disparate announce/listen protocol messages. It seems that
the “global, constant-bandwidth” allocations used by these
protocols (i.e, SAP, RTCP, SCUBA) should not simply be
summed as new protocols are deployed (a difficult predica-
ment for low-bandwidth networks), but could instead share
a single allocation. The hope would be to reduce the re-
quired announcement bandwidth by avoiding repetition of
redundant data and to reduce consensus latencies by al-
lowing individual protocols to adapt their share of a static
allocation as necessary.

7.10. Anonymity versus community

In a shared environment like a meeting room, it is ob-
vious when someone gets up to adjust the lights. In such
an environment, it might be more appropriate to announce
the controlling actions to everyone rather than keep the
action anonymous. Such announcements would leverage
social convention to ensure that users inside the protection
domain still manually limit their actions.

Understanding how human interactions and the sense of
community change given remote access to shared services
requires further study.

8. Conclusions

We propose that providing an “IP dial-tone” is not
enough. We must augment basic IP connectivity with adap-

tive network services that allow users to control and inter-
act with their environment. The challenge is developing an
open service architecture that allows heterogeneous client
devices to discover what they can do in a new environment,
and yet which makes minimal assumptions about standard
interfaces and control protocols.

We then present an architecture for “universal interac-
tion”, allowing a device to adapt its functionality to ex-
ploit services it discovers as it moves into a new envi-
ronment. Four capabilities are needed for a comprehen-
sive solution to this problem: (1) allowing device mobility,
(2) augmenting controllable objects to make them network-
accessible, (3) building an underlying discovery architec-
ture, and (4) mapping between exported object interfaces
and client device controls.

We employ a few key techniques to realize our architec-
ture:

• augmenting standard mobility beacons with location in-
formation, scoping features, and announcements from a
service discovery protocol;

• using interface specifications that combine an interface
definition language with the semantics of a model-based
user interface; and

• hosting scripts in the infrastructure that

∗ map exported object interfaces to client device control
interfaces,

∗ compose object interactions, and

∗ automatically remap the destination of object invoca-
tions to changing server locations.

We also provide a detailed description of our prototype
implementation of the architecture and a number of example
services in use at the UC Berkeley CS building.
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