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Abstract 

This paper introduces the notion of “universal interaction,” allowing 

a device to adapt its functionality to exploit services it discovers as 

it moves into a new environment. 

Users wish to invoke services - such as controlling the lights, 

printing locally, or reconfiguring the location of DNS servers - 

from their mobile devices. But aptiotistandardizationof interfaces 

and methods for service invocation is infeasible. Thus, the challenge 

is to develop a new service architecture that supports heterogeneity 

in client devices and controlled objects, and which makes minimal 

assumptions about standard interfaces and control protocols. 

There are five components to a comprehensive solution to this 

problem: 1) allowing device mobility, 2) augmenting controllable 

objects to make them network-accessible, 3) building an underlying 

discovery architecture, 4) mapping between exported object inter- 

faces and client device controls, and 5) building complex behaviors 

from underlying composableobjects. 

We motivate the need for these components by using an ex- 

ample scenario to derive the design requirements for our mobile 

services architecture. We then present a prototype implementation 

of elements of the architecture and some example services using 

it, including controls to audio/visual equipment, extensible map- 

ping, server autoconfiguration, location tracking, and local printer 

access. 

1 Introduction 

Researchers have predicted that wireless access coupled with user 

mobility will soon be the norm rather than the exception, allow- 

ing users to roam in a wide variety of geographically distributed 

environments with seamless connectivity [3q. 

This ubiquitous computing environment is characterized by a 

number of challenges, each illustrating the need for adaptation: 

continuously available but varying network connectivity, with high 

handoff rates exacerbated by the demands of spectrum reuse; vari- 

ability in end clients, making it necessary to push computation into 

the local infrastructure; and variability in available services as the 

environment changes around the client. 
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This paperinvestigates novel uses of a ubiquitous network, focus- 

ing on variable network services in the face of changing connectivity 

and heterogeneous devices. We propose that providing an “IP dial- 

tone” isn’t enough; we must add additional service infrastructure 

to augment basic IP connectivity. Specifically, we describe an ar- 

chitecture for adaptive network services allowing users and their 

devices to control their environment. 

The challenge in the design is developing an open service archi- 

tecture that allows heterogeneous client devices to discover what 

they can do in a new environment, and yet which makes minimal 

assumptions about standard interfaces and control protocols. 

The key elements of the architectore we have developed include: 

1) augmented mobility beacons providing location information and 

security features, 2) an interface definition language allowing ex- 

ported object interfaces to be mapped to client device control inter- 

faces, and 3) client interfaces that maintain a layer of indirection, 

allowing elements to be remapped as server locations change and 

object interactions to be composed into complex behaviors. 

Additionally, we have designed, implemented, and deployed in 

our Computer Science building the following example services: 

untethered interaction with lights, video and slide projectors, 

a VCR, an audio receiver, and an AN routing switcher from 

a wirelessly connected laptop computer; 

automatic “on-the-move” reconfiguration for use of local 

DNS, NTP, and SMTP servers; HTTP proxies; and RTP and 

multicast-to-unicast gateways; 

audited local printer access; 

interactive floor maps with a standardized interface for adver- 

tising object locations; 

tracking of users and other mobile objects with privacy control. 

The testbed for our experiments [18] includes Intel-based lap- 

top computers with access to a multi-tier overlay network including 

room-sized infrared cells (IBM IR), floor-sized wireless LAN cells 

(AT&T WaveLAN), and a wide-area RF packet radio network (Met- 

ricom Richocet). We also leverage facilities in a seminar room aug- 

mented with devices that can be accessed and controlled through a 

workstation. The physical components of the testbed are illustrated 

iii Figure 1. 

Our infrastructure builds on the substantial work in mobility sup- 

port provided by the networking research community. The Mobile- 

IP working group of the IETF [24] has made great strides in the 

routing aspects of the problem. Overlay networking [3 l] has demon- 

strated the feasibility of seamless handoff between Internet service 

providers and interfaces. The developing Service Location Protocol 



Switcher Switcher 

Receiver Receiver 

I I 
.L- .L- 
3 3 
z z M M VCR VCR 
b b 

5 5 
AN routiig AN routiig 

I I 

Base y 0 Station 

*/ 

Lights 

Client 

Device d 

Figure 1: Project operating environment 

[34] addresses resource discovery and management. Such efforts 

have been instrumental in motivating this work. 

The rest of this paper is structured as follows. In Section 2, we 

discuss the key problem characteristics and provide a framework for 

a service provision architecture’s core functionality. This is moti- 

vated by a scenario with a set of high-level functional requirements 

to be achieved. In Section 3, we detail our architecture’s prototype 

implementation and the protocols that allow mobile clients to access 

the infrastructure. In Section 4, we describe the suite of example 

ad-hoc mobile services incorporated into it. In Section 5, we unify 

the design and implementation with some discussion of interrela- 

tionships, dependencies, and a layered view of the components. In 

Section 6, we discuss the relevant related work. In Section 7, we 

summarize future and continuing work, and finally in Section 8, we 

present our concIusions.. 

2 Designing a Service Interaction Ar- 

chitecture 

We motivate our architecture for mobile services with the following 

scenario: 

You are on your way to give an invited lecture. 

After parking on campus, you take out your PDA with 

wireless connectivity, checking the list of local services 

available to you. You click on the map icon, and are 

presented with a campus-widemap that includes a rough 

indication of where you are. You select “Computer Sci- 

ence Division” from a list, and a building near you b 

highlighted. You walk toward it. 

As you enter the building, you glance down at your client 

device and the list of available services changes. Addi- 

tionally, the campus map is replaced with the building 

floolplan. 

Using the new map, you find and enter the lecture hall, 

In preparation for your talk, you select “audio/visual 

equipment” and “lights” from the list of services, caus- 

ing a user interface for each to appear. Your selections 

also cause the rooms’ equipment to be located on the 

floorplan. You walk to the VCR and insert a tape. 

The lecture begins. As you finish the introduction, you 

dim the lights and start the VCR with taps on yourPDA. 

At that moment, you realize you’ve forgotten your lecture 

notes. Using your personalized printer user interface, 

you retrieve a file from your home machine and instruct 

the closestprinter to print the file. The printer’s location 

appears on the floorplan. 

A minute later, you are notified the print job has com- 

pleted, retrieve your printout, and reNm to finish the 

lecture as the videotape completes. 

From this scenario, we can derive a set of required or desirable 

functions, presented in the next subsection. 

2.1 Requirements Analysis 

The problem is that users wish to invoke services - such as con- 

trolling the lights, printing locally, or reconfiguring the location of 

DNS servers - from their mobile devices. But it is difficult to 

obtain wide-spread agreement on “standard” interfaces and mcth- 

ods for such service invocation. The challenge is to develop an 

open service architecture that allows heterogeneous client devices 

To discover what they can do in a new environment, making minimal 

assumptions about standard interfaces and control protocols, 

Implementing such a service architecture makes it posdble to 

Nm client devices into “universal intemctors!’ An inferacror is, 

broadly, a device that allows a user to interact with and modify 

his or her environment. Examples include electronic cquipmcnt 

remote controls and thermostats. A universal inleruclor is a device 
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that adapts itself to control many devices - if it can discover their 

control interface. A universal interactor thus exploits what it finds 

in the environment, and varies its abilities as a function of location. 

It is not a particular hardware component, but instead a way of using 

an existing device. 

Realizing such a capability requires (at least) five technical com- 

ponents: 1) device mobility, 2) network-accessiblecontrollable ob- 

jects, 3) an underlying discovery architecture, 4) mapping between 

exported object interfaces and client device control interfaces, and 

5) composing complex behaviors from underlying primitive objects. 

These are now described in detail in the following subsections. 

2.2 Device Mobility 

A critical component of the scenario is device mobility. The client 

moves from a wide-area network to a local-area network, and be- 

tween points in the local-area. 

This functionality is available through Mobile-IP [24] and net- 

work overlays [ 173. The former supplies IP-level transparency to 

changes in location, and the latter augments this functionality with a 

policy layer for managing connectivity to multiple available network 

interfaces and a mechanism for seamless (low-latency) hand-off. We 

build upon this network-layer functionality directly. 

On top of this, we only require the ability to detect changes in 

connectivity with an event-delivery mechanism. Such a mechanism 

is required to implement automatic reconfiguration: when the client 

device discovers it has moved, it should check (or be notified) if a 

local instantiation of a remote service is available, and should auto- 

configure to use the local service in this case. Concrete examples 

include DNS, NTP, and SMTl? 

2.3 Controllable Objects 

Most objects can be controlled. Doors and windows open; lights 

turn on; coffee-makers brew. Most physical objects provide only 

manual controls. A controllable object, on the other hand, is one 

that exposes the interface to which it responds to control requests or 

transmits status information. Additionally, it makes this interface 

accessible over a network. 

To fit into our architecture, it is crucial that objects be augmented 

with an ability for network-based control, Open issues include ad- 

dressability, naming, and aggregation of objects into a controllable 

unit. Individual controllable objects may be too numerous or the 

expense of individual control may be too high. For example, while 

it is possible to make every lightbulb its own controllable object, the 

sheernumber of them in a typical building, the expense of assigning 

processing to each one, the difficulty of wiring each to the network, 

etc., would mitigate such a decision. Instead, control functionality 

could be assigned to a bank of lights, and what is augmented is 

the switch bank rather than all of the individual lightbulbs. In gen- 

eral, this means that the current infrastructure for naming - DNS 

- must be extended to include objects that do not have (or need) 

IP addresses. An alternative is to develop a separate infrastructure 

to match this need rather than overloading DNS. In the latter case, 

we can take advantage of the fact that instantiations of these name 

servers need only have a local, rather than global, scope. 

Another approach for interacting with objects is to use video cap- 

ture augmented with image processing (“computer vision”) where 

applicable. Example uses of this approach include fine-grain object 

tracking, directionality sensing, and event triggers keyed to partic- 

ular circumstances [22]. E.g., a camera can be used to detectthe 

opening of a door or window. In this case, it is the camera that 

exports the control interface. 

2.4 Resource Discovery 

The function of a resource discovery protocol is to maintain dynamic 

repositories of service information and make this information avail- 

able through scoped attribute queries. In contrast with DNS, the 

repositories’ information is specifically local in nature. 

We couch our discussion of resource discovery in the context of 

the Service Location Protocol [34], under development by the IETF 

Service Location working group. Although there are open issues in 

this domain, we avoid duplicating much of the relevant discussion 

here. Interested readers are pointed to the Internet draft and the 

Service Location working group mailing list. 

From our local-area network perspective, the only mechanism 

we require is a function to allow mobiles to query the server for a 

mapping from strings to strings. We describe our own mechanisms 

for finding the correct local server and initializing the string map- 1 

pings. Finding the a correct local server is similar to delivering the 

correct SCOPE attribute to the mobile host in SLP 1 

2.5 lkansduction Protocols 

A transduction protocol maps a discovered object interface to one 

thatis expected by a given client device. It supports interoperabiity 
I . 

by adapting the client device’s interface to match the controllable I 

object’s interface. 

The issue with transduction protocols is how to map control 

functions into a UI supported by the portable device. As an example, 

assumea client device has a two-position switch widget for use with 

the local light controller. At a visited location, the light controller 

supports continuous dimming. In this case, the client may substitute 

a slider widget for the switch. Ifit cannotdo this (or choosesnot to), 

then the purpose of the transduction protocol is to map the on/off 

settings of the UI to one of the two extremes of the actual dimmer 

control. 

Our solution is to transfer an entire GUI to the client in a lan- 

guage it understands, and when possible, augment the GUI with an 

interface description that starts with base data types and allows them 

to be extended hierarchically. A transducer that doesn’t understand 

a level in the hierarchy can use elements below it. Alternatively, 

the interface description can be used directly to generate a rough 

GUI when no language implementation appropriate for the client is 

available. 

The interface descriptions not only allow for data type transduc- 

ers between client and server; they also provide a critical layer of 

indirection exactly where it is needed: underneath the user inter- 

face, allowing widgets to be transparently remapped to new servers 

in a new environment. This function is required to allow custom 

user interfaces for ad-hoc services, such as allowing a virtual “light 

switch” on the client device’s control panel to always control the 

closest set of lights. 

2.6 Complex Behaviors 

Objects have individualized behaviors. We wish to couple and com- 

pose these individual behaviors to obtain more complex behaviors 

within the environment. For example, consider a scenario where 

. 
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music follows you as you move around a building. One behavior of 

the sound system is to route music to specific speakers. A behavior 

of location tracking services is to identify where specific objects are 

located, such as the user. A “complex” behavior allows us to com- 

pose these more primitive behaviors of sound routing and location 

tracking to obtain the desired effect of ‘following” music. 

of base stations in geographic proximity could be associated with a 

single SII? Beaconing daemons (beacond) run at each base station. 

An example SIC screenshot is shown in Figure 2. SIP and 

beacond use configuration files and command-line switches, and 

thus user interfaces are not shown. 

A key problem is that there is no common control interface for 

individual components. Furthermore, some behaviors may require 

maintenance of state that is independent of both subcomponents. 

An example of the latter is instructing the coffee maker to brew only 

the first time each morning that the office door opens. Another issue 

is the policy-level difficulty implied by this scenario: resolution of 

incompatible behaviors. If another user considers music to be noise, 

the visiting user’s music may or may not be turned off in their pres- 

ence, depending on seniority, social convention, explicit heuristics, 

or otherwise. At a minimum, the system must guarantee that it will 

detect such incompatibilities and notify the user(s) involved in order 

to avoid instability (e.g., music pulsing on and off as each individual 

behavior is interpreted). 

Service 

Our solution is to use interface discovery, (i.e. any method 

through which new objects’ input/output data types are learned) 

paired with the aforementioned data type transducers to allow ob- 

jects to be cascaded much like UNM pipes to achieve the desired 

complex behaviors. Additionally, we allow intermediate entities 

(“proxies”) to maintain state that is independent of the constituent 

subcomponents. This allows for the incorporation of such features 

as conditional statements and timing information. 

11 register callback 11 dlsconnectad 

UCB Service Index Client ~0.1 

In ourprototype,complex behaviors are written as scripts invoked 

by the delivery of particular events. These events are generated 

(when necessary) by the datatypetransducers that translate between 

the client user interface invocations and the RFC! commands sent to 

a service daemon.’ 

Figure 2: Tire SIC application GUI is currently a series of 

buttons that can be used to retrieve and invoke application 

interfaces. 

3 Implementing Service Interaction 

This section describes implementation details of the serviceintemc- 

tion proxy (SIP), the service interaction client (SIC), and beaconing 

daemon (beacond) programs. These prototypes implement selected 

components of our overall mobile services architecture. 

The prototypes allows a mobile host to enter a cell, bootstrap the 

local resource discovery server location, and acquire and display 

a list of available services. They also allows users to maintain 

a database of scripts to be executed when particular services are 

discovered for use in autoconfiguration, local state updates, and to 

trigger location-dependent actions. 

Each SIP process maintains a database of the services and scr~icc 

elements that it provides to mobile hosts. An example startup file 

for such a database is listed in Figure 3. It contains three types of 

entries: SERVICES, VALUES, and PROPERTIES. VALUeS are used for 

generic (key, value) lookups. Theseareuseful for, e.g., detecting the 

need to update server addresses. SERVICES and PROPERTIES are used 

to specify what, where, and how services are available from that 

partlcularlocation. EachSWJICE has auniquenamc, and mninlnins 

PROPERTIES such as the version number, a pointer to an associated 

IDL file’, pointers to particular language implementations of User 

interfaces for the service, and the geographic location (if any) for use 

with maps. VALUES andPROPERTIEs mayjust be pointers to another 

SIP, allowing simple incremental deployment to subdomains and 

yielding a notion of topology. 

If a user wishes to use a service it does not understand, the client 

first automatically searches its local cache for an interface to that 

service; if it is not there, the infrastructure is automatically notified 

and it attempts to send an interface description and GUI to the client. 

3.2 Message-level Detail 

3.1 Setup 

A single copy of the “service interaction client” (SIC) prcgrarn runs 

at each client device. Copies of the “serverinteraction proxy” (SIP) 

program run at domain-specific granularities. For example, a set 

The client enters a cell with a beaconing daemon. Thedaemon sends 

periodic broadcasts that contain the bootstrap address and port num- 

berof that cell’s SE? The client automatically registers with the base 

station to establish IF’ connectivity. It then requests the well-known 

me&service INDEX, which returns a list of the services availnblc. 

Based on the contents of the reply, the client renders labellcd UI 

buttons for unknown services, remaps the location of running ser- 

vices, and executes scripts in a database to enable autoconncclion 

‘Thus,eveninthecasewherenohanslationisnecess~,anulltransducer *Use of the Interface Definition Language (IDL), a generic format for 

must be interposed in orderto allow detection of invocations. In otberwords. service interfaces similar in concept to a model-based UI, is described In 

the transduction layer is t.be layer that provides the indirection. Section 3.6 

. 4 



Soda 405: High-Tech Seminar Room 

1 
set sERvIcRs ( 

INDM lights (A/V equipment) map printer (location tracking) 

I 
set VALUES c 

DNS (128.32.33.24 128.32.33.25) 
NTP (orodruin.cs.berkeley.edu harad-dur.cs.berkeley.edu) 
SMTP [mailspool.cs.berkeley.edu) 

1 
set PROPERTIES C 

lights iIDLfile ../helpers/lights.idl version 0.01 \ 
location (132 210) appName-tk ../helpers/lights.tk \ 
appArchive-tk ../helpers/405/lights405.tar.uue 
appName-tcl ../helpers/lights.tcl \ 
appfuchive-tcl ../helpers/405/lights4OStcl.tar.uue) 

(A/V equipment) (IDLfile ../helpers/htsr.idl location (132 180) \ 
version 0.01 appName-tk htsr.tcl \ 
appArchive-tk '../helpers/405/HTSR.tar.uue'1 

. . . 

Figure 3: An abridged SIP services database example 

and composed actions3 When a user requests a particular service, 

the client software checks its local cache of applications. If an 

interface supporting the requested application is not there, it asks 

the SIP for the service’s “properties.” This is a list of available 

interface descriptions and/or implementations. It also receives any 

service metadata (such as version numbers). It then chooses either 

to download a particular interface implementation (e.g., as a Java 

applet) or the generic interface description. The SIC then unpacks 

the received archives, transduces the interface description to match 

the device characteristics, and finally executes the GUI. 

An example exchange of protocol messages for a client moving 

between SIP servers is illustrated in Figure 4. 

3.3 Bootstrap 

For a client to use services, it must first find the address of the local 

resource discovery server. In our architecture, this bootstrap above 

IP is minimal: there is an indirection embedded in the mobility 

beacons. This minimal bootstrap standardizes the interface for 

sending service advertisements without constraining the item to 

which it points. In general, it could point to any type of name 

server, thereby allowing variation in resource discovery protocols if 

this were desired. 

3.4 Beaconing 

Beaconing is required in a system to facilitate notification of 

mobility-based changes in the relative position of system compo- 

nents. Its use is motivated by inherent availability of physical-level 

hardware broadcast in many cellular wireless networks and the need 

to track mobiles to provide connectivity. 

3Tbedatabbasecurrentlyresidesontbeclient, butcouldadditionallybe 

retrieved fmmelsewherebyaproxyserverto addressclientcomputational 

limitations. 

‘Rvo issues arise once the decision to beacon has been made. 

The first is which direction to send them: uplink or downlink. The 

second is what information to put on the beacons, if any at all. 

(An empty beacon acts as a simple notification of the base station 

address, available in the packet header.) These are discussed in the 

following subsections. 

3.4.1 Beaconing Direction 

In terms of choosing whether to have client devices or infrastructure 

servers beacon, existing systems can be found which have made 

either choice. Client beaconing is used in both the Active Badge 

[I31 and PARCTAB systems [26], while server beaconing was used 

in Columbia Mobile IP [14]. lETF Mobile IP utilizes both periodic 

advertisements and periodic solicitations. 

One might expect the application-level framing [9] argument to 

hold here: different policies optimize for different applications’ 

operating modes. This is indeed the case: there are trade-offs in 

such a decision, as it varies allowances for privacy, anonymity, 

particular protocols’ performance, and scalability. 

Specifically, some benefits of base station beaconing include: 

l less power is consumed at the mobile by periodically listening 

than by periodically transmitting; 

l finding a base station requires only a single message rather 

than a broadcast/responsepaic 

l mobiles need not transmit to detect when contact is lost; 

l detection of multiple beacons can be used to assist handoff; 

l anonymity of location is preserved for non-transmitting mo- 

biles; 

l allows possibility of “anonymous”access to some data known 

to the infrastructure (at a cost of management overhead and 

increased beacon size due to the piggybacking); 

5 



(header) 4B 2B 4B (variable length) 

SIPIPaddr port nonce application-specific payload . . . . 

Figure 5: The service beacon encoding includes bits for the service interaction bootstrap and location queries. Not shown are 

Mobile-IP FA router advertisements or other potential application-specific piggybacked fields. 

SIP #1 SIC (client) SIP #2 

Figure 4: Protocol message timings for a client moving be- 

tween SIP servers (dashed Iines are beacons): (a) INDEX #I 

request/reply (b) request/reply for “lights” IDL file and inter- 

face (c) INDEX ##2 request/reply (d) “lights dim” button press 

retrieves new IDL file to remap RPC, then completes 

a maintains a consistent mapping behveen geography and bea- 
con broadcast cell; 

o impIies Iess beacon trati?c per cell given the naturaI many-to- 
one mapping of mobile hosts to base station cells, assuming 

other parameters remain constant. 

The benefits of havingtbemobile host beacon are complementary 
to the above and can be inferred from tbe list. 

Our system uses base station beaconing. We believe this is the 

correct design choice for three key reasons: the support for user 

(rather than infrastructure) anonymity, better scalability in a low- 

bandwidth network where there are many MHs per BS, and because 

power is more precious on mobile devices. This choice aligns our 

design with other soft-state announccflisten protocols, such as the 

MBone session announcement protocol. 

3.4.2 Beacon Augmentation 

The second question is whether to augment mobility beacons with 

additional data. Doing so makes data available to mobiles before 

registration (in the Mobile IP sense). Possible uses for such piggy- 

backed beacon data include: 

l Mobile IP foreign agent advertisements: 

0 pricing information; 

l advertisements ; 

l time-variant data (e.g., NTP beacons); 

l merging of periodic broadcasts to better amortize header and 

MAC overhead. 

The utiIity of beacon payload augmentation is highly dependent 

on the direction of the beaconing, traffic patterns, and application 

mix. The argument against beacon augmentation it that orthogonal 

systems shouldn’t mix application data units that may have been 

“properly” sized by the application in a form ofjoint source-channel 

coding [23]. 

We choose to augment our beacons with bootstrap information, 

a nonce for scoping of services, and a dynamically configurable 

application-specific payload. The encoding is shown in figure 5, 

The nonce is discussed in Section 3.5; a usage of the application- 

specific payload is discussed in Section 4.3. 

Merging Mobile IP router advertisements and the resource dls- 

covery protocol bootstrap may be abenefit,but allowing application- 

specific or other network-level fields is an area of active debate. WC 

are still trying to quantitativeIy determine which data, if any, is 

best dedicated to these bits for optimizing reasonable client-driven 

workloads. 

3.5 Security 

Making services available to visitors brings up a host of gcncral 

security issues, including those specific to the wireless domain 17, 

11, 41. In addition to standard cryptography-based securlly with 

passwords,capabilities (e.g., Kerberos), and public-key encryption, 

service interaction systems specifically require additional ncccw 

control. This is due to our extension of devices to make them 

network-addressable entities. In general, global access control is 

necessary,but not enough; the expectedbehavior that environmental 

changes can only be affected by people in that environment (c.g,, 

lights cannot be turned off by a person across the country) has been 

broken. 

Maintaining this norm is important when extending existing hu- 

man social metaphors into an environmentwith controllable objects. 

6 
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We address this by embeddingrwnces, random fixed-length bit vec- 

tors, in the mobility beacons and requiring the current nonce to be 

included in all communications to servers. 

Periodically changing the nonces in an unpredictable way and 

scoping the broadcast (implicitly via the cellular wireless network 

broadcast cell or explicitly with the multicast IP ‘ITL field) prevents 

remote access from nodes even on the access control list that aren’t 

local or haven’t been separately multicasmmicast the nonce value. 

This pairs the geographic scoping of the environmental controls 

(what we cannot control) to the topological scope (what we can 

control). This nonce-based exclusion can be overridden, but by 

making the default access restricted, we better emulate the existing 

paradigm. 

As for mobile code security, by transferring only a GUI to the 

client, it is probable that a sandboxed environment (such as Java, 

Safe-Tel, or Janus [ 121) can be used without constraining the ser- 

vice’s functionality. 

3.6 Client Interfaces 

Clients can becomputationally impoverished, have variations in dis- 

play(colordepth,resolution,screensize),supportdifferentinterface 

paradigms (keyboard, pen, touch), and are often interchangeable 

with one another (and therefore not preconfigured). 

Due to the need to support such end devices, especially extremely 

resource-poor PDAs, thin client interfaces must be available. They 

also must allow for different realizations on different hardware. 

As part of our realization of automatic data type transduction, 

we have developed an initial, minimal grammar for such interfaces, 

which we call the Znferjke DefinitionLunguage (IDL). It is a paired- 

down version of a model-based UI [32], where UI elements are 

specified as a hierarchy of abstract types built on top of basic data 

types. 
The IDL is used in addition to other reference language imple- 

mentations of an interface, thus allowing for compatible but inde- 

pendent coexisting interfaces. Its main purpose is to expose the 

semantics of each services’s control interface. Upon discovery of a 

service, the client device checks to seeif a languageimplementation 

is available that it can support, and if not, uses the IDL file to learn 

the RPC calls and parameters that can be used to access the service. 

It additionally allows the device to adapt the representation to a for- 

mat appropriate for the device’s characteristics, and allows the user 

to place the elements manually and independent of one another for 

fine-grain control. Automatic layout heuristics can also be used. 

Additionally, the use of IDL explicitly requires services to support 

a layer of indirection through the service discovery mechanism, 

allowing transparent remapping of individual interface elements. 

This indirection is critical for allowing services to be composed. As 

an example, the RPC command to spawn an audio conference can 

be rerouted to a client script that first turns down the volume of the 

room’s music player and then passes along the original RPC. 

Our current implementation has interfaces manually imple- 

mented in TcVlk and an ad-hoc IDL specification tuned to Tk. 

3.7 Prefetching 

As an optimization, clients can prefetch the IDL files for active 

services. We illustrate with a concrete example from our prototype. 

As the user moves between rooms,thelight controller application UI 

remains the same. When the user changes the lighting in a new cell, 
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the client application sends the new SIP a request for the lights IDL 

file, enabling the RPC command invoked by the existing interface 

to be remapping so that the recipient will be the new server. This 

late-binding is used to conserve bandwidth on the wireless link; the 

total number of IDL files may be large and the client may use one 

only infrequently. 

The problem with late-binding is that this entire operation latency 

seenbytheenduser;,andinpracticeitcanbeperceivedasapossible 

error condition. (The button “doesn’t work” for a number of seconds 

after it is invoked,andfor this periodit should probably bebegrayed 

out in the UL) 

This delay can be minimized by transparently remapping the 

interface elements to the new server as soon as possible. To do so, 

we add one bit of per-service state, “active vs. inactive.” This flag 

is set to “active” whenever there is an RPC call from that service, 

and reset to “inactive” by a timeout. Upon receipt of any beacons 

with a new SIP, services with the “active” bit set (and available in 

the new location) have their new IDL files prefetched automatically. 

(In our current implementation, the INDEX meta-service is always 

prefetched.) 

Delays can be further minimized through mobility prediction 

[20], allowing prefetching in response to assumptions about user 

mobility patterns. 

Prefetching is important in this domain becausethe delay experi- 

enced by an end user using a high-latency, low bandwidth wireless 

interface can be substantially less with prefetching and transparent 

remapping than with demand-paging. 

4 Prototype Mobile Services 

In addition to the prototype service discovery and interaction imple- 

mentation, we have experimented with a number of services. These 

include maps that specify discovered objects’ positions, autocon- 

figuration, location tracking with fine-grain privacy allowances, au- 

dited printer access, and interfaces to audio/visual equipment. We 

now describe each in turn. 

4.1 Maps 

Given a widely distributed service interaction system supporting 

very fine-grained services, management of even the subset of infor- 

mation available to the client becomes non-trivial. 

We have experimented with using maps for explicit management 

of these services at multiple locations. Map content is separated 

into three domains: network connectivity (topology and link char- 

acteristics), physical geography (object locations and floorplans), 

and administrative domain (access rights, pricing, hierarchy). 

Our prototype, of which an example view is shown in Figure 6, 

focuses on physical geography. Functionality includes the ability 

for objects to note their locations, and composability. 

The location tracking support interfaces to the map using the 

same RPC calls that objects use to locate themselves. 

The map protocol itself is a prototype based on using absolute 

positioning. It is designed to allow objects to position themselves 

without knowing exactly which map(s) the user is using. It is also 

designed to allow maps to maintain hierarchical (“containment”) 

relationships in adistributed,extensiblemannerthroughtheabsolute 

positioning information. 

The map protocol hierarchy is defined to be exactly the service 

interaction server hierarchy, and mahrtains the same characteristics 



I 
Quit 

+ = Answering Server 

+= LacaiRinter 
:& = ANEquipment 

Figure 6: Map with discovered object locations, configured 

for a user in the RF cell including room 405. Clicking on 

entries spawns the interface to that entity. 

that it is can be arbitrarily nested and extended without affecting 

other maps. 
Each SIP database contains pointers to a map and to map meta- 

data including the positioning information (latitude/longitude coor- 

dinates of two comers). This is similar to the proposed “LOC” DNS 

record type, extended to objects without IP addresses. 

4.2 Proxy and Gateway Autoconfiguration 

Proxy and gateway autoconfiguration is a lightweight service built 

atop the server autoconfigurationservice. The difference between it 

and server autoconfiguration (cf., Section 2.2) is simply that proxies 

and gateways run in the infrastructure, between client and server. 

Thus, the infrastructure needs to explicitly support this in addition 

to the event delivery mechanism required from the device mobility 

support layer. Examples of such useful intermediate agents include 

web proxies that perform on-demand dynamic transcoding [lo], 

network data caches, real-time media transcoders [2], and multicast- 

to-unlcast gateways for multicast-unaware client devices (i.e., most 

PDAs). 

Proxy, gateway, and server autoconfiguration is important in 

a mobile environment for more than just efficiency. Using the 

“best current practice” technique of hard-coding DNS servers as 

/etc/resolv. conf entries, if a user were to move from a lo- 

cation behind a firewall to one that is not, all lookups will fail until 

an out-of-band technique is used to find a new server and the entry 

is manually updated. The Network Time Protocol is dependent on 

server location due to its use of RTI’ estimation, and is therefore 

especially suitable for use with autoconfiguration. A failure to keep 

accurate time can break some security systems, notably Kerberos. 
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Spawning a local RTP gateway transcoder for MBone sessions is 

necessary if movement has changed the bottleneck link belwccn 

source and receiver [I]. 

Autoconfiguration also adds a level of fault tolerance. If n nct- 

work link goes down, SIP beacons coming across the failed link 

will stop. The client will wait for other beacons to be obtained (cf., 

overlay networking), and reconfiguration to the new servers will 

happen transparently. 

Our current implementation simply allows the user to CXCCU~C a 

script upon a change in a VALUE entry in the SIP database, which 

allows updates to HTTP proxy server addresses and allows for the 

spawning of an RTP gateway when necessary. 

4.3 Location Tkacking 

Location tracking is addressed in other systems [28, 131, but they 

suffer from the limitation that the infrastructure must be trusted, and 
client devices must be turned off or not can-led to ensure privacy, 

The latter especially defeats the purpose of enabling continuous 

access and universal interaction. 

Weuseanovel techniqueto address this difficulty basedoninfras- 

tructure beaconing and beacon augmentation: at bootstrap, the client 

is allocated a bit hopping sequence to use on the application-specific 

payload field of the beacons (conceptually similar to a frequcncy- 

hopping spread spectrum CDMA scheme). These bit sequences 

are then used to implement a low-overhead notification scheme that 

also provides anonymous Iocation query replies with fine-graincd 

policy control. It works by piggybacking the query (consisting of 

the address of the requestor) on the beacon, allowing the client to 

reply only if it desires. 

The hopping sequence prevents snooping of updates, while pig- 

gybacking breaks the telltale asynchrony of queries, Together they 

allow selective exclusion of individual location requests (similar to 

telephony’s “callerID” feature) and protection from query snooping, 

thus maintaining privacy control at the client rather than requiring 

that other eavesdropping clients or proxy servers be trusted, 

4.4 Printer Access 

One of the most common examples in the resource discovery lit- 

erature (and commonly requested end user service) is local printer 

access. In our implementation, after the discovery protocol finds the 

local printer and notes it on the map, clicking on it (or on the “print” 

SIC button) pops up a dialog box that can be used to send a client’s 

postscript fiIe to the Iocal print server. The server then checks the 

data, logs the request, prints the file, and returns any status and/or 

error messages. 

4.5 Room Interaction 

The “high-tech seminar room,” where weekly MBone broadcasts 

of the Berkeley Multimedia and Graphics Seminar take place, is 

equipped with a variety of equipment: two slide projectors, a light 

controller, a video projector, a VCR, a receiver, a DEC workstation, 

and an InteI PC. AI1 the devices are attached to an AMX corporation 

control switcher. TheDEC workstation talks to the AMX via a RS- 

232 serial connection, which allows the workstation to act as the 

control interface. 

In 1993, Bukowski and Downs designed a library for accessing 

the AMX from a workstation for usein a similar room [g]. They also 



produced a client/server package utilizing the library. We leverage 

their work, along with a version of TcEDP [30] as the RPC interface, 

and extend it for use in our environment. 

4.51 Design and Architecture 

The application is built in a client/server framework supporting the 

principle of uppIication partitioning [36]. Due to the potential 

lightweight nature of clients, the server is required to bear the brunt 

of the effort to support fault tolerance, access control, and other 

such duties. The current prototype implementation is minimalist, 

but features can be added to make the system far more robust with 

little or no change to the client-side code. 

The server runs on our extended wish shell which includes the 

base AMX functions. The server opens an RPC socket and listens 

for requests to convert to AMX commands. It is also responsible 

for maintaining the hard state of the system. This leaves the clients 

free to act as only a UI and cache for soft state. 

All communication with the AMX is done through an intuitive 

scripting language (e.g. pushButton vproj power-on). As 

an example, if the client executes a command such as pushButton 

receiver power, the routines of AMXHelperLib. tcl translate 

it into a remote procedure call for send-m-command 1 3 

75. The request is forwarded through the wireless base station 

to the server application. The server, in turn, maps this request 

into a packet for the AMX, which it sends down the RS-232 serial 

link. Upon receipt of the message, the AMX’s embedded controller 

routes the signal to its third slot (the one for the receiver) instructing 

it to to turn on channel 75 (power). This causes the correct stored 

IR frequency to be broadcastdown a wire connected to the standard 

remote control IR port on the receiver. Other wires use mechanical 

calipers for manipulation of the slide projectors and variations in 

voltage levels to adjust the lights. 

4.5.2 User Interfaces 

Prior to our work with configurable device user interfaces, we im- 

plemented two separate monolithic TcbTk programs for the room’s 

control, one a superset of the other. The first handles only the lights, 

while the second handles the most useful buttons (showing them all 

is excessively complex). The latter interface is shown in Figure 7. 

It was these implementations that led us to observe the utility of 

functional inclusion and the need for variability in the interfaces. It 

also led us to realize that independent objects an widgets should be 

independently addressable and composable. 

With such a design, users could create unique UIs that makes the 

most sense for themselves by leveraging the scripting language and 

IDL or, eventually, by dragging-and-dropping individual elements 

to and from a toolbar. 

4.5.3 State Management 

Ideally, requests to the AMX could be idempotent, and no state 

would have to be maintained in the system. However, by the nature 

of the equipment to which it is attached, AMX requests are not 

idempotent, and cannot be coerced into idempotent versions. For 

example, if we want to turn on the receiver, the only request we can 

give is equivalent to “toggle receiver power,” which may very well 

turn the receiver off. The only way to know the effect of this request 

beforehand is if long-lived state variables are maintained. 

Figure 7: Screenshot of the monolithic user interface to the 

AN equipment. 

Because bandwidth between the client and server is valuable, 

state variable updates need to be minimized. Our server is re- 

sponsiblefor maintaining consistent state between and during client 

sessions. Clients are responsible for querying the server for the 

state info upon connection initiation. For consistency, clients are 

required to send an update request to the server to ask for state 

changes. Clients may only commit the change upon receipt of an 

acknowledgment. 

Another issue is dealing with inconsistencies due to manual 

events. Devices are unable to inform the AMX when a user presses 

a button on their front-panel. If a user wants to insert a video cas- 

sette into the VCR, he or she must first turn it on; the AMX does 

not register this manual event. 

Since this is such a common problem, we accept that the state 

will at times be corrupted. We equip the user to correct such incon- 

sistencies via the two buttons at the bottom of the client interface 

labelled “Deactivate Panel” and “Activate Panel.” Whenever a dis- 

crepancy in the state occurs, the user can deactivate the panel. All 

the state-related buttons will then only modify the state variables (on 

both the client and the server) and nor make requests to the AMX. 

This means the user can reconcile the information on the panel with 

reality, then reactivate the panel and once again right the system to 

a consistent state. 

5 Discussion 

Section 2 described the design issues and problem characteristics 

of service provision. Sections 3 and 4 gave details of a prototype 
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implementation. We now attempt to better unify and situate these 

views. 

5.1 A Layered View 

A layered view of our architecture is presented in Figure 8. This 

representation exposes how the various mechanisms described in 

this paper interrelate. It also illustrates how alternative mechanisms 

could replace the particular ones we have chosen without affect- 

ing the overall service architecture. For example, if some to-be- 

determined Service Location Protocol SCOPE delivery mechanism 

were to replace our augmented beaconing mechanisms for location 

management, the interface discovery and data type transduction 

could remain unaffected. 

The lowest layer is the Beaconing layer. It lies directly above 

the network and transport layers and implements the basic service 
bootstrap mechanisms. This includes the embedding of local server 

information in the beacon payload, the ability to implement security 

mechanisms through the indirection gained by the beacons, and the 

possibility for additional application-specific payload augmentation 

as a performance enhancement. Its most basic function is to find 

servers and users. 

The Query layer uses server location information from the bea- 

coning layer. It adds the ability to interact with found entities such 

as resource discovery servers and service interaction proxies. This 

functionality allows for the implementation of server, proxy, and 

gateway reconfiguration and scripting of complex behaviors. Its 

most basic function is to allow entities to talk to other entities. 

The Interface description layer is built on whatever query pro- 

tocol is exposed by the query protocol layer. It defines the set of 

possible interface descriptions and their semantics. Use of an in- 

terface description language enables device-independent interface 

downloading through the use of data type transducers and transduc- 

tion protocols. Additionally, it supports the transparent remapping 

of particular interface elements to new servers as the mobile host 

moves. Its most basic functionality is to map between the client 

device interface and the interface advertised by discovered objects. 

The highest layer is the Application layer. It uses the interface 

description language exposed by the interface description layer. 

Similarly to the OS1 application layer, it encapsulates application- 

specific state or data not captured by the Iower layers. Examples 

include attaching semantic meaning to particular names and defining 

relationships behveen data values. 

6 Related Work 

The Rover [15] and Wit [36] systems also recognized the need to 

split applications into a lightweight front-end and more heavyweight 

proxy at the last hop wireless link. Rover allows the pieces that 

comprise the partitioned whole to migrate between these two points, 

but the implemented prototype applications generally only exploit 

this for moving application data units such as mail messages, news 

articles, web pages, or calendar entries. 

The ServiceLocationProtocol (SLP) [34] is an example resource 

discovery and service registration mechanismthat can also function 

as a fine-grained name service. We are interested in moving our re- 

source discovery mechanism over to this evolvingInternet standard. 

Open issues include its undefined “local” scope designation, an in- 

tegral part of our scheme, and lack of an explicit scope hierarchy 

and peering equivalent to our use of pointers in a service database. 

--- ___________-__-_--_----- 

Application Protocols 

-maps with hierarchlcal inclusion and object Inlorface 
-AN equipment with cannonlcal elamenl names 

Interface Descriptions ‘map belwoen’ 

-interface coda dovmloading 

-data type bansducers 

-transparent remapping of interface elemenls lo nevr servern 

___________-_--_----------- 

Query Protocol 

-server location reconfiguration 

-scripting of complex behaviors 

‘talk to’ 

Beaconing 

-location informalion 

-security through indirection 

‘Ilnd’ 

-delivery of application-specific payloads and ever& 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Network and Transport Layers 

Figure 8: A layered view of the mobile services architecture. 

Our mechanism for dynamically updating scopes could coexist with 

other mechanisms for similar goals in the proposal (i.e. having n 

SCOPE DHCP option). 

The seminal PARCTAB [26] and Active Badge [ 133 sys terns, along 

with related work by Schilit [27, 28, 291, were among the flat to 

attack the issues of client applications and network support for mo- 

bility in tandem. We borrow much from this work, including the 

focus on mapping, event notification, and support for impovedshed 

devices. There are some key differences. We support distributed 

servers, rather than a centralized repository, We employ discovery 

mechanisms, interface code mobility, and generalize to hctcroge- 

neous devices; these are unnecessary in their local-area, homogc- 

neous environment with pre-installed custom applications. WC use 

serverbeacomngratherthan client beaconing, and allow the bcncons 

to bootstrap resource location, define scope, assist fault detection, 

and provide private location management. 

AtransportableXdisplay [38] is a variation on interface code mo- 

bility; it moves users’ existing interfaces as they move, not unknown 

applications’ interfaces or interface descriptions, It has the ndvnn- 

tage that applications need not change at all, but suffers from the 

limitations that 1) it doesn’t support transformations of the interface 

to formats more suitable to particular client devices, and 2) it does 

not provide a layer of indirection underneath widget invocntions. 

TheMobisaic [35j andDynamicDocuments [16] projects support 

a HTML-based structure for varying, location-dependent interfaces. 

Our scheme generalizes these approaches by incorporating resource 

discovery and interoperability of different interface elements. 

-The Georgia Tech CyberGuide project [21] focuses on proto- 

typing applications augmented with various positioning systems, 

potentially without communications at all. Using such an nppronch 

requires tbe devices to be manually adapted to new environments, 

Our conception of a “proxy server” is based on the model cx- 
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pressed explicitly in the Berkeley Client/Proxy/Server model [lo] 

and implicitly in other work [6, 21 that places application-level or 

network-level entities near, but not at, the endpoints of communi- 

cations. This is another way of thinking about Active Networks 

[33]. driven by end-to-end design principles [25]: push agents to as 

close to the endpoints as possible. This concept of leveraging the 

well-connected, computationally powerful side of the wireless link 

(via “proxies” or “agents”) pervades mobility research. It is also 

driven by the growing availability of workstation farms [3] designed 

to provide compute resources for just such applications. 

7 Future and Continuing Work 

Our continuing work involves iterating over the design and investi- 

gating various implementation approaches. 

We are in the process of augmenting another room, this time 

focusing on video cameras, monitors, and audio devices integrated 

with MBone session feeds. This will allow us to see how the 

architecture generalizes to new kinds of controllable objects. 

The current implementation has been tested only in a local area 

environment; work is continuing as to the specifics of how such 

servers aggregate (with union and intersection operations) and their 

hierarchy. 

We are working with building architects and engineers at the 

Center for the Built Environment4 to incorporate devices such as 

the centralized heating and air conditioning, vents, fans, and tem- 

peraturelhumidity sensors into our system. This could allow users 

to close the environmental control loop and adapt areas in accord 

with user preferences as they move. 

In general, mobiles may be allowed controlled access to CPU 

resources directly rather than configured services. This allows cus- 

tom installation of “last-hop” network protocols, codecs, and secu- 

rity modules that are too compute-intensive to run on the end-client 

(e.g., for allowing the useof end-to-end session keys in anuntrusted 

domain, for delta-encoding of data, or for deploying private handoff 

prediction.) This requires a management layer for implementing 

policy decisions granting access to bandwidth, disk, and CPU. It 

also requires a mechanism for securely delegating operations [19]. 

Queued RPC mechanisms [ 15,5] support disconnection and link 

variability by incorporating application-managed messaging state. 

Queued asynchronous notification support is not incorporated into 

our system, but it should be.’ 

We wish to add additional functionality to our map application, 

including the ability to tie together physical geography to nehvork 

connectivity. Servers could be are pinned to their location on the 

floorplan and the connectivity graph is automatically overlayed as it 

is discovered. Also to be added are the specifics of the administrative 

domains: overlaying thelist of services available at groups of servers 

on the map, and extensions to illustrate hierarchy. 

A full specification of the IDL grammar and UI generation for 

different platforms is work-in-progress. 

$On the other hand, applications should also be able to ignore failed 
RPCs rather than queuing them, a more appropriate paradigm for situations 
such as with AN equipment intenction - the client interface is designed to 
expressthecurrentstateofextemalprocessesandmostRPCs canbemapped 
to idempotent operations. 
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8 Conclusions 

We have presented an architecture for “universal interaction,” allow- 

ing a device to adapt its functionality to exploit services it discovers 

as it moves into a new environment. 

The key elements of the architecture we have developed include: 

1) augmented mobility beacons providing location information and 

security features, 2) an interface definition language allowing ex- 

ported object interfaces to be mapped to client device control inter- 

faces, and 3) client interfaces that maintain a layer of indirection, 

allowing elements to be remapped as server locations change and 

object interactions to be composed into complex behaviors 

We have also provided a detailed description of our prototype 

implementation of the architecture and a number of example services 

in actual use in the CS building at UC Berkeley. 

Though we have focused on wireless, facets of our approach 

are applicable to wired networking. Examples include automatic 

reconfiguration for fault tolerance and scoping of access to services 

through limited broadcast of nonces. 
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