
Composable Controllers for Physics-Based Character Animation

Petros Faloutsos1 Michiel van de Panne2;1 Demetri Terzopoulos3;1

1University of Toronto, Department of Computer Science
2Motion Playground, Inc.

3New York University, Courant Institute, Computer Science Department

�!

 �

Figure 1: A dynamic “virtual stuntman” falls to the ground, rolls over, and rises to an erect position, balancing in gravity.

Abstract

An ambitious goal in the area of physics-based computer anima-
tion is the creation of virtual actors that autonomously synthesize
realistic human motions and possess a broad repertoire of lifelike
motor skills. To this end, the control of dynamic, anthropomor-
phic figures subject to gravity and contact forces remains a diffi-
cult open problem. We propose a framework for composing con-
trollers in order to enhance the motor abilities of such figures. A
key contribution of our composition framework is an explicit model
of the “pre-conditions” under which motor controllers are expected
to function properly. We demonstrate controller composition with
pre-conditions determined not only manually, but also automati-
cally based on Support Vector Machine (SVM) learning theory. We
evaluate our composition framework using a family of controllers
capable of synthesizing basic actions such as balance, protective
stepping when balance is disturbed, protective arm reactions when
falling, and multiple ways of standing up after a fall. We further-
more demonstrate these basic controllers working in conjunction
with more dynamic motor skills within a prototype virtual stunt-
person. Our composition framework promises to enable the com-
munity of physics-based animation practitioners to easily exchange
motor controllers and integrate them into dynamic characters.

Keywords: Computer Animation, Character Animation, Physics-
Based Animation Control, Physics-Based Modeling

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation

0To appear in the Proceedings of SIGGRAPH 2001 (Los Ange-
les, CA, August 12–17, 2001). In Computer Graphics Proceedings,
Annual Conference Series, 2001, ACM SIGGRAPH, in press.

1 Introduction

Despite the considerable history of progress in animating virtual hu-
mans [3, 7], physics-based animated characters with a large reper-
toire of motor skills have so far been elusive. This may seem sur-
prising in view of the recent successes in implementing a slew of
specialist controllers capable of realistically synthesizing the com-
plex dynamics of running, diving, and various gymnastic maneu-
vers [16].

While a divide-and-conquer strategy is clearly prudent in coping
with the enormous variety of controlled motions that humans and
other animals may perform, little effort has been directed at how
the resulting control solutions may be integrated to yield composite
controllers with significantly broader functionalities. For example,
if researcher A creates a walking controller for a dynamic char-
acter while researcher B creates a running controller for the same
articulated model, it would be beneficial if they could share their
controllers (perhaps through an e-mail exchange) and easily cre-
ate a composite controller enabling the character to both walk and
run. This is a difficult problem, but its resolution would help pave
the way towards controller libraries for dynamic animation which
communities of practitioners could utilize and to which they could
contribute.

In this paper, we propose a simple yet effective framework for
composing specialist controllers into more general and capable con-
trol systems for dynamic characters. In our framework, individual
controllers are black boxes encapsulating control knowledge that
is possibly gleaned from the biomechanics literature, derived from
the robotics control literature, or developed specifically for anima-
tion control. Individual controllers must be able to determine two
things: (1) a controller should be able to determine whether or not
it can take the dynamic character from its current state to some de-
sired goal state, and (2) an active controller should be able to deter-
mine whether it is operating nominally, whether it has succeeded, or
whether it has failed. Any controller that can answer these queries

may be added to a pool of controllers managed by a supervisor con-
troller whose goal is to resolve more complex control tasks.

An important technical contribution within our controller com-
position framework is an explicit model of pre-conditions. Pre-
conditions characterize those regions of the dynamic figure’s state
space within which an individual controller is able to success-
fully carry out its mission. Initially, we demonstrate the suc-
cessful composition of controllers based on manually determined
pre-conditions. We then proceed to investigate the question of
whether pre-conditions can be determined automatically. We de-
vise a promising solution which employs Support Vector Machine
(SVM) learning theory. Our novel application of this technique
learns appropriate pre-conditions through the repeated sampling of
individual controller behavior in operation.

As a testbed of our techniques, we are developing a physically-
simulated animated character capable of a large repertoire of motor
skills. An obvious application of such a character is the creation of
a virtual stuntperson: the dynamic nature of typical stunts makes
them dangerous to perform, but also makes them an attractive can-
didate for the use of physics-based animation. The open challenge
here lies in developing appropriate control strategies for specific
actions and ways of integrating them into a coherent whole.

In this paper, we demonstrate families of composable controllers
for articulated skeletons whose physical parameters reflect anthro-
pometric data consistent with a fully-fleshed adult male. One family
of controllers is for a 37 degree-of-freedom (DOF) 3D articulated
skeleton, while a second family of controllers has been developed
for a comparable 16 DOF 2D articulated skeleton. While the 3D
skeleton illustrates the ultimate promise of the technique, the easier
control associated with the 2D skeleton allows for more rapid pro-
totyping of larger families of controllers and more careful analysis
of their operation. As has been recognized in the robotics litera-
ture, the control of broad skilled repertoires of motion remains very
much an open problem even for 2D articulated figures.

Fig. 1 illustrates the 3D dynamic character autonomously per-
forming a complex control sequence composed of individual con-
trollers responsible for falling reactions, rolling-over, getting up,
and balancing in gravity. The upright balancing dynamic figure is
pushed backwards by an external force; its arms react protectively
to cushion the impact with the ground; the figure comes to rest in a
supine position; it rolls over to a prone position, pushes itself up on
all fours, and rises to its feet; finally it balances upright once again.
A subsequent disturbance will elicit similar though by no means
identical autonomous behavior, because the initial conditions and
external forces will usually not be exactly the same. Control se-
quences of such intricacy for fully dynamic articulated figures are
unprecedented in the physics-based animation literature.

After reviewing related prior work in the next section, we present
the details of our control framework in Section 3. We then investi-
gate the question of determining pre-conditions in Section 4. Sec-
tion 5 describes the articulated figure models and the software sys-
tem we use to implement the control framework. Section 6 presents
the details of the example in Fig. 1 along with several other ex-
amples that demonstrate the effectiveness of our framework. Sec-
tion 7 concludes the paper and discusses avenues for future research
opened up by our work.

2 Previous Work

The simulation and animation of human characters is a challenging
problem in many respects. Comprehensive solutions must aspire to
distill and integrate knowledge from biomechanics, robotics, con-
trol, and animation. Models for human motion must also meet a
particularly high standard, given our familiarity with what the re-
sults should look like. Not surprisingly, a divide-and-conquer strat-
egy is evident in most approaches, focusing efforts on reproducing

particular motions in order to yield a tractable problem and to allow
for comparative analysis.

The biomechanics literature is a useful source of predictive mod-
els for specific motions, typically based on experimental data sup-
plemented by careful analysis. These models target applications
such as medical diagnosis, the understanding and treatment of mo-
tor control problems, the analysis of accidents and disabilities, and
high-performance athletics. Computer simulation is becoming an
increasingly useful tool in this domain as the motion models evolve
to become more complex and comprehensive [26, 27, 29]. Given
the challenge of achieving high-fidelity motion models for individ-
ual motions, there have been fewer efforts towards integrated so-
lutions applicable to multiple motions. Reference [26] is one such
example.

Robotics research has made remarkable progress in the success-
ful design of a variety of legged robots [28] and, more recently,
bipedal robots with anthropomorphic aspirations [23]. Despite their
limited motion repertoires and rather deliberate movements, these
robotic systems are truly engineering marvels. The work in [1] pro-
vides a good summary of behavioral architectures explored in the
context of robotics. A 3 DOF ball-juggling robot is described in [6]
which uses a theory of behavior composition, although the prac-
ticality of extending the method to high-DOF dynamic models of
human motions is unclear.

Computer animation is to a large extent unencumbered by the
exacting fidelity requirements of biomechanical models and the
mechanical limitations of robotic systems. This has spawned a
great variety of kinematic and dynamic models for character mo-
tion [3, 4, 7]. While motion capture solutions based on blending
and warping techniques may give satisfactory results for such tasks
in the short term, controller based approaches reveal more about the
physics, planning, and control of such motions and they therefore
serve as a basis for more general solutions. Dynamically simulated
characters were first proposed over 15 years ago [2, 34] and since
then have progressed in sophistication in a variety of directions.
Controllers have been successfully designed for specific human mo-
tions such as walking, running, vaulting, cycling, etc. [16, 22, 35].

Dynamically simulated articulated characters equipped with an
integrated, wide-ranging repertoire of motor skills currently remain
an unachieved goal. Some positive steps in this direction are evi-
dent, however. Examples include an integrated repertoire of motor
controllers for biomechanically animated fish [30], a methodology
for controller design and integration applicable to simple figures
[32], a demonstration of successful integration for selected diving
and gymnastic motions [35], and adapting a controller designed
for one character to work on another character [17]. The work of
Wooten [35] is the most relevant as an example of a sequence of
successive transitions between several controllers for human mo-
tions such as leaping, tumbling, landing, and balancing. Transi-
tions are realized by including the end state of some controllers in
the starting states of other controllers. A digital biomechanics lab-
oratory is proposed by Boston Dynamics, Inc. [20] as a tool for
simulating a wide range of human motion. This currently remains
ambitious work in progress.

Our work is aimed at creating dynamic human characters with
broadly integrated action repertoires. Unlike previous work focus-
ing on specific athletic movements, our methodology is to begin
with a core set of simple actions, including balancing, small steps,
falling reactions, recovery from falls, standing up from a chair, and
others. In the present paper, we do not cover in any appreciable
detail the design of individual controllers to effect such basic ac-
tions.1 Rather, our contribution here is a framework for composing
individual controllers, however they may be designed, into more ca-
pable control systems for dynamic characters. An interesting tech-

1Full details about the individual controllers that we have designed are

presented elsewhere [10].

nical contribution within our controller composition framework is
the introduction of a learning approach for automatically determin-
ing controller pre-conditions. Our pre-condition learning algorithm
adds to the growing body of learning algorithms that have been suc-
cessfully applied in the context of computer animation in recent
years [14, 15].

3 Controller Composition Framework

In our controller composition framework, we consider individual
controllers as black boxes which are managed by a simple super-
visor controller. When no controller is active, the supervisor polls
the pool of controllers, querying each whether it can handle the
transition of the dynamic character from its current state to the
desired goal state. Individual controllers return an integer confi-
dence/suitability score when queried in order to bid on becoming
the active controller. In our implementation, controllers that can
perform a sensible action given the current state of the character re-
turn an integer in the range [1; 10℄, while those that can handle the
current state as well as guarantee a transition to the desired state, re-
turn an integer in the range [10; 20℄. Lastly, a value of 0 means that
a controller is unsuited for the current state. The controller that re-
turns the highest score becomes active. While this scoring scheme
potentially allows for a nuanced evaluation of the controller suit-
ability in terms of criteria such as probability of success or energy
used, our current controllers resort to a simpler scheme. This con-
sists of a binary success/failure evaluation multiplied by a weight-
ing factor assigned to each controller that serves to establish a rela-
tive preference ordering.

The power of this scheme stems from the following attributes:

� Simplicity: The composition method is straightforward and
easy to implement. It does not appreciably burden the con-
troller design task.

� Generality: The composition method does not restrict the de-
sign of individual controllers. Each controller can be as prim-
itive or as sophisticated as its designer wishes.

3.1 Controller Abstraction

A controller within the pool of available controllers can be as simple
as a constant force, or as complex as a structured hierarchy of mul-
tiple levels of control abstraction. For example, as more controllers
are added to the system, we may wish to group all the walking and
running controllers together into a cluster that can be treated as one
encapsulated controller.

Regardless of the encapsulation, our composition method re-
quires controllers to define pre-conditions, post-conditions and ex-
pected performance. Pre-conditions are a set of conditions over the
state of the character and the environment. If these conditions are
met then the controller can operate and possibly enable the charac-
ter to satisfy the post-conditions. Assuming that the pre-conditions
were met, the post-conditions define a range of states for the final
state of the character after the execution of the controller. In other
words the controller realizes a mapping between a domain of input
states to a range of output states for the character. Because of un-
expected changes in the environment, this mapping may not always
succeed, which motivates the notion of expected performance. The
controller should be able to evaluate its performance in order to
detect failure at any point during its operation. To do this, the con-
troller must at all times have knowledge of the current and expected
state of the character or the environment.

Defining the pre-conditions, post-conditions, and expected per-
formance for complex characters, motions, and environments is not
a straightforward task. However, we believe that the effort required
to generate these specifications is a fair and necessary price to pay

to achieve the benefits of composability. Controllers that adhere to
these specifications can form a pool of available controllers man-
aged by the supervising controller. Fig. 2 presents an overview of
the supervising controller’s function and its interaction with the in-
dividual controllers at every time step of the simulation.

if(no active_controller)

for all controllers i =1: N

if(controller[i].can_handle() == true)

put controller[i] into candidates

end if

active_controller = arbitrate(candidates)
else

status = active_controller.getStatus()
endif

end for

At every time step:

{
Expected Performance

Preconditions
PostConditions

Controller

Supervising controller

Figure 2: Controller selection and arbitration during simulation.

Before we elaborate on pre-conditions, post-conditions, and ex-
pected performance in subsequent sections, let us define the follow-
ing quantities and symbols: The state q = [x _x℄0 of a figure is the
vector of generalized positions x and velocities _x, where the dot
indicates a time derivative. The position and velocity of the center
of mass are denoted as and _ respectively. The base of support
of a figure (often called the support polygon) is denoted as S . It is
represented by a polygon that surrounds the foot or feet that are in
contact with the ground at any given time.

3.2 Pre-Conditions

In general, pre-conditions are relationships and constraints involv-
ing several different parameters. We have used the following pa-
rameters in our work:

� The initial state qi of the figure. Most of our controllers can
operate within a small region of the state space which we de-
note R(qi).

� Environmental parameters. These include the contact points
between the character and the ground, as well as the normal
of the ground and the amount of friction at the contact points.
In the following we denote conditions (generally indicated by
the letter C) on the environment parameters as Ce.

� The balance of the figure. Usually, this is indicated by the
relative position and velocity between the figure’s center of
mass and the base of support. Typically, if the projection
of along the gravity vector g does not intersect the base
of support S , the figure is considered to be unbalanced. We
denote the balance conditions as Cb(S;g; ; _).

� A target state qt, or in general a target region of the state space
R(qt), which can be provided by the user.

Pre-conditions consist of unions of instances of the above condi-
tions and are denoted

P = C(R(qi);R(qt); Cb; Ce): (1)

The determination of pre-conditions is crucial to the success of
our composition framework and will be examined in detail in Sec-
tion 4.

3.3 Post-Conditions

Successful operation of a controller brings the character from an
initial state, as defined by the pre-conditions, to a desired state or a

desired regionR(qo) in the state space. This region along with bal-
ance Cb and possibly environmental constraints Ce form the post-
conditions of a controller:

O = C(R(qo); Cb; Ce): (2)

Note that the pre-conditions may reference a subset of the post-
conditions that is sufficient to characterize what the controller can
achieve. In general, however, the post-conditions are different from
the pre-conditions. For example, while a pre-condition for a falling
controller requires that the center of mass be moving, the post-
conditions require that the center of mass be at rest.

3.4 Expected Performance

Our framework permits the automatic selection of the appropri-
ate controller based on the information provided by the controllers
themselves. Only the individual controllers can detect whether they
are operating normally or whether failure is imminent. Failure in
our case means that the controller cannot meet its post-conditions
O. The controller may fail because of a sudden change in the envi-
ronment or because of badly designed pre-conditions. The sooner
a controller can detect failure the sooner another more appropriate
controller can take over. This is important for making a character
behave naturally. For example, the character should not attempt to
continue a walking gait if it has lost its balance and it is falling.
In our implementation, the expected performance E consists of ex-
pressions similar to those of the pre-conditions P . In particular if
the controller successfully completes its task in the time interval
[t1, t2℄, then E(t1) 2 P and E(t2) 2 O.

3.5 Transitions

Transitions between controllers are not explicitly modeled as they
would be in a finite state machine. They occur implicitly in re-
sponse to the evolution of the motion over time, as the system state
traverses the “regions-of-competency” of the various controllers.
Nevertheless, given that most controllers are designed for specific
situations, typical patterns of controller activation occur. Fig. 3
shows the family of controllers designed for the 3D dynamic char-
acter and their typical transition patterns. For example, the con-
trollers and transitions used in achieving the motion shown in Fig. 1
is given by balance ! fall ! default ! rollover ! prone-to-
standing! balance. Fig. 4 similarly shows the family of controllers
designed for the 2D dynamic character and their typical transition
patterns. Note that not all possible transitions are shown in either
of Figs. 3 and 4. For example, the prone-to-standing ! fall transi-
tion can occur if the figure is given a sufficiently strong push while
rising. Most of the transitions which are not shown but are still
practically feasible are of this nature, dealing with falling behav-
iors. Note that the fall controller always responds to the specific
direction of the current fall.

Any transition involves one controller being deactivated and an-
other being activated. A controller can become deactivated (and
thereby elicit a transition) for one of three reasons. First, it may
relinquish control by declaring success upon reaching its post-
condition, as is the case for a standup controller which has success-
fully returned the character to a standing position. Second, user
intervention may elicit a transition. The controllers designed for
sitting or balanced standing will retain control until intervention
by a user (or by a higher level planner) forces a desired transition.
Thus, when the 2D character is balanced a user-driven process must
choose among the next plausible actions, namely one of sit, walk,
or dive (see Fig. 4). Third, a controller may detect failure, as will be
the case for unpredictable events such as a push or an unforeseen
obstacle causing the character to trip. The transitions in Figs. 3

and 4 are labelled according to the type of controller deactivations
which typically elicit the given transition patterns.

We note that our framework is designed to work in interactive
settings. As such, controllers typically start with slightly different
initial conditions each time they are invoked, the user can interact
with the character at any time, and generally there are no guaran-
tees that the controller will reach the same end state each time it
operates. As a result, the transition graph is dynamic in structure.

Figure 3: Controllers and typical transitions for 3D figure

Figure 4: Controllers and typical transitions for 2D figure

4 Determining Pre-Conditions

For controllers associated with complex dynamic characters, deter-
mining the exact region of the state space and the general condi-
tions that determine success or failure of the controller is in general
a non-trivial matter. In this section, we address this problem via
manual and automatic approaches. The manual approach allows de-
signers to incorporate their knowledge within controllers, whereas
the automatic approach is based on machine learning techniques.

4.1 Manual Approach

For certain cases, suitable pre-conditions for specific controllers
may be found in the biomechanics literature [8, 25]. For exam-
ple Pai and Patton [25] present a comprehensive study of balance
in the sagittal plane and identify the conditions under which a hu-
man can compensate for postural disturbances and maintain bal-
ance without stepping. For certain other cases, the pre-conditions
are trivially defined by the desired motion itself. Certain controllers
function as intermediate stages between other controllers. If con-
troller B is the intermediate step between A and C then the post-
conditions of A dictate the pre-conditions of B and similarly the
pre-conditions of C define the post-conditions of B. Finally, in some
cases the pre-conditions are computed by manual experimentation.
For example a simple balance controller based on an inverted pen-
dulum model [12] has intrinsic stability that can tolerate small dis-
turbances. After the controller has been designed, repeated testing

under disturbances of increasing magnitude can yield an approxi-
mation of the pre-conditions and the post-conditions.

In any case, the designer of a controller presumably understands
the way the controller operates, and thus is able to provide high
level conditions on its success or failure. For example, the designer
of a walking controller knows if the controller can operate when
the walking surface has minimal friction properties. Also, human
motion is shaped by notions such as comfort, and only the designer
can take this into account. For example, if a person is pushed while
standing he/she might take a protective step because it may be more
comfortable to do so instead of maintaining an inverted pendulum
balancing strategy. Similarly, the way people react to slipping and
imbalance and the protective behaviors they employ are largely age
dependent.

4.2 Automatic, Learning Approach

In this section, we introduce an automatic, machine learning ap-
proach to determining pre-conditions, which is based on systemat-
ically sampling the performance of controllers. Our method uses a
machine learning algorithm attributed to Vapnik [33] known as Sup-
port Vector Machines (SVMs), which has recently attracted much
attention, since in most cases the performance of SVMs matches or
exceeds that of competing methods.

4.2.1 Support vector machines (SVMs)

SVMs are a method for fitting functions to sets of labeled training
data. The functions can be general regression functions or they can
be classification functions. In our application, we use simple clas-
sification functions with binary outputs which encode the success
or failure of a controller.

Burges [5] provides an excellent tutorial on SVMs. Mathe-
matically, we are given l observations, each consisting of an d-
dimensional vector xi 2 <d; i = 1; : : : ; l and the associated
“truth” yi 2 f�1; 1g provided by a trusted source. Here, yi = 1
labels a positive example—in our application, the observed success
of a controller applied when the dynamic figure is in state xi—
while yi = �1 labels a negative example—the failure of the con-
troller applied to state xi. The set of observations fxi; yig is called
the training set. The SVM is a machine whose task is to learn the
mapping xi 7! yi from a training set. The SVM is defined by
functional mappings of the form x 7! f(x; �), where � are pa-
rameters. A particular choice of � generates a “trained” SVM. In a
trained SVM, the sign of the decision function f(x) represents the
class assigned to a test data point x. In our application, a properly
trained SVM predicts if a controller will succeed (f(x) > 0) or fail
(f(x) < 0) on a given state x of the dynamic character.

How does one train an SVM? In the simplest case of a linear
SVM with separable training data, there exists a decision boundary
separating positive from negative examples which takes the form of
a “separating hyperplane” in<d. The SVM training algorithm com-
putes the separating hyperplane with the largest margin d+ + d�,
where d+ (d�) is the shortest distance from the separating hyper-
plane to the closest positive (negative) example. SVM training re-
quires the solution of a quadratic programming optimization prob-
lem involving a Lagrange multiplier �i for every datapoint in the
training set. Those datapoints in the solution with corresponding
�i > 0 are called support vectors.

The support vectors are critical elements of the training set. They
lie closest to the separating hyperplane. If other observations in the
training set are moved (subject to certain restrictions) or removed
and SVM training is repeated, the same separating hyperplane will
result. To use a trained SVM, we simply determine on which side of
the decision boundary a given test data point x lies and assign the
corresponding class label to that point. The linear SVM is easily
generalized to nonseparable training data.

Furthermore, it is straightforward to generalize the theory to en-
compass nonlinear SVMs for which the decision boundaries are no
longer hyperplanes (i.e., the decision function are no longer lin-
ear functions of the data). The trick, in principle, is to map the
data to some higher (possibly infinite) dimensional space in which
the linear theory can be applied. This is easily done by intro-
ducing kernel functions K(xi;xj), such as the polynomial kernel
K(x;y) = (x � y + 1)p, or the Gaussian or radial basis function
(RBF) kernel K(x;y) = exp(�jx�yj2=2�2). For the mathemat-
ical details, we refer the reader to [5].

4.2.2 Applying SVMs

To apply the SVM technique to the problem of determining con-
troller pre-conditions, we train a nonlinear SVM classifier to pre-
dict the success or failure of a controller for an arbitrary starting
state. Thus, the trained SVM demarcates the boundary of regions
in the figure’s state space wherein the controller can successfully
do its job. Training sets comprising examples fxi; yig are gener-
ated by repeatedly starting the dynamic figure at a stochastically-
generated initial state xi, numerically simulating the dynamics of
the figure under the influence of the controller in question, and set-
ting yi = +1 if the controller succeeds or yi = �1 if it fails.

The distribution of the stochastically-generated initial states is
of some importance. The sample points should ideally be lo-
cated close to the boundaries which demarcate the acceptable pre-
condition region of state-space. However, these boundaries are in
fact the unknowns we wish to determine and thus we must resort to
a more uniform sampling strategy. Unfortunately, the high dimen-
sionality of the state-space precludes regular sampling. We thus
adopt the following stochastic process to generate a suitable dis-
tribution of initial states: First, a nominal initial state is chosen,
based upon the designer’s knowledge of the controller. A short-
duration simulation (typically 0.3s) is then carried out from this
initial state while a randomized perturbation process is executed.
This currently consists of applying an external force of random (but
bounded) magnitude and random direction to the center-of-mass of
the pelvis. Simultaneously, the character’s joints are perturbed in
a stochastic fashion by setting randomized offset target angles for
the joints and using the character’s PD joint controllers to drive the
joints towards these perturbed positions. While the perturbation
strategy is admittedly ad-hoc, we have found it to be effective in
sampling the pre-condition space, as is validated by the online use
of the learned pre-condition models.

We employ T. Joachims’ SVMlight software which is available
on the WWW [21]. The software can accommodate large training
sets comprising tens of thousands of observations and it efficiently
handles many thousands of support vectors. It includes standard
kernel functions and permits the definition of new ones. It incorpo-
rates a fast training algorithm which proceeds by solving a sequence
of optimization problems lower-bounding the solution using a form
of local search. It includes two efficient estimation methods for
error rate and precision/recall.

The SVM training phase can take hours in our application, but
this is done off-line. For example, on a 733 MHz PIII computer, the
SVM training time for a training set of 8,013 observations is 2,789
seconds using the polynomial kernel, 2,109 seconds using the linear
kernel, and 211 seconds using the radial kernel. For a training set
of 11,020 observations, the training time is 8,676 seconds using the
polynomial kernel, 3,593 seconds using the linear kernel, and 486
seconds using the radial kernel. Once trained, the SVM classifier
can provide answers on-line in milliseconds.

4.2.3 Pre-condition learning results

Through systematic experimentation, we have evaluated the perfor-
mance of our automatic, SVM-based algorithm for learning con-

Controller Training set size Test set size NN SVM

StepToStand 8,999 9,110 80.97% 87.29%

LyingOnBellyToKneel 4,200 4,223 93.27% 94.46%

LyingOnBackToKneel 2,234 1,879 100.0% 100.0%

BendToStand 6,926 14,272 98.05% 99.77%

StandInPlace 17,317 20,393 83.63% 87.67%

Walk 11,020 8,658 92.78% 97.73%

StandToSit 1,100 1,286 64.15% 69.60%

StandToStep 16,999 17,870 72.12% 79.18%

KneelToStand 6,000 11,998 79.45% 85.06%

Table 1: Comparison between learned SVM and NN pre-
conditions.

troller pre-conditions. We compared the performance of the SVM
algorithm to that of a nearest neighbor (NN) classifier [9]. Given a
training set, the nearest neighbor classifier returns for an arbitrary
state x the same succeed/fail label as the label for that observation
in the training set that is closest to x. NN classifiers should per-
form particularly well in cases where the feasible area in the state
space is highly fragmented and localized. Note that the NN method
requires zero training time, but that it provides an answer in O(n)
time where n is size of the training set.

Table 1 summarizes the percentage success rates (rightmost
columns) of learned pre-conditions for a variety of controllers that
we use later in our demonstrations. To compute accuracy rates, we
trained the SVM and NN pre-condition learning algorithms using
randomly sampled observations collected from each of the con-
trollers. Then we generated test sets of novel observations and
compared their true success/fail status against that predicted by the
trained NN and SVM pre-conditions to obtain the accuracy per-
centages listed in the rightmost two columns of the table. The re-
sults show that the SVM algorithm consistently outperforms the
NN classifier. For the results shown in the table, the SVM algo-
rithm employed polynomial kernel functions. We ran a similar set
of experiments using Gaussian RBF kernel functions, but the accu-
racies were consistently lower than those obtained with polynomial
kernel functions.

5 Implementation

Our control composition framework is implemented within DANCE,
a portable, extensible object-oriented modeling and animation sys-
tem [24].2 DANCE provides a platform that researchers can use to
implement animation and control techniques with minimal design
and implementation overhead. The core of the system supports four
base classes, Systems, Simulators, Actuators and Geometries which
are loadable as plug-ins in accordance with simple APIs.

Articulated objects are a System subclass that support skeleton
hierarchies. They have kinematic properties and, usually, fully dy-
namic physical properties as well. Our virtual actors, which will be
described shortly, are dynamic articulated objects implemented as
Systems within DANCE.

An actuator is a generic concept that includes anything that can
exert forces or, in general, interact in any way with systems or other
actuators. For example, gravity, the ground, the collision mecha-
nism, the supervisor controller and individual controllers are im-
plemented as actuators. DANCE places no restrictions on the com-
plexity of the controllers.

Simulators compute the equations of motion of all the dynamic
characters and other systems in DANCE. DANCE offers built in sup-
port for SD/FAST, a commercial system which produces optimized
simulation code [18]. However, any simulator that follows a simple

2 DANCE is freely available for non-commercial use via the URL:

www.dgp.toronto.edu/software/dance.htm

Joint Rotational DOFs Rotational DOFs

3D skeleton model 2D terminator model

Head 1 1

Neck 3 1

Shoulder 2 1

Elbow 2 1

Wrist 2 -

Waist 3 1

Hip 3 1

Knee 1 1

Ankle 2 1

Figure 5: Dynamic models and their degrees of freedom (DOFs).

API can be dynamically loaded into the system. Our simulators are
automatically produced by SD/FAST from description files. They
use Kane’s method for computing articulated dynamics and a fourth
order explicit Runge-Kutta time integrator for numerically simulat-
ing the motions.

Actuators and simulators are implemented as DANCE plug-ins.
This allows the user to dynamically load controllers and simulators
at runtime. In addition, researchers can exchange, simulators, and
controllers in the form of dynamically linked pieces of code.

Object collisions (including self collisions) are handled by the
Collision actuator. This actuator works on pairs of objects. The
DANCE API allows it to work with objects that have different sim-
ulators. Collision detection is based on a library that uses oriented
bounding boxes [13]. Collision resolution uses a penalty method
that corrects geometry interpenetration using spring-and-damper
forces. As with all penalty methods, it can make the system stiff,
but it has performed well in our experiments to date.

5.1 Virtual Stuntman

5.1.1 Dynamic model

Fig. 5 depicts our 2D and 3D articulated character models. The red
arrows indicate the joint positions and axes of rotational degrees
of freedom (DOFs) which are also presented in the table. The 3D
skeleton model has 37 DOFs, six of which correspond to the global
translation and rotation parameters. The table in Fig. 5 lists the
DOFs for the skeleton and a 2D “terminator” model. The dynamic
properties of both models, such as mass and moments of inertia, are
taken from the biomechanics literature and correspond to a fully-
fleshed adult male.

The models are equipped with natural limits both on the motion
of the joints and the strength of their muscles. However, DANCE

has no built in muscle model and does not enforce the limits auto-
matically. Users can implement the model they prefer and include
code to enforce the limits of the model. Our plug-in control scheme
uses rotational spring-and-damper forces for control and enforces
the limits on the joints with exponential springs.

5.1.2 Pose and continuous control

Most of the controllers for our virtual stuntperson are based on pose
control, which has often been used both for articulated objects [31]
and soft objects [11]. Pose control is based on cyclic or acyclic fi-
nite state machines with time transitions between the states. Each
state of the controller can be static or depend on feedback param-
eters. For some of our controllers, we use continuous control, in
the sense that the control parameters are tightly coupled with some
of the feedback sensors. The balance controllers are an example of
this.

We designed several controllers based in part on experimental
studies of how humans detect loss of balance [25] and analysis of
protective and falling behaviors [8]. The resulting parameterized
controllers have been enhanced with appropriate pre-conditions,
post-conditions, and expected performance and have been inte-
grated using an arbitration-based supervising controller.

5.1.3 Sensors

Each controller has full access to the internal data structures of
DANCE including all the information associated with any charac-
ter or object in the system. This allows the controllers to define
arbitrary sensors that keep track of necessary information such as
state parameters for feedback loops and the state of the environ-
ment. For efficiency, the supervisor controller calculates a number
of common sensor values that are available to all the controllers.

5.1.4 Command interface

Many controller transitions in the control framework happen au-
tonomously, such as taking a protective step in response to losing
balance. However, other actions are initiated in a voluntary fash-
ion. For example, a standing character can do any of (1) remain
standing using the balance controller, (2) sit-down, (3) walk, and
(4) dive. Currently, the user directs these voluntary motions by in-
teractively entering command strings to the supervisor controller
which, in turn, directly increases the suitability score of the des-
ignated controller and forces the arbitration process to be invoked
to select a new active controller. The control of voluntary motions
could equivalently be delegated to a high-level planner, although
this kind of planning is beyond the scope of our work at present.

6 Results

At the heart of our prototype system is a composite controller that
is capable of handling a large number of everyday tasks, such as
walking, balancing, bending, falling, and sitting. In addition, we
present brief descriptions of the controllers involved in producing
several stunt actions. While the given controller descriptions are for
the 3D character, the equivalent 2D controllers are very similar. Fi-
nally, we discuss motion sequences generated using these families
of controllers3.

3See www.dgp.toronto.edu/�pfal/animations.html for the associated an-

imations.

6.1 Everyday Actions

We began our implementation with the simple tasks of standing,
recovering balance when pushed, and falling. An autonomous hu-
man agent should be able to balance, standing naturally in place.
Should loss of balance occur, the character ought to react naturally
either with a restoring motion or with a protective falling behavior
depending on which action is appropriate in each case. Afford-
ing a dynamic articulated figure with natural reactions to loss of
balance or impending falls is an essential step towards believable
autonomous characters.

6.1.1 Balancing

A balance controller is responsible for maintaining a natural stand-
ing posture. This controller is based on an inverted pendulum
model [12], using the ankles to control the body sway. Despite the
fact that the body of the character is not as rigid as the inverted pen-
dulum hypothesis suggests, the approximation works well in prac-
tice. As an example of the type of manually defined pre-conditions
and post-conditions used for this controller and others, these details
are given in Appendix A for the balance controller.

An animated character should attempt to maintain balance in re-
sponse to external disturbances by shifting its weight, taking a step
or bending at the waist. If the character cannot maintain balance, it
must then resort to a falling behavior.

6.1.2 Falling

The manner in which people fall depends on a number of factors
such as their physique, their age and their training. For example,
the work in [19] shows that, during a fall, the elderly are more likely
to impact their hip first as compared to younger adults falling under
the same conditions. Our fall controller is designed with the average
adult in mind. Its main action is thus to absorb the shock of the
impact using mostly the hands.

The pre-conditions of the fall controller are defined in accor-
dance with those of the balance controller. Situations that are be-
yond the capabilities of the latter should be handled by the fall con-
troller. Our implementation of the fall controller can handle falls in
any direction, responding in different ways to falls in different di-
rections. Fig. 6 depicts frames from falls in a variety of directions.
The second frame in Fig. 1 also demonstrates the action of the fall
controller within a fall-and-recover sequence.

6.1.3 Sitting

Sitting down in a chair and rising from a chair are common ev-
eryday tasks. We have implemented a controller that can do both
depending on the instructions of the animator. Apart from the com-
mand string supplied by the user, the pre-conditions are either a
balanced upright posture or a balanced sitting posture. The post-
conditions are similarly defined. The resulting action is illustrated
in Fig. 7.

6.1.4 Rising from a supine position

Getting up off the ground is a surprisingly difficult motion to simu-
late. It involves rapid changes of the contact points and significant
shifting of the figure’s weight. In addition, the frictional properties
of the ground model can influence the motion.

The pre-conditions for this controller are straightforward. The
character must be lying with its back flat on the ground, within
some tolerance. The post-conditions are that the character should
be on its feet with its center of mass within the support polygon.
Then it would be up to another controller to take over and bring the
character from a crouching position to a standing one. A snapshot
of a resulting motion is shown in Fig. 8.

Figure 6: Falling in different directions

6.1.5 Rolling over

When lying on their back, some people may choose to roll-over to
a prone position before attempting to stand. We have implemented
a roll-over controller that can emulate this action. The fourth frame
in Fig. 1 demonstrates the action of the roll-over controller.

The pre-conditions of the roll-over controller require a supine
posture, and no movement of the center of mass. The post-
conditions of the roll controller are fairly simple and they include
any prone position for which the character is extended and fairly
straight; i.e., no crossing of legs or arms, etc.

6.1.6 Rising from a prone position

Frames 5–9 in Fig. 1 demonstrate the action of a controller that en-
ables the virtual stuntperson to rise from the prone position. When
lying face-down, the pre-conditions can be fairly relaxed. Our con-
troller assumes that is has the time to change the state of the charac-
ter to one from which it knows how to rise. As long as the figure is
not lying on its arms and the ground is relatively flat it will attempt
to get up. The post-conditions are chosen such that they satisfy the
pre-conditions of the balance controller.

6.2 Stunts

Apart from everyday actions, we want our dynamic character to be
able to do a variety of other voluntary actions dictated by the ani-
mator. Such actions can potentially include vigorous and/or phys-
ically dangerous actions. It is our hope that if a large number of
researchers contribute controllers the character can eventually be
used as a virtual stuntperson.

6.2.1 Kip move

The kip is an athletic motion often seen in martial arts films and
is depicted in Fig. 9. The controller is based on a pose controller
whose pre-conditions include a variation of supine positions. As
before, the first part of the controller makes sure that the character
assumes a position suitable for performing the kip. The larger part
of the motion is ballistic, which focuses the control mainly at the
kick off and landing phases. The last part of the controller applies
continuous control to bring the stuntman to an erect position from
which the balance controller can take over.

6.2.2 Plunge and roll

Fig. 10 shows the stuntman performing a suicidal dive down stairs.
The character can be instructed to lunge forward and upward at a
takeoff angle controlled by the user. When the hands contact the
ground a front-roll is attempted. The pre-conditions of this con-
troller are defined be an upright position and little movement of the
center of mass.

We have also experimented with a multiple character scenario,
with one character tackling another, Fig. 11. While the timing of
the tackle is scripted, it illustrates the capability of the system to
cope with a pair of interacting characters, each equipped with its
own supervisory controller.

Figure 11: Two interacting virtual characters.

6.3 Animation Sequences

We have produced two relatively long animation sequences that
demonstrate the potential of the our framework. The sequence
for the 3D skeleton model presented in Fig. 1 involves controllers
whose pre-conditions are provided analytically by the designer.
Such conditions tend to define square regions within the space de-
fined by the parameters involved. Despite their simple form, such
pre-conditions can generally work well as is demonstrated by the
intricacy of the animation produced. We expect to investigate the
application of SVM-learned pre-conditions to the 3D model in the
future.

A second animation sequence with the 2D terminator model (see
Fig. 12) makes use of a set of controllers having a mix of analytic
and learned pre-conditions. The sequence of controllers that gen-
erated the animation was: balance ! sit ! lean-forward ! rise
! balance! walk! step-to-stand! balance! dive! default
! kneel! kneel to stand! balance! step-forward! step-to-
stand! balance ! step-back ! step-to-stand ! balance ! fall
! default. The analytical pre-conditions prune large parts of the
state space and the svm-classifier provides a more accurate suc-
cess/failure prediction within the remaining region. During the ani-
mation sequence, the svm-classifier correctly refined the analytical
answer in several cases.

6.4 Performance Issues

Most of the computational burden in our approach lies in the nu-
merical simulation of the equations of motion. The computations
associated with the controllers and our composition framework are
negligible in comparison. In general, the 2D model simulates in
real time, while the 3D model runs between 5 and 9 times slower
than real time on a 733 MHz Pentium III system.

Figure 7: Sitting and rising from a chair

Figure 8: Rising from a supine position on the ground and balancing erect in gravity.

Figure 9: Kip move: A more vigorous way of getting up from the supine position as in the first frame of Fig. 8.

Figure 10: Ouch!

7 Conclusion

The challenges of physics-based controller design plus the techni-
cal obstacles that researchers face when attempting to share their
algorithms has hindered progress in the important area of physics-
based character animation. This paper has presented a methodology
for ameliorating the problem with a framework which facilitates the
exchange and composition of controllers. Our framework has been
implemented within a freely available system for modeling and an-
imating articulated characters. To our knowledge, our system is
the first to demonstrate a dynamic anthoropomorphic character with
controlled reactions to disturbances or falls in any direction, as well
as the ability to pick itself up off the ground in several ways, among
other controlled motions. We hope that our system will foster col-
lective efforts among numerous practitioners that will eventually
result in complex composite controllers capable of synthesizing a
full spectrum of human-like motor behaviors.

Given the enormous challenge of building controllers capable of
large repertoires of dynamic human-like motion, it is inevitable that
the work presented in this paper is incomplete in many ways. Pub-
lished control methods for 3D walking, running, and stair climb-
ing make obvious candidates for integration into our system. Cop-
ing with variable terrain and dynamic environments are dimensions
of added complexity that should provide work for years to come.
Automatic parameterization of controllers to variations in charac-
ter dimensions and mass is a necessary step for having solutions
adaptable to a variety of characters. Deriving controllers from
motion-capture data is an exciting but difficult prospect, although

some progress is already being made in this area. Other methods of
“teaching” skills to a dynamic character also warrant investigation.
Finally, intelligently integrating controllers which affect only sub-
sets of DOFs needs to be addressed in order to allow for the parallel
execution of controllers.

Acknowledgements

We wish to thank Joe Laszlo for his help with the video editing
equipment and for useful discussions. We would also like to thank
Symbolic Dynamics Inc. for allowings us to distribute the equations
of motion of the 3D human model. This work was supported by
grants from NSERC and CITO.

A Balance controller

The articulated body must be in a balanced upright position, the ve-
locity and acceleration of the center of mass should not exceed cer-
tain threshold values as explained in [25], and both feet must main-
tain contact with the ground at all times. The controller can tolerate
small perturbations of the posture and the velocity/acceleration of
the center of mass by stiffening the ankle joints. For larger accel-
erations of the center of mass, the controller actively actuates the
ankle joint to reduce the acceleration of the center of mass. The
post-conditions are similar to the pre-conditions. In mathematical
form using the notation defined in Section 3:

Figure 12: A still image from the terminator sequence. The dy-
namic terminator model has been knocked backward by the force
of a collision to the head by the red ball. The terminator maintains
balance by taking a protective step.

P :

Acceleration: � < 0:1 m=sec2.
Velocity: _ < 0:3 m=sec.
Balance: projection() 2 S .

Posture: (1=n)
P

i
jq[i℄� q0j < 0:1 rad,

where i = (thigh; knee;waist)
and n is a normalization parameter.

O :

Acceleration: � < 0:01 m=sec2.
Velocity: _ < 0:05 m=sec.
Balance: projection() 2 S .

Posture: (1=n)
P

i
jq[i℄� q0j < 0:1 rad,

where i = (thigh; knee;waist)
and n is a normalization parameter.

References

[1] Ronald C. Arkin. Behavioral Robotics. MIT Press, 1998.

[2] W. W. Armstrong and M. Green. The dynamics of articulated rigid bodies for

purposes of animation. Proceedings of Graphics Interface ’85, pages 407–415,

1985.

[3] N. Badler, C. Phillips, and B. Webber. Simulating Humans: Computer Graphics,

Animation, and Control. Oxford University Press, 1993.

[4] N. I. Badler, B. Barsky, and D. Zeltzer. Making Them Move. Morgan Kaufmann

Publishers Inc., 1991.

[5] C. Burges. A tutorial on support vector machines for pattern recognition. Data

Mining and Knowledge Discovery, 2(2):955–974, 1998.

[6] R. R Burridge, A. A. Rizzi, and D. E Koditschek. Sequential composition of

dynamically dexterous robot behaviors. The International Journal of Robotics

Research, 18(6):534–555, June 1999.

[7] Tolga Capin, Igor Pandzic, Nadia Magnenat Thalmann, and Daniel Thalmann.

Avatars in Networked Virtual Environments. John Wiley & Sons, 1999.

[8] M. C. Do, Y. Breniere, and P. Brenguier. A biomechanical study of balance

recovery during the fall forward. Journal of Biomechanics, 15(12):933–939,

1982.

[9] R. O. Duda and P. E Hart. Pattern Classification and Scene Analysis. Wiley,

1973.

[10] Petros Faloutsos. Composable Controller for Physics-based Character Anima-

tion. PhD thesis, Univeristy of Toronto, DCS, Toronto,Canada, 2001. To be

awarded.

[11] Petros Faloutsos, Michiel van de Panne, and Demetri Terzopoulos. Dynamic

free-form deformations for animation synthesis. IEEE Transactions on Visual-

ization and Computer Graphics, 3(3):201–214, 1997.

[12] R. C Fitzpatrick, J. L. Taylor, and D. I. McCloskey. Ankle stiffness of stand-

ing humans in response to imperceptible perturbation: reflex and task-dependent

components. Journal of Physiology, 454:533–547, 1992.

[13] Stefan Gottschalk, Ming Lin, and Dinesh Manocha. OBB-Tree: A hierarchical

structure for rapid interference detection. In Computer Graphics (SIGGRAPH

96 Proceedings), pages 171–180, 1996.

[14] R. Grzeszczuk and D. Terzopoulos. Automated learning of muscle-based loco-

motion through control abstraction. Proceedings of ACM SIGGRAPH: Computer

Graphics, pages 63–70, August 1995.

[15] R. Grzeszczuk, D. Terzopoulos, and G. Hinton. Neuroanimator: Fast neural

network emulation and control of physics-based models. Proceedings of ACM

SIGGRAPH: Computer Graphics, pages 9–20, July 1998.

[16] J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O’Brien. Animating human

athletics. Proceedings of SIGGRAPH 95, ACM Computer Graphics, pages 71–

78, 1995.

[17] Jessica K. Hodgins and Nancy S. Pollard. Adapting simulated behaviors for new

characters. Proceedings of SIGGRAPH 97, pages 153–162, August 1997.

[18] Michael G. Hollars, Dan E. Rosenthal, and Michael A. Sherman. Sd/fast. Sym-

bolic Dynamics, Inc., 1991.

[19] E. T Hsiao and S. N Robinovitch. Common protective movements govern unex-

pected falls from standing height. Journal of biomechanics, 31:1–9, 1998.

[20] Boston Dynamics Inc. The digital biomechanics laboratory. www.bdi.com,

1998.

[21] T. Joachims. Making large-scale svm learning practical. advances in

kernel methods. In B. Schölhopf, C. Burges, and A. Smola, edi-

tors, Support Vector Learning. MIT-Press, 1999. http://www-ai.cs.uni-

dortmund.de/DOKUMENTE/joachims 99a.pdf.

[22] Joseph F. Laszlo, Michiel van de Panne, and Eugene Fiume. Limit cycle control

and its application to the animation of balancing and walking. Proceedings of

SIGGRAPH 96, pages 155–162, August 1996.

[23] Honda Motor Co. Ltd. www.honda.co.jp/english/technology/robot/.

[24] Victor Ng and Petros Faloutsos. Dance: Dynamic animation and control envi-

ronment. Software system, www.dgp.toronto.edu/DGP/DGPSoftware.html.

[25] Yi-Chung Pai and James Patton. Center of mass velocity-position predictions for

balance control. Journal of biomechanics, 30(4):347–354, 1997.

[26] Marcus G. Pandy and Frank C. Anderson. Three-dimensional computer sim-

ulation of jumping and walking using the same model. In Proceedings of the

VIIth International Symposium on Computer Simulation in Biomechanics, Au-

gust 1999.

[27] Marcus G. Pandy, Felix E. Zajac, Eunsup Sim, and William S. Levine. An opti-

mal control model for maximum-height human jumping. Journal of Biomechan-

ics, 23(12):1185–1198, 1990.

[28] M. H. Raibert. Legged Robots that Balance. MIT Press, 1986.

[29] Cecile Smeesters, Wilson C. Hayes, and Thomas A. McMahon. Determining

fall direction and impact location for various disturbances and gait speeds us-

ing the articulated total body model. In Proceedings of the VIIth International

Symposium on Computer Simulation in Biomechanics, August 1999.

[30] Xiaoyuan Tu and Demetri Terzopoulos. Artificial fishes: Physics, locomotion,

perception, behavior. Proceedings of SIGGRAPH 94, pages 43–50, 1994.

[31] M. van de Panne. Parameterized gait synthesis. IEEE Computer Graphics and

Applications, pages 40–49, March 1996.

[32] Michiel van de Panne, Eugene Fiume, and Zvonko Vranesic. Reusable motion

synthesis using state-space controllers. Computer Graphics (SIGGRAPH 90 Pro-

ceedings), 24(4):225–234, August 1990. ISBN 0-201-50933-4. Held in Dallas,

Texas.

[33] V. Vapnik. Estimation of Dependecies Based on Empirical Data (in Russian).

Nauka, Moscow, 1979. English translation Springer Verlag, New York, 1982.

[34] Jane Wilhelms and Brian A. Barsky. Using dynamic analysis to animate ar-

ticulated bodies such as humans and robots. In Graphics Interface ’85, pages

97–104, May 1985.

[35] Wayne Wooten. Simulation of Leaping, Tumbling, Landing, and Balancing Hu-

mans. PhD thesis, Georgia Institute of Technology, March 1998.

