
Composable
Dynamic Voltage and Frequency Scaling and
Power Management for Dataflow Applications

Kees Goossens1, Dongrui She1, Aleksandar Milutinovic2, Anca Molnos3
1Eindhoven University of Technology 2University of Twente 3Delft University of Technology

{k.g.w.goossens, d.she}@tue.nl, a.milutinovic@utwente.nl, anca.molnos@tudelft.nl

Abstract—Composability means that the behaviour of an ap-
plication, including its timing, is not affected by the absence or
presence of other applications. It is required to be able to design,
test, and verify applications independently. In this paper we
define composable dynamic voltage and frequency scaling (DVFS)
hardware, and composable power management. We ensure that
the functional and temporal behaviours of an application are
not affected by other applications, even when they are power
managed.
For dataflow applications with worst-case execution times per

task, our power management is also predictable, i.e. guarantees
end-to-end real-time requirements, even when the application
is mapped on multiple processors that are power managed
independently. Our method can be used with various DVFS
architectures, such as on-chip and off-chip VF regulators.
Our FPGA implementation models a system with multiple tiles,

each containing a processor with local memory running a real-
time operating system (RTOS) and power management. Tiles are
interconnected by a network on chip, and communicate using
shared memories. Experiments indicate energy savings of 68%
w.r.t. no power management, and 40% w.r.t. power gating only.
We also demonstrate composability and predictability on the
platform in the presence of power management.

I. INTRODUCTION
Low energy consumption is important for systems on chip

(SOC). Dynamic voltage and frequency scaling (DVFS) is often
used to trade a linear processor slowdown for a potentially
quadratic decrease in energy consumption. This trade-off has
been exhaustively addressed for single processors, and for
multi-processor SOCs [1], [2]. We propose an architecture
that uses existing DVFS hardware to build composable and
predictable SOCs running multiple applications.
To deal with the complexity of system design and verifi-

cation, the concept of composability has been advocated [3]–
[6] and practised [7]. Behaviours of different applications are
independent, to be able to develop, test, verify, and execute
applications in isolation before they are integrated to a system.
A composable SOC then ensures that applications already
integrated do not affect the newly added application, and vice
versa.
Embedded systems contain a mix of best-effort applications,

and those that have (hard or soft) real-time requirements, such
as radio pipes, and video and audio decoding. Predictability,
or timeliness, is required to guarantee that each application
meets its deadlines, while composability ensures that multiple

(real-time) applications are independent. Predictability is not
easy to ensure when applications use multiple shared resources
(processors, interconnect, memories).
Predictability and composability in the SOC domain have

been demonstrated but without [6] real-time operating system
(RTOS) or power management. The composable RTOS used
here was introduced in [8], and a predictable power-managed
RTOS in [9]. Here all elements are combined, for predictable
and composable low-power power management, i.e. the tem-
poral (and possibly functional) behaviour of an application is
not affected by the power management of other applications.

A. Contributions
In this paper we focus on streaming applications that can

be expressed in variable-rate dataflow, possibly with cycles
and data dependencies. They may be mapped on multiple
resources. Task code and data fit in the processor scratch
pad, and tasks use explicit communication between tasks using
shared (remote) memories [6]. We assume a fixed mapping of
tasks of different applications to multiple processors. Proces-
sors run the same RTOS, but schedule and manage power inde-
pendently. We focus on dynamic power, and extend prior work
on composability by introducing composable DVFS (hardware)
and dynamic power management (software). Although not
addressed here, static power can be taken into account by
modifying the next-frequency function (Section V-D). For
dataflow applications for which a worst-case execution time
(WCET) for each task is given, our approach is also predictable,
i.e. guarantees end-to-end throughput and latency even in the
presence of power management.
We first define a hardware architecture per tile (processor,

local bus and memories) to enable composable and predictable
DVFS. We assume the fast DVFS hardware of [10]. The
essential idea is to schedule DVFS operations at precise points
in the future. We remove the variation in RTOS behaviour and
VF transitions by scheduling subsequent operations at their
worst-case completion times. As a result, RTOS time slices are
independent in terms of duration of VF transitions, enabling
composability: an application’s number and timing of proces-
sor cycles is independent of other applications. Moreover, at
any frequency, the number of cycles allocated to an application
time slice can be budgeted (minimum and maximum bound

2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools

978-0-7695-4171-6/10 $26.00 © 2010 IEEE

DOI 10.1109/DSD.2010.61

107

on the number of cycles), which is required for predictability.
In an earlier paper [8] a basic tile version without DVFS was
introduced.
The DVFS hardware is the first step to ensure that each

time slice contains a budgeted number of processor cycles
(instructions). However, to guarantee an absolute finishing
time, we must also bound the time that each instruction
takes. This is often not the case for processors, because a
load instruction, e.g. to a shared off-chip DRAM, can take
thousands of cycles to complete. (In theory even forever, if
the slave does not respond.) Because most embedded proces-
sors do not support interruptable load instructions (hardware-
multi-threaded processors being the exception), we equip the
processor with direct memory access (DMA) controllers that
effectively implement interruptable load instructions. The
disadvantage is that the application must be aware where its
data are mapped, either in local memories (when it can use
normal loads), or remotely (when it must use a DMA to access
it). Fortunately, many embedded-system applications use local
scratch pads and explicit synchronisation (via local or remote
memories) between tasks. DMA access is then hidden in the
communication library without changes to the application, as
we show later.
The software that uses the DVFS hardware consists of

several parts. First, drivers to program the VF operating points,
and interrupt service routines. Second, each processor indepen-
dently runs the same RTOS, which uses two-level scheduling:
composable between applications, and (optionally) predictable
within applications. The former uses time-division multiplex-
ing (TDM). The latter schedules tasks within each applica-
tion with an application-specified scheduler (currently TDM,
CCSP [11], or round robin). Finally, explicit inter-task (and
inter-processor) communication with the C-HEAP protocol [12]
allows the RTOS to monitor the progress and slack of tasks. For
real-time applications with given worst-case execution times
of tasks, the RTOS computes minimal operating points such
that deadlines are always met, using the application’s slack.
The remainder of this paper first discusses related work

in Section II and background in Section III. It then follows
the structure of the above contributions in Sections IV-V.
Section VI contains experimental results, and Section VII
concludes.

II. RELATED WORK

Related work falls in two categories: predictable dynamic
power management, and composable and predictable SOC
architectures. We know of no prior work on composable power
management, which is the contribution of this paper. Since we
change operating point at every RTOS time slice, we require
efficient per-tile VF scaling hardware that allows fast and fine-
grained VF switching, such as [10], [13].
[1], [2] give good overviews of low-power techniques. [14]

surveys methods that suit real-time multiprocessors. Here we
only consider those allowing inter-task dependencies, as we
also do. [15]–[20] consider applications described as directed
acyclic task graphs (DAG), [9], [21] tackle the more general

case of cyclic dataflow task graphs, and [22] models applica-
tion using network calculus, expressing dependencies implic-
itly, via arrival curves. [15] combines DVFS and adaptive body
biasing in heterogeneous platforms; [16] iteratively distributes
slack over the DAG’s nodes. [18] selects the optimal number
of (symmetric) processors and their VF points, to minimize
system power under throughput constraints. [20] proposes a
global scheme that requires inter-processor synchronization
when slack is reclaimed. Here, the different RTOS instances
do not communicate. [17] extends the DAG targeted work
considering conditional task graphs. [9] considers streaming
applications modeled as cyclic dataflow graphs. [9]’s RTOS
is closest to our approach, but is not composable, nor im-
plemented on FPGA. [21] uses a similar dataflow model and
streaming applications as in [9], exploring the design space
for memory size and processor voltage frequency levels, while
meeting a throughput constraint, but without processor sharing.
[22] proposes a DVFS strategy in two phases: off-line worst-
case bounds that are conservatively improved at run time.
Composability for SOC design has been gaining ground [3]–

[7]. It has been demonstrated for different components
of a SOC: networks on chip (NOC) [23], [24], memory
controllers [25], and processor real-time operating system
(RTOS) [8], [9], [26]. [6] combines a number of these compo-
nents into a composable SOC. However, none of these address
(composable) power management.

III. BACKGROUND
We focus on dynamic power, given by Pdyn = αCV 2f =

αCV 2w/t, where α is the switching activity, C is the switched
capacitance, and V and f ∈ [fmin,fmax] define the VF operating
point. Alternatively, work w is the number of cycles executed
in time t. The energy spent is then Edyn = Pdynt = αCV 2w.
To minimise energy, the voltage must be scaled to the lowest
value supporting the frequency required to meet a deadline.
For simplicity, we define the operating point by f alone, and
we assume a linear relationship between V and the maximum
f it supports.
Our platform (see Fig. 1) is composable: each resource

(computation, communication, storage) can be partitioned
using time-division multiplexing (TDM) in smaller “virtual
resources” that are allocated to multiple applications, such that
the functional and temporal behaviours of the virtual resources
are independent and do not interfere. Each task receives a
budget (TDM slots) in a given period (TDM wheel). TDM
wheels of different resources may not be aligned, because
they may run at different variable frequencies. Tasks are
scheduled only based on their allocated budget, and not based
on any application or task deadline. We use a composable and
predictable NOC [23]. The processors with local memories use
an extension of the RTOS of [8], [9], [26], which is composable
and predictable (Section V).
The application programming model comprises tasks with a

variable-rate dataflow semantics, communicating using finite-
capacity FIFO channels. Tasks (actors) fire when all their input
data and space for their all outputs are present, and then

108

VFCU

processor DMA

NOC

local
memory

DMA

pck

tck

tile

remote
memory

tile
tile

rck

mck

nck

rck: reference clock
tck: tile clock
pck: processor clock
nck: NOC clock
mck: memory clock

application,
distributed over two tiles

3

Fig. 1. Our composable and predictable platform.

execute without stalling on other resources (but they may be
preempted). The code of the task, and its data reside in the
local memories (scratch pads).
We use the dataflow paradigm to model the applications, the

platform, and the binding of applications to the platform [23].
For multi-rate cyclostatic dataflow applications with a WCET
for each actor, it is then possible to compute their end-
to-end throughput and latency, given their binding to the
platform [27].
An application contains a number of communicating tasks.

Some tasks have a worst-case work (wcw), which is defined
as the worst-case number of clock cycles that the task takes.
wcw takes WCET seconds at fmax. Note that because tasks run
from local memory after their input data and output space
is available, their work does not depend on the frequency.
However, the actual work of a task is often less than wcw;
the difference is spare capacity, or slack. Slack also arises
from early data arrival, pessimistic modelling, or when the
set of running applications does not use the full capacity of
the platform. Slack can be expressed in work (cycles) or, at a
given operating point, in time (remaining time until the budget
depletes).
Slack is used to reduce the frequency and voltage to reduce

the power and energy. Our innovation lies in the fact that we
do this composably (eliminating interference between appli-
cations) and predictably (respecting application deadlines). It
is important to note that slack can only be distributed within
applications. Otherwise, an application would receive more
capacity (cycles, bandwidth, memory) than when other appli-
cations would be present. Although this may seem positive, it
changes its temporal behaviour, and verification then becomes
dependent on other applications, which is not composable.

IV. COMPOSABLE DVFS HARDWARE
The clock and power domains of the system are shown in

Fig. 1 by the dashed lines, running through several blocks. The
local memory is a dual-port memory, but the tile architecture
can be changed to use single-port memories, if required. The
VF control unit (VFCU) and direct memory access (DMA)
interfaces use bisynchronous FIFOs to decouple the clock

and power domains. In the experimental FPGA set-up, the
MicroBlaze-VFCU communication uses the fast simplex link
FIFOs (FSL), and the local memory and DMAs use Xilinx
asynchronous memories. We now describe the VFCU and DMA
controllers.

A. Voltage/Frequency Control Unit (VFCU)
The VFCU provides the clock to a processor tile. It has

three functions, independently programmable by the processor
(Fig. 2). 1) Change the operating point to f new, starting at time
t in the future. 2) Disable the clock to the tile from now until
a time t in the future. 3) Generate an interrupt to the processor
at time t in the future. Time is expressed in local wall time, i.e.
a time counter that always runs at maximum frequency. Wall
times of different tiles may be different (in terms of frequency,
phase, drift), because it is difficult to provide an accurate
high-speed time reference to tiles that are distributed over a
chip. Each tile locally power manages tasks such that they
receive their local budgets, and do not miss local deadlines.
Monotonicity of our dataflow methodology [27] then guaran-
tees that no end-to-end deadlines are violated. Our design is
independent of the actual VF hardware. However, we require
fast per-tile VF switching, and for ASIC implementation would
use [10]. In our FPGA prototyping platform we implemented
the VFCU as a frequency-divider with clock gating with the
timers, as described above.
The essence of being able to delay the actions (change,

disable, interrupt) until a point in the future, is that it allows
us to remove variation in timing of what happened before, by
programming them to occur at the worst-case completion time
of preceding actions.
For example, as Fig. 2 shows with the intervals [T 1, T 2] and

[T 3, T 4], depending on how the clock is generated, transitions
from one operating point to another may take different or vary-
ing durations. For example, a high to low voltage transition is
faster than vice versa, or depending on the clock distribution
network, externally supplied clocks may come from different
PLLs with different characteristics. Because the clock may
not be stable for some time (the grey areas in the figure), the
disable function removes the clock from the processor until
the clock is guaranteed to be stable. This can also emulate a
halt instruction, if absent from the processor.
Section V defines the infrastructure we use to avoid inter-

ference between applications when changing frequency (com-
posability), and to budget a minimum number of cycles per
time slice (predictability). But first we limit the time each
instruction takes.

B. Interrupts and Direct Memory Access (DMA)
We use interrupts to ensure that tasks cannot exclusively

claim the processor. To bound the interrupt rate, required to
guarantee a minimum processing capacity, only the RTOS uses
interrupts. The RTOS can accurately schedule an interrupt to
initiate a task switch by programming the VFCU. However, on
most processors individual instructions are not interruptable.
For example, in our set-up, a load instruction to a local

109

generated
clock

clock to
processor

task A OS 1 OS 2 OS 3 task B

T0
interrupt

T1
freq change

T2
ungate

interrupt
serviced

halt or
gate

T3
freq change

halt or
gate

T0
interrupt

T4
ungate

iv
comm.

v
comp.

vi
comm.

iii
wcet-acet

i
interrupt

OS slice (composable)
predictable

task slice (composable)
predictable

ii
VF change

ii
VF change

system slice (composable)

Fig. 2. OS and task time slices. (Not to scale: the OS time slice is less than 8% of the task time slice.)

memory over the bus can take up to five cycles. But a remote
load can take an arbitrary number of cycles, depending on the
speed of the bus, NOC, and slave. For a shared remote DRAM
the time during which no task switch can take place because
a processor cannot be interrupted, can be thousands of cycles.
We address the relatively small, and bounded, delay on

the interrupt service due to completion of instructions such
as multiplication and local loads, by assuming the worst-
case completion, and eliminating variation using the VFCU
as described above. But this technique cannot be used for the
long completion time of remote load instructions. Instead we
convert remote load instructions in local load instructions, by
using a direct memory access (DMA) controller on the local
bus. For a remote load (or store) instruction, the processor
programs the DMA with source and destination addresses,
burst size, and starts it. It then repeatedly polls the DMA until
the data has been transferred from remote memory to local
memory (or vice versa). Even though the DMA may be blocked
on a remote read, the processor can be interrupted after each
polling local read, which only take a few cycles to complete
on the (uncontended) local bus.
A task must now distinguish local and remote data, using

DMA for the latter. However, this is a natural fit with our
dataflow application model, where input data must be present
in the local memory when a task (actor) fires. As detailed
below, the communication library ensures that data from tasks
on remote tiles is copied by the DMA to the local memory
before a task is started by the RTOS to operate on them. Each
FIFO channel has a DMA, and copying of data takes place
in parallel with other DMAs as well as computation. Copying
has a known worst-case completion time due to performance
guarantees in the NOC and shared remote memories [23]. The
DMAs consist of a simple finite state machines and clock-
domain crossing, and are small.

V. COMPOSABLE POWER MANAGEMENT

In this section we describe how time slices are made com-
posable, and then how applications and tasks are scheduled.

A. Composable Time Slices
We define a system time slice to be an RTOS slice, followed

by a task slice, as illustrated in Fig. 2. Composable power

management relies on system time slices that have a constant
duration, to decouple successive tasks (possibly belonging
to different applications). Predictable power management and
scheduling depends on guaranteeing a minimum number of
clock cycles to a task in its time slice.
Composability is not trivial. First, changing the operating

point can take a variable (even application-dependent) number
of cycles. Second, the RTOS takes a variable number of cycles
to execute in its RTOS time slice. Finally, the interrupt to end
a time slice is served after a variable number of cycles. Using
a DMA for remote load instructions, this takes at most five
cycles in our MicroBlaze-based FPGA prototype (allowing the
multiplication but not the division instruction). Using Fig. 2 we
explain how we create composable time slices. Interrupts are
used to switch from one task to the next, with RTOS running
in between to decide which task should run next and at what
frequency, based on budgets and slack.
1) At T 0 the VFCU sends an interrupt to task A running

at frequency fA. It may take up to five cycles for it to be
serviced and to start the RTOS, as shown by (i) in the figure.
2) The RTOS programs the VFCU to change to fmax at T 1,

and to re-enable the clock at T 2. It then halts itself (or tells
the VFCU to gate the clock). This removes the variation in
interrupt service time (i) and VF change (ii). At T 1 the VFCU
starts changing the frequency, which may take a variable time
(ii), and may include a period where the clock is unstable (the
grey area in the figure).
3) At T 2, when the clock is stable at fmax, the processor’s

clock is re-enabled. The RTOS saves task A’s context, and
schedules a new task B to run at frequency fB (discussed
below). It programs the VFCU to change to frequency fB at
time T 3, to re-enable the clock at T 4, and to generate an
interrupt at T 0. It then halts itself. T 4 removes variation in
both RTOS execution time (iii) and frequency changing (ii).
At T 3 the frequency changes, and is stable by T 4, when the
RTOS restarts.
4) At this point the RTOS restores task B. For each FIFO in

the current firing rule of the task, the task programs a dedicated
DMA to copy input data for the task from remote to local
memory. It polls the DMA(s) until they have completed (iv).
The task computes the output data given the input data, both

110

in local memory (v). Finally it copies the output data of each
FIFO from local memory to remote memory, using the DMA(s)
(vi).
The T i are chosen such that all activities scheduled before

them are finished in the worst case, such as interrupt service
latency (i in the figure), crossing clock domains and frequency
changes (ii), and RTOS scheduling (iii).

B. Composable and Predictable Scheduling
Given composable time slices, the RTOS decides which task

is executed in each time slice, and at what operating point.
First of all, inter-application and intra-application schedul-

ing have different requirements. The former must be com-
posable, and the latter (optionally) predictable. This is im-
plemented with a two-level scheduler that first uses time-
division multiplexing (TDM) between applications, and then an
application-specified scheduler (currently predictable TDM or
best-effort round robin) that picks a task from the application.
The pseudo code illustrates the scheduling (please ignore the
IF statement for now).
s := -1;
forever do

s := (s+1) mod NRSLOTS;
app := tdm_table[s]; // TDM between apps
task := task_scheduler[app]();
if task = idle then
// task cannot fire or has finished
// pick another eligible task in this app
task := task_slack_scheduler[app]();

fi
restore_context(task); // iv
jump to task; // v
while true do ; od; // wait for interrupt

od

At this point, by fixing the frequency to fmax, our RTOS is
composable and predictable, but not yet power optimised. We
can apply prior work [6], [9], [27] to compute the system’s
performance given scheduling budgets for the applications
and their tasks (length of TDM wheel, and which slots per
task). The remaining challenge is to extend this to variable
operating points. The first step is to detect and compute the
slack available to tasks (V-C), followed by computation of
operating points (V-D).

C. Slack Scheduling
The scheduling algorithm shown in the previous section

first determines the application to be run, and then calls
the application’s task scheduler. If no application or task is
scheduled, because the TDM slot was not assigned, the task
is waiting for input data or output space, or the task finished
before using its entire budget, then the time slice is slack. It
can be used in various ways. 1) It can be left unused, and the
processor can be clock-gated. 2) It can be given to another
task in the same application to increase throughput or reduce
latency. 3) Or it can be given to another task in the same
application, and reduce the task frequency to save power. Each
application has a task slack scheduler that decides what to do.
Slack is handed out one slot at a time, because it is detected

when the task scheduler finds no eligible task to run. Although

this is suboptimal in terms of power, this slack accounting is
easy, and would be complex otherwise [9].

D. Scheduling with DVFS and Slack
Our scheduling approach must know the worst-case work of

each task. Since the RTOS starts and stops tasks, it also knows
the actual work spent by the task on its last firing (invocation).
As a result, we can observe slack generated by a task, and pass
it to itself in the next iteration, or to other tasks. Slack that is
received by a task is used to lower its frequency.
Each task is characterised by its worst-case work wcw

measured in cycles, and its budget B that is the time (in
seconds) allocated to it during each period (corresponding
to the number of TDM slots in each TDM wheel revolution).
We assume that we can scale the frequency from 0 to fmax
in N steps. (We deal with fmin later.) Tslice is the duration
of the task time slice (in seconds). Cswitch " Tslice · fmax is
the constant number of cycles (about 150) of the RTOS task-
switching functionality in that time (OS3 in Fig. 2).
When a task starts it is allocated B seconds (computed

below) to finish its worst-case work (wcw in cycles), corre-
sponding to a number of time slices. We keep track of its
remaining work w[i] (starting at wcw) and remaining allocated
budget b[i] (starting at B). A task runs either in an allocated
slice that is part of its budget (and its budget b[i] will reduce),
or in a slack slice that was not used by another task (and b[i]
will not reduce). Either way, we compute the task frequency in
the current slice f [i]: essentially, the remaining work divided
by the remaining budget. Without slack, a task would run at
fmax, as its remaining work and budget reduce in tandem. But
slack slices reduce work for free (without a budget reduction),
and allow a lower frequency.
We formalise this as follows. For each task, the remaining

work w[i] (in cycles) at the start of slice i, is defined by w[0] =
wcw, and

w[i + 1] =

0 task finished
w[i] task does not use slice i
w[i]− f [i] · Tslice task uses slice i

(1)
The budget left at the start of slice i is b[0] = B, and

b[i+1] =

{
b[i]− Tslice task uses allocated slice i
b[i] otherwise (slack slice, or not scheduled)

(2)

f [i] =

{
max(fmin,

⌈
w[i]

(b[i]+s[i])·fmax ·N
⌉
· fmax/N) task uses slice i

0 otherwise
(3)

where s[i] = Tslice for a slack slice, and 0 otherwise. Es-
sentially, it computes the ratio of work left (w[i] in cycles)
over the maximum possible work that can be done in the
remaining time budget plus slack ((b[i] + s[i]) · fmax). This
is then rounded and normalised to the N operating points
(1 · fmax/N to N · fmax/N), with a minimum fmin.
This is illustrated in Fig. 3 for a time wheel of 12 slices,

and a task with 5 allocated slices (A) and 3 slack slices
(S). It shows the remaining work, budget, and the frequency

111

Fig. 3. Frequency, remaining work and budget (at start of slice).

when DVFS is used according to the above algorithm (with
continuous operating points). If no DVFS is used, the remaining
work would be identical to the remaining budget, and the
frequency would be constant fmax = 10.
The initial budget for a task (rounded up to a slice duration)

is B = $wcw′/(fmax · Tslice)% · Tslice. Lowering the frequency
means using more slices, and hence incurring the C switch (fixed
number of cycles) overhead more often. wcw ′ adds this extra
work to wcw. In our case, Cswitch ≈ 150 cycles, or about 0.3%
of Tslice · fmax (1 ms at 50 MHz). Hence wcw′ adds less than
2.5% to wcw. In any case, the difference is reclaimed as slack,
if it is not used.
Essential for predictability, tasks always finish within their

allocated budget, even when scaling. This holds because, after
starting, a task operates entirely on the processor and the local
tile, and does not depend on other resources (NOC or remote
memories). As a result, the WCET of the task scales with
frequency. Techniques like workload decomposition [28] are
therefore not required. Note that the communication (copying
of input data and output) is decoupled from the computation,
since it is performed by the DMAs. These run at a fixed
frequency (see Fig. 1), and finish in a bounded time due
to performance guarantees in the NOC and shared remote
memories [23].

E. Applications
As the RTOS copies input and output data to and from local

memory, a task is essentially a function call operating on
(a pointer) to input data and output space. The user writes
the tasks as functions. The set_firing_rule function
allows the task to change the firing rule, for the description of
variable-rate dataflow applications.

VI. EXPERIMENTAL RESULTS
We implemented the tile, comprising MicroBlaze proces-

sor, DMAs, and local busses in RTL VHDL. The VFCU is
implemented by subsampling the fixed reference clock. We
connected two tiles to an Æthereal NOC [29], together with a
shared SRAM. The tiles run the RTOS, while a third MicroBlaze
connected directly to the NOC boots the NOC and tiles. It acts
as a monitor, by forwarding information sent from the tiles
via MicroBlaze FSL links to a host PC, using a serial port.
The entire system was prototyped on FPGA.

The RTOS uses TDM between applications, and TDM (with
and without slack management) or round robin (always with
slack management) within each application. fmax is 50 MHz,
and fmin is 6.25 MHz, scalable in 8 steps. The system time
slice is 1.08 ms, of which 7% is always used by the RTOS.
Three slack policies are implemented: None, where slack is
not used, Self, which passes slack only to the next invocation
of the same task, and Next, which passes slack to the first
eligible task in the same application (the ordering is based on
the task control block list of the RTOS).
We implemented a JPEG decoder with 3 tasks on two

processors, to demonstrate the variable-rate dataflow capa-
bility. We also created a parametrised synthetic task that
can be configured to exhibit different test behaviours (actual
work-load distributions, variable numbers of input and output
tokens, etc.), and instantiated multiple times to create different
applications. Tasks on different tiles communicate using the
composably-shared remote memory, which is accessible via
the NOC.
We performed three kinds of experiments, demonstrating

predictability, composability, each without and with slack
management and power saving. They are discussed in turn.

A. Predictability
We use a single synthetic application, consisting of a chain

of four tasks, the first two mapped on a different processor
from the last two. Each task has a random actual work between
0 and its wcw equal to either 16 or 32 (in units of 1/8 ths
of a slot, corresponding to the 8 operating points) and a
corresponding budget of 2 or 4 slots out of a total of 12
slots. Fig. 4 shows the number of finished invocations of
task 2 on processor 1 (the others are similar). With the Self
and Next policies, without DVFS (Self/Next in the figure) the
throughput is higher and the frequency the same. With DVFS
(Self/Next+DVFS) the throughput is marginally higher but the
frequency is lower. Next performs better than Self because it
has more potential recipients for generated slack.

Fig. 4. Number of finished task invocations, without and with DVFS.

An alternative view on this is the total slack in the system,
using Next, as shown in Fig. 5. Without frequency scaling
slack accumulates, but with frequency scaling it remains low
as it is used to run slower. Thus, assuming that the application

112

Fig. 5. Total slack, using Next without and with DVFS.

was configured with correct budgets and met its deadlines
without DVFS, the Self and Next policies with DVFS also
meet them, since at any point in time their number of finished
iterations is always higher than for the None policy.

B. Composability

We map the first task of the JPEG decoder on the first
processor, and the remainder on the other processor. Both
sub-applications use round-robin scheduling, but no frequency
scaling because JPEG is a variable-rate application with no
(realistic) worst-case execution time. To demonstrate compos-
ability, a three-task pipeline application is also mapped on
each processor. The pipeline applications are executed (1) with
round-robin scheduling, and with TDM (2) with and (3) without
slack management. Fig. 6 shows the number of finished task
invocations of JPEG and the pipeline application on proces-
sor 1, for the three scheduling policies. Like in Fig. 4, the
throughput of the pipeline varies with the slack policy (lower
three lines). However, the JPEG measurements are identical,
giving an indication of composability. Moreover, the JPEG
schedules and finishing times per task iteration (not shown)
are also identical, giving more proof of composability. Note
that the entire CompSOC platform is composable: processor
tiles, NOC, and shared memories.

Fig. 6. Number of finished task invocations.

C. Energy Savings
We use the synthetic application shown in Fig. 1 with a

random work load per task. The RTOS always uses its worst-
case budget (7% of the system time slice). The energy cost
of VF switching is ignored. We perform four experiments: (1)
both tiles use TDM with no slack management; (2) additionally,
idle slices are clock gated; (3) additionally both tiles use slack
management, and one uses frequency scaling; (4) both tiles
use frequency scaling. Table I shows the normalised energy
of the synthetic application. It reduces by 42%, compared to
only clock-gating idle slices, and 68% compared to no power
management at all. The processor utilisation rises, when slack
is used to run slower. Other experiments give similar results.

TABLE I
ENERGY CONSUMPTION FOR RANDOM WORKLOAD

Tile 0 Fixed Gate DVFS DVFS
Tile 1 Fixed Gate SM DVFS

Normalised Energy 1.95 1.00 0.74 0.51
Including RTOS 1.82 1.00 0.78 0.58
Slices Total 1808 1808 1806 1817
Slices Used 1233 1233 1528 1757

Average Processor Utilisation 68% 68% 85% 97%

Note that the finishing time (Slices Total in the table) is
the same in both cases without DVFS, since the schedules are
identical, only the power of idle slots changes. When applying
DVFS, however, the task schedules on each processor change,
which means that the data that is communicated between tiles
is generated at different times. It is therefore transported in
different TDM slots of the NOC, and stored in the shared
memory in different TDM slots of the memory controller. This
leads to a different (possibly earlier) finishing time for the
synthetic application only; other applications are not affected.
Moreover, note that the later finishing time of 1817 slices still
meets the application deadline; the executions with 1806 and
1808 slices finished early (with unused slack).

VII. CONCLUSIONS
We introduced power management of embedded applica-

tions programmed using the variable-rate dataflow paradigm.
Multiple independent applications, each of which may be real-
time or not, are present in the system at the same time.
They are mapped on a platform consisting of multiple tiles, a
network on a chip, and distributed shared memories. The chal-
lenge addressed in this paper is composable and predictable
power management, i.e. the functional and temporal behaviour
of a power-managed application is not affected by the presence
or absence of other (power managed) applications. Real-time
applications are power managed such that no deadlines are
missed.
We achieve composable and predictable power manage-

ment through two techniques. First, at the hardware level,
the voltage-frequency control unit (VFCU) enables the pro-
gramming of DVFS operations at precise points in the future
(relative to the tile’s wall time). In particular, the initiation of
a VF transition, the gating and ungating of the processor clock,

113

and generation of interrupts to the processor can be scheduled.
The operating system (RTOS) uses the VFCU to remove the
variation in the interrupt service time, the VF transitions, and
the RTOS behaviour, essentially by programming the DVFS
operations at the respective worst-case completion times.
Second, direct memory access (DMA) units are used to

ensure that processor instructions finish in a (small) bounded
time. In particular, load instructions to remote memories
are replaced by DMA transfers, otherwise they can take an
arbitrary time to complete. During this time many processor
cannot serve an interrupt. This could violate composability
because an application waiting for a response of a remote
memory can block another application from starting on the
processor.
Using the VFCU and DMAs, the RTOS implements a two-

level arbitration scheme: composable time-division multiplex-
ing (TDM) between applications, and round robin or pre-
dictable TDM between tasks of an application.
The proposed platform has been prototyped on a FPGA.

Taking into account that the RTOS uses 7% of each system
time slice, for a JPEG application the energy reduces by 42%,
compared to only clock-gating idle slices, and 68% compared
to no power management at all. The JPEG application’s
behaviour was shown to be independent of other (power-
managed) applications (composable).

REFERENCES

[1] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design
techniques for system-level dynamic power management,” Proceedings
of the IEEE Transactions on VLSI, 2000.

[2] V. VENKATACHALAM and M. FRANZ, “Power Reduction Techniques
For Microprocessor Systems,” ACM Computing Surveys, vol. 37, no. 3,
pp. 195–237, 2005.

[3] H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-
bedded Applications. Kluwer Academic Publishers, 1997.

[4] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-integrated
development of embedded software,” Proc. of the IEEE, vol. 91, no. 1,
pp. 145–164, Jan. 2003.

[5] G. Gössler and J. Sifakis, “Composition for component-based modeling,”
Lecture Notes in Computer Science (LNCS), vol. 2852/2003, pp. 443–
466, 2004.

[6] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken, “CoMPSoC:
A template for composable and predictable multi-processor system on
chips,” ACM Transactions on Design Automation of Electronic Systems,
vol. 14, no. 1, pp. 1–24, 2009.

[7] ARINC Specification 653, Avionics Application Software Standard In-
terface, January 1997.

[8] A. Molnos, A. Milutinovic, D. She, and K. Goossens, “Composable
processor virtualization for embedded systems,” in Proc. Workshop on
Computer Architecture and Operating System Co-Design (CAOS), ser.
Lecture Notes in Computer Science (LNCS). Springer, Jan. 2010.

[9] A. Molnos and K. Goossens, “Conservative dynamic energy manage-
ment for real-time dataflow applications mapped on multiple proces-
sors,” in Proc. Euromicro Symposium on Digital System Design (DSD),
Aug. 2009.

[10] M. Meijer, J. Pineda de Gyvez, and R. Otten, “On-chip digital power
supply control for system-on-chip applications,” ISLPED ’05: Proceed-
ings of the 2005 international symposium on Low power electronics and
design, pp. 311–314, 2005.

[11] B. Akesson, L. Steffens, E. Strooisma, and K. Goossens, “Real-time
scheduling using credit-controlled static-priority arbitration,” in Proc.
Int’l Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA). Washington, DC, USA: IEEE Computer Society,
Aug. 2008, pp. 3–14.

[12] A. Nieuwland, J. Kang, O. P. Gangwal, R. Sethuraman, N. Busá,
K. Goossens, R. Peset Llopis, and P. Lippens, “C-HEAP: A hetero-
geneous multi-processor architecture template and scalable and flexible
protocol for the design of embedded signal processing systems,” ACM
Transactions on Design Automation for Embedded Systems, vol. 7, no. 3,
pp. 233–270, 2002.

[13] W. Kim, M. Gupta, G. Wei, and D. Brooks, “System level analysis of
fast, per-core DVFS using on-chip switching regulators,” in IEEE 14th
International Symposium on High Performance Computer Architecture,
2008. HPCA 2008, 2008, pp. 123–134.

[14] O. S. Unsal and I. Koren, “System-level power-aware design techniques
in real-time systems,” in Proceedings of the IEEE, 2003, pp. 1055–1069.

[15] L. Yan, J. Luo, and N. Jha, “Joint dynamic voltage scaling and
adaptive body biasing for heterogeneous distributed real-time embedded
systems,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 24, no. 7, pp. 1030–1041, 2005.

[16] A. Manzak and C. Chakrabarti, “A low power scheduling scheme with
resources operating at multiplevoltages,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 10, no. 1, pp. 6–14, 2002.

[17] D. Shin and J. Kim, “Power-aware scheduling of conditional task
graphs in real-time multiprocessor systems,” in Proceedings of the 2003
international symposium on Low power electronics and design. ACM
New York, NY, USA, 2003, pp. 408–413.

[18] M. Ruggiero, A. Acquaviva, D. Bertozzi, and L. Benini, “Application-
specific power-aware workload allocation for voltage scalable MPSoC
platforms,” in 2005 IEEE International Conference on Computer De-
sign: VLSI in Computers and Processors, 2005. ICCD 2005. Proceed-
ings, 2005, pp. 87–93.

[19] R. Mishra, N. Rastogi, D. Zhu, D. Mosse, and R. Melhem, “Energy
aware scheduling for distributed real-time systems,” in Parallel and
Distributed Processing Symposium, 2003. Proceedings. International,
2003, p. 9.

[20] C. Shen, K. Ramamritham, and J. Stankovic, “Resource reclaiming in
multiprocessor real-time systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 4, no. 4, pp. 382–397, 1993.

[21] J. Zhu, I. Sander, and A. Jantsch, “Energy efficient streaming ap-
plications with guaranteed throughput on MPSoCs,” in Proc. ACM
international conference on Embedded software (EMSOFT), 2008, pp.
119–128.

[22] A. Maxiaguine, S. Chakraborty, and L. Thiele, “DVS for buffer-
constrained architectures with predictable QoS-energy tradeoffs,” in In-
ternational Conference on Hardware Software Codesign: Proceedings of
the 3 rd IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis; 19-21 Sept. 2005. 2005. Association
for Computing Machinery, Inc, One Astor Plaza, 1515 Broadway, New
York, NY, 10036-5701, USA,, 2005.

[23] A. Hansson, M. Wiggers, A. Moonen, K. Goossens, and M. Bekooij,
“Enabling application-level performance guarantees in network-based
systems on chip by applying dataflow analysis,” IET Computers &
Digital Techniques, 2009.

[24] C. Paukovits and H. Kopetz, “Concepts of switching in the time-
triggered network-on-chip,” in Proc. Int’l Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2008, pp.
120–129.

[25] B. Akesson, A. Hansson, and K. Goossens, “Composable resource
sharing based on latency-rate servers,” in Proc. Euromicro Symposium
on Digital System Design (DSD), Aug. 2009.

[26] M. Ekerhult, “Compose: Design and implementation of a composable
and slack-aware operating system targeting a multi-processor system-on-
chip in the signal processing domain,” Master’s thesis, Lund University,
Jul. 2008.

[27] O. M. Moreira and M. J. G. Bekooij, “Self-timed scheduling analysis
for real-time applications,” EURASIP Journal on Advances in Signal
Processing, 2007, article ID 83710.

[28] K. Choi, R. Soma, and M. Pedram, “Dynamic voltage and frequency
scaling based on workload decomposition,” in Proc. Int’l Symposium
on Low Power Electronics and Design (ISLPED), Newport Beach,
California, USA, 2004, pp. 174–179.

[29] K. Goossens and A. Hansson, “The Aethereal network on chip after ten
years: Goals, evolution, lessons, and future,” in Proc. Design Automation
Conference (DAC), Jun. 2010.

114

