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Abstract

Security analysis should take advantage of a reliable
knowledge base that contains semantically-rich information
about a protected network. This knowledge is provided by
network mapping tools. These tools rely on models to rep-
resent the entities of interest, and they leverage off network
discovery techniques to populate the model structure with
the data that is pertinent to a specific target network. Un-
fortunately, existing tools rely on incomplete data models.
Networks are complex systems and most approaches over-
simplify their target models in an effort to limit the problem
space. In addition, the techniques used to populate the mod-
els are limited in scope and are difficult to extend.

This paper presents NetMap, a security tool for network
modeling, discovery, and analysis. NetMap relies on a com-
prehensive network model that is not limited to a specific
network level; it integrates network information throughout
the layers. The model contains information about topol-
ogy, infrastructure, and deployed services. In addition, the
relationships among different entities in different layers of
the model are made explicit. The modeled information is
managed by using a suite of composable network tools that
can determine various aspects of network configurations
through scanning techniques and heuristics. Tools in the
suite are responsible for a single, well-defined task. Each
tool has an abstract specification of the input, the output,
the type of processing, and the requirements for carrying
out a task. Tool descriptions are expressed in a Network
Tool Language. The tool descriptions are then stored in a
database. By using the network model and the tool descrip-
tions, NetMap is able to automatically determine which
tools are needed to perform a particular complex task and
how the tools should be scheduled to obtain the requested
results.
Keywords: Network Security, Network Modeling and
Analysis, Network Discovery and Validation.

1. Introduction

Network security is achieved by composing the function-
ality of a number of security applications, such as firewalls
and intrusion detection systems. Deploying and configuring
security applications requires an in-depth knowledge of the
network to be protected. In addition, continuous monitoring
of both the network and the configuration of the security ap-
plications is the basis for determining the current network
security posture.

Unfortunately, knowledge about the network being pro-
tected often exists only in the “mind” of the network ad-
ministrator, and this knowledge is obtained by using a num-
ber of tools, each of which can only provide a subset of
the information about the protected network. For example,
the information about the services active on a host could
be determined by scanning the ports of the host. In ad-
dition, the results obtained from the execution of one tool
are often used as the basis for additional analysis and pos-
sibly as input for the execution of other tools. In the pre-
vious example, once the open ports have been determined,
banner-grabbing tools can help to determine the type and
version of the server applications. The coordination of tool
executions and the composition of their results is usually a
human-intensive task. This is the case even when ad hoc
scripts and procedures developed by network administra-
tors through years of experience in integrating the results of
network monitoring and analysis are available.

This paper presents NetMap, a novel approach that pro-
vides support for automated network discovery and security
analysis. NetMap is centered around a model of both the
network to be analyzed and the tools to be used for analy-
sis.

The network model has been designed by taking into
account the models used by existing network management
and vulnerability scanning tools. The model is not limited
to a specific network level; it integrates network informa-



tion throughout the layers. The model contains information
about topology, infrastructure, and deployed services. In
addition, the security-relevant relationships between differ-
ent entities in different layers of the model are made ex-
plicit. For example, the model includes trust relationships
between clients and servers for specific services, as well
as relationships between services and configuration objects
(e.g., files) used to define the application behavior. The net-
work model is implemented as a database management sys-
tem, called NetDB.

A tool model supports the abstract description of a suite
of network discovery and scanning tools using a Network
Tool Language (NTL). Each tool in the suite is responsi-
ble for a single, well-defined task and has a specification
of the input, the output, the type of processing, and the re-
quirements for carrying out a task. The tool descriptions
are stored in a tool repository, called the Network Tool
Database (NTDB).

NetMap allows a network administrator to specify high-
level discovery/analysis tasks in a query language, called
NetScript. Tasks range from pure network discovery, to
the validation of existing information, to vulnerability scan-
ning. Given a task description, a Query Processor com-
ponent uses the tool descriptions to determine which tools
are needed to perform a particular complex task, what their
schedule should be, and how the results should be inserted
into an instance of the network model that represents the
protected network.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses related work on network models and net-
work analysis tools and presents an overview of the NetMap
approach. Section 3 describes the network model. Sec-
tion 4 presents the concept of composable network tools.
Section 5 discusses issues related to network discovery
and security analysis. Section 6 presents an evaluation of
NetMap’s performance. Finally, Section 7 describes the
current status of the NetMap system, draws some conclu-
sions, and outlines future work.

2. Related Work

Currently, networks are monitored, maintained, and di-
agnosed using tools that rely on network protocols like the
Internet Control Message Protocol (ICMP) [10] and the
Simple Network Management Protocol (SNMP) [2]. Ex-
amples of these tools are HP OpenView [6], Scotty [11],
Brother [1], and Fremont [12]. These tools support network
discovery tasks and provide a means to remotely query and
control network devices, such as routers and hosts.

Network management tools have proved to be effective
in determining network configuration problems and in help-
ing security analysts. However, their data model and the
type of information they gather is not sufficient to deter-

mine and verify the security posture of a protected network.
Thus, network security analysts use vulnerability scanning
tools in addition to network management tools. Vulnera-
bility scanning tools automatically perform checks on the
hosts of a subnetwork looking for vulnerable applications,
misconfigured services, and flawed operating system ver-
sions. Examples of these tools are Nessus [8], Nmap [4],
and ISS’s Internet Scanner [7]. These tools provide differ-
ent types of functionality, use different means to retrieve
information about a network, and store information in dif-
ferent formats. Table 1 summarizes the characteristics of
several popular network and security analysis tools. The ta-
ble shows, for each tool, the type of functionality provided
(node discovery, topology discovery, service mapping, op-
erating system fingerprinting, and node management), and
the type of storage used for the information gathered (data
structures in memory, text files, or databases).

The tools described above provide many useful function-
alities but suffer from four main limitations:

1. They are limited in scope. Most of the tools address
one single problem (e.g., Nmap provides only scan-
ning capabilities). Different analysis domains, such as
routing and application-level service configuration, are
not analyzed in an integrated way.

2. They do not rely on a well-defined, shared network
model. Some tools do not model and store persistent
data at all, others use text files that are mostly unstruc-
tured. A few rely on database management systems,
but the corresponding database schemas are designed
for the specific tool only; they do not cover features
not considered by the tool. In addition, these tools do
not agree on a shared model. This makes it hard to
combine the results from one tool with another. Even
though there are ongoing efforts to standardize a net-
work management model [3], the proposed standard
does not take into account the application-level char-
acteristics of a network, which are paramount in deter-
mining the security configuration of services.

3. They are not flexible. In most cases, it is impossible or
very hard to add new functionality and analysis tech-
niques to an existing tool. The recent vulnerabilities
discovered in a number of SNMP implementations [5]
have brought this problem to the forefront. In order
to cope with the increasing number of attacks target-
ing SNMP agents, the agents have often been disabled,
which effectively prevents SNMP-based network tools
from working properly. Even though the desired infor-
mation is accessible by other means (e.g., by remote
execution of shell scripts), the existing tools cannot be
easily modified to take advantage of these alternative
sources of information. In addition, composing and
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Product Description Functionality Storage
Node Dis-
covery

Topology
Discovery

Service
Mapping

OS Fin-
gerprint

Node
Manage-
ment

Nmap Port scanning
tool

p p p
Memory

Nessus Vulnerability
scanning tool

p p p
Memory

Fremont Topology dis-
covery tool

p p
Memory,
text files

Big
Brother

Network
monitor

p
Text files

Scotty Network
Management
Tool

p p p p
Memory,
text files

OpenView Network
Management
Tool

p p p
Database

Table 1. Characteristics of existing network analysis tools.

integrating different tools requires the development of
ad hoc procedures.

4. There is no automated support for tool composition.
Given a network analysis or monitoring task, there is
no automated support to determine what tools could be
used to carry out the task or how different tools should
be composed.

NetMap is a new approach that overcomes the limits
listed above. NetMap’s goal is to provide a network analy-
sis tool that supports network discovery and analysis over a
wide range of network characteristics. NetMap relies on a
well-defined network reference model to represent both the
entities of a protected network and a suite of network anal-
ysis tools. Network discovery tools are used to populate
the model structure with the data that is pertinent to a spe-
cific target network, and then security analysis is performed
on the collected data. Unlike any other network security or
network management tool, the approach presented in this
paper does not rely on a monolithic tool suite or a fixed set
of techniques. The NetMap approach relies on composable
network tools. NetMap maintains a tool database contain-
ing a toolset composed of specially built tools, COTS com-
ponents, or specific tool features (e.g., the TCP portscan-
ning functionality of Nmap). Each of the tools in the toolset
is responsible for a single well-defined task (e.g., determin-
ing if a host in a network is up or down) and is associated
with a specification of the input, the output, the type of pro-
cessing, and the requirements for carrying out a task. The
tool description is expressed in a Network Tool Language.

The tool descriptions are then stored in the Network Tool
Database.

Whenever data has to be retrieved to populate the net-
work model or to verify its contents, a Query Processor
component automatically determines:

� what information is needed;

� which tools can be used to obtain or verify the infor-
mation; and

� how to compose the inputs and outputs of different
tools to obtain the result.

The resulting system is flexible, customizable, extensi-
ble, and can easily integrate off-the-shelf tools. In addition,
it provides automated support for the execution of complex
tasks that require the results obtained from several different
tools. Figure 1 shows the high-level architecture of the sys-
tem. Existing network tools are described using NTL spec-
ifications. Tool specifications are stored in the NTDB. The
Network Security Administrator browses the network infor-
mation contained in the NetDB and may request the execu-
tion of a network discovery operation by issuing a NetScript
query. The query is sent to the Query Processor compo-
nent, which determines a suitable set of tools to perform
the requested task on the basis of the information stored in
both the NetDB and the NTDB. The tools are scheduled for
execution, the actual tools are invoked, and eventually the
results are stored in the NetDB for further analysis. The fol-
lowing sections detail the main components of the NetMap
architecture.
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Figure 1. NetMap high-level architecture.

3. The Network Model

The network model is an entity-relationship description
of a network. It describes both the topology and the ser-
vice structure of the network. Figure 2 presents a simplified
schema for the model.

The network topology is a description of the constituent
components of the network and how they are connected.
The network model defines entities, such as interfaces,
nodes, and links, to describe elements of the network, and
uses relationships to determine how the elements are con-
nected to each other. Each topology element has a rich set
of attributes that defines the characteristics of the element.
For example, the node element is characterized by its type
(e.g., a router or a workstation), the processor architecture,
type, and speed, the manufacturer, the amount of memory
and disk storage available, its geographical location (e.g.,
building and room number), and so on. This part of the
model represents the “blueprint” of a network.

The network model is not limited to network topology;
it also contains a description of the service structure pro-
vided by the hosts of a network. This includes what op-
erating systems are installed on the different hosts, and
what services are available. Examples of these services
are the Network File System (NFS), the Network Infor-
mation System (NIS), Secure Shell, FTP, and “r” services.
The model contains a characterization of each service in
terms of the network/transport protocol(s) used, the access
model (e.g., request/reply), the type of authentication (e.g.,
address-based, password-based, token-based, or certificate-
based), and the level of traffic protection (e.g., encrypted or
not). In addition, the model explicitly represents the rela-
tionships between the different entities. For example, the
model includes trust relationships between service clients
and servers, as well as relationships between services and
configuration objects (e.g., files) used to define program
behavior. This structure allows one to determine the im-

plicit impact of an attack with respect to the whole net-
work. For example, suppose that a host-based attack that
allows an unauthorized user to write to a root-owned file
(e.g., /etc/exports) is detected. The model contains the in-
formation that relates the target file to a specific service (in
this case, the Network File System). Analysis based on the
model can determine the overall impact of the attack. For
example, suppose that client hosts use NFS to mount users’
home directories. The NFS service could be used to mount
modified versions of the users’ environments extending the
compromise to many user accounts. In this case, by making
the relationship between the client and the server explicit
it is possible to understand that a simple attack is actually
affecting the security of all of the users of the network.

The model is implemented using a relational database.
The model explicitly addresses three different levels: struc-
ture, view, and status. At the structure level the model rep-
resents those objects that have a relatively long lifetime,
such as topology and services. At the status level the model
represents information related to the current status of the
network, such as network statistics. At the view level the
model provides different metaphors to present the informa-
tion contained in the model to the users (or to applications).
Currently, two prototype views have been implemented; one
is based on the tkined system [9], and a second is accessible
through a Web interface. Both views allow the Network Se-
curity Administrator to browse the NetDB, update the con-
tained information, and issue NetScript queries to the Query
Processor component.

4. Composable Network Tools

Network discovery and analysis is done by building new
tools or using tools that already exist and combining them to
achieve the desired results. The advantage of using existing
tools is that it requires less work to implement the mapping
and analysis procedures.
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Figure 2. Entity-relationship schema for the network model.

The NetMap philosophy is to perform each part of the
overall network discovery/analysis task with the tool best
suited for the job. This works best if a tool performs one
specific task instead of implementing many different func-
tionalities as a monolithic application. A tool that is able
to perform many tasks should at least have parameters that
can limit the operation of the tool to exactly what is needed.
An example of a tool like this is Nmap [4]. Nmap performs
ping scans, port scans, OS fingerprinting, and RPC scans.
Nmap can be finely tuned to suit the specific needs of each
query.

NetMap provides a way to describe the characteristics
of network tools by writing specifications in the Network
Tool Language. These specifications serve as the basis for
determining which tools to run and how to compose their
input and output. Each tool can have different costs associ-
ated with it. For instance, a cost could represent efficiency,
confidence, or network bandwidth usage. The purpose of
the cost metrics is to provide support for selecting the most
appropriate tools to answer a particular query.

When NetMap is given a query in the NetScript lan-
guage, the Query Processor determines all the possible tool
schedules that satisfy the query. These schedules are con-
structed so that they satisfy all the dependencies in the tool
descriptions. If more than one schedule can answer the

query, the schedule that optimizes the desired cost metrics
is selected. The selected schedule is then run. Note that
the schedule that optimizes efficiency is not likely to be the
same as the one that optimizes confidence. Therefore, the
user queries must also specify what cost metrics are most
important.

4.1. Representing Model Entities

NetScript and NTL must agree on a common way to re-
fer to entities in the network model. A NetScript query uses
these references to represent a desired value. NTL uses ref-
erences to entities and their attributes to specify the input
required by a tool and/or the tool’s output.

The set of attributes of interest is specified by using a
path and then organizing the paths into trees. A path is a list
of identifiers separated by dots, where the first identifier is
called the root, intermediate identifiers are relation names,
and the last identifier is an attribute name. If several paths
start with a common subsequence of identifiers they can be
combined into a tree. The tree is formed by concatenating
the common subsequence with a comma separated list of
the remainders enclosed in parentheses, where a remainder
is the path with the common subsequence removed. For
instance, the paths iface.mac and iface.type can be
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tool ping {
ipsetup s;
input s.ipaddress;
output s.status;

efficiency = 2;
confidence = 9;

code{
nargs -n 1 -i "nmap -sP {} |

if grep ’appears to be up.’ >/dev/null ; then
echo 1;

else
echo 0;

fi"
}

}

tool nmap_portscan {
ipsetup s;

input s.ipaddress;
output s.services*-.(port,transport_prot);

efficiency = 5;
confidence = 6;

// The following input assertion is used
// to limit the space of a portscan to local networks
input_assertion ipsetup.ipaddress:InIpRange(128.111.*.*);

// The tool is only able to scan TCP ports
output_assertion service.transport_prot:Equals(TCP);

code{
ssh root@host ". ./nminit;nm_portscan"

}
}

Figure 3. Example of the tool definition syn-
tax.

combined into the tree iface.(mac,type).
Intermediate identifiers in the tree can be marked with

set qualifiers. The valid set qualifiers are “*” for complete
set, “*-” for subset, and “*+” for superset. The qualifier
should occur directly after an identifier in the path. The set
qualifiers are used to map entities and attributes of interest
into sets of entities in the Network Model. For example,
considernode.nodename and node*.nodename. The
first case refers to one node’s nodename, while the second
case refers to the set of nodenames for all nodes.

4.2. The Network Tool Language

NetMap tools are described using the Network Tool Lan-
guage. A tool description starts with the keyword “tool”.
This is followed by the name of the tool and a tool descrip-
tion body enclosed in curly brackets. See Figure 3 for two
examples.

The tool description body consists of optional variable
declarations, an optional input definition, an output defini-
tion, optional cost specifications, optional assertions, and a
code block. The elements are separated with a “;”.

The input and output definitions are the tool description’s
most important parts. The Query Processor needs to know
about a tool’s input and output to resolve tool dependencies.
Before a tool can be run, all the input data it needs must be
present. If some input data is missing a different tool must
be run first to provide the required data.

Input and output definitions have similar syntax. They
start with the keyword “input” or “output” followed by
a tree that contains all the attributes that are to be defined.
The root element is either the name of an entity or a declared
variable.

In order to specify a relation between the input parame-
ters and the output parameters, NTL supports the declara-
tion of variables that can be used as root elements in both
the input and output definition. The declaration starts with
the type of the entity to be declared followed by a variable
name. For example, in both example descriptions in Fig-
ure 3, a variable of type ipsetup is declared and then used
in both the input and output definition.

The syntax for cost specifications is costname “=” value,
where value is relative to a specified range. Different cost
metrics may be associated with different ranges.

The syntax for a code block starts with the keyword
“code” followed by the code to be executed enclosed in
curly brackets. The code represents the set of actions to be
executed to carry out the tool’s task.

There are tool assertions for both input data and for out-
put data. An assertion is only in effect when the tool in
question is run. The input assertion, introduced by the “in-
put assertion” keyword, is used to require that the tool
is run only using input entities that have some special at-
tributes. For example, a tool that checks a particular web
server feature needs a web server to be present on the target
host. Some tools can also be dependent on the target com-
puter running a specific operating system. The output asser-
tion, introduced by the keyword “output assertion,”
is used to filter unwanted excess data from the output of
a tool. Output assertions are also used by the Query Pro-
cessor in the scheduling process. If some tools are only
capable of scanning a limited value set, then the scheduler
can combine the tools in order to cover the whole value do-
main. The Query Processor does not support this feature
in the current implementation. For both types of assertions,
the initial keyword is followed by an attribute reference, a
“:”, and the assertion. The attribute reference is of the form
entity name.attribute name. The format of the constraint
specification is dependent on the type of assertion.

In order for a tool’s code to gain access to the assertions
and their constraint specifications, assertion hooks are pro-
vided. An assertion hook can appear anywhere within a
code block. It starts with the character sequence “#ASRT”
and ends at the first following “#”. The body of the hook is
composed of tokens separated by “:”. The tokens specify
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query nodescan(iprange) {
result ipsetup*.ipaddress;

assertion ipsetup.ipaddress:inIprange(iprange);

confidence 2;
efficency 1;

code {
<.. Code to process the result ..>

}
}

query portscan(iprange, portrange) {
result ipsetup*.(ipaddress,

services*.(port,
transport_prot,
name));

assertion ipsetup.ipaddress:InIpRange(iprange);
assertion service.port:InRange(portrange);

code {
<.. Code to process the result ..>

}
}

Figure 4. Example of the query syntax.

the assertion of interest, the attribute of interest, and other
parameters that allow a tool to use the constraint informa-
tion at execution time.

The ping tool in Figure 3 declares a variable of type
ipsetup, which is used as the root in the input and output
definitions. The tool takes an IP address as input and out-
puts a status flag. A non-null value for this flag means that
the host is answering ICMP echo messages. A confidence
cost of 2 and efficiency cost of 9 is specified. The code runs
Nmap in ping scan mode.

The nmap portscan tool in Figure 3 takes
an IP address as input and returns a list of
hport,transport proti tuples representing the
services related to the IP address. The code block specifies
that a command should be executed on a remote host to do
the scanning.

4.3. The NetScript Query Language

Queries are a way of issuing commands to NetMap to
start the discovery of the parts of the network that one is
interested in. A NetScript query specifies the network at-
tributes of interest, the range of values they can have, and
what to do with the result.

See Figure 4 for two examples of the NetScript syntax. A
query definition starts with the keyword “query” followed
by the name of the query and a comma separated list of
parameter names in parenthesis. This is followed by the
body of the query in curly brackets.

The query body consists of a result specification, asser-
tions, cost weights, and a code block. The result specifi-
cation and the code block have the same format as in the

NTL tool descriptions. The result specification is the only
mandatory part. Assertions start with the keyword “as-
sertion”. The rest of the syntax is the same as for NTL
tool assertions. The syntax of cost weights are the cost-
name, a whitespace, and a weight. The statement is termi-
nated by a “;”.

The result specification identifies which attributes are of
interest. The assertions set a limit on the value the attributes
can have. Assertions can, for instance, constrain a query to
a subnet. The cost weights state how important each cost is
when deciding which tools to use. NetMap currently sup-
ports two different classes of costs depending on how the
total cost is calculated. One class uses the sum of all costs as
the total, while the other uses the minimum value. The sum
type is appropriate for an efficiency cost, while the mini-
mum type would be used for a confidence cost. The code
block is run after the query is finished. The purpose of the
code block is to process the result.

The nodescan query in Figure 4 takes one parameter
as input. The input definition asks for a range of IP ad-
dresses. The assertion limits the range of IP addresses that
is scanned to the parameter passed to the query. The cost
statements specify that confidence is twice as important as
efficiency. The second example query asks for a range of IP
addresses and the related services’ port numbers, transport
protocols, and service names. The two assertions limit the
IP addresses and the ports that are scanned to the parameters
passed to the query.

5. Managing Network Information

After having successfully run the tools, the Query Pro-
cessor stores the query result in the NetDB database. One
of the problems that might occur is that the data received
from the tools is inconsistent and/or incomplete. The Query
Processor uses a normalization procedure to generate a con-
sistent view of the network from the current content of the
database.

5.1. Resolving Inconsistencies

The most common inconsistency problem is the handling
of so-called ghost entries. A ghost entry is present when
more than one of the stored instances represent the same
network object. This often happens when tools return in-
stances with few or no attributes. In this case, the Query
Processor cannot immediately tell if these instances were
previously stored or not; therefore, ambiguities must be re-
solved by post processing the data.

Constraints offer a way to determine if two entity in-
stances represent the same network object or not. A unique
constraint on an attribute means that the attribute uniquely
identifies the entity instance, similar to keys in a database
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Figure 5. Example of the complete set constraint.

table. Note that the Query Processor allows the NetDB to
be in a semi-inconsistent state, where more than one entity
instance may have the same unique attribute value. This
inconsistency is resolved during the normalization of the
database, when all instances that have the same unique at-
tribute value are merged.

The cardinality constraints on the relations in the net-
work model can also be used when resolving ghost entries.
Consider a relation that has a 1:N constraint. If the data
stored in the NetDB actually implements an M:N relation,
then the Query Processor can infer that all the entity in-
stances on the left side of the relation are ghost entries. This
inconsistency can then be resolved by merging all instances
on the left side of the relation.

Another useful constraint is the “complete set” con-
straint. A relation instance is marked as a complete set if it
is known that no more entity instances can take part in that
relation. If other related entities exist, then they are ghost
entities and should be merged with the complete set. As an
example of the use of a complete set constraint, consider
the interface and ipsetup entities from the NetDB
schema of Figure 2. Figure 5 shows a graphical represen-
tation of an example input to the normalization algorithm
and the result. The dashed line between the two interface
elements symbolizes that the two interface instances shown
are the same. The “CS” next to two of the relations denotes
that the relation is a complete set. The normalization algo-
rithm detects that there exists one ipsetup instance that
is not part of the complete set. Because of the complete
set constraint, the ipsetup entity must be a ghost entry
of one of the ipsetups in the complete set. The net-
mask attribute of the ghost entry and the first ipsetup in
the complete set differ. This means they cannot represent
the same object. The only possible solution is that the ghost
entry and the second ipsetup are the same and should be
merged. The result of the algorithm is shown in the right
side of Figure 5.

5.2. Network Security Analysis

After the NetDB database is populated with up-to-date
network information, a comprehensive security analysis can
be performed. The output of the analysis may either be a
report of the current state of the network or configuration
data to be used with some security component, such as a
firewall or an intrusion detection system.

Currently, two prototype analyzers have been developed.
The first, a firewall configurator, uses the client-server rela-
tionship expressed in the network model to create a list of
valid clients for each service. The list can be used by the
firewall to block unauthorized clients from accessing sensi-
tive services. Even if a malicious user were able to change
the access control list of the service itself, he would not be
able to gain any access, since the firewall would block any
connection attempt.

The second analyzer lists all the hosts in the network
with a given operating system that have a specific service
installed. This information is used when a network ad-
ministrator needs to decide which hosts are affected by a
new security vulnerability and need patching. Without a
database of all installed services in the network, this infor-
mation would have to be collected by some ad hoc scanning
tool. The construction of this tool would be time consum-
ing, and the results would likely be error-prone due to the
ad hoc nature of the tool.

6. Evaluation

NetMap’s functionality and performance have been
tested on both simulated and real networks. The real net-
works that have been scanned are subnets in the Computer
Science Department at UCSB. The tests on these real net-
works were performed to check whether NetMap is able to
map and analyze a network correctly. The tests also gave in-
formation about how long the discovery process takes. The
tests performed on the simulated network made it possible
to use more complicated network topologies.
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query local1() {
result ipsetup*.(ipaddress,services*.(port,transport_prot));
assertion ipsetup.ipaddress:InIpRange(128.111.48.*);

}

query local2() {
result node*.(hostname,interfaces*.(mac,ipsetups*.(ipaddress,services*.(port,transport_prot))));
assertion ipsetup.ipaddress:InIpRange(128.111.48.*);

}

query department1() {
result node*.(hostname,interfaces*.(mac,ipsetups*.(ipaddress,services*.(port,transport_prot))));
assertion ipsetup.ipaddress:InIpRange(128.111.46-49.*);

}

query department2() {
result node*.(interfaces*.(ipsetups*.(netmask,ipaddress),link.network.netnumber));
assertion ipsetup.ipaddress:InIpRange(128.111.46-49.*);

}

Figure 6. Test queries used in the real network tests, expressed in NTL.

When using NetMap on the UCSB networks, the four
test queries shown in Figure 6 were used. Two queries were
run on the local class C network in the Reliable Software
Lab (RSL), and two queries were run on four subnets in
the Computer Science Department. The RSL network is
connected by a switch, and the other subnets used in the
tests have a similar topology. A router connects the different
subnets. For the performance test 26 hosts in the RSL were
used, and 22 hosts were used for the functionality tests.

6.1. Performance Test

The performance test focuses on how much time NetMap
requires for a given task and how much overhead NetMap
introduces. The test case is the “local1” query in Figure 6,
which is a query of all the open ports in the RSL. In Fig-
ure 7, we compare the time required for these different
methods. The first run is performed by using a shell script to
perform a ping scan followed by a sequential port scan. The
other two runs are performed by NetMap. In the NetMap se-
quential run, the port scan is also performed sequentially for
all the input values. While in the parallel run, the number
of execution threads for port scan was set to 10.

The NetMap sequential run and the shell script run take
approximately the same time, which indicates that NetMap
imposes very little overhead on the processing. The timing
break down is discussed further in Section 6.2. The parallel
run reduces the total time from about four hours to about
half an hour, which is a factor of eight. All three runs find
all the hosts in the network. The numbers of open ports,
however, are slightly different. This is because a port may
be opened or closed during the different test runs.

The reason that the scan took such a long time is that
most hosts in the RSL are running local firewalls, which
usually takes about 20 minutes per host to scan, while com-
puters without a firewall usually can be scanned within 10

seconds. The fact that most of the port scan time is waiting
for I/O is crucial for the parallel run. The data shows that
the CPU usage is under five percent, even in the case of ten
parallel port scans. For this reason, 15 threads were used
for port and OS scans in the functionality tests.

6.2. Functionality Test

The functionality test cases are shown in Figure 6. The
first test is a query for all the open ports in the RSL. The
second query is for OS name, hostname, mac address, and
all open ports on the hosts in the RSL. The third query asks
for the same data from four subnets. The last query is for IP
address, netmask, and network from the same subnets.

The tools used in the test were:

Ping Finds hosts that are up by issuing an ICMP echo mes-
sage and listening for an ICMP echo-reply. Imple-
mented using Nmap in ping scan mode.

NetARP Returns the ARP cache of a host given its IP ad-
dress.

Nslookup Does a reverse DNS lookup on an IP address.

Osdetect Performs OS fingerprinting by sending various
packets to the host and matching the result against
a database of OS’s TCP/IP profiles. Implemented as
Nmap in OS detect mode.

Portscan Tries to connect to a range of ports on a given IP
address. Implemented as Nmap in port scan mode.

ICMP netmask Finds the netmask of an ipsetup by send-
ing an ICMP netmask request to the IP address.

Netfind Takes the IP address and netmask of an ipsetup
as input and returns a network IP address. The net-
work IP address is the IP address ANDed with the net-
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Testname # of Host # of open ports Time

Shell Script 26 167 241:29
NetMap Sequential 26 162 250:59
NetMap Parallel 26 174 34:33

Figure 7. Performance testing of local network. Times are expressed in minutes and seconds.

mask. This tool does not do any active discovery. Im-
plemented as a shell script.

Figure 8 contains the tool schedule chosen for each
query, and the running time for each tool. The total col-
umn in the table shows the time it took to run the whole
query. The processing time is the total time minus the sum
of the tool times. This is the time NetMap uses to normalize
the data and insert it into the NetDB.

In both of the local tests all the collected data was cor-
rect. NetMap was also able to discover most of the attributes
queried. There were some problems detecting the OSs of
some of the hosts (i.e., 7 out of 22 hosts did not get an OS
mapping). The reason for this problem is that all the Linux
boxes in the RSL run local firewalls. This prevents the OS
discovery tool from fingerprinting the hosts.

In the first department scan, a higher percentage of the
OSs were fingerprinted successfully compared to the local
scan (7 out of 78 did not get a mapping). These were the
same hosts as in the local test.

The second department scan was performed to determine
if NetMap is able to group the scanned hosts into subnets.
46 out of 77 hosts got their netmask attribute detected and
were successfully assigned to the correct network. The
hosts that failed the netmask detection were not assigned to
any network. However, these 31 hosts can be correctly as-
signed to the network by using the longest prefix match with
known network addresses. The second department scan was
not performed the same day as the first one, which explains
the difference in the number of IP addresses.

By comparing the run times for the local and the first
department scan one finds that the ping, NetARP, and
nslookup run times increase approximately linearly with the
number of hosts. The OS detect and port scan times do
not increase much at all, while NetMap processing time in-
creases considerably.

7. Conclusions and Future Work

This paper described the NetMap approach and the char-
acteristics of the implementation of the first prototype. An
initial network model has been designed by analyzing ex-
isting models used by network management, discovery,
and analysis tools. A database-centered application, called

NetDB, has been implemented to store an inventory of net-
work objects conforming to the model, and two GUIs for
browsing the database have been developed.

The database is populated by using composable network
tools. The Network Tool Language has been defined to de-
scribe the tools in an abstract way. A language to describe
network discovery tasks, called NetScript has also been de-
fined. A prototype Query Processor component has been
implemented. The Query Processor takes a NetScript task
specification as input and produces a schedule of tool execu-
tions that will produce the desired results. It then executes
each of the tools in the schedule and stores the result into
the NetDB. In addition, a preliminary set of algorithms to
deal with the reduction of inconsistent and/or redundant in-
formation has been designed and implemented. Tests have
been performed to show that the implementation is capable
of mapping network topology information, discover service
configurations, and perform security analysis. The tests also
showed that inconsistencies can be resolved. In order to
perform the tests, a number of tools were integrated into
NetMap. The amount of work needed to do this was min-
imal, which supports the claim that NetMap can be easily
extended. Given more tools, it should be possible to map
every feature of the network that is interesting from a secu-
rity point of view.

Future work will focus on extending the current set of
tool descriptions, improving the reduction algorithms, and
using NetMap as the basis for intrusion detection. To be
more specific, we plan to validate the flexibility of the Net-
work Tool Language by describing a wide range of tools.
By doing this the expressive power of the language as well
as the overall integration power of the approach will be thor-
oughly tested. We also plan to perform additional analy-
sis on the reduction algorithms that have been developed to
deal with inconsistent and duplicated information.

Finally, NetMap will be used to support a new approach
to detecting attacks, called the “status-based approach.” The
status-based approach identifies attacks by analyzing the
differences between the intended network status as specified
by the model and the actual network status as detected by
the monitoring tools. This approach is similar to anomaly
detection approaches. A status-based IDS does not rely on
statistical models to represent the correct behavior of the
system; therefore, it does not need to be “trained” over a
long period of time. Furthermore, it can be used in highly
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Testname Ping NetArp Nslookup Osdetect Portscan Total Processing # IPs

local1 :07 - - - 25:21 25:32 :04 22
local2 :06 :17 :07 26:42 25:20 52:40 :08 22
department1 :22 :47 :49 30:51 25:48 60:42 2:25 82

Testname Ping icmp netmask netfind Total Processing # IPs

department2 :19 :34 :38 1:36 :05 77

Figure 8. Results of the real world tests. Times are expressed in minutes and seconds.

dynamic information systems where a well-defined pattern
of usage cannot be determined.
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