
Composing Aspect Models with Graph Transformations
Jon Whittle

Information & Software Engineering
George Mason University

4400 University Drive, Fairfax VA
+1-703-9931677

jwhittle@ise.gmu.edu

João Araújo
Department of Informatics, FCT
Universidade Nova de Lisboa
2829-516 Caparica, Portugal

+351 21 294-8536

ja@di.fct.unl.pt

Ana Moreira
Department of Informatics, FCT
Universidade Nova de Lisboa
2829-516 Caparica, Portugal

+351 21 294-8536

amm@di.fct.unl.pt

ABSTRACT
This paper presents a new method for composing aspect models.
The method is based on the use of a UML-based aspect modeling
language to precisely and graphically specify model-level aspects
and the use of graph transformations to define how aspects should
be composed and to apply those compositions. The result is a
method for representing and composing aspect-oriented models
that is both scalable and expressive. The work is validated on an
air traffic control example based on a NASA application.

Categories and Subject Descriptors
D.2.1 [Software]: Requirements/Specifications – languages,
methodologies. D.2.2 [Software]: Design Tools and Techniques –
object-oriented design methods

General Terms
Design, Languages

Keywords
UML, Aspect-Orientation, Graph Transformation

1. INTRODUCTION
In this paper, a general technique for representing and composing
aspects at any level of software abstraction is presented. It is
important to be able to represent aspects at any stage of software
modeling because aspects naturally occur during requirements
[12], analysis [20] and design [3]. The modularization of aspects
during software modeling leads to a clear separation of concerns
and hence to more maintainable, understandable and analyzable
models. However, in order to fully understand or analyze a model
with aspects, the aspect modules must be composed with the base
models so that any conflicts, ambiguities or omissions can be
identified. Therefore, specification mechanisms for aspects at the
modeling level should be complemented with composition
mechanisms that weave the aspect models into the base models.
Research on such mechanisms to-date suffers from one of two
major problems – lack of expressiveness and lack of scalability.

Compositions at the modeling level can be extremely rich in
nature. Existing research does not offer the level of
expressiveness needed for specifying these rich compositions. A
high-degree of expressiveness, however, can lead to scalability
problems because a large effort is required by the modeler to
specify the compositions. The technique presented in this paper
addresses both the issues of scalability and expressiveness. The
result is a practical technique for defining and composing aspect-
oriented models in a way that is compatible with modeling best
practices.

The technique uses two key technologies: the role-based
metamodeling language (RBML) [10] and graph transformations
[9, 14]. RBML (in fact, an extension of it) gives a precise,
graphical means of specifying a model-level aspect in a way that
is consistent with UML [18], the most common software
modeling language. RBML has already been applied to model the
structural parts of security aspects [13] and to model behavioral
UML aspects [20]. A drawback of these approaches is that they
do not scale well since a lot of effort is required to specify how
RBML aspects crosscut core models. We will show how graph
transformations can be used to reduce the level of effort. Graph
transformations have been applied to many problems in software
engineering including the merging of different system
perspectives [8] but it has not been specifically addressed how to
apply them, in a general way, to handle aspects at any stage of
UML modeling. This paper combines RBML and graph
transformations to achieve the following two aims: (1) general-
purpose, UML-based aspect modeling and composition at any
level of abstraction; (2) scalability of aspect composition.

The paper illustrates the approach with an air traffic control
example based closely on an existing application developed
atNASA [4]. Section 2 defines the notion of a model-level aspect
and analyzes shortcomings of the closest related research, namely
that of France et al. [5] and Whittle and Araújo [20]. Section 3
presents a new method for composing aspect models. Section 4
validates the approach and related work and conclusions follow.

2. WHAT IS A MODEL-LEVEL ASPECT?
We define an aspect-oriented model to be a model that crosscuts
other models at the same level of abstraction. The last part of the
sentence is important. It means, for example, that a requirements
model is an aspect if it crosscuts other requirements models (or
simply, a requirements artifact is an aspect if it cuts across other
requirements artifacts); a design model is an aspect if it crosscuts
other design models. In particular, a use case (defining a set of
requirements) is not necessarily an aspect. Although a use case

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EA’06, May 21, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

59

always cuts across multiple implementation modules, it is only
considered to be an aspect if it cuts across other use cases.

In this paper, we restrict the definition of an aspect-oriented
model further and say that a model is an aspect only if it crosscuts
other models written from the same perspective (in UML, the
same kind of diagrams). For example, a model showing global
component interactions does not, according to our definition,
crosscut a model showing internal component behavior. Although
the models might be defined at the same level of abstraction, they
are written from different perspectives – a global and a local
perspective. This is not considered, in this paper, to be
crosscutting. In terms of UML, this means that we are only
interested in crosscuts defined over diagrams of the same type.

2.1 Representing Aspects in RBML
We represent aspect-oriented models in the Role-Based
Metamodeling Language (RBML) first introduced by [10] and
later complemented by France et al. [5]. A RBML model is a
specialization of the UML metamodel wherein each element in a
RBML model is a role. A role is a restriction of a UML metaclass
with (optional) properties that any element playing the role must
possess. Since RBML specializes UML, each UML diagram has a
corresponding RBML diagram in which model elements are roles.
For example, a RBML state diagram has state roles and transition
roles. Each state role represents a generic state that can be made
concrete by assigning a concrete model element to play the role.
Only model elements that satisfy the properties of the role can
play a role. This means, for example, that transitions cannot play
the role of a state. In essence, a RBML model defines a generic
model that can be instantiated in many ways by assigning
elements to all of its roles. A UML model is said to conform to a
RBML model if there is a valid assignment of elements in the
UML model to the roles of the RBML model.

RBML has been used to formalize design patterns [10] and to
represent model-level aspects [7]. This was extended to
behavioral aspects (i.e., aspect state diagrams and aspect sequence
diagrams) in [20] and [1]. In the original definition [5], all RBML
model elements must be roles, that is, they are meta-level
elements. It was noted in [20] that for representing aspects, it is
useful to allow object-level elements in RBML as well. The result
is an extension to RBML, eRBML, in which an element in
eRBML may be either a meta-level element or an object-level
element.

Figure 1 is a simple example of an aspect sequence diagram in
eRBML. The aspect says that whenever a message playing the
|failure_ack role is sent by the |Client role to the |Server role, a
record is made of the message and the client is closed. Note that
the aspect in eRBML mixes meta-level roles and object-level
modeling elements. It is preferable to allow object-level modeling
elements such as Status in the aspect because the object of type
Status remains unchanged at every joinpoint of the aspect. Only
the role elements change for each application of the aspect.

2.1.1 Instantiation
eRBML models can be instantiated by assigning concrete model
elements to play the roles. Instantiation is defined by a one-to-
many mapping from roles to model elements. An instantiated
eRBML model is an eRBML model with all its role elements
mapped to concrete model elements. In terms of aspects, an

eRBML aspect model must be instantiated before it can be
composed with a base model. The instantiations define what the
aspect should look like in the context of a particular application –
i.e., they specialize an aspect to a context. Figure 2 is an example
base model which the aspect in Figure 1 crosscuts. The sequence
diagram in Figure 2 is taken from our case study and will be
presented fully in Section 4. For now, it is enough to know that
the diagram shows a central controller, CM, accessing data and
sending it to a client. The controller additionally stores
information about the transaction and finally enables a GUI panel.
The diagram in Figure 2 does not take care of failure handling.
Instantiation prepares the aspect for composition with the base. In
this example, the following instantiations are specified by the
modeler: |Client → WAClient,|Server → CM and |failure_ack →
cannot_accept_wthr_data. Figure 3 shows the result of
composing the instantiated aspect with the base model. The
messages to deal with failure have been inserted after
Send_wthr_data(x) as an alternative execution path using a
UML2.0 alt interaction fragment. The rationale for deciding on an
alt fragment and the positioning of the aspect messages is
deliberately left unexplained here. Current methods do not
provide good ways of specifying such information – see section
2.2 for details.

2.1.2 Conformance
A UML model is said to conform to an eRBML model if there
exists an instantiation of the eRBML model such that all model
elements of the instantiated eRBML model are present in the
UML model and all constraints in the eRBML model hold in the
UML model. The constraints include message ordering in the case
of eRBML sequence diagrams, transition ordering in the case of
eRBML state machines etc., as well as any additional properties
specified for eRBML roles. As an example, Figure 3 conforms to
the eRBML model in Figure 1 because the message ordering from
Figure 1 is present. Note that there may be other model elements
present in the UML model but the UML model still conforms as
long as the original message ordering from the eRBML model is
maintained. In particular, there could be additional messages
between storeStatus(done) and close, for example, although this is
not the case in this example. Conformance is a type of refinement.
In general, it is a much more complex notion than might be
suggested by the examples in this paper – |Client in Figure 1, for
example, could be instantiated to multiple actors at the UML
model level. We refer the interested reader to [9] for more details
on conformance.

|failure_ack
storeStatus(done)

close

: |Client : Status: |Server

Figure 1: A simple failure-handling aspect.

60

: WAClient : Status : Weather: CM: Panel

storeStatus(initializing)

storeStatus(initializing)
getCurrentWeatherData

Send_wthr_data(x)

groundWindSetting

altimeterSetting

enable

Figure 2: A base sequence diagram for data transferal.

: WAClient : Status : Weather: CM: Panel

storeStatus(initializing)
storeStatus(initializing)

getCurrentWeatherData

Send_wthr_data(x)

groundWindSetting

altimeterSetting

enable

cannot_accept_wthr_data storeStatus(done)
close

alt

Figure 3: Composition of Figure 1 and Figure 2.

2.2 Aspect Composition
eRBML is a precise way to specify model-level aspects and can
be used to describe aspects for any UML diagram. Just as it is
important to represent model aspects in a modular fashion, it is
also important to compose model aspects with base models. In
this section, we compare the composition approaches of France et
al. [6] and Whittle & Araújo [20] to illustrate shortcomings in
existing research. France et al. use templates to represent aspects
which are a restricted form of eRBML. In this paper, we ignore
this difference and explain the composition approach of France et
al. as if it used eRBML. This is to make the comparison easier. In
both approaches, a eRBML aspect is instantiated before it is
composed with a base model. The approaches differ in how
composition is specified.
The example of aspect composition given so far (Figure 3) is a
rather simple one. Even in this simple case, however, there are
many choices in how the composition should be done. In Figure
3, the failure handling messages were considered to be an
alternative execution sequence and were inserted after the
Send_wthr_data(x) message. Although this is a common
composition strategy, it will not suffice in many cases. Consider,
for example, how to specify the fact that the aspect messages
should be interleaved with the base model messages
groundWindSetting, altimeterSetting and enable. Or to specify
that the aspect messages define a sequence executed in parallel
with the base model messages. In general, there are many possible
ways that composition could occur. The challenge is to find a
technique for specifying composition that admits a high degree of

expressiveness, but does not require a high degree of modeling
effort from the user. We briefly compare the two approaches to
composition by France et al. and Whittle & Araújo to see how
they perform on expressiveness versus scalability.

2.2.1 Composition Directives (France et al.)
The approach by France et al. is to allow the modeler to specify
composition directives that tailor the composition algorithm.
These directives allow the user to explicitly specify whether the
aspect messages should be interleaved with the base, should be an
alternative or should run in parallel with it etc. The directives take
the form of “add”, “delete”, “replace” and “move” statements that
modify the model elements in the composed model. The base and
instantiated aspect model are first merged by merging model
elements with the same name. Hence, if an aspect model has a
role instantiated to an element with the same name as an element
in the base model, then the two elements are merged. After
merging, the directives are applied to tailor the exact form of
composition.
This is a very expressive way to tailor composition but involves a
lot of work from the modeler. It amounts to a manual composition
process because the modeler has to apply a directive to each and
every model element in the aspect and possibly model elements in
the base as well. For example, to interleave the messages of the
aspect of Figure 1 with the base model in Figure 2, the modeler
has to instantiate |failure_ack to cannot_accept_wthr_data and
then give a “move” directive for each aspect message, e.g. move
cannot_accept_wthr_data to after Send_wthr_data(x). This is a
very low-level way to specify aspect compositions and the effort
involved quickly becomes excessive since the directives must be
given for each aspect and for each base model crosscut by an
aspect. Clearly, the approach will not scale.

2.2.2 Composition Operators (Whittle & Araújo)
The approach by Whittle & Araújo is at a higher level of
abstraction. Instead of composition directives, the modeler
specifies composition operators that are high-level composition
strategies. For example, [20] defines three composition operators
for sequence diagrams – OR, AND, and IN. OR makes the aspect
messages an alternative sequence, AND interleaves the aspect
messages with the base model messages, and IN inserts the aspect
messages in the base sequence. The OR operator produces the
result in Figure 3. AND would have a par fragment instead of alt.
IN would insert the aspect messages as a sequence after
Send_wthr_data(x).
Composition operators offer a high-level way of composing
aspect models. The approach is more scalable than that of France
et al. because the modeler need not explicitly specify a
composition strategy for each model element in the aspect. On the
other hand, the approach is less expressive because there are only
a pre-defined set of composition operators which may handle
many but not all cases of composition.

Furthermore, both approaches require the modeler to specify the
instantiations of the aspect and these instantiations will in general
be different for each base model crosscut by the aspect. For large
problems, the amount of effort involved in specifying
instantiations may become too great.

61

3. A NEW METHOD OF COMPOSITION
The composition techniques presented in Section 2 suffer a lack
of scalability. The modeler must give a set of role instantiations
for each aspect and for each base model that each aspect
crosscuts. For large models with many aspects, there are a large
number of instantiations to supply. Moreover, maintenance of the
models becomes problematic because the instantiations are given
in a non-graphical, low-level format that can be somewhat time-
consuming to read. On the other hand, the representation method
provides a clean separation of aspects and the base models. This
section presents a new way of representing and composing model
aspects in a way that maintains aspect modularity but is also
scalable. It is based on representing composition as a graph
transformation rule in which the left-hand side of the rule captures
the points where the aspect should be applied and the right-hand
side captures the aspect itself.

3.1 Aspects as Graph Transformations
A graph transformation [14] is a rule r: L → R from a left-hand
side (LHS) graph L to a right-hand side (RHS) graph R. The
process of applying r to a graph G involves finding a graph
monomorphism, h, from L to G and replacing h(L) in G with h(R).
To avoid “dangling edges” – i.e., edges with a missing source or
target node – h(R) must be pasted into G in such a way that all
edges connected to a removed node in h(L) are reconnected to a
replacement node in h(R).
Any UML diagram can be represented as a graph because it is
defined by the UML metamodel which is a graph where the nodes
are meta-classes and the edges are meta-relationships. Hence,
transformations over UML models can be given as graph
transformations. In particular, we view composition of an aspect-
oriented model with a base UML model as a graph transformation
in which the LHS and RHS are eRBML models. The LHS defines
the points where the aspect should be applied and the RHS
defines the crosscutting structure/behavior that should be inserted
at those points.
We give an example of how the aspect from Figure 1 can be given
as a graph transformation – see Figure 4. There are two parts to
the definition of the aspect. The first defines the aspect itself –
this is the same as given in Figure 1. The second defines the
composition strategy – given in Figure 4 as a graph
transformation. The effect of applying the transformation is that
messages for dealing with failure will be inserted as an alternative
sequence after all instances of |send_data, a message sent from
|Server to |Client. This approach to defining aspect composition
addresses the issues of expressiveness and scalability in the
following ways.
There are a number of points to make about Figure 4. Firstly, the
method maintains a complete separation of the aspect and its
composition strategy – Figure 1 defines the aspect; Figure 4 is the
strategy. This promotes reuse of aspects and application of the
same aspect but with a different composition strategy. Section 4
will give an even more convincing example of this by showing
how a generic two-phase commit protocol can be reused as an
aspect. Secondly, the technique is a fully expressive way of
defining composition strategies – Figure 4 illustrates just one
strategy but others could easily be defined by modifying the LHS
or RHS. Thirdly, the method reduces the number of instantiations
that must be provided. In this example, only one instantiation
must be provided by the modeler – for |failure_ack. All other

roles can be instantiated automatically by graph matching against
a base model – the LHS of the graph transformation is matched
against the base model thus instantiating |Client, |Server,
|send_data and |Other automatically; only |failure_ack remains to
be instantiated. In this example, the LHS of Figure 4 matches the
base model (Figure 2). The match results in the following
instantiations being made automatically: |send_data →
Send_wthr_data(x), |Client → WAClient, |Server → CM and
|Other matches against all messages following
Send_wthr_data(x). Note that a UML2.0 ref fragment is used to
define a placeholder for a sequence of messages in the base. This
is an easy way to match against a message sequence whose
position in the composed model can then be specified exactly on
the RHS of the transformation.

|Other

|send_data

: |CM

|failure_ack storeStatus(done)
close

: |Client : Status: |CM: |Client

ref

|send_data

|Other

alt

ref

Figure 4: Failure handling aspect composition as a graph
transformation.
We must extend the definition of graph transformation when
dealing with eRBML. When matching against the LHS of the
transformation rule, instantiations for the role elements must be
discovered. We therefore modify the definition such that a graph
transformation applies to a UML model if and only if the LHS of
the transformation can be graph matched modulo conformance.
This notion is defined below. Also below, we analyze our new
composition method with respect to expressiveness and
scalability.

3.1.1 Expressiveness
The RHS of the graph transformation rule defines the manner in
which the aspect crosscuts a base model. Because the RHS is a
model itself, there is complete expressiveness in how the
crosscutting is defined. The aspect messages, for example, can be
defined as alternatives to a base message or messages, as
interleaved with base messages, as occurring in parallel with base
messages, or any combination. The composition operators defined
in Section 2.2.2 can be defined as special cases but the graph
transformation allows any combination of these operators to be
specified, or indeed for new operators to be specified. The
composition directives in Section 2.2.1 are subsumed by the graph
transformation approach because there is no longer any need to
tailor the aspect composition algorithm to add, delete, or remove
elements – these modifications are, in essence, defined explicitly
in the RHS of the transformation.

3.1.2 Scalability
The biggest barrier to scalability of aspect approaches based on
RBML is that the modeler must instantiate the role elements for
each base model crosscut by the aspect. Graph transformations
reduce this effort because instantiating the role elements can be
automated to some extent. Instantiation amounts to finding a base
model over which the graph transformation can be applied – i.e.,

62

finding a match for the LHS of the transformation rule. We use
matching modulo conformance when applying an aspect – that is,
an eRBML model, R, matches a UML model, U, modulo
conformance if and only if there is an instantiation of the role
elements, θ, such that U conforms to θ(R). Consider again the
example in Figure 4. In this case, the base model in Figure 2
matches the LHS of the aspect transformation modulo
conformance because the roles in the LHS can be instantiated in a
way such that the base model conforms to the LHS - |send_data is
instantiated to Send_wthr_data(x) and |Other is instantiated to the
sequence of messages following Send_wthr_data(x). Note that
matching modulo conformance looks for a maximal match if the
LHS contains a ref fragment. In other words, all messages
following Send_wthr_data(x) are matched against |Other, not any
subsequence of those messages.

4. CASE STUDY
CTAS (Center-TRACON Automation System) [4] is a
component-based, distributed system whose goal is to maximize
throughput of aircraft through an airport. One of the most crucial
aspects of CTAS is a weather subsystem that broadcasts new
weather data to all relevant processes and ensures integrity of this
weather data. The CM (communications manager) is responsible
for distributing new weather-related data to all CTAS clients that
need it (weather-aware clients). New data arrives as a result of
new forecasts or new weather data sources, and can be triggered
automatically or manually. A weather update procedure is
invoked by CM every time new data arrives or a new weather-
aware client connects to the system.

Data integrity is clearly an important issue in the design of this
system that will affect several of its components. All weather-
aware clients rely on a model of the current weather data and
must use the same model at all times. The original design deals
with data integrity using a two-phase commit protocol. However,
in the design, the details of this protocol are intertwined with the
core functionality of CM. In what follows, we show how to
modularize the two-phase commit protocol as an aspect and show
how to compose this aspect with the core functionality. This
results in a more readable design in which changes to the data
integrity design are localized and therefore easier to make. We
focus in this paper on the dynamic aspects of the design and
model the design using UML sequence diagrams.

There are two situations in which weather data integrity becomes
important. Firstly, when a new weather-aware client connects,
current weather data must be sent to it. Secondly, when the user
or system invokes an update of the weather data, the new data
must be broadcast to all weather-aware clients. In both cases, the
requirements state that the two-phase commit protocol should be
applied. Figures 5 and 6 show the two base sequence diagram
models corresponding to the connection of a new client and a
weather update, respectively. The two core functionalities are
similar but not the same – different information is stored in each
case, and in the second case, there are additional messages for
data persistency.

Figure 6 introduces some additional notations not currently part of
UML2.0. <<multiobject>> is used to denote the fact that there are
multiple participants of a given type. {all} means that a message
is sent to or received from all of those participants. {exists} (not
shown in the figure) means that a message is sent to or received

from at least one of those participants. In Figure 6, all messages
concerning communication between CM and its clients are sent to
all clients. Both diagrams take care of broadcasting weather data
by simply sending (one or more) Send_wthr_data messages. The
two-phase commit protocol is not modeled as part of the core
functionality. Instead, it will be modeled separately as an aspect,
which means that the nature of the protocol can easily be
modified if necessary. Note that it is not the aim of this paper to
provide a mechanism to identify aspects. To do that, we can make
use of some aspect mining techniques (e.g., [11, 16]).

: WAClient : Status : Weather: CM: Panel

storeStatus(initializing)storeStatus(initializing)
getCurrentWeatherData

Send_wthr_data(x)

groundWindSetting

altimeterSetting
enable

Figure 5: New weather-aware client connects. Update clients.

{all}storeStatus(updating)

storeStatus(updating)
getCurrentWeatherData

{all}Send_wthr_data(x)

: WAClient : Status : Weather: CM: Panel
<<multiobject>>

{all}groundWindSetting

{all}altimeterSetting

updatePending

storeToCMSIM

enable

Figure 6: New weather data arrives. Update clients.

We give a brief description of the behavior specified in Figures 5
and 6. In Figure 5, the behavior is triggered by a connection
request from a new client (not shown). CM responds by starting
an initialization procedure for the client and storing data related to
that procedure. It then queries a database for current weather data
and sends this data to the client along with two other settings. It
finishes by enabling a GUI panel that had been enabled when the
new client requested connection. In Figure 6, the behavior is
similar except that new weather data has arrived (either triggered
automatically or manually) – this is not shown in the figure. The
CM again stores data related to the procedure, queries the weather
database and broadcasts the data to all weather aware clients. It
carries out some additional storage operations and re-enables the
GUI panel.

The two-phase commit protocol is modeled as an aspectual
sequence diagram in eRBML in Figure 7. The aspect defines a
general pattern of communication for the protocol that can be
reused across many applications. In the Figure, there are two
classifier roles - |Participant and |Commit Server. An instance of
this aspect would instantiate actual classifiers to play those roles.
Similarly, the interactions in the figure are given as message roles
that can be instantiated to specific message names. The figure
only commits a transaction if all participants acknowledge and
agree to the transaction. For this case study, the aspect is first
refined because the logic of the CTAS application requires that

63

information about the progress of the protocol is stored. This
information becomes part of a refined aspect shown in Figure 8.
Figures 9 and 10 respectively give the LHS and RHS of a graph
transformation that composes the refined aspect (Figure 8) with
the base functionality in Figure 6. Note that the LHS says that the
aspect will apply at all points in which there is an instance of a
|prepareToCommit message, followed by a sequence of messages
(given as a role representing a UML2.0 ref fragment), followed
by an enable message. This application condition is true for both
of the core scenarios. A graph matching algorithm can be used to
search for a match of the LHS with base scenarios. In this case,
|prepareToCommit can only be instantiated to Send_wthr_data,
|CommitServer can only be instantiated to CM, but |Participant
can be instantiated to either a single weather-aware client or a
multiobject of weather-aware clients. |OtherMessages matches
with any sequence of messages between the messages
Send_wthr_data and enable.

{exist} |commitIncomplete

{all} |readyToCommit

{all} |commit

{all} |commitComplete

{all} |prepareToCommit

{all} |abortIncompleteCommit

: |Participant |Commit Server

alt

alt

<<multiobject>>

{exist} |refuseToCommit
{all} |abortRefuseToCommit

Figure 7: General Two-Phase Commit Protocol.

The RHS of the graph transformation is given in Figure 10. Note
the placement of |OtherMessages. Taking one example of the
composition, in Figure 6, |OtherMessages matches to
updatePending, storeToCMSIM, {all}groundWindSetting,
{all}altimeterSetting. These messages should only be sent if the
two-phase commit protocol successfully completes. But the two-
phase commit aspect contains cases both for successful commit
and unsuccessful commit. The composition of the aspect and base
model must be done in such a way that the matches for
|OtherMessages are inserted only at the point of successful
commitment. Using the existing methods by France et al. and
Whittle & Araújo, this would be difficult and awkward to specify.
In the approach by Whittle & Araújo, there would have to be a
predefined composition operator that would allow the weaving in
the manner described. Currently, there is no such operator. In the
approach by France et al., the modeler would have to give a list of
composition directives that instruct the composition algorithm
where to place the messages matching with |OtherMessages. This
would be a time-consuming and error-prone process because there
is no easy, graphical way to specify these directives. In essence,
the graph transformation is a graphical way to specify the
directives. The modeler is free to place |OtherMessages wherever
s/he likes on the RHS of the graph transformation rule. Note also
that the modeler can easily specify a different composition
strategy by simply modifying the RHS of the rule.

We do not show here the results of composing the aspect with
each of Figures 5 and 6 but leave it to the reader to apply the
graph transformation and hence to generate the compositions.
Note that the entire application was modeled using our approach
but only a small part can be presented in this paper.

{all} storeStatus()

|{exist} commitIncomplete

|{all} readyToCommit

|{all} commit

alt

|{all} commitCompletealt

|{all} prepareToCommit

|{all} abortIncompleteCommit

|{exist} refuseToCommit

|{all} abortRefuseToCommit

: |Participant : |Commit Server
|<<multiobject>>

: Status

storeStatus()

storeStatus()
{all} storeStatus()

storeStatus()

storeStatus()

Figure 8: CTAS specific two-phase commit

: |Participant : |Commit Server

|{all}prepareToCommit
<<multiobject>>

enable

: Panel

|OtherMessagesref

Figure 9: LHS of graph transformation.

|{all} commitComplete

{all} storeStatus()

alt
{all} storeStatus()

|{exist} commitIncomplete

: |Participant : |Commit Server

|{all} readyToCommit

|{all} commit

alt

|{all} prepareToCommit

|<<multiobject>>

|{all} abortIncompleteCommit

|{exist} refuseToCommit

|{all} abortRefuseToCommit

: Status

storeStatus()

storeStatus()

storeStatus()

storeStatus()

ref |OtherMessages

Figure 10: RHS of a graph transformation that composes the

refined aspect in Figure 8

5. RELATED WORK
Graph transformations have a noble history in software
engineering. Their use has been suggested for viewpoint
integration [8] in requirements engineering, software refactoring
[2], and generative programming [17]. Graph transformations are
even being considered as a potential standardized model
transformation language as part of the MOF 2.0
Query/Views/Transformations (QVT) effort [15]. However, to the

64

author’s knowledge, there has been no in-depth research on
composing aspects using graph transformations. The UMLAUT
framework [19] is a tool to transform UML models that is not
explicitly based on graph transformation. Its use to compose
aspects in UML has been investigated by defining transformation
rules over a UML model given by an abstract syntax tree.
However, UMLAUT has its own definition for transformation
rules and does not make use of the intuitive graphical nature of
graph transformations. Graph transformations defined over
eRBML models resemble the equivalent UML models very
closely and hence can be understood easily by practitioners.
A number of approaches have applied template-based UML
models for defining aspects. Templates are a poor man’s version
of eRBML because their instantiation mechanism is very
restricted. [3], for example, deals with crosscutting concerns as
UML templates at the design level. Template binding is used to
compose the pattern with concrete model elements. The
compositions, however, are not as flexible as in our approach. The
aspect-oriented software development group at Colorado State
University has conducted extensive research on using RBML or
related languages to represent aspects. We feel that graph
transformations offer a more scalable and more expressive way of
defining aspect compositions.
There has also been considerable recent work on defining aspects
during requirements engineering. The aspect-oriented require-
ments engineering (AORE) approach [12] defines detailed
composition rules for aspectual requirements in XML. AORE
focuses on textual requirements and hence is complementary to
our work which focuses on graphical models.

6. CONCLUSIONS & FURTHER WORK
Existing techniques to represent and compose aspects at
requirements and design level suffer from several problems, in
particular they are not scalable, requiring a lot of detailed work
from the modeler. This paper described an approach to represent
aspects using a UML-based role modeling language to define the
aspect and graph transformations to define aspect compositions.
Hierarchies were used to structure aspects and their possible
instances. This approach is scalable because graph matching can
be applied to automatically compose aspects, and expressive
because the modeler defines any kind of composition in the graph
transformation rule which is expressed in an intuitive graphical
form. To validate the approach, we applied it to part of an air
traffic control system developed at NASA.

There are many research questions regarding aspect model
composition still to be answered. The treatment given here is on a
syntactic level. It would be interesting to consider more semantic-
based composition strategies. In addition, this paper does not
address conflicts between aspects that may arise during
composition. The authors feel that since graph transformations
have a well understood theoretical underpinning, they are a good
starting point for dealing with these issues. There are also some
open questions regarding the matching process that we have
defined. The authors plan to develop tool support for the approach
which will provide support for application of the matching
process, e.g., backtracking when an inappropriate match is
chosen. Theoretical boundaries on the complexity of matching
probably will not be a practical barrier since techniques to provide
instantiations in a reusable way will be provided.

7. REFERENCES
[1] J. Araújo, J. Whittle and D-K. Kim, “Modeling and

Composing Scenario-Based Requirements with Aspects”, RE
2004, Kyoto, Japan, IEEE CS Press, 2004.

[2] P. Bottoni, F. Parisi-Presicce, G. Taenzer, “Specifying
Integrated Refactoring with Distributed Graph
Transformations,” AGTIVE ‘03, 227-272, 2003.

[3] S. Clarke and R. J. Walker, “Composition Patterns: An
Approach to Designing Reusable Aspects”. ICSE 2001,
Toronto, Canada, IEEE CS Press, pp. 5-14, 2001.

[4] D. Denery, H. Erzberger, T. Davis, S.Green and B. McNally,
“Challenges of Air Traffic Management Research: Analysis,
Simulation and Field Test”. In AIAA Guidance, Navigation
and Control Conference, 1997.

[5] R. France, D-K. Kim, S. Ghosh and E. Song, “A UML-Based
Pattern Specification Technique”. IEEE Transactions on
Software Engineering, Vol. 30(3), pp. 193-206, 2004.

[6] R. France, I. Ray, G. Georg and S. Ghosh, "An Aspect-
Oriented Approach to Design Modeling", IEE Proceedings
Software, Vol 151(4), pp. 174-186, August 2004.

[7] G. Georg and R. France. “UML Aspect Specification using
Role Models”. OOIS, ,France, Lecture Notes in Computer
Science, Springer, Vol. 2425, pp. 186-191, September 2002.

[8] M. Goedicke, B. Enders, T. Meyer, G. Taentzer, “ViewPoint-
Oriented Software Development: Tool Support for Integrating
Multiple Perspectives by Distributed Graph Transformation.”
TACAS 2000: 43-47.

[9] D-K. Kim, A Metamodeling Approach to Specifying Patterns,
PhD Thesis, Colorado State University, 2004.

[10] Dae-Kyoo Kim, Robert France, Sudipto Ghosh and Eunjee
Song, "A Role-Based Metamodeling Approach to Specifying
Design Patterns", COMPSAC 2003, Dallas, Texas, 2003.

[11] A. Moreira, A. Rashid, J. Araújo, A. “Multi-Dimensional
Separation of Concerns in Requirements Engineering,” RE
2005, IEEE Computer Society, France, 2005.

[12] A. Rashid, A. Moreira and J. Araújo, “Modularisation and
Composition of Aspectual Requirements”. AOSD 2003,
Boston, USA, ACM Press, pp. 11-20, March 2003.

[13] I. Ray, N. Li, R. B. France and D-K. Kim, “Using UML to
Visualize Role-based Access Control Constraints.” SACMAT
2004: 115-124.

[14] G. Rozenberg, editor. “Handbook of Graph Grammars and
Computing by Graph Transformation, Volume 1:
Foundations.” World Scientific, 1997.

[15] OMG: Revised submission for MOF 2.0
Query/View/Transformation RFP (ad/2002-04-10) (2005).

[16] A. Sampaio, R. Chitchyan, A. Rashid, P. Rayson, "EA-
Miner: A Tool for Automating Aspect-Oriented Requirements
Identification", ASE 2005, IEEE Computer Society, 2005.

[17] S. Sendall, “Combining Generative and Graph
Transformation Techniques for Model Transformation: An
Effective Alliance?” OOPSLA ’03 Workshop “Generative
techniques in the context of MDA”, 2003.

[18] UML, version 2.0. Available from the Object Management
Group, 2005, http://www.omg.org.

[19] UMLAUT: Unified Modeling Language All pUrpose
Transformer, http://www.irisa.fr/UMLAUT/.

[20] J. Whittle and J. Araújo, “Scenario Modeling with Aspects”,
IEE Proceedings Software, Vol 151(4), pp. 157-172, 2004.

65

