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ABSTRACT 
This paper presents a new method for composing aspect models. 
The method is based on the use of a UML-based aspect modeling 
language to precisely and graphically specify model-level aspects 
and the use of graph transformations to define how aspects should 
be composed and to apply those compositions. The result is a 
method for representing and composing aspect-oriented models 
that is both scalable and expressive. The work is validated on an 
air traffic control example based on a NASA application.   

Categories and Subject Descriptors 
D.2.1 [Software]: Requirements/Specifications – languages, 
methodologies. D.2.2 [Software]: Design Tools and Techniques – 
object-oriented design methods 

General Terms 
Design, Languages 

Keywords 
UML, Aspect-Orientation, Graph Transformation  

1. INTRODUCTION 
In this paper, a general technique for representing and composing 
aspects at any level of software abstraction is presented. It is 
important to be able to represent aspects at any stage of software 
modeling because aspects naturally occur during requirements 
[12], analysis [20] and design [3]. The modularization of aspects 
during software modeling leads to a clear separation of concerns 
and hence to more maintainable, understandable and analyzable 
models. However, in order to fully understand or analyze a model 
with aspects, the aspect modules must be composed with the base 
models so that any conflicts, ambiguities or omissions can be 
identified. Therefore, specification mechanisms for aspects at the 
modeling level should be complemented with composition 
mechanisms that weave the aspect models into the base models. 
Research on such mechanisms to-date suffers from one of two 
major problems – lack of expressiveness and lack of scalability. 

Compositions at the modeling level can be extremely rich in 
nature. Existing research does not offer the level of 
expressiveness needed for specifying these rich compositions. A 
high-degree of expressiveness, however, can lead to scalability 
problems because a large effort is required by the modeler to 
specify the compositions. The technique presented in this paper 
addresses both the issues of scalability and expressiveness. The 
result is a practical technique for defining and composing aspect-
oriented models in a way that is compatible with modeling best 
practices. 

The technique uses two key technologies: the role-based 
metamodeling language (RBML) [10] and graph transformations 
[9, 14]. RBML (in fact, an extension of it) gives a precise, 
graphical means of specifying a model-level aspect in a way that 
is consistent with UML [18], the most common software 
modeling language. RBML has already been applied to model the 
structural parts of security aspects [13] and to model behavioral 
UML aspects [20]. A drawback of these approaches is that they 
do not scale well since a lot of effort is required to specify how 
RBML aspects crosscut core models. We will show how graph 
transformations can be used to reduce the level of effort. Graph 
transformations have been applied to many problems in software 
engineering including the merging of different system 
perspectives [8] but it has not been specifically addressed how to 
apply them, in a general way, to handle aspects at any stage of 
UML modeling. This paper combines RBML and graph 
transformations to achieve the following two aims: (1) general-
purpose, UML-based aspect modeling and composition at any 
level of abstraction; (2) scalability of aspect composition. 

The paper illustrates the approach with an air traffic control 
example based closely on an existing application developed 
atNASA [4]. Section 2 defines the notion of a model-level aspect 
and analyzes shortcomings of the closest related research, namely 
that of France et al. [5] and Whittle and Araújo [20]. Section 3 
presents a new method for composing aspect models. Section 4 
validates the approach and related work and conclusions follow. 

2. WHAT IS A MODEL-LEVEL ASPECT? 
We define an aspect-oriented model to be a model that crosscuts 
other models at the same level of abstraction. The last part of the 
sentence is important. It means, for example, that a requirements 
model is an aspect if it crosscuts other requirements models (or 
simply, a requirements artifact is an aspect if it cuts across other 
requirements artifacts); a design model is an aspect if it crosscuts 
other design models. In particular, a use case (defining a set of 
requirements) is not necessarily an aspect. Although a use case 
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always cuts across multiple implementation modules, it is only 
considered to be an aspect if it cuts across other use cases. 

In this paper, we restrict the definition of an aspect-oriented 
model further and say that a model is an aspect only if it crosscuts 
other models written from the same perspective (in UML, the 
same kind of diagrams). For example, a model showing global 
component interactions does not, according to our definition, 
crosscut a model showing internal component behavior. Although 
the models might be defined at the same level of abstraction, they 
are written from different perspectives – a global and a local 
perspective. This is not considered, in this paper, to be 
crosscutting. In terms of UML, this means that we are only 
interested in crosscuts defined over diagrams of the same type.  

2.1 Representing Aspects in RBML 
We represent aspect-oriented models in the Role-Based 
Metamodeling Language (RBML) first introduced by [10] and 
later complemented by France et al. [5]. A RBML model is a 
specialization of the UML metamodel wherein each element in a 
RBML model is a role. A role is a restriction of a UML metaclass 
with (optional) properties that any element playing the role must 
possess. Since RBML specializes UML, each UML diagram has a 
corresponding RBML diagram in which model elements are roles. 
For example, a RBML state diagram has state roles and transition 
roles. Each state role represents a generic state that can be made 
concrete by assigning a concrete model element to play the role. 
Only model elements that satisfy the properties of the role can 
play a role. This means, for example, that transitions cannot play 
the role of a state. In essence, a RBML model defines a generic 
model that can be instantiated in many ways by assigning 
elements to all of its roles. A UML model is said to conform to a 
RBML model if there is a valid assignment of elements in the 
UML model to the roles of the RBML model.   

RBML has been used to formalize design patterns [10] and to 
represent model-level aspects [7]. This was extended to 
behavioral aspects (i.e., aspect state diagrams and aspect sequence 
diagrams) in [20] and [1]. In the original definition [5], all RBML 
model elements must be roles, that is, they are meta-level 
elements. It was noted in [20] that for representing aspects, it is 
useful to allow object-level elements in RBML as well. The result 
is an extension to RBML, eRBML, in which an element in 
eRBML may be either a meta-level element or an object-level 
element.  

Figure 1 is a simple example of an aspect sequence diagram in 
eRBML. The aspect says that whenever a message playing the 
|failure_ack role is sent by the |Client role to the |Server role, a 
record is made of the message and the client is closed. Note that 
the aspect in eRBML mixes meta-level roles and object-level 
modeling elements. It is preferable to allow object-level modeling 
elements such as Status in the aspect because the object of type 
Status remains unchanged at every joinpoint of the aspect. Only 
the role elements change for each application of the aspect. 

2.1.1 Instantiation 
eRBML models can be instantiated by assigning concrete model 
elements to play the roles. Instantiation is defined by a one-to-
many mapping from roles to model elements. An instantiated 
eRBML model is an eRBML model with all its role elements 
mapped to concrete model elements. In terms of aspects, an 

eRBML aspect model must be instantiated before it can be 
composed with a base model. The instantiations define what the 
aspect should look like in the context of a particular application – 
i.e., they specialize an aspect to a context. Figure 2 is an example 
base model which the aspect in Figure 1 crosscuts. The sequence 
diagram in Figure 2 is taken from our case study and will be 
presented fully in Section 4. For now, it is enough to know that 
the diagram shows a central controller, CM, accessing data and 
sending it to a client. The controller additionally stores 
information about the transaction and finally enables a GUI panel. 
The diagram in Figure 2 does not take care of failure handling. 
Instantiation prepares the aspect for composition with the base. In 
this example, the following instantiations are specified by the 
modeler: |Client → WAClient,|Server → CM and |failure_ack → 
cannot_accept_wthr_data. Figure 3 shows the result of 
composing the instantiated aspect with the base model. The 
messages to deal with failure have been inserted after 
Send_wthr_data(x) as an alternative execution path using a 
UML2.0 alt interaction fragment. The rationale for deciding on an 
alt fragment and the positioning of the aspect messages is 
deliberately left unexplained here. Current methods do not 
provide good ways of specifying such information – see section 
2.2 for details. 

2.1.2 Conformance 
A UML model is said to conform to an eRBML model if there 
exists an instantiation of the eRBML model such that all model 
elements of the instantiated eRBML model are present in the 
UML model and all constraints in the eRBML model hold in the 
UML model. The constraints include message ordering in the case 
of eRBML sequence diagrams, transition ordering in the case of 
eRBML state machines etc., as well as any additional properties 
specified for eRBML roles. As an example, Figure 3 conforms to 
the eRBML model in Figure 1 because the message ordering from 
Figure 1 is present. Note that there may be other model elements 
present in the UML model but the UML model still conforms as 
long as the original message ordering from the eRBML model is 
maintained. In particular, there could be additional messages 
between storeStatus(done) and close, for example, although this is 
not the case in this example. Conformance is a type of refinement. 
In general, it is a much more complex notion than might be 
suggested by the examples in this paper – |Client in Figure 1, for 
example, could be instantiated to multiple actors at the UML 
model level. We refer the interested reader to [9] for more details 
on conformance. 

|failure_ack
storeStatus(done)

close

: |Client : Status: |Server

 
Figure 1: A simple failure-handling aspect. 
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: WAClient : Status : Weather: CM: Panel

storeStatus(initializing)

storeStatus(initializing)
getCurrentWeatherData

Send_wthr_data(x)

groundWindSetting

altimeterSetting

enable

 
Figure 2: A base sequence diagram for data transferal. 

: WAClient : Status : Weather: CM: Panel

storeStatus(initializing)
storeStatus(initializing)

getCurrentWeatherData

Send_wthr_data(x)

groundWindSetting

altimeterSetting

enable

cannot_accept_wthr_data storeStatus(done)
close

alt

 
Figure 3: Composition of Figure 1 and Figure 2. 

2.2 Aspect Composition 
eRBML is a precise way to specify model-level aspects and can 
be used to describe aspects for any UML diagram. Just as it is 
important to represent model aspects in a modular fashion, it is 
also important to compose model aspects with base models. In 
this section, we compare the composition approaches of France et 
al. [6] and Whittle & Araújo [20] to illustrate shortcomings in 
existing research. France et al. use templates to represent aspects 
which are a restricted form of eRBML. In this paper, we ignore 
this difference and explain the composition approach of France et 
al. as if it used eRBML. This is to make the comparison easier. In 
both approaches, a eRBML aspect is instantiated before it is 
composed with a base model. The approaches differ in how 
composition is specified. 
The example of aspect composition given so far (Figure 3) is a 
rather simple one. Even in this simple case, however, there are 
many choices in how the composition should be done. In Figure 
3, the failure handling messages were considered to be an 
alternative execution sequence and were inserted after the 
Send_wthr_data(x) message. Although this is a common 
composition strategy, it will not suffice in many cases. Consider, 
for example, how to specify the fact that the aspect messages 
should be interleaved with the base model messages 
groundWindSetting, altimeterSetting and enable. Or to specify 
that the aspect messages define a sequence executed in parallel 
with the base model messages. In general, there are many possible 
ways that composition could occur. The challenge is to find a 
technique for specifying composition that admits a high degree of 

expressiveness, but does not require a high degree of modeling 
effort from the user. We briefly compare the two approaches to 
composition by France et al. and Whittle & Araújo to see how 
they perform on expressiveness versus scalability. 

2.2.1 Composition Directives (France et al.) 
The approach by France et al. is to allow the modeler to specify 
composition directives that tailor the composition algorithm. 
These directives allow the user to explicitly specify whether the 
aspect messages should be interleaved with the base, should be an 
alternative or should run in parallel with it etc. The directives take 
the form of “add”, “delete”, “replace” and “move” statements that 
modify the model elements in the composed model. The base and 
instantiated aspect model are first merged by merging model 
elements with the same name. Hence, if an aspect model has a 
role instantiated to an element with the same name as an element 
in the base model, then the two elements are merged. After 
merging, the directives are applied to tailor the exact form of 
composition. 
This is a very expressive way to tailor composition but involves a 
lot of work from the modeler. It amounts to a manual composition 
process because the modeler has to apply a directive to each and 
every model element in the aspect and possibly model elements in 
the base as well. For example, to interleave the messages of the 
aspect of Figure 1 with the base model in Figure 2, the modeler 
has to instantiate |failure_ack to cannot_accept_wthr_data and 
then give a “move” directive for each aspect message, e.g. move 
cannot_accept_wthr_data to after Send_wthr_data(x). This is a 
very low-level way to specify aspect compositions and the effort 
involved quickly becomes excessive since the directives must be 
given for each aspect and for each base model crosscut by an 
aspect. Clearly, the approach will not scale. 

2.2.2 Composition Operators (Whittle & Araújo) 
The approach by Whittle & Araújo is at a higher level of 
abstraction. Instead of composition directives, the modeler 
specifies composition operators that are high-level composition 
strategies. For example, [20] defines three composition operators 
for sequence diagrams – OR, AND, and IN. OR makes the aspect 
messages an alternative sequence, AND interleaves the aspect 
messages with the base model messages, and IN inserts the aspect 
messages in the base sequence. The OR operator produces the 
result in Figure 3. AND would have a par fragment instead of alt. 
IN would insert the aspect messages as a sequence after 
Send_wthr_data(x). 
Composition operators offer a high-level way of composing 
aspect models. The approach is more scalable than that of France 
et al. because the modeler need not explicitly specify a 
composition strategy for each model element in the aspect. On the 
other hand, the approach is less expressive because there are only 
a pre-defined set of composition operators which may handle 
many but not all cases of composition. 

Furthermore, both approaches require the modeler to specify the 
instantiations of the aspect and these instantiations will in general 
be different for each base model crosscut by the aspect. For large 
problems, the amount of effort involved in specifying 
instantiations may become too great. 
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3. A NEW METHOD OF COMPOSITION 
The composition techniques presented in Section 2 suffer a lack 
of scalability. The modeler must give a set of role instantiations 
for each aspect and for each base model that each aspect 
crosscuts. For large models with many aspects, there are a large 
number of instantiations to supply. Moreover, maintenance of the 
models becomes problematic because the instantiations are given 
in a non-graphical, low-level format that can be somewhat time-
consuming to read. On the other hand, the representation method 
provides a clean separation of aspects and the base models. This 
section presents a new way of representing and composing model 
aspects in a way that maintains aspect modularity but is also 
scalable. It is based on representing composition as a graph 
transformation rule in which the left-hand side of the rule captures 
the points where the aspect should be applied and the right-hand 
side captures the aspect itself. 

3.1 Aspects as Graph Transformations 
A graph transformation [14] is a rule r: L → R from a left-hand 
side (LHS) graph L to a right-hand side (RHS) graph R. The 
process of applying r to a graph G involves finding a graph 
monomorphism, h, from L to G and replacing h(L) in G with h(R). 
To avoid “dangling edges” – i.e., edges with a missing source or 
target node – h(R) must be pasted into G in such a way that all 
edges connected to a removed node in h(L) are reconnected to a 
replacement node in h(R).  
Any UML diagram can be represented as a graph because it is 
defined by the UML metamodel which is a graph where the nodes 
are meta-classes and the edges are meta-relationships. Hence, 
transformations over UML models can be given as graph 
transformations. In particular, we view composition of an aspect-
oriented model with a base UML model as a graph transformation 
in which the LHS and RHS are eRBML models. The LHS defines 
the points where the aspect should be applied and the RHS 
defines the crosscutting structure/behavior that should be inserted 
at those points. 
We give an example of how the aspect from Figure 1 can be given 
as a graph transformation – see Figure 4. There are two parts to 
the definition of the aspect. The first defines the aspect itself – 
this is the same as given in Figure 1. The second defines the 
composition strategy – given in Figure 4 as a graph 
transformation. The effect of applying the transformation is that 
messages for dealing with failure will be inserted as an alternative 
sequence after all instances of |send_data, a message sent from 
|Server to |Client. This approach to defining aspect composition 
addresses the issues of expressiveness and scalability in the 
following ways. 
There are a number of points to make about Figure 4. Firstly, the 
method maintains a complete separation of the aspect and its 
composition strategy – Figure 1 defines the aspect; Figure 4 is the 
strategy. This promotes reuse of aspects and application of the 
same aspect but with a different composition strategy. Section 4 
will give an even more convincing example of this by showing 
how a generic two-phase commit protocol can be reused as an 
aspect. Secondly, the technique is a fully expressive way of 
defining composition strategies – Figure 4 illustrates just one 
strategy but others could easily be defined by modifying the LHS 
or RHS. Thirdly, the method reduces the number of instantiations 
that must be provided. In this example, only one instantiation 
must be provided by the modeler – for |failure_ack. All other 

roles can be instantiated automatically by graph matching against 
a base model – the LHS of the graph transformation is matched 
against the base model thus instantiating |Client, |Server, 
|send_data and |Other automatically; only |failure_ack remains to 
be instantiated. In this example, the LHS of Figure 4 matches the 
base model (Figure 2). The match results in the following 
instantiations being made automatically: |send_data → 
Send_wthr_data(x), |Client → WAClient, |Server → CM and 
|Other matches against all messages following 
Send_wthr_data(x).  Note that a UML2.0 ref fragment is used to 
define a placeholder for a sequence of messages in the base. This 
is an easy way to match against a message sequence whose 
position in the composed model can then be specified exactly on 
the RHS of the transformation.  

|Other

|send_data

: |CM

|failure_ack storeStatus(done)
close

: |Client : Status: |CM: |Client

ref

|send_data

|Other

alt

ref

Figure 4: Failure handling aspect composition as a graph 
transformation. 
We must extend the definition of graph transformation when 
dealing with eRBML. When matching against the LHS of the 
transformation rule, instantiations for the role elements must be 
discovered. We therefore modify the definition such that a graph 
transformation applies to a UML model if and only if the LHS of 
the transformation can be graph matched modulo conformance. 
This notion is defined below. Also below, we analyze our new 
composition method with respect to expressiveness and 
scalability. 

3.1.1 Expressiveness 
The RHS of the graph transformation rule defines the manner in 
which the aspect crosscuts a base model. Because the RHS is a 
model itself, there is complete expressiveness in how the 
crosscutting is defined. The aspect messages, for example, can be 
defined as alternatives to a base message or messages, as 
interleaved with base messages, as occurring in parallel with base 
messages, or any combination. The composition operators defined 
in Section 2.2.2 can be defined as special cases but the graph 
transformation allows any combination of these operators to be 
specified, or indeed for new operators to be specified. The 
composition directives in Section 2.2.1 are subsumed by the graph 
transformation approach because there is no longer any need to 
tailor the aspect composition algorithm to add, delete, or remove 
elements – these modifications are, in essence, defined explicitly 
in the RHS of the transformation.  

3.1.2 Scalability 
The biggest barrier to scalability of aspect approaches based on 
RBML is that the modeler must instantiate the role elements for 
each base model crosscut by the aspect. Graph transformations 
reduce this effort because instantiating the role elements can be 
automated to some extent. Instantiation amounts to finding a base 
model over which the graph transformation can be applied – i.e., 
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finding a match for the LHS of the transformation rule. We use 
matching modulo conformance when applying an aspect – that is, 
an eRBML model, R, matches a UML model, U, modulo 
conformance if and only if there is an instantiation of the role 
elements, θ, such that U conforms to θ(R). Consider again the 
example in Figure 4. In this case, the base model in Figure 2 
matches the LHS of the aspect transformation modulo 
conformance because the roles in the LHS can be instantiated in a 
way such that the base model conforms to the LHS - |send_data is 
instantiated to Send_wthr_data(x) and |Other is instantiated to the 
sequence of messages following Send_wthr_data(x). Note that 
matching modulo conformance looks for a maximal match if the 
LHS contains a ref fragment. In other words, all messages 
following Send_wthr_data(x) are matched against |Other, not any 
subsequence of those messages. 

4. CASE STUDY 
CTAS (Center-TRACON Automation System) [4] is a 
component-based, distributed system whose goal is to maximize 
throughput of aircraft through an airport. One of the most crucial 
aspects of CTAS is a weather subsystem that broadcasts new 
weather data to all relevant processes and ensures integrity of this 
weather data. The CM (communications manager) is responsible 
for distributing new weather-related data to all CTAS clients that 
need it (weather-aware clients). New data arrives as a result of 
new forecasts or new weather data sources, and can be triggered 
automatically or manually. A weather update procedure is 
invoked by CM every time new data arrives or a new weather-
aware client connects to the system.  

Data integrity is clearly an important issue in the design of this 
system that will affect several of its components. All weather-
aware clients rely on a model of the current weather data and 
must use the same model at all times. The original design deals 
with data integrity using a two-phase commit protocol. However, 
in the design, the details of this protocol are intertwined with the 
core functionality of CM. In what follows, we show how to 
modularize the two-phase commit protocol as an aspect and show 
how to compose this aspect with the core functionality. This 
results in a more readable design in which changes to the data 
integrity design are localized and therefore easier to make. We 
focus in this paper on the dynamic aspects of the design and 
model the design using UML sequence diagrams.  

There are two situations in which weather data integrity becomes 
important. Firstly, when a new weather-aware client connects, 
current weather data must be sent to it. Secondly, when the user 
or system invokes an update of the weather data, the new data 
must be broadcast to all weather-aware clients. In both cases, the 
requirements state that the two-phase commit protocol should be 
applied. Figures 5 and 6 show the two base sequence diagram 
models corresponding to the connection of a new client and a 
weather update, respectively. The two core functionalities are 
similar but not the same – different information is stored in each 
case, and in the second case, there are additional messages for 
data persistency.  

Figure 6 introduces some additional notations not currently part of 
UML2.0. <<multiobject>> is used to denote the fact that there are 
multiple participants of a given type. {all} means that a message 
is sent to or received from all of those participants. {exists} (not 
shown in the figure) means that a message is sent to or received 

from at least one of those participants. In Figure 6, all messages 
concerning communication between CM and its clients are sent to 
all clients. Both diagrams take care of broadcasting weather data 
by simply sending (one or more) Send_wthr_data messages. The 
two-phase commit protocol is not modeled as part of the core 
functionality. Instead, it will be modeled separately as an aspect, 
which means that the nature of the protocol can easily be 
modified if necessary. Note that it is not the aim of this paper to 
provide a mechanism to identify aspects. To do that, we can make 
use of some aspect mining techniques (e.g., [11, 16]). 

: WAClient : Status : Weather: CM: Panel

storeStatus(initializing)storeStatus(initializing)
getCurrentWeatherData

Send_wthr_data(x)

groundWindSetting

altimeterSetting
enable

Figure 5: New weather-aware client connects. Update clients.  

{all}storeStatus(updating)

storeStatus(updating)
getCurrentWeatherData

{all}Send_wthr_data(x)

: WAClient : Status : Weather: CM: Panel
<<multiobject>>

{all}groundWindSetting

{all}altimeterSetting

updatePending

storeToCMSIM

enable

 
Figure 6: New weather data arrives. Update clients. 

We give a brief description of the behavior specified in Figures 5 
and 6. In Figure 5, the behavior is triggered by a connection 
request from a new client (not shown). CM responds by starting 
an initialization procedure for the client and storing data related to 
that procedure. It then queries a database for current weather data 
and sends this data to the client along with two other settings. It 
finishes by enabling a GUI panel that had been enabled when the 
new client requested connection. In Figure 6, the behavior is 
similar except that new weather data has arrived (either triggered 
automatically or manually) – this is not shown in the figure. The 
CM again stores data related to the procedure, queries the weather 
database and broadcasts the data to all weather aware clients. It 
carries out some additional storage operations and re-enables the 
GUI panel. 

The two-phase commit protocol is modeled as an aspectual 
sequence diagram in eRBML in Figure 7. The aspect defines a 
general pattern of communication for the protocol that can be 
reused across many applications. In the Figure, there are two 
classifier roles - |Participant and |Commit Server. An instance of 
this aspect would instantiate actual classifiers to play those roles. 
Similarly, the interactions in the figure are given as message roles 
that can be instantiated to specific message names. The figure 
only commits a transaction if all participants acknowledge and 
agree to the transaction. For this case study, the aspect is first 
refined because the logic of the CTAS application requires that 
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information about the progress of the protocol is stored. This 
information becomes part of a refined aspect shown in Figure 8.  
Figures 9 and 10 respectively give the LHS and RHS of a graph 
transformation that composes the refined aspect (Figure 8) with 
the base functionality in Figure 6. Note that the LHS says that the 
aspect will apply at all points in which there is an instance of a 
|prepareToCommit message, followed by a sequence of messages 
(given as a role representing a UML2.0 ref fragment), followed 
by an enable message. This application condition is true for both 
of the core scenarios. A graph matching algorithm can be used to 
search for a match of the LHS with base scenarios. In this case, 
|prepareToCommit can only be instantiated to Send_wthr_data, 
|CommitServer can only be instantiated to CM, but |Participant 
can be instantiated to either a single weather-aware client or a 
multiobject of weather-aware clients. |OtherMessages matches 
with any sequence of messages between the messages 
Send_wthr_data and enable. 

{exist} |commitIncomplete

{all} |readyToCommit

{all} |commit

{all} |commitComplete

{all} |prepareToCommit

{all} |abortIncompleteCommit

: |Participant |Commit Server

alt

alt

<<multiobject>>

{exist} |refuseToCommit
{all} |abortRefuseToCommit

 
Figure 7: General Two-Phase Commit Protocol. 

The RHS of the graph transformation is given in Figure 10. Note 
the placement of |OtherMessages. Taking one example of the 
composition, in Figure 6, |OtherMessages matches to 
updatePending, storeToCMSIM, {all}groundWindSetting, 
{all}altimeterSetting. These messages should only be sent if the 
two-phase commit protocol successfully completes. But the two-
phase commit aspect contains cases both for successful commit 
and unsuccessful commit. The composition of the aspect and base 
model must be done in such a way that the matches for 
|OtherMessages are inserted only at the point of successful 
commitment. Using the existing methods by France et al. and 
Whittle & Araújo, this would be difficult and awkward to specify. 
In the approach by Whittle & Araújo, there would have to be a 
predefined composition operator that would allow the weaving in 
the manner described. Currently, there is no such operator. In the 
approach by France et al., the modeler would have to give a list of 
composition directives that instruct the composition algorithm 
where to place the messages matching with |OtherMessages. This 
would be a time-consuming and error-prone process because there 
is no easy, graphical way to specify these directives. In essence, 
the graph transformation is a graphical way to specify the 
directives. The modeler is free to place |OtherMessages wherever 
s/he likes on the RHS of the graph transformation rule. Note also 
that the modeler can easily specify a different composition 
strategy by simply modifying the RHS of the rule.  

We do not show here the results of composing the aspect with 
each of Figures 5 and 6 but leave it to the reader to apply the 
graph transformation and hence to generate the compositions. 
Note that the entire application was modeled using our approach 
but only a small part can be presented in this paper. 

{all} storeStatus()

|{exist} commitIncomplete

|{all} readyToCommit

|{all} commit

alt

|{all} commitCompletealt

|{all} prepareToCommit

|{all} abortIncompleteCommit

|{exist} refuseToCommit

|{all} abortRefuseToCommit

: |Participant : |Commit Server
|<<multiobject>>

: Status

storeStatus()

storeStatus()
{all} storeStatus()

storeStatus()

storeStatus()

 
Figure 8: CTAS specific two-phase commit 

: |Participant : |Commit Server

|{all}prepareToCommit
<<multiobject>>

enable

: Panel

|OtherMessagesref

 
Figure 9: LHS of graph transformation. 

|{all} commitComplete

{all} storeStatus()

alt
{all} storeStatus()

|{exist} commitIncomplete

: |Participant : |Commit Server

|{all} readyToCommit

|{all} commit

alt

|{all} prepareToCommit

|<<multiobject>>

|{all} abortIncompleteCommit

|{exist} refuseToCommit

|{all} abortRefuseToCommit

: Status

storeStatus()

storeStatus()

storeStatus()

storeStatus()

ref |OtherMessages

 
Figure 10: RHS of a graph transformation that composes the 

refined aspect in Figure 8 

5. RELATED WORK 
Graph transformations have a noble history in software 
engineering. Their use has been suggested for viewpoint 
integration [8] in requirements engineering, software refactoring 
[2], and generative programming [17]. Graph transformations are 
even being considered as a potential standardized model 
transformation language as part of the MOF 2.0 
Query/Views/Transformations (QVT) effort [15]. However, to the 
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author’s knowledge, there has been no in-depth research on 
composing aspects using graph transformations. The UMLAUT 
framework [19] is a tool to transform UML models that is not 
explicitly based on graph transformation. Its use to compose 
aspects in UML has been investigated by defining transformation 
rules over a UML model given by an abstract syntax tree. 
However, UMLAUT has its own definition for transformation 
rules and does not make use of the intuitive graphical nature of 
graph transformations. Graph transformations defined over 
eRBML models resemble the equivalent UML models very 
closely and hence can be understood easily by practitioners. 
A number of approaches have applied template-based UML 
models for defining aspects. Templates are a poor man’s version 
of eRBML because their instantiation mechanism is very 
restricted. [3], for example, deals with crosscutting concerns as 
UML templates at the design level. Template binding is used to 
compose the pattern with concrete model elements. The 
compositions, however, are not as flexible as in our approach. The 
aspect-oriented software development group at Colorado State 
University has conducted extensive research on using RBML or 
related languages to represent aspects. We feel that graph 
transformations offer a more scalable and more expressive way of 
defining aspect compositions. 
There has also been considerable recent work on defining aspects 
during requirements engineering. The aspect-oriented require-
ments engineering (AORE) approach [12] defines detailed 
composition rules for aspectual requirements in XML. AORE 
focuses on textual requirements and hence is complementary to 
our work which focuses on graphical models. 

6. CONCLUSIONS & FURTHER WORK 
Existing techniques to represent and compose aspects at 
requirements and design level suffer from several problems, in 
particular they are not scalable, requiring a lot of detailed work 
from the modeler. This paper described an approach to represent 
aspects using a UML-based role modeling language to define the 
aspect and graph transformations to define aspect compositions. 
Hierarchies were used to structure aspects and their possible 
instances. This approach is scalable because graph matching can 
be applied to automatically compose aspects, and expressive 
because the modeler defines any kind of composition in the graph 
transformation rule which is expressed in an intuitive graphical 
form. To validate the approach, we applied it to part of an air 
traffic control system developed at NASA. 

There are many research questions regarding aspect model 
composition still to be answered. The treatment given here is on a 
syntactic level. It would be interesting to consider more semantic-
based composition strategies. In addition, this paper does not 
address conflicts between aspects that may arise during 
composition. The authors feel that since graph transformations 
have a well understood theoretical underpinning, they are a good 
starting point for dealing with these issues. There are also some 
open questions regarding the matching process that we have 
defined. The authors plan to develop tool support for the approach 
which will provide support for application of the matching 
process, e.g., backtracking when an inappropriate match is 
chosen. Theoretical boundaries on the complexity of matching 
probably will not be a practical barrier since techniques to provide 
instantiations in a reusable way will be provided. 
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