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FB 3 — Mathematik und Informatik

Universität Bremen

cxl@informatik.uni-bremen.de

Neil Ghani
Dept. Mathematics and Computer Science

University of Leicester

ng13@mcs.le.ac.uk

Abstract

Monads are a useful abstraction of computation, as they model di-
verse computational effects such as stateful computations, excep-
tions and I/O in a uniform manner. Their potential to provide both
a modular semantics and a modular programming style was soon
recognised. However, in general, monads proved difficult to com-
pose and so research focused on special mechanisms for their com-
position such as distributive monads and monad transformers.

We present a new approach to this problem which is general in that
nearly all monads compose, mathematically elegant in using the
standard categorical tools underpinning monads and computation-
ally expressive in supporting a canonical recursion operator. In a
nutshell, we propose that two monads should be composed by tak-
ing their coproduct. Although abstractly this is a simple idea, the
actual construction of the coproduct of two monads is non-trivial.
We outline this construction, show how to implement the coproduct
within Haskell and demonstrate its usage with a few examples. We
also discuss its relationship with other ways of combining monads,
in particular distributive laws for monads and monad transformers.

Categories and Subject Descriptors

D.1.1 [Programming Techniques]: Functional Programming

General Terms

Algorithms, Languages, Theory

1 Introduction

It has long been a goal of research within the theoretical computer
science community to provide a modular semantics for program-
ming languages. In detail, one would like to give a semantics for
individual features of a programming language such as exception
handling, non-determinism and state-based computation and, by
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suitably composing these, obtain a semantics for the programming
language as a whole. If successful, reasoning about large pieces of
software could be achieved by reasoning about smaller (and hence
more tractable) subcomponents and then lifting these results to the
original problem.

One exciting possibility was Moggi’s proposal [17] to use mon-
ads to structure denotational semantics. Moggi pointed out that a
number of computational features (including all of those mentioned
above) could be modelled by monads. Wadler took Moggi’s ideas
further by showing how one could actually program with monads.
For example monads can be used to support imperative features
within a purely functional language. Soon, however, it became clear
that despite the undoubted value of monads from both the semantic
and programming perspectives, composing monads would prove to
be a significant challenge. Put briefly, monads just do not seem to
compose in any general manner. Thus, a variety of different meth-
ods to combine monads were proposed, most notably in the use of
distributivity laws and monad transformers. While being useful in
specific situations, these theories do not cover all situations, and
furthermore, as we comment later, can sometimes seem rather ad-
hoc.

What these approaches have in common is the observation that
monads are functors carrying extra structure. Thus the obvious
way to compose a monad T and a monad R is to use the functo-
rial composition R.T . Unfortunately, R.T is not a monad and one
can see both monad transformers and distributivity laws as an at-
tempt to coax R.T into a monad. An alternative point of view is
to observe that, just as functors are the objects of the functor cat-
egory, so monads are the objects of the category of monads and
monad morphisms. Then the canonical way of putting two objects
together is take their coproduct, and this is what this paper is about.

Our interest in this topic arose from previous research of ours which
used the coproduct of two monads as a framework for modular-
ity [14] and, in particular, modular term rewriting [12, 13]. In
modular term rewriting, terms built over two signatures are decom-
posed into terms built over each of the two signatures, called layers.
Within these papers, we argued that the layer structure is the key
concept of modularity, and should be taken as a primitive notion
rather than as a derived concept. The relevance of monads is that
they provided an abstract and axiomatic formulation of the notion
of a layer. When we tried to apply this work to the combination
of monads within functional programming we found that we had
used several assumptions which important computational monads
did not satisfy. Thus, the composition of computational monads, in
particular from the functional programmer’s perspective, became a
challenge for us, and this paper is the result of our research. Its



concrete contributions are:

• to explain the construction of the coproduct of two monads
using the idea of layers to describe how the individual monads
are interleaved to form the coproduct monad;

• to explain how the coproduct can be regarded as an abstract
datatype with a canonical recursion operator similar to fold;

• to explain that, unlike current approaches, virtually all mon-
ads can be composed via the coproduct construction;

• to explain how the coproduct of two monads can be imple-
mented in Haskell. This is non-trivial since the coproduct is
not a free datatype but rather a quotient;

• to explain how the coproduct approach relates to current ap-
proaches. For example, in the presence of strong distributiv-
ity laws, the functorial composite of two monads is not just a
monad, but also the coproduct of the two monads in question.

To summarise, we feel that coproducts provide the right general
framework for composing monads. The fact that almost all monads
compose in this way and that the coproduct has a universal property
and an associated recursion operator are two powerful arguments in
its favour over current approaches. However, there is a price to be
paid, namely that we are keeping track of all possible layers. As we
show later, one can regard monad transformers and distributivity
laws as an attempt to squash all these layers into one specific layer
which, when possible, results in a data structure which is potentially
easier to manage. However, even in such situations, the coproduct
analysis still contributes to our understanding, e.g. in reminding us
that however we compose monads, there should be an associated
recursion operator.

Our aim here is to explain our ideas to the functional programming
community. Consequently we keep the categorical jargon down to a
minimum, focusing on intuitions and examples rather than detailed
proofs; however, at times we need to be technically exact (in partic-
ular in Sect. 4.2). Then, a basic knowledge of category theory (such
as categories, functors and natural transformations) will be helpful.

The remainder of this paper is structured as follows: in Sect. 2 we
introduce monads, both as term algebras and computational monads
as found in Haskell, and discuss how distributivity laws and monad
transformers have been used to compose monads. In Sect. 3, we
construct the coproduct of two monads and give some examples of
its use. In Sect. 4, we evaluate the construction and in particular
show how distributive monads form a special case.

2 A Brief History of Monads

Monads originally arose within category theory as models of term
algebras. Such monads provide good intuitions as to how to con-
struct the coproduct of two monads and so we begin with them.
Since this is standard material, we refer the reader to general
texts [15] for more details.

2.1 Monads and Term Algebras

Term algebras are built from signatures which are defined as fol-
lows:

Definition 1. A (single-sorted) signature consists of a function Σ :
�
→ Set. The set of n-ary operators of Σ is defined Σn = Σ(n).

Definition 2. Given a signature Σ and a set of variables X , the term
algebra TΣ(X) is defined inductively:

x ∈ X
’x ∈ TΣ(X)

f ∈ Σn t1, . . . ,tn ∈ TΣ(X)

f (t1, . . . ,tn) ∈ TΣ(X)

Quotes are used to distinguish a variable x ∈ X from the term
’x ∈ TΣ(X) and can be seen as introducing layer information into
terms. As we shall see later, when constructing the coproduct
of two monads, this layer structure is the central concept. For
every set X , the term algebra TΣ(X) is also a set; categorically
TΣ : Set → Set is a functor over the category of sets. In addition,
for every set of variables X , there is a function X → TΣ(X) sending
each variable x to the associated term ’x. Lastly, substitution takes
terms built over terms and flattens them, as described by a func-
tion TΣ(TΣ(X)) → TΣ(X). These three pieces of data, namely the
construction of a theory from a set of variables, the embedding of
variables as terms and the operation of substitution are axiomatised
as a monad:

Definition 3. A monad T = 〈T,η,µ〉 on a category C is given by an
endofunctor T : C → C , called the action, and natural transforma-
tions, η : 1⇒ T , called the unit, and µ : TT ⇒ T , called the multipli-
cation of the monad, satisfying the monad laws: µ.Tη = 1 = µ.ηT ,
and µ.Tµ = µ.µT .

We have already sketched how the term algebra construction TΣ has
an associated unit and multiplication. The equations of a monad
correspond to substitution being well behaved, in particular being
associative with the variables forming left and right units. If we
think of TΣ(X) as a layer of terms over X , the unit converts each
variable into a trivial layer and the multiplication allows us to col-
lapse two layers of the same type into a single layer.

Monads model a number of other interesting structures in com-
puter science, such as (many-sorted) algebraic theories, calculi with
variable binders [4], term rewriting systems [12], and, via compu-
tational monads [17], state-based computations, exceptions, con-
tinuations etc. Several of these computational monads are used
throughout this paper and their definition is given in Appendix A.
Importantly, these applications involve base categories other than
Set (in fact, every monad on Set can be considered as an algebraic
theory [16]), and possibly even enrichment. Even in this abstract
setting, monads can be considered as a generalised form of alge-
braic theories [9, 21]. We do not pursue the theory in its full gen-
erality here, but should bear in mind that although we draw our
intuitions from monads on Set, this is just a particular case which
we do well not to restrict ourselves to.

In the rest of this paper, we often regard T (X) abstractly as a layer
— in the examples above, layers were terms, rewrites, or compu-
tations; monads then abstract from the nature of a layer and rather
provide a calculus for such layers where the actual layer, the empty
layers, and the collapsing of two layers of the same type are are
taken as primitive concepts. The coproduct construction we detail
later will then consist of all interleavings of layers from the compo-
nent monads.

We end this section with two minor technical comments about fini-
tariness and enrichment; while not important for the basic under-
standing, they are essential for the mathematical correctness.

Firstly, a monad is finitary if its action on infinite objects is deter-
mined by its action on finite objects. For example, for a finitary



signature Σ and an infinite set X of variables, we have

TΣ(X) =
�

X0⊆X ,X0 finite

TΣ(X0)

Categorically, this property is defined in terms of preservation of
directed colimits, but we shall not need this level of detail; however,
some of our constructions will only be valid for finitary monads, so
we introduce the terminology on an informal level here. For the
precise definitions, see [1]. All known computational monads are
finitary, except for the continuation monad [19].

Secondly, when reasoning about the semantics of functional lan-
guages, we usually pass from sets to order structures such as com-
plete partial orders (cpos). Categorically, this means not only a
change of the base category, but imposing an order structure on the
morphisms as well (see e.g. [23]; crucially the set of functions be-
tween two cpo’s forms in turn a cpo.) This is called enrichment [8].
We note that all of the theory in the following can be enriched [9],
but prefer to keep the presentation simple.

The definition of a monad given above is unlike what readers may
have seen in a functional language like Haskell. Here is how the
two are related.

2.2 Monads in Haskell

In the programming language Haskell, a monad is given by two
operations >>= and return, which form a type class:

class Monad m where
(>>=) :: m a-> (a-> m b)-> m b
return :: a -> m a

This is the so-called Kleisli-category of a monad:

Definition 4. For a monad T = 〈T,η,µ〉, the associated Kleisli-
category CT has the same objects as C . Each morphism f : X → TY
in C gives a morphism f † : X →Y in CT , with composition is given
g†. f † = (µ.Tg. f )† and identity 1X = η†

X : X → TX .

The Kleisli-category for a signature Σ has as objects sets (of vari-
ables or terms), and as morphisms assignments of the form σ :
X → TΣ(Y ). Composition is by variable substitution, i.e. given

τ : Y → TΣ(Z), we have τ.σ : X → TΣ(Z) as τ.σ(x)
def
= t[τ(y)/y] for

σ(x) = t.

The Kleisli-category can be considered the free syntactic category
generated from the signature, and as such it has some attractive
properties (for example, unification can be expressed elegantly as a
coequaliser [22]). However, we prefer to work with Def. 3 since it
is unclear how to form the coproduct of two Kleisli-categories di-
rectly. It is most certainly not the coproduct of the two categories,
which would just be their disjoint union. In contrast, as we have
already seen, the presentation of monads in Def. 3 supports the in-
tuition based on layers which turns out to be the central concept in
constructing the coproduct of two monads.

Fortunately, Def. 3 and Def. 4 are equivalent in the sense that given
one we can always calculate the other in a bijective manner. For ex-
ample, given a monad T, one constructs functors FT : C → CT ,GT :
CT → C which on objects are respectively the identity and T, while

on morphisms:

FT ( f : X →Y ) = (ηY . f )†X → TY

GT ( f : X → TY ) = (µY .T f ) : TX → TY

The functor FT is left adjoint to GT , and their composition results
in a monad which is isomorphic to T [15, Theorem VI.5.1]. We can
directly express this in Haskell as follows:1

class Functor t=> Triple t where
eta :: a-> t a
mu :: t (t a) -> t a

instance Triple f=> Monad f where
x >>= y = (mu . (fmap y)) x
return = eta

instance (Functor m, Monad m) => Triple m where
eta = return
mu x = x >>= id

Of course, we could have defined a new class Monad or Triple
which has all of (>>=), eta and mu, but the advantage of this ap-
proach is that we can use Haskell’s syntactic sugar when writing
down monads which we combine using the Triple class, and we
can further use Haskell’s predefined monads as instance of Triple,
combining the best of both worlds.

2.3 Composing Monads

Given a monad modelling exceptions and a monad modelling state
transformations, can we derive a monad modelling computations
which can either raise exceptions or modify the state. More gener-
ally, given monads T and R which we may think of as performing
T -computations and R-computations respectively, is there a monad
which performs both? We finish this section by discussing two ap-
proaches to this problem.

Distributivity: A first guess would be to consider if the functo-
rial composite T .R is a monad. This would require a multiplication
of the form T .R.T .R ⇒ T .R but there is no reason one should ex-
ist. One solution [6, 10] is to restrict attention to those monads for
which there is a natural transformation λ : R.T ⇒ T .R and then,
given some coherence laws, the multiplication can be constructed
as

T .R.T .R =====
TλR

⇒ T .T .R.R =======
µT µR

⇒ T .R

Such a natural transformation λ is called a distributive law [2] and
ensures T .R is a monad. A practical example occurs with the excep-
tion monad which distributes over any other monad. That is, if E is
a fixed object of exceptions and T is a monad, then the assignment
mapping X to T (X +E) is also a monad.

From our layer based perspective, the functorial composite T .R
corresponds to a T -layer over an R-layer. In general, combining
a monad T with a monad R should not include just this specific
layering, but all layerings, e.g. T .R.T or R.T .R. Thus it is not sur-
prising that in general T .R is not a monad. Now, a distributive law
corresponds to an interchange law which permutes T -layers over R-
layers and hence allows us to squash an arbitrary layering into the

1Triple is another word for monad [2]. This code will produce
overlapping and undecidable class instances, and will be rejected
by ghc and hugs unless the appropriate options are given.



specific layering T .R. We later formalise this observation by show-
ing that when there is a strong distributive law, not only is T .R a
monad, but it is also the coproduct monad.

Monad Transformers: Monad transformers provide a partial an-
swer to the question of composing monads when there is no dis-
tributivity law present. In a nutshell, a monad transformer [18]
is a pointed endofunctor on the category Mon(C ) of monads over
a fixed base category. That is, a functor F : Mon(C ) → Mon(C )
mapping every monad T to a monad F(T), and for every monad T
a natural family of monad morphisms αT : T ⇒ FT. We think of
the functor F transforming a monad T to the monad F(T), while αT
ensures the monad T is sitting inside F(T). Given that the identity
functor is a monad, we may thus regard F as adding to every monad
T the monad F(1).

For example, the definition of the exception monad transformer [11]
is

type ExnT m a = m (Exn a)

As we have already seen, there is a distributivity law present and in
this case, the action of the monad transformer takes any monad T to
TExn. However, the definition of the state monad transformer is

type StateT s m a = s -> m (s, a)

There is no distributive law here between the monad m and the
state monad which allows us to permute one layer over the other.
Nevertheless, one can see that the monad m has been partially per-
muted past the pairing operation although not past the outer func-
tion space. So, monad transformers allow us a more fine-grained
control of the combination allowing some form of mixing of the
layers between the state monad and an arbitrary monad m.

In our opinion, the concept of a monad transformer is rather elegant
but the definition is too general to support an adequate meta-theory.
By this we mean that given a monad, it is not clear whether it is
possible, and if so how, to define an associated monad transformer.
For example,there is no monad transformer for the list monad asso-
ciated to the monadic treatment of non-determinism [11]. Another
disadvantage is that we have to pick an order in which to combine
the monads, which does make a considerable difference. Moreover,
when adding a new monad transformer we have to consider the pos-
sible combinations with all existing monad transformers separately,
and this number of combinations grows quadratically. Thus, monad
transformers are not really modular.

To summarise, both distributivity laws and monad transformers at-
tempt to define a composite monad by squashing all the different
layers obtained by interleaving the component monads into one spe-
cific layer. As we shall see, the coproduct approach simply keeps
all the layers. This shift in emphasis means we buy generality since
we can always compose monads. Of course the price to be paid
is that the data structure has to manage all layers and this imposes
some computational overhead.

3 The Coproduct of Monads

Having discussed the current approaches to composing monads, we
now explain our approach based upon coproducts. We first discuss
abstractly what the coproduct means and show how the associated
universal property provides a recursion operator. We then discuss
the construction of the coproduct of two monads before implement-
ing it in Haskell and discussing its correctness briefly.

3.1 Using the Coproduct

Given two monads T1,T2, their coproduct can be thought of as the
smallest monad containing both monads. Formally, the coproduct
of two monads is simply the coproduct in the category of monads.
For definitiveness we give a formal definition including the relevant
universal property:

Definition 5. Given two monads T and R, their coproduct is a
monad denoted T +R such that

• there are monad morphisms in1 : T → T + R and in2 : R →
T +R;

• for any other monad S and monad morphisms α : T → S, β :
R → S, there is a unique monad morphism [α,β] : T+R → S,
called the mediating morphism, such that

[α,β].in1 = α [α,β].in2 = β (1)

A monad morphism is just a natural transformation commuting
with the unit and multiplication [2, Sect. 3.6]. The universal prop-
erty allows us to treat the coproduct of two monads as an abstract
datatype; so given monads Triple t1, Triple t2, we have a
type Plus t1 t2 a and two injections:

inl :: Triple t1=> t1 a-> Plus t1 t2 a
inr :: Triple t2=> t2 a-> Plus t1 t2 a

Morever, given any two monad morphism from t1 and t2 respec-
tively to another monad s, we have a function out of the coproduct.
The monad morphisms have the type t1 a-> s a, but each has
to be defined uniformly for all a, hence the type of coprod uses
rank-2 polymorphism and is not standard Haskell98 anymore:

coprod ::(Triple t1, Triple t2, Triple s)=>
(forall a.t1 a-> s a)->
(forall a.t2 a-> s a)-> Plus t1 t2 a-> s a

Just like fold on lists is given by the universal property (i.e. free-
ness, initiality) of the datatype [a], coprod is given by the univer-
sal property of the coproduct, and just like fold, it can be used to
implement recursive functions on the coproduct.

We now consider a small example. Assume that we have an excep-
tion monad Exn (see Sect. A.2). Using this monad, we can define a
function

check :: Char-> Exn Char
check c = if isPrint c || isSpace c

then return (toLower c)
else raise "Illegal character"

which takes its argument to lower case, but raises an exception if
the character is neither printable nor a white space. We now want to
combine this exception-raising function with a state monad Store
(see Sect. A.3) to implement a function which imperatively counts
the occurrence of a particular character in a string, raising an excep-
tion if the string contains non-printing non-space characters. The
type of the function will be

count :: Ref Int-> Char-> String->
Plus Exn (Store Int) Int

as it uses both Store (of which Ref is a part) and Exn. Within
the function count, we can use both stateful computations and
exception-raising computations, injecting them into the coproduct



using inl and inr:

count r _ [] = inr (readRef r)
count r x (c:cs) =
do c <- inl (check c)

if c == x then inr (incRef r)
else return ()

count r x cs

To run this computation, we have to map Store and Exn to another
monad using coprod. Note that we have not defined coprod yet
(we will do so in Sect. 3.2); the point here is that to use the coprod-
uct all we need is the universal property, as given by the mediat-
ing morphism coprod. This follows good programming practice
in hiding the implementation of an abstract data type from the pro-
grammer. The simplest monad possible is the identity monad Id,
as defined in the Appendix A.1. We can use the identity monad as a
target monad if for both t1 and t2, we have maps t1 a -> a, t2
a-> a. For the identity monad we get a special case of coprod:

coprod’:: (Triple t1, Triple t2)=>
(forall a. t1 a-> a)->
(forall a. t2 a-> a)-> Plus t1 t2 a-> a

coprod’ f g x = r where
Id r = coprod (Id. f) (Id. g) x

To evaluate exceptions, we catch all exceptions which might occur,
and to evaluate stateful computations, we have the runSt combina-
tor. Then, we can run the count computation with

run :: Char-> String-> Int
run x s = coprod’ catch runSt

(do r<- inr (newRef 0)
count r x s)

Now we want to augment the function by having it print a dot each
time it encounters an occurrence of the character it is supposed
to count. Thus, we add the predefined IO monad to the type by
replacing Store Int with Plus (Store Int) IO, and the type
becomes

count’ :: Ref Int-> Char-> String->
Plus Exn (Plus (Store Int) IO) Int

The code remains largely unchanged, except that we need to change
the injections of the stateful computations to inr.inl. This change
seems inconvenient at this point, but we will show how to avoid it
later (see Sect. 3.4):

count’ r _ [] = inr (inl (readRef r))
count’ r x (c:cs) =
do c <- inl (check c)

if c == x then do inr (inl (incRef r))
inr (inr (putStr "."))

else return ()
count’ r x cs

This example also shows that we can use both self-defined and
built-in monads. To run this example, we cannot use the identity
monad as the target anymore, since we can not get out of the IO
monad; hence, we use IO as the target monad:

run’ :: Char-> String-> IO Int
run’ x s =

coprod (return.catch)
(coprod (return. runSt) id)

(do r<- inr (inl (newRef 0))

count’ r x s)

Summing up, if we have two different monads and we want to im-
plement a computation using both of these, we can use the coprod-
uct of the two monads. The universal property of the coproduct
gives the mediating morphism coprod, which allows us to define
functions (like run and run’ above) out of the coproduct, by defin-
ing functions f and g on the component monads. So, we can have
more than one function out of the coproduct monad, but coprod f
g is determined uniquely by f and g.

Now that we have seen how to use the coproduct in a practical situ-
ation, we turn to the actual construction of the coproduct monad.

3.2 Constructing the Coproduct

To motivate our general construction, we consider the simple case
of the coproduct of two term algebra monads. Given two signatures
Σ and Ω with corresponding term algebra monads TΣ and TΩ, the
coproduct TΣ +TΩ should calculate the terms built over the disjoint
union of the signatures, Σ + Ω, i.e. TΣ + TΩ = TΣ+Ω.2 Terms in
TΣ+Ω(X) have an inherent notion of layer, as a term in TΣ+Ω either
is a variable or decomposes into a term from TΣ (or TΩ), and strictly
smaller subterms with head symbols from Ω (or Σ respectively).
This suggests that we can build the action of the coproduct TΣ+Ω(X)
by successively applying the two actions TΣ and TΩ:

(TΣ +TΩ)(X) = X +TΣ(X)+TΩ(X)+
TΣTΣ(X)+TΣTΩ(X)+
TΩTΣ(X)+TΩTΩ(X)+
TΣTΩTΣ(X)+ . . .

(2)

In terms of Haskell, each layer corresponds to a particular compu-
tational feature, and the coproduct allows arbitrary interleavings of
computations from the two monads. This reflects one of our key
points, namely that, in general, T .R is too simple a data structure
to represent the interaction of T and R since one only has a T -layer
sitting above one R-layer.

Unfortunately, equation (2) is too simple in that different elements
of the sum represent the same element of the coproduct monad. To
see this, note that variables from X are contained in each of the sum-
mands in the right hand side. Similarly, in the example of Sect. 3.1,
two or more computations from the same monad are layered above
each other and should be composed using the multiplication from
that monad. Therefore, the coproduct is a quotient of the sum in
equation (2).

Kelly [7, Sect. 27] has shown the construction of colimits of ranked
monads, from which we can deduce coproducts of monads as a spe-
cial case. Rank is a generalisation of finitariness to higher cardinals
which basically allows operations of infinitary arity provided they
are bounded above by the rank of the monad. Roughly, the con-
struction of the coproduct for such monads proceeds in two steps:
we first construct the coproduct of pointed functors, and then the
coproduct of two monads.

A pointed functor is an endofunctor S : C → C with a natural trans-
formation σ : 1 ⇒ S (this is called premonad in [6]). Every monad
is pointed, so taking the coproduct of pointed functors is a first step
towards the construction of the coproduct of monads. In the term
algebra example, the natural transformation ηT : 1 ⇒ TΣ models the

2This relies on the fact that the mapping of signatures to monads
preserves the coproduct, which it does because it is a left adjoint.



variables, and the coproduct of two pointed functors S,T should be
the functor which for any given set X returns the union of TX and
SX with the variables identified.

In Set, we identify elements of a set by taking the quotient. Thus,
for example to share the variables from X in TΣ(X) + TΩ(X), we
quotient the set by the equivalence relation generated by ’x ∼ ’x
where the quote of the left-hand side injects the variable into TΣ(X),
whereas the quote on the right injects the variable into TΩ(X). Cat-
egorically, this process is modelled by a pushout:

Definition 6. Given two pointed functors 〈T,ηT 〉 and 〈R,ηR〉, their
coproduct is given by the functor Q : C → C which maps every
object X in C to the colimit in (3)

X
ηT- TX

RX

ηR
?

σR

- QX

σT
?

(3)

The coproduct of monads is constructed pointwise as well: the co-
product monad maps each object X to the colimit of a specific dia-
gram.

Definition 7. Given two finitary monads T = 〈T,ηT ,µT 〉 and R =
〈R,ηR,µR〉, the coproduct monad T + R maps every object X to the
colimit of sequence Xβ defined as follows:

T +R(X) = colim
β<ω Xβ

X0 = X X1 = QX Xβ+1 = colim(Dβ)

where Q,σT ,σR are given by Def. 6, and Dβ is the diagram in Fig. 1
with the colimiting morphism xβ : Dβ → Xβ+1. Given the shape of
the diagram, xβ is a single morphism xβ : QXβ → Xβ+1 making all
arrows in the diagram commute.

TXβ−1

TTXβ−1
1
-

µ T-

TTXβ−1
TσT-

Tη
T-

TQXβ−1
Txβ
- TXβ

QXβ

σ
T-

RRXβ−1 1
- RRXβ−1 RσR

- RQXβ−1 Rxβ
- RXβ

σ R-

RXβ−1

Rη R

-µ
R

-

Figure 1. The diagram defining the coproduct.

Note that the two triangles on the left of Fig. 1 are not the unit laws
of the two monads T,R (see Def. 3), otherwise the diagram would
be trivial.

Def.3 has been given for finitary monads, and can easily be ex-
tended to monads with rank, using transfinite induction. However,
it is unclear how this would work out in practical terms, so we re-
strict ourselves to finitary monads here. As has been pointed out
earlier, all known computational monads are finitary except the con-
tinuation monad, which actually does not even have a rank. Despite

being a general answer to the construction of the coproduct of two
monads, the usefulness of Fig. 1 is limited in practice since the
shape, size and contents of the diagram make it difficult to reason
with directly. We now turn to our contribution, namely an alterna-
tive construction which trades less generality for greater simplicity.

3.3 Implementing the Coproduct

Definitions 6 and 7 show the main difficulty we are faced when
implementing the coproduct: namely, that the coproduct is not a
free datatype, but a quotient. (The usual construction of the colimit
of a diagram is to take the coproduct of all the objects appearing in
the diagram, and quotient it by the relation described by the arrows
[15, V.2].)

The solution to this is to choose a representing type for the coprod-
uct, treat it as an abstract datatype with the three operations from
Sect. 3.1 (and the monad operations), and have the operations op-
erate on representatives of the equivalence class. Thus, we need a
decision procedure for this equivalence. Unfortunately, in general
this is impossible: for example if the monads are modelling alge-
braic theories (ie term algebras quotiented by equations), then this
amounts to asking if two elements s,t ∈ TX are equal under the
equations of the theory. This is in general undecidable.

However, in order to decide the equivalence from Fig. 1, we do
not need to decide the full equational theory of the two monads in-
volved, but merely when an element t is in the image of the unit
η, i.e. t = η(s). Such a layer is called a variable layer and the
following example demonstrates their importance: an element of
TΣTΩTΣ(X) consists of a Σ-layer over a Ω-layer which is itself over
a Σ-layer. If the middle Ω-layer is a variable layer, then in the quo-
tient this element will be equal to the element of TΣTΣ(X) consist-
ing of the two Σ-layers. In turn, this element will be equal to the re-
sult of applying the multiplication of TΣ. Our construction concerns
itself with layered monads for which this question is decidable. The
name is chosen to indicate that for such monads we can tell if an el-
ement is a proper layer or a variable layer. Concretely a monad is
layered if there is a function η−1

X : TX → 1 + X for all X , which
for t in TX either returns an element x of X such that η(x) = t, or
returns the canonical element ∗ of 1, if there is no such x. (In other
words, η−1 is partial.) While the coproduct for any two monads
with rank exists, and is given by Def. 7, our construction will only
apply to layered monads but, for these monads, our construction is
simpler and hence easier to reason about.

Definition 8. A layered monad is a monad T = 〈T,η,µ〉 such that
there is a natural transformation η−1

X : TX ⇒ 1 + X , which is a
partial left inverse for ηX , i.e. for all X , η−1

X
.ηX = in1 (where

in1 : X → X +1 is the inclusion).

Layered monads allow us to decide the equivalence on QX from
Def. 6 as follows: s is equivalent to t iff η−1(s) = η−1(t) 6= ∗. The
type class of layered monads is a straightforward extension of the
Triple class; the codomain X +1 of η−1 corresponds to Haskell’s
Maybe type. In fact, we will only consider layered monads, hence
we will add this function to the class:

class Functor t=> Triple t where
...
etaInv :: t a-> Maybe a

It might be tempting to provide etaInv _ = Nothing as a default
definition, but that would be wrong in being semantically incorrect.



Analysing Fig. 1, we can see the coproduct will either consist of el-
ements of the form TXβ or RXβ, where Xβ is again a representation
of the coproduct, or for the base case, X0 = X . Hence given two
monads (triples t1 and t2), the coproduct will be represented by a
recursive datatype which contains either a layer from t1, or from
t2, or a variable:

data Plus t1 t2 a = T1 (t1 (Plus t1 t2 a))
| T2 (t2 (Plus t1 t2 a))
| Var a

where t1 and t2 are instances of Triple.3 The coproduct will be
a quotient of this datatype by the equivalence relation generated by
the diagram Dβ (Fig. 1). To understand this equivalence, we come
back to equation (2) where there are three forms of equalities. In
the following, let Σ = {F,G} and Ω = {H}.

• For a variable x ∈ X , we have x ∈ X , ’x ∈ TΣ(X) and ’’x ∈
TΩTΣ(X) (and many more); all of these should denote the
same term. This equivalence is generated by Def. 6, and the
arrows σT ,σQ in the diagram. For the implementation, we
need to use the map etaInv to detect and remove these vari-
able layers.

• The terms t1 = GG’x ∈ TΣ(X) and t2 = G’G’x ∈ TΣ(TΣ(X))
are both equivalent to GG’x ∈ TΣ+Ω(X). By collapsing the
two layers, one identifies these terms. This equivalence is
generated by the arrows µT ,µR in the diagram while the im-
plementation will need to check for repeated layers and use
the relevant multiplication to collapse such layers.

• The sum (2) over-simplified matters by considering only
terms which, when descending from the root to any leaf, we
pass through the same number of quotes. However, terms such
as F(’G’x,’H’x) in TΣ(TΣX + TΩ(X)) must also be consid-
ered. Given that the symbol G comes from the same signature
as F, we create a repeated Σ-layer so that the F and G can be
collapsed together. In effect, we try to create a Σ-sublayer un-
derneath the top Σ-layer to which the multiplication can then
be applied.

Thus, a normal form for the equivalence generated from Dβ —
called a witness — should be a term which has no variable layers
and no subterms whose top symbol comes from the same monad
as the term as a whole. Drawing together all the three quotients
just mentioned, all of the following terms have the same witness,
namely t3:

t1 = F(’G’x, ’H’y)

t2 = ’F(’’G’x, ’’H’y)

t3 = F(G’x, ’H’y)

Note that for legibility we do not distinguish between the quotes
associated to Σ and those associated to Ω. Thus from Def. 2, we
have that if x ∈ X , then ’x ∈ TΣ(X); hence, if t ∈ TΣ(X), then
’t ∈ TΣ(TΣ(X)), or ’t ∈ TΩ(TΣ(X)). Thus, the quotes syntactically
represent the layer information (which would otherwise only be
present implicitly).

In order to calculate the witness of a term, we recursively strip away
all unnecessary quotes and collapse layers wherever possible. To
define the function calculating the witness, we use the fact that the
datatype Plus is an initial algebra µY.FY of the functor FY = X +

3Haskell would allow us to put class constraints on the variables
t1 and t2 here, but this only constrains the types of the construc-
tors, which is a bit pointless.

TY +RY (X are the variables), and we can give a recursive function
µY.FY → A out of this datatype by giving an F-algebra structure to
A, i.e. a map FA → A, which in turn means three functions X → A,
TA → A, RA → A. As a higher-order function, this is called fold
(just like its counterpart on lists):

fold :: (Functor t1, Functor t2)=>
(a-> b)-> (t1 b-> b)-> (t2 b-> b)->
Plus t1 t2 a -> b

fold e f1 f2 (Var a) = e a
fold e f1 f2 (T1 t) = f1 (fmap (fold e f1 f2) t)
fold e f1 f2 (T2 t) = f2 (fmap (fold e f1 f2) t)

Defining the function strip which strips away all unnecessary
quotes is straightforward:

strip1 :: Triple t1=>
t1 (Plus t1 t2 a) -> Plus t1 t2 a

strip1 t = case etaInv t of
Just x -> x
Nothing -> T1 t

strip2 :: Triple t2=>
t2 (Plus t1 t2 a) -> Plus t1 t2 a

strip2 t = case etaInv t of
Just x -> x
Nothing -> T2 t

strip :: (Triple t1, Triple t2)=>
Plus t1 t2 a-> Plus t1 t2 a

strip = fold Var strip1 strip2

Collapsing layers is achieved by the multiplication µ : TT ⇒ T , so
for example µ(F(’G’x,’’H’y)) = t3 above. But we also have to
collapse the term t1 to t3, and t1 is not element of TΣ(TΣ(X)), but
of TΣ(TΣ(X)+ TΩ(X)). In other words, we could collapse in the
first argument, but not the second. However, the second argument
is equivalent to the term ’’H’x, which is in TΣ(TΩ(X)), so t1 is
equivalent to t ′1 = F(’G’x, ’’H’x) ∈ TΣ(TΣ(X + TΩ(X))) which
now has a repeated layer to which the multiplication can be applied
to give t3. This latter process we call lifting as we are raising a
sub-layer.

All of this motivates the following definition: to calculate the wit-
ness, we first recursively calculate the witness of the subterms; then
lift the top sublayer to create a repeated layer if possible; then apply
the multiplication; and finally strip of the top layer if it is a variable
layer. Of these, the recursive calculation is achieved by defining
the witness function in terms of fold from above, which applies its
argument functions recursively to all subterms:

lift1 :: Triple t1=>
Plus t1 t2 a-> t1 (Plus t1 t2 a)

lift1 (T1 t) = t
lift1 t = eta t

wit1 :: Triple t1=>
t1 (Plus t1 t2 a) -> Plus t1 t2 a

wit1 t = strip1 (mu (fmap lift1 t))

lift2 :: Triple t2=>
Plus t1 t2 a-> t2 (Plus t1 t2 a)

lift2 (T2 t) = t
lift2 t = eta t

wit2 :: Triple t2=>



t2 (Plus t1 t2 a) -> Plus t1 t2 a
wit2 t = strip2 (mu (fmap lift2 t))

wit :: (Triple t1, Triple t2)=>
Plus t1 t2 a-> Plus t1 t2 a

wit = fold Var wit1 wit2

We can now implement eta and mu, and hence make Plus an in-
stance of Triple. For this, we need to start by making it an instance
of Functor:

instance (Functor t1, Functor t2)=>
Functor (Plus t1 t2) where

fmap f = fold (Var. f) T1 T2

The simplest definition of mu would be

mu :: (Triple t1, Triple t2)=>
Plus t1 t2 (Plus t1 t2 a)-> Plus t1 t2 a

mu = wit. fold id T1 T2

But the argument of mu consists of Plus t1 t2 terms built over
Plus t1 t2 terms, and we can assume that these are already in
normal form, so we only need to compute the witnesses of the “up-
per” layer.

instance (Triple t1, Triple t2)=>
Triple (Plus t1 t2) where

eta x = Var x
etaInv (Var x) = Just x
etaInv (T1 t) = Nothing
etaInv (T2 t) = Nothing
mu = fold id wit1 wit2

All that remains are now the injections into the coproduct, and the
unique mediating morphism. The injections are simple (we only
give one):

inl :: Triple t1=> t1 a-> Plus t1 t2 a
inl t = T1 (fmap Var t)

For the definition of the unique mediating morphism, we recur-
sively evaluate the layers of coproduct in the target monad. Given
monad morphisms f or g, we apply f and g to each layer of the
coproduct and compose the resulting computation with the multi-
plication of the target monad:

coprod :: (Triple t1, Triple t2, Triple s)=>
(forall a. t1 a-> s a)->
(forall a. t2 a-> s a)-> Plus t1 t2 a-> s a

coprod f g = fold eta (mu. f) (mu. g)

Note that f and g above have to be monad morphisms, i.e. com-
mute with unit and multiplication. Just like the monad laws, we
cannot denote this in Haskell, so it is an external assumption that
the programmer is responsible for.

To sum up, the coproduct of two monads with rank, a mild techni-
cal condition, always exists and is given by Def. 7. This definition,
however, is very abstract, and difficult to reason with directly, so
we have given a simple implementation for a large class of monads
called layered monads. To be precise, this implementation works
for all finitary layered monads, which include all usual computa-
tional monads except for the continuation monad.

In our implementations above, we have striven for clarity, not ef-
ficiency. For example, the fmap operation for the coproduct is

quadratic in the number of layers, since it uses fold. Here is a
more efficient version, which is linear in the number of layers:

instance (Functor t1, Functor t2)=>
Functor (Plus t1 t2) where

fmap f (T1 t) = T1 (fmap (fmap f) t)
fmap f (T2 t) = T2 (fmap (fmap f) t)
fmap f (Var x) = Var (f x)

The witness operation as given above is quadratic in the number
of layers, and hence the multiplication (mu) of the coproduct is
quadratic in the number of layers of the upper monad (i.e. in the
(>>=) operation of the Kleisli category, the right argument). That
could be improved, since we do not need to recompute the whole
witness of the upper layer, but merely need to check whether we
can collapse layers. However, in a typical situation the upper lay-
ers will only consist of one layer anyway (see the example from
Sect. 3.1), so the present definition seems a good mix of simplic-
ity and efficiency. An optimised implementation should be linear
in the number of layers, since in principle we only need to check
whether the new layer which is added can be collapsed with any of
the top layers from the term it is added to, but we have not pursued
the matter further yet.

3.4 Monad Transformers Revisited

We have claimed that monad transformers can be seen as squash-
ing the different layers in the coproduct monad into one particular
monad. While the definition is elegant, there seems little meta-
theoretic support, e.g. it is not clear when and how one can define
a monad transformer for a specific monad. A related problem is
that monad transformers can not be used for to combine existing
monads (like the ubiquitous IO monad).

Having said that, the coproduct gives us a canonical monad trans-
former, which has some practical relevance.

THEOREM 3.1. Given any monad T, the functor T+ which takes
any other monad S to the coproduct with T is a monad transformer.

PROOF. The coproduct construction is functorial. Pointedness re-
quires for every monad S a monad morphism S ⇒ T+ S. This can
be taken to be the inclusion of the coproduct and then naturality
follows from the naturality of inclusions, as does the fact that it is a
monad morphism.

We can use this to introduce some conventions which make the
coproduct more readily usable. Recall that in Sect. 3.1 above,
as we added the IO monad to the coproduct, we had to replace
some existing injections, because we changed the type of the ex-
pression from Plus Exn (Store Int) Int to Plus Exn (Plus
(Store Int) IO) Int. Clearly, this is inconvenient; if we want
to add a monad to an already existing computation, we do not want
to have to change existing injections.

Now, the category Mon(C ) of monads over C has an initial object,
namely the identity monad Id (see Sect. A.1), and in any category
with coproducts and and an initial object 0, we have X +0 ∼= X .

In other words, for every monad T, we have T + Id ∼= T. Thus,
if we have a function which has the result type t a, we can al-
ways replace this with the type Plus t Id a, and insert the injec-
tions inl e for terms e:: t a. If we now want to add a second
monad s, all we need is to change the type to Plus t (Plus s
Id a); previously existing code pertaining to the monad t remains



unchanged, while new code is transformed in that we need to write
inr (inl e’) for expressions e’:: s a. To add a third monad
m, we change the type to Plus t (Plus s (Plus m Id)), and
write inr (inr (inl e)) etc. Thus, the monad Id serves as a
placeholder for future extensions and these extensions do not alter
the currently existing code.4

As a brief example, assume that above we would have started with
a recursive version of the count function. This would have type

count :: Char-> String-> Plus Exn Id Int

Then, the first extension would be to add the imperative counting,
leading to the type

count :: Ref Int-> Char-> String->
Plus Exn (Plus (Store Int) Id) Int

and finally, with the addition of IO, we would obtain

count :: Ref Int-> Char-> String->
Plus Exn (Plus (Store Int) (Plus IO Id)) Int

but unlike above, the second version would already use inr.inl to
embed the stateful computations, so when adding the IO monad we
would not have to change the existing code.

In Haskell, this would need some syntactic sugar to reduce the clut-
ter (we want to read and write t instead of Plus t Id, write per-
haps inn for inrn(inl t) etc.), akin to the do notation.

4 Properties of the Coproduct

Of course, we have to justify the constructions of the previous sec-
tion. A full formal correctness proof would be very categorical and
hence outside the scope of this paper, but we will sketch how one
goes about proving correctness. Moreover, the definitions intro-
duced in this section will also be used later on.

4.1 The Coproduct as a Free Algebra

First off, note that the datatype Plus t1 t2 a is not the coproduct
of the two monads, i.e. (T +R)(X) 6∼= Plus t1 t2 a. As has been
pointed out, Plus t1 t2 a only represents the coproduct which is
actually a quotient of Plus t1 t2 a

The straightforward way to prove this quotient is the coproduct
monad would be to first show that the monad laws hold for the quo-
tient, and then prove that on the equivalence classes, the injections
inl and inr are monad morphisms, that coprod f g is a monad
morphism, that it is unique, and that it satisfies equations (1). This
is a lot of work; fortunately, from the categorical constructions we
employ, there is an easier way. This alternate proof rests on the idea
that one can understand a monad through its algebras:

Definition 9. An algebra (X ,h) for a monad T = 〈T,η,µ〉 on a cat-
egory C is given by an object X in C , and a morphism h : TX → X
which commutes with the unit and multiplication of the monad, i.e.

1X = h.ηX h.µX = h.Th (4)

4Note that the quadratic complexity of the mu operator men-
tioned above does not have a detrimental effect here, since by
its construction the Id monad does not actually build any proper
layers— everything is a variable.

The category of algebras for T and morphisms between them is
called T−Alg.

We think of a T-algebra (X ,h) as being a model with carrier X . The
map h ensures that if one builds terms over a such a model, then
these terms can be reinterpreted within the model. This is exactly
what one is doing in the term algebra case where one assigns to
every function symbol f of arity n an interpretation [[ f ]] : Xn → X .
Since monads construct free algebras, we can prove a functor to be
equal to a monad if we can prove that the functor constructs free
algebras. In particular, we can prove a functor to be the coproduct
monad if we can prove it constructs free T + R-algebras which are
defined as follows:

Definition 10. The category T+R-Alg has as objects triples
(A,ht ,hr) where (A,ht) is a T-algebra and (A,hr) is an R-algebra. A
morphism from (A,ht ,hr) to (A′,h′t ,h

′
r) consists of a map f : A→A′

which commutes with the T and R-algebra structures on A and A′.

There is an obvious forgetful functor U : T+R-Alg→C , which takes
a T+R-algebra to its underlying object, and we have the following:

PROPOSITION 4.1 ([7, PROP. 26.4]). If the forgetful functor
U : T+R-Alg → C functor has a left adjoint F : C → T+R-Alg, i.e.
if for every object in C there is a free T+R-algebra, then the monad
resulting from this adjunction is the coproduct of T and R.

Thus to show that a functor S is the coproduct T + R, we can show
that for every object X , SX is a T + R-algebra and, moreover, it is
the free T + R-algebra; in other words, if there is any other T + R-
algebra (A,h′t ,h

′
h) and a morphism f : X → A, then there is a unique

algebra morphism ! f : X →Y .

Prop. 4.1 shows that action of the coproduct monad creates free
algebras. Functions defined using such morphisms are sometimes
called catamorphisms [3], and the canonical example is the free
datatype of lists, and functions using fold on lists. So, coprod is
for the coproduct of monads what fold is for lists, and hence we
can use it in this way as we did in Sect. 3.1.

4.2 Distributivity Revisited

From our perspective, composing two monads T and R means com-
bining all possible interleavings of layers from the component mon-
ads in T + R. In contrast, the approach of distributivity is to con-
sider only one possible layering, namely T .R consisting of a T -layer
above an R-layer. However, in the presence of a strong distributivity
law, the monad T .R actually is the coproduct. Thus an alternative
analysis is that distributivity is a special situation in which all layers
can be squashed into the layer T .R. First the relevant definitions [2]:

Definition 11. Given two monads T = 〈T,η,µ〉,S = 〈S,ζ,ξ〉, a dis-
tributive law is a natural transformation λ : T .S ⇒ S.T satisfying
four coherence laws [2, Sect. 9.2].

The four coherence laws state that λ respects the unit and multipli-
cation of the monads, e.g. ξT = λ.Tξ or Sµ.λT .Tλ = λ.µS.

Given such a distributive law λ, we have the compatible monad [2,
Prop. 9.2.2] T = 〈S.T,η∗,µ∗〉 with η∗ = Sη.ζ,µ∗ = Sµ.ξT T .SλT .

However, with a slightly stronger distributive law, the compatible
monad is also the coproduct of T and S.



Definition 12. Given two monads T = 〈T,η,µ〉,S = 〈S,ζ,ξ〉, a
strong distributive law is a distributive law λ : T .S ⇒ S.T such that,
for any T +S-algebra (X ,α,β), diagram (5) commutes:

T SX
Tβ

- TX

STX
λ ?

SX

Sα
? β

- X

α
?

(5)

THEOREM 4.2. Given two monads T = 〈T,η,µ〉,S = 〈S,ζ,ξ〉 and
a strong distributive law λ : T .S ⇒ S.T , the compatible monad T =
〈S.T,η∗,µ∗〉 is the coproduct of T and S.

PROOF. To show the theorem, we first give T a T+S-algebra struc-
ture, and then show it is a free algebra. By Prop. 4.1, it is then the
coproduct T +S.

The algebra structure is given by two maps

SSTX
ξT- STX TSTX

λT- STTX
Sµ
- STX

Equations (4) easily follow from the coherence laws of the distribu-
tive law, and the unit laws of the monads.

We now have to show that the algebra structure is free. To this
end, we show that given any other T + S-algebra (K,α,β) and a
morphism f : X → K, there is a unique morphism ! f : STX → K
such that ! f .η∗ = f , and ! f is a T+S-algebra morphism.

The unique morphism is defined as ! f = β.Sα.ST f . Diagram (6)
shows that ! f .η∗ = f , where the squares are naturality squares,
and the triangles are the left equation of (4) for the T + S-algebra
(K,α,β).

X
ζ

- SX
Sη

- STX

K

f

? ζ
- SK

S f

? Sη
- STK

ST f

?

K

β

?

1
-

SK

Sα

?

1

-

K

β

?

1
-

(6)

To show that ! f is an algebra morphism, we have to show that

SSTX
S! f

- SK

STX

ξT

? ! f
- K

β

?

TSTX
T ! f

- TK

STTX

λ
?

STX

Sµ
? ! f

- K

α

?

(7)

The proofs are simple diagram chases, which we omit here; the first

uses naturality of ξ and (4) for (K,α); for the second, we addition-
ally need strong distributivity (5).

Now assume we have another T + S-algebra morphism m : STX →
K s.t. m.η∗ = f , and consider diagram (8); the lower two parallelo-

STX
STζ

- STSX

SSTX
�

SλSζ
T

-

STSTX

STSη
-

STX

1

?

SSTTX
�

Sλ

SSTη
-

STK

STm

?

SSTX

1

?�

SS
µSζ

T
-

STX

1

?�

ξ T

SK

Sm

?�

Sα

K

m

?�

β

(8)

grams are (7) with m for ! f (since m is a T + S-algebra morphism),
the triangles on the left are the unit laws of the monads, the diamond
is naturality of λ, and the triangle on the top coherence of λ. Now,
the arrow on the left-hand face of the diagram is m, and it equals
the arrows on the right-hand face of the diagram, and we have (with
the assumption f = m.η∗ = m.Sη.ζ)

m = β.Sα.STm.STSη.STζ
= β.Sα.ST (m.Sη.ζ)

= β.Sα.ST f

= ! f

making ! f unique as required.

It should be pointed out that the strong distributivity requirement is
more than a mere technical condition. For example, consider the
two monads given by signatures Σ = {F},Ω = {G} with a unary
operation each. The terms in TΣ(X) are of the form Fn(x) (i.e. F
applied n times). Then clearly there is a distributive law λ : TΣTΩ ⇒
TΩTΣ, which takes Fn(Gm(x) to Gm(Fn(x). However, there is no
strong distributive law as this would require that taking any carrier
set with any two unary operations, these should commute.

The relevance of Theorem 4.2 is that even when working with dis-
tributivity laws, we are close to working with the coproduct. The
prime example here is if one of the monads in question is the ex-
ception monad, then we always have a strong distributivity law
λExn : Exn.T ⇒ T .Exn, hence for any other monad T, we have

T +Exn(X) = T (Exn(X)) (9)



5 Conclusion

This paper has introduced the coproduct of two monads as their
canonical combination: the smallest non-interacting combination
of their computational effects. From the general categorical con-
struction [7], we have derived an implementation in Haskell for a
wide class of monads, the so-called layered monads.

Computations in the coproduct monad can be thought of as se-
quences of steps in the two component monads. In particular, the
monads retain their laziness. Thus, Store a + Store b is se-
quences of steps in Store a and Store b; this is however not the
same as the monad Store (a, b), since in the latter we can store
and retrieve tuples of (a,b), which is not possible in the coproduct.

We have investigated the relationship of other combinations based
on distributivity, and have shown that if the two monads are strongly
distributive, then their coproduct coincides with the functorial com-
position. Comparison with monad transformers has shown that the
coproduct is a more general, flexible approach with a stronger meta-
theory.

In Haskell (and in particular the Glasgow Haskell Compiler, GHC),
the IO monad is the mother of all monads; it has mutable references
(i.e. state transformers), input/output, concurrency, exceptions and
much more. In our approach, we would suggest to dismantle the IO
monad into its constituting monads, and combine them with the co-
product as needed. This has the advantage that the effects of most
monads can be localised, so using e.g. state threads or exceptions
in one part of the program will not make the type of every func-
tion using this part monadic, as is currently the case with the IO
monad. Of course, the IO monad can be recovered (and continued
to be used) as the coproduct of all its components. It remains to
be investigated whether the optimisations currently afforded to the
IO monad by GHC can still be carried out in our style, but it seems
unlikely this should not be the case, as all that would be done is to
provide a more precise typing.

We are confident that this approach will scale to the combination
of more than a handful monads, not least because the coproduct is
only the simplest way of combining monads. If we allow arbitrary
colimits of monads, this will allow shared computation effects (for
example, shared state or shared exceptions), and imposed equations
such as the distributivity laws (by using coequalisers). This situa-
tion is not uncommon; for example, when combining a state monad
with another monad, we typically do not want a stateful computa-
tion, followed by a computation from the other monad, followed by
another stateful computation, as then the second stateful computa-
tion knows nothing about the first, and in particular cannot access
its state; we would want the stateful computation to distribute over
the other computation, so the second stateful computation can use
the state left by the first stateful computation. This is related to re-
cent work by Plotkin, Power and Hyland [5], where they describe a
commutative combination ⊗ which corresponds to an imposed dis-
tributivity law in our sense. Technically, their work uses so-called
Lawvere theories but these are equivalent to monads [20].

In summary, the coproduct of monads is a simple, modular way of
combining two monads. It is more general than distributivity and
monad transformers, is applicable in nearly all cases, and based on
sound mathematical foundations. We believe it should the func-
tional programmers’ first choice when combining monads.
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A Some Useful Monads

This appendix contains the definitions for the monads as used in the
text.

A.1 The identity monad

The identity monad is very simple:

newtype Id a = Id a

instance Functor Id where
fmap f (Id x) = Id (f x)

instance Triple Id where
eta x = Id x
etaInv (Id x) = Just x
mu (Id x) = x

The identity monad is the initial object of Mon(C), as for any other
monad T = 〈T,η,µ〉, the unit is monad morphism from Id to T; this
gives a unique monad morphism !T : Id→ T.

The identity monad is trivially finitary.

A.2 The exception monad

The exception monad adds an error element to the base. In category
theory, this is also known as the lifting monad.

type Error = String

data Exn a = Exn Error | Base a

instance Functor Exn where
fmap f (Base x) = Base (f x)
fmap f (Exn e) = Exn e

instance Triple Exn where
eta = Base
etaInv (Base a) = Just a
etaInv (Exn e) = Nothing
mu (Exn e) = Exn e
mu (Base (Exn e)) = Exn e
mu (Base (Base b)) = Base b

The identity monad is finitary: if we add an error element to all fi-
nite subsets of an infinite set of variables and take their union, all
the exceptions are unified, leaving us with an infinite set of vari-
ables and one error element. An easier way to see this is that the

exception monad is the free monad on a signature consisting only
of one constant.

A.3 The store monad

The store monad is a simple state transformer monad. The state
is a list, and references are indices into the list. This is not very
efficient, but simple. We leave out the implementations of newRef
etc, since they are standard.

data Store a b = St ([a]-> ([a], b))

instance Functor (Store a) where
fmap f (St s0) = St (\s-> let (s1, x)= s0 s

in (s1, f x))

instance Triple (Store a) where
eta a = St (\s-> (s, a))
etaInv (St s) = Nothing
mu (St s0) = St (\s-> let (s1, St c)= s0 s

in c s1)
data Ref a = Ref a Int

newRef :: a -> Store a (Ref a)
readRef :: Ref a-> Store a a
writeRef :: Ref a -> a-> Store a ()
runSt :: Store a b-> b

incRef :: Num a=> Ref a-> Store a ()
incRef r = do i <- readRef r

writeRef r (i+1)

The state transformer monad, of which this store monad is a par-
ticular example, is finitary provided the underlying state is finite (a
reasonable assumption). So the store monad is finitary as long as
we restrict ourselves to finite lists of stores.

The full sources for the code used in this paper can be found
at http://www.informatik.uni-bremen.de/~cxl/papers/
icfp02-src.tar.gz.


