
 Open access Journal Article DOI:10.1007/S11219-011-9170-7

Composing multiple variability artifacts to assemble coherent workflows
— Source link

Mathieu Acher, Philippe Collet, Alban Gaignard, Philippe Lahire ...+1 more authors

Institutions: Centre national de la recherche scientifique

Published on: 01 Sep 2012 - Software Quality Journal (Springer US)

Topics: Workflow and Software product line

Related papers:

 Automated analysis of feature models 20 years later: A literature review

 Generic semantics of feature diagrams

 Feature Diagrams and Logics: There and Back Again

 FORM: A feature-oriented reuse method with domain-specific reference architectures

 FAMILIAR: A domain-specific language for large scale management of feature models

Share this paper:

View more about this paper here: https://typeset.io/papers/composing-multiple-variability-artifacts-to-assemble-
1epdh1xfbj

https://typeset.io/
https://www.doi.org/10.1007/S11219-011-9170-7
https://typeset.io/papers/composing-multiple-variability-artifacts-to-assemble-1epdh1xfbj
https://typeset.io/authors/mathieu-acher-1wsvh9u6rj
https://typeset.io/authors/philippe-collet-50lkfl516q
https://typeset.io/authors/alban-gaignard-599ve7157w
https://typeset.io/authors/philippe-lahire-1qc3fo1hf1
https://typeset.io/institutions/centre-national-de-la-recherche-scientifique-2ew2zhz4
https://typeset.io/journals/software-quality-journal-1oqx7d4x
https://typeset.io/topics/workflow-1at2jgig
https://typeset.io/topics/software-product-line-17flemp4
https://typeset.io/papers/automated-analysis-of-feature-models-20-years-later-a-4sm7fj9z7q
https://typeset.io/papers/generic-semantics-of-feature-diagrams-1gn97ee5zl
https://typeset.io/papers/feature-diagrams-and-logics-there-and-back-again-3uzh1n5ifh
https://typeset.io/papers/form-a-feature-oriented-reuse-method-with-domain-specific-26n28ovqqp
https://typeset.io/papers/familiar-a-domain-specific-language-for-large-scale-5ty1lx8xf3
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/composing-multiple-variability-artifacts-to-assemble-1epdh1xfbj
https://twitter.com/intent/tweet?text=Composing%20multiple%20variability%20artifacts%20to%20assemble%20coherent%20workflows&url=https://typeset.io/papers/composing-multiple-variability-artifacts-to-assemble-1epdh1xfbj
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/composing-multiple-variability-artifacts-to-assemble-1epdh1xfbj
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/composing-multiple-variability-artifacts-to-assemble-1epdh1xfbj
https://typeset.io/papers/composing-multiple-variability-artifacts-to-assemble-1epdh1xfbj

HAL Id: hal-00733556
https://hal.archives-ouvertes.fr/hal-00733556

Submitted on 18 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Composing Multiple Variability Artifacts to Assemble
Coherent Workflows

Mathieu Acher, Philippe Collet, Alban Gaignard, Philippe Lahire, Johan
Montagnat, Robert France

To cite this version:
Mathieu Acher, Philippe Collet, Alban Gaignard, Philippe Lahire, Johan Montagnat, et al.. Com-
posing Multiple Variability Artifacts to Assemble Coherent Workflows. Software Quality Journal,
Springer Verlag, 2012, 20 (3-4), pp.689-734. 10.1007/s11219-011-9170-7. hal-00733556

https://hal.archives-ouvertes.fr/hal-00733556
https://hal.archives-ouvertes.fr

Software Quality Journal manuscript No.
(will be inserted by the editor)

Composing Multiple Variability Artifacts to Assemble

Coherent Workflows

Mathieu Acher · Philippe Collet · Alban

Gaignard · Philippe Lahire · Johan

Montagnat · Robert B. France

Received: date / Accepted: date

Abstract The development of scientific workflows is evolving towards the system-

atic use of service oriented architectures, enabling the composition of dedicated and

highly parameterized software services into processing pipelines. Building consistent

workflows then becomes a cumbersome and error-prone activity as users cannot man-

age such large scale variability. This paper presents a rigorous and tooled approach in

which techniques from Software Product Line (SPL) engineering are reused and ex-

tended to manage variability in service and workflow descriptions. Composition can be

facilitated while ensuring consistency. Services are organized in a rich catalog which

is organized as a SPL and structured according to the common and variable concerns

captured for all services. By relying on sound merging techniques on the feature mod-

els that make up the catalog, reasoning about the compatibility between connected

services is made possible. Moreover, an entire workflow is then seen as a multiple SPL

(i.e., a composition of several SPLs). When services are configured within, the prop-

agation of variability choices is then automated with appropriate techniques and the

user is assisted in obtaining a consistent workflow. The approach proposed is com-

pletely supported by a combination of dedicated tools and languages. Illustrations and

experimental validations are provided using medical imaging pipelines, which are rep-

resentative of current scientific workflows in many domains.

Mathieu Acher · Philippe Collet · Alban Gaignard · Philippe Lahire · Johan Montagnat
I3S Laboratory (CNRS - UNSA)
Les Algorithmes - Bât Euclide B
2000 route des Lucioles – B.P. 121
F-06903 Sophia Antipolis Cedex
E-mail: {acher, collet, lahire, johan, gaignard}@i3s.unice.fr

Robert France
Computer Science Department
Colorado State University, USA
E-mail: france@cs.colostate.edu

2

1 Introduction

The goal of Software Product Line (SPL) engineering is to produce reusable arti-

facts that can be used to efficiently build members of a software product family

[Pohl et al., 2005]. Similar to mass customization in traditional industry, SPL engi-

neering aims to industrially develop and evolve quality software systems with minimal

development effort and time-to-market. The general idea is that the reusable artifacts

encapsulate common and variable aspects of a family of software systems in a manner

that facilitates planned and systematic reuse. An important concern is thus the man-

agement of variability, i.e., the ability of an artifact to be efficiently extended, changed,

customized or configured for use in a particular context [Svahnberg et al., 2005].

Traditionally, variability management assumed that all artifact variants of a soft-

ware system were provided by a single source. But now, in many SPL environments,

including software systems, the amount of functionality that needs to be developed to

satisfy customer needs is far larger than what can be built from scratch in a reasonable

amount of time. To solve this problem and facilitate mass customization, it is necessary

to take into account externally developed components or applications, themselves being

highly variable. The reuse of software components between different product lines in the

consumer electronics domain is an example [van Ommering, 2002]. Some of these SPLs

may be developed and maintained by external suppliers, some of which may compete

to deliver similar products. The same observation can be made in the semiconductor

industry where a set of components from several suppliers has to be integrated into

a product [Hartmann and Trew, 2008]. In this context, variability in requirements is

driven by several different dimensions, e.g., different product types and different ge-

ographic regions. Van der Storm considered not only variability at the level of one

software product, but also each variable component as an entry-point for a certain

software product (obtained through component composition) [van der Storm, 2004].

Some SPL engineering approaches now support defining and managing variability

across different SPLs so that they can be composed [Pohl et al., 2005,Buhne et al., 2005,

Reiser and Weber, 2007]. This “shift from variation to composition” and support for

managing multiple SPLs (a.k.a. product populations [van Ommering and Bosch, 2002]

or software ecosystems [Bosch, 2009]) are increasingly needed. Managing variabilities

across these multiple SPLs is especially challenging when the SPLs are owned by differ-

ent third-parties [Hartmann and Trew, 2008,Hartmann et al., 2009]. In practice there

are many configurations to consider and hence automatic methods and techniques are

needed to guarantee consistency properties on compositions of selected functionality.

A recurrent activity is, for example, to determine which SPLs are able to provide a

specific (combination of) feature(s) or not. Support for composing multiple variabil-

ity descriptions can help domain engineers to produce coherent characterizations of

valid combinations of features. Product (application) engineers also need support for

producing valid product configurations that belong to one or several SPLs.

Interestingly, similar issues occur during the building of workflow, and in our expe-

rience, particularly during the construction of scientific workflows. With the ongoing

evolution of such workflows towards the use of service oriented architectures, each task

of them is a software service. Many different kinds of highly parameterized software

services exist, introducing a very important variability at all levels. The tasks of iden-

tifying, tailoring and composing those services become tedious and error-prone. There

is thus a strong need to manage this variability so that developers can more easily

choose, configure and compose those services with automated consistency guarantees.

3

To tackle this problem, our approach is to consider services as SPLs, as they are pro-

vided by different researchers or scientific teams, while the entire workflow is then seen

as a multiple SPL in which the different service SPLs are composed. Throughout this

paper, our work is illustrated in the medical imaging area, in which such scientific

workflows are built to analyze large medical data sets.

Analyzing the problem, we consider it as two-fold. The first challenge is to pro-

vide mechanisms that enable service providers (e.g., researchers, workflow or platform

experts) to capture the commonalities and variabilities in parameterized services that

are provisioned. The second challenge is concerned with providing support for tailoring

and composing services in a way that service consumers can ensure the consistency of

resulting workflows with well-defined properties. In preliminary work, we rely on fea-

ture models merging techniques [Acher et al., 2009,Acher et al., 2010a] to check the

compatibility between connected services [Acher et al., 2010a] inside a workflow. But

several limitations appeared in this solution. First, users had to specify variability of

services from scratch as no catalog of services were available. Second, constraints in

and between the variability descriptions were not taken into account, whereas they are

highly represented in real cases. Finally, the checking process was not automated, even

if some programming facilities were provided.

In this article, we notably raise all these limitations and present an extended and

rigorous approach in which compositional techniques allow users to select among sets

of existing services organized in a catalog (seen as a SPL), while reasoning on the

compatibility between connected services to ensure consistency of an entire workflow

(seen as a multiple SPL). After giving some background on medical imaging workflows

and analyzing associated requirements (Section 2), we introduce feature models and

associated compositional techniques (Section 3). Using them, the approach to orga-

nize services as multiple SPLs within a variability-driven catalog is briefly described.

In Section 4, a typical usage scenario is unfolded from design to configuration of a

workflow. We show how to specify variability requirements over the workflow and how

consistency is soundly checked when available services in the catalog are composed,

notably with constraints between services and in the workflow. We also describe how

this part of the process can be fully automated in order to incrementally assist the

user until deriving a consistent workflow product. Section 5 describes the realization,

detailing how workflows are analyzed and how variability is described and reasoning

made possible by generating appropriate code in a powerful Domain-Specific Language

for Feature Models named FAMILIAR [Acher et al., 2011a]. Section 6 summarizes our

contribution and studies its user assistance, degree of automation and applicability. We

also report our first experiences on workflow building and discuss related and future

work.

2 Variability in Scientific Workflows

Scientific workflows are increasingly used for the integration of existing, legacy tools

and algorithms to build large and complex applications such as scientific data analysis

pipelines or computational science experiments. Despite the growing interest observed

in scientific workflow technologies in recent years, workflow design remains a challeng-

ing, tedious, and often error-prone process, that slows down the adoption of scientific

workflows [Gil et al., 2007,McPhillips et al., 2009]. In particular, although catalogs of

domain-specific data processing services are common, the low-level interface represen-

4

tations used (e.g. Web Services) usually only provides information suited to assess the

technical consistency of different services connected within a workflow. There is abso-

lutely no guarantee regarding the coherency of the process composed, nor its validity

from an application point of view. The use of software product lines techniques to gain

potential advantages in terms of time, effort, cost, efficiency and agility may alleviate

these problems. Our work is illustrated through the medical imaging area, which is

typical of the usage of scientific workflows executed over compute-intensive distributed

infrastructures such as grids. In this domain, grids help in building patient-specific

models and in reducing computing time for meeting time constraints from clinical

practice. The rest of this section will introduce our example and identify its sources of

variability to determine associated requirements.

2.1 Medical Imaging Workflows

In the medical image analysis area, distributed computing capabilities are used for

many purposes, ranging from validation and optimization processes of specific algo-

rithms to overall reduction of computing time. Besides, image analysis pipelines are sci-

entific, data-driven workflows which are undergoing homogenization nowadays, strongly

motivated by the need for mutualizing software development and easily comparing re-

sults. This homogenization is conducted through the usage of common data formats

and means to reuse algorithms.

In order to facilitate it, Service-oriented architectures (SOAs) [Foster et al., 2002]

are increasingly used and aim at i) producing reusable self-contained, distributed imag-

ing services, decoupled and abstracted from technical grid platforms ; ii) providing

standardized interfaces for invoking wrapped application codes as well as information

exchange protocols and iii) composing these atomic services to describe processing

pipelines as complex workflows. Using SOAs, medical experts essentially compose dif-

ferent kinds of processing on images, each algorithm being provided by a service.

Running example. We use as an illustration an existing service-oriented workflow de-

signed to conduct experiments on Alzheimer’s disease [Lorenzi et al., 2010]. This dis-

ease is a neurodegenerative pathology which can be characterized by an atrophy of the

brain. The workflow illustrated in Fig. 1 is based on several image processing activities

aimed at tracking the evolution of Alzheimer disease through a longitudinal study. The

disease follow up consists in comparing several MRIs from the same patient acquired

over time, to detect changes in the volume of the brain and compute a brain tissue

atrophy coefficient. In order to be compared in the last steps of the workflow, source

MRIs first need to be homogenized both in terms of intensity biases and space align-

ment. It must be noted that, as in many similar scientific workflows, the complexity

lies in the correct pre-processing of data, which is generally frustrating for the scientist

end-users.

In Fig. 1, the blue boxes at the top represent the input images: the Image sequence

box represents MRIs acquired at a given time (T0+6 months and T0+12 months),

the Reference image represents the MRI acquisition at T0, considered as the patient’s

reference. This configuration of the workflow will lead to two invocations, giving two

estimations of brain atrophy, at time T0+6 and T0+12. The first image processing

activity, Bias correction is a general restoration procedure which involves removing

voxel inhomogeneities in the magnetic field of the MRI equipment, used to improve

5

Image
sequence

Reference
image

Atrophy

Bias correction Bias correction

Affine registration

Longitudinal intensity
correction

Non-linear registration

Atrophy measure

Brain extraction

Mask calculation

Tissue segmentation

Fig. 1 Image processing activities involved in the calculation of brain atrophy.

the result of image post-processing algorithms. Then an Affine registration process is

performed in which a spatial alignment is estimated so that the MRI considered is

translated, reoriented and scaled to be superimposed on the patient’s reference MRI.

The next step Longitudinal intensity correction is another intensity homogenization

procedure that normalizes intensities between the different images acquired over time.

At the same time, the right branch of the workflow aims at identifying brain tissues

(grey and white matter) through the Brain extraction and Tissue segmentation activ-

ities to finally create a mask (Mask calculation) delineating grey and white matter of

the patient’s brain at T0. Finally, the comparison of MRIs starts by estimating the de-

formation field, which corresponds to the Non-linear registration activity, between the

reference and the “moving” MRIs. The last step consists in applying the deformation

field to the mask of the brain tissues in order to estimate the changes in the volume of

brain tissues, and estimate, as the final result of the workflow, a potential atrophy.

2.2 Sources of Variability

The pre-processing involved in this workflow are based on three typical categories

of image processing activities: Restoration, Registration and Segmentation. There are

various ways in which the goals of these categories of activities can be accomplished.

At the workflow level, end-users must address the variability when realizing these

activities.

Functional variability usually appears at workflow design time. For instance, the

two activities Bias correction and Longitudinal intensity correction realize the same

coarse-grained activity, Restoration, but their fine-grained functionality varies because

removing magnetic inhomogeneities is different than normalizing intensities from two

different MR images. Another example comes from the Registration activities in which

6

the same kind of functional variability can be observed as there are significant differ-

ences between linear and non-rigid transformations.

At workflow runtime, end-users must cope with non functional concerns such as

constraints related to the computing infrastructure or restricted access control. For

example, to operationalize the Brain extraction activity, one may choose the BET tool

from the FSL toolbox because it is fast at removing non-brain tissues and can be re-

located to the end-user desktop. But if the accuracy of the segmentation is preferred

to its computation time, another processing tool might be chosen with different con-

straints on the infrastructure. Using BET also introduces a deployment constraint as

it depends on the full installation of another toolbox (FSL) and needs appropriate

environment configuration.

More generally, for each process of a pipeline, numerous services are available on

the grid and vary from different perspectives: the support of image formats (DICOM,

Nifti, Analyze, etc.) and modality acquisition (MR, CT, PET, etc.), the support of network

protocols, the algorithm method used to process an image, anatomical structures for

which services are supposed to efficiently perform (Brain, Kidney, Breast, etc.), quality

of service (QoS) provided in different contexts, etc. It must be noted that not only

imaging but nearly all scientific services have a large number of input ports, param-

eters, data specificities, and dependencies at all levels, functional, non-functional and

deployment related. The overall issue for scientific workflow users is thus to deal with

services and their dependencies in their workflows while addressing a large amount

of concerns. In our medical imaging illustration, from the workflow design time to

run time, both domain-specific and technical knowledge are needed to resolve different

forms of variability. This is typically accomplished by manually setting, among others,

the choice of tools and the choice in their configuration. This type of manual variability

management requires a considerable amount of time and effort, and can be a tedious

and error-prone task.

2.3 Requirements

To tackle the above issues, our work addresses the following challenges. The first chal-

lenge is to capture commonalities and variabilities across a family of services in reusable

parameterized services, e.g. identifying and organizing similar and recurrent imaging

tasks such as registrations and corrections. The second challenge is related to providing

support for tailoring and composing services to realize consistent workflows.

There are two categories of users for the NeuroLOG platform: (i) image analysis

specialist create and deploy image analysis tools that are of interest for neuroscien-

tists; and (ii) neuroscientists design data analysis experiments by composing such tools

within specialized workflows. Rather than providing services and hoping that opportu-

nities for reuse will arise during the design of a workflow, a proactive strategy is to plan

which characteristics or features of a service are likely to be systematically reused. The

ability to efficiently create many variations of a service and capitalize on its common-

alities can improve its composability and increase the extent to which service logic is

sufficiently generic so that it can be effectively reused. As discussed in previous papers,

the difficulty of provisioning and composing parameterized services stems from the lack

of mechanisms for managing variabilities within and across services [Acher et al., 2008,

Acher et al., 2010b].

7

The goal of the SPL approach promoted in this article is to manage not only the

variability of the services but also the variability of the resulting composed services.

For structuring and managing variability information across a large amount of services,

we identified the following requirements, emerging from the needs of both the image

analysts and the neuroscientists:

– Mechanisms that enable service providers (image analysts) to capture the common-

alities and variabilities in parameterized (imaging) services ;

– Assistance to the neuroscientists in selecting the appropriate service from among

sets of existing services: they may want to search services matching several criteria

to determine if at least one service can fulfill a specific feature or a set of features ;

– Ensuring that services are consistently composed in the resulting workflow. For

example, connected services should inter-operate while exchanging medical images

and support compatible formats. A sound formal basis together with tools are

needed to support rigorous reasoning on a large number of services for ensuring

that important properties are preserved ;

– Evolving services as the variability of services can evolve during time. Similarly, new

services from new suppliers and scientists can be proposed. Consequently, there is a

need to consistently maintain the set of existing services and favor the integration

of new services.

In the remainder of this paper, we describe an approach that meets these require-

ments.

3 Engineering Services as Software Product Lines

A software product line (SPL) can be defined as “a set of software-intensive systems

that share a common, managed set of features satisfying the specific needs of a par-

ticular market segment or mission and that are developed from a common set of core

assets in a prescribed way" [Pohl et al., 2005]. SPL engineering is concerned with de-

veloping reusable artifacts that can be used extensively during the development of final

products [Clements and Northrop, 2001,Pohl et al., 2005].

In our work, the goal is to develop reusable services that scientists can tailor and

use to build customized workflows. A central activity is then the modeling and manage-

ment of service variability. It must be noted that there are other important activities,

such as testing services and workflow taking into account their variability, but this is

out of the scope of the approach presented in this paper. First, we explain how vari-

ability of services is documented and represented with the feature modeling formalism.

Second, the different services are organized (e.g., grouped together) and managed in a

variability-aware catalog.

3.1 Modeling Variability of Services

One of the most practical techniques for modeling variability is feature modeling which

aims at representing the common and variable features of a product family. Several

definitions of feature appear in the literature, ranging from “anything users or client

programs might want to control about a concept" [Czarnecki and Eisenecker, 2000],

8

Service Identifier Supplier M edical Im age Support M ethod

M o d ality A cq u isitio n Fo rm at A n o n ym ize d

ServiceSegm 1 Supplier1 M R I T1 D ICO M Yes ぐ

ServiceSegm 2 Supplier2 M R I T2 D ICO M No ぐ

ServiceSegm 3 Supplier2 SPECT D ICO M Yes ぐ

ぐ ぐ

ServiceSegm n Supplier1 CT A nalyze No ぐ

(a) Services documentation

And-Group

Optional

Mandatory

Xor-Group

Or-Group

AnonymizedFormat

DICOM Nifti Analyze

Modality Acquisition

MRI CT SPEC

T1 T2

PET

Medical Image

(b) Feature model

Fig. 2 Services’ documentation and corresponding feature model.

“a prominent or distinctive user-visible aspect, quality or characteristic of a soft-

ware system or systems" [Kang et al., 1990] to “an increment in product function-

ality" [Batory, 2005]. In our work, services are distinguished by features which are

domain abstractions relevant to medical imaging stakeholders

Feature Modeling. Feature models (FMs) [Kang et al., 1998], [Batory, 2005],

[Schobbens et al., 2007] are widely used to compactly represent product commonal-

ities and variabilities in terms of optional, alternative and mandatory features. FMs

hierarchically structure application features into multiple levels of increasing detail.

When decomposing a feature into subfeatures, the subfeatures may be optional or

mandatory or may form And, Or, or Alternative-groups1. Fig. 2 shows an example of

an FM. An FM defines a set of valid feature configurations. The validity of a configura-

tion is determined by the semantics of FMs (e.g., DICOM, Nifti and Analyze are mutually

exclusive image formats and cannot be selected at the same time in Fig. 2).

A valid configuration is obtained by selecting features in a manner that respects

the following rules: i) If a feature is selected, its parent must also be selected; ii) If a

parent is selected, all the mandatory subfeatures in its And group, exactly one sub-

feature in each of its Alternative groups, and at least one of its subfeatures in each

of its Or groups must also be selected; iii) Constraints relating features in different

subtrees must hold. The set of configurations represented by an FM can be described

by a propositional formula defined over a set of Boolean variables, where each variable

corresponds to a feature [Batory, 2005,Czarnecki and Wąsowski, 2007]. In the remain-

der of the paper, a configuration is defined as a set of selected features, for example,

{MedicalImage, ModalityAcquisition, Format, SPEC, Nifti} is a valid configuration of the FM

shown in Fig. 2. In Fig. 2(b), the FM compactly represents all the valid combination of

features supported by services, documented in a two-dimensional array of data shown

1 In this paper, we consider only FMs in their basic form [Czarnecki et al., 2006].
We do not consider other notations nor richer formalisms (e.g., cardinality-based
FMs [Czarnecki et al., 2005]).

9

in Fig. 2(a). Such an FM can be manually elaborated by service developers or auto-

matically extracted from service documentation using merging techniques (as we will

show in Section 3.3).

Definition 1 introduces the terms used in this paper and defines the well-known

relationship between an SPL and an FM.

Definition 1 (SPL and Feature Model) A software product line SPLi is a set of

products (e.g., software services) described by a feature model FMi. Each product of

SPLi is a combination of features and corresponds to a valid configuration of FMi. A

configuration c of FMi is defined as a set of features selected, i.e., c = {f1, f2, . . . , fm}

with f1, f2, . . . , fm features of FMi. JFMiK denotes the set of valid configurations of

the feature model FMi.

3.2 Multiple Software Product Lines

Our approach is to consider services as SPLs and to reuse and combine a set of SPLs

to form a workflow. We denote a multiple SPL MSPL an SPL that manages a set of

constituent SPLs {SPL1, SPL2, . . . , SPLn} and whose set of products is described by a

feature model FMMSP L
.

For instance, the entire workflow can be seen as a multiple SPL in which the

different service SPLs are combined. In terms of FMs, it simply consists in aggre-

gating FMs into a global FM FMMSP L
. The input FMs FM1, FM2, . . . , FMn of

SPL1, SPL2, . . . , SPLn are aggregated under a synthetic root, say ftsynthetic, so that

the root features of input FMs are child-mandatory features of ftsynthetic in the global

FM. The aggregate operation also supports cross-tree constraints between features so

that separated FMs can be inter-related (see Section 4 for examples).

An important form of multiple SPL is competing multiple SPLs and is the main

focus of this section. In a competing multiple SPL, each constituent SPL describes a

product that competes with products described in other constituent SPLs. For each

category of process to be performed in the workflow (e.g., segmentation, registration),

there are several competing SPLs. For example, the three SPLs in Fig. 3 provide com-

peting Segmentation Services with different features and/or with different combinations

of features. To formalize the concept of competing multiple SPLs, we define its se-

mantics in terms of the relationship between FMMSP L
and the FMs of the constituent

SPLs, FM1, FM2, . . . , FMn (see Definition 2).

Definition 2 (Competing Multiple SPL) In a competing multiple SPL, MSPL,

any configuration of FMMSP L
should correspond to at least one valid configuration of

FM1, FM2, . . . , FMn. Formally: ∀c ∈ JFMMSP L
K : c ∈ JFM1K∨c ∈ JFM2K∨. . .∨c ∈

JFMnK

3.3 Merging Techniques

When competing multiple SPLs in a domain exist, FMs representing SPLs share sev-

eral features. In this case, the merge operator can be used to merge the overlapping

parts of the FMs and then to obtain an integrated FM of the set of SPLs. In prior

works [Acher et al., 2009,Acher et al., 2010a], we introduced a merge operator that

produces merged FMs with well-defined properties. The merge uses name-based match-

ing: two features match if and only if they have the same name.

10

S

 影

Segmentation

MedicalImage

Format ModalityAcquisition

DICOM Nifti SPECT CT

Method

GraphClustering

Segm2

Format

DICOM

Modality

Acquisition

SPECT

Medical Image

ServiceSegm6Segmentation

Method

Graph

01101010

10100111

00101010

00101010

101101

Format

DICOM

Modality

Acquisition

CT

Medical Image

Method

Graph

Segmentation ServiceSegm5

01101010

10100111

00101010

00101010

101101

S

 影

S

 影
S

 影

S
e

rv
ic

e
s

F
a

m
il

y
 o

f
S

e
rv

ic
e

s
C

a
ta

lo
g

 o
f

S
e

rv
ic

e
s

Format

Nifti

Modality

Acquisition

CT

Medical Image
Method

Clustering

Segmentation ServiceSegm4

01101010

10100111

00101010

00101010

101101

Service Identifier Medical Image Support Method

Modality Acquisition Format

ServiceSegm
4 CT Nifti Clustering

ServiceSegm5 CT DICOM Graph

ServiceSegm6 SPECT DICOM Graph

Segmentation

MedicalImage

Format ModalityAcquisition

Analyze Nifti SPECT CT

Method

HistogramClustering

Segm3
Segmentation

Method

Clustering Semi

Automatic

MedicalImage

Format ModalityAcquisition

DICOM Analyze SPECT CT

Segm1

Graph or Histogram or Nifti excludes Semi Automatic

Analyze excludes Graph

…
 (other propositional constraints)

Segmentation

MedicalImage

Format ModalityAcquisition

DICOM Nifti SPECT CT

Method

GraphClustering

Analyze

Semi

Automatic

Histogram

Segm123

Fig. 3 Segmentation services are grouped together using merge in strict union mode.

Merge Operator Semantics. The properties of a merged FM produced by an application

of the merge operator are formalized in terms of the sets of configurations of input FMs.

Several modes are defined for the merge operator.

The strict2 union. mode is the most inclusive option: the merged FM includes all

the valid configuration defined by the input FMs and is defined as follows:

JFM1K ∪ JFM2K = JResultK (M1)

The merge operator in the strict union mode is denoted FM1 ⊕∪s FM2 = Result

and is typically used to synthetize an FM of a competing multiple SPL.

The intersection mode is the most restrictive option: the merged FM, FMr, ex-

presses the common valid configurations of FM1 and FM2. The merge operator in the

2 In the literature [Segura et al., 2008,Acher et al., 2009], there exists another union mode,
which is less restrictive in terms of sets of configurations expected from the resulting FM than
the strict union mode defined in this paper.

11

intersection mode is denoted as follows: FM1 ⊕∩ FM2 = Result. The relationship

between a merged FM Result in intersection mode and two input FMs FM1 and FM2

can be expressed as follows:

JFM1K ∩ JFM2K = JResultK (M2)

As we rely on set theory, the merge operators in strict union and intersection mode

are associative and commutative. They can be applied to n ≥ 2 input FMs.

Another merge operator, called diff, is denoted as FM1 ⊕\ FM2 = Result. The

following defines the semantics of this operator:

JFM1K \ JFM2K = {x ∈ JFM1K |x /∈ JFM2K} = JResultK (M3)

Merge Implementation. In [Acher et al., 2010a], we compared different approaches to

implement FM composition. We determined that an implementation based on proposi-

tional logic coupled with the algorithm proposed in [Czarnecki and Wąsowski, 2007] to

construct a FM from propositional formula was efficient. In particular, other competing

approaches, mostly based on syntactical strategies [Segura et al., 2008],

[Schobbens et al., 2007], [Acher et al., 2009], have limitations to accurately represent

the set of configurations expected, especially in the presence of cross-tree constraints.

An approach based on propositional logic has the advantage of reasoning directly at

the semantic level, i.e., in terms of sets of configuration.

The set of configurations represented by a FM can be compactly described by a

propositional formula defined over a set of Boolean variables, where each variable cor-

responds to a feature [Batory, 2005,Czarnecki and Wąsowski, 2007]. The overall idea

is to encode each input FMs involved in the merging operation as propositional for-

mulas and, depending on the merging mode, applying some Boolean operations over

these formulas. For instance, the strict union of two sets of configurations represented

by two FMs, FM1, and FM2, can be computed as follows. First, FM1 (resp. FM2)

FMs are encoded into a propositional formula φFM1
(resp. φFM2

). Then, the following

formula is obtained:

φResult = (φFM1
∧ not(FFM2

\ FFM1
)) ∨ (φFM2

∧ not(FFM1
\ FFM2

))

where FFM1
(resp. FFM2

) is the set of features of FM1 (resp. FM2) and, FFM2
\

FFM1
denotes the complement (or difference) of FFM2

with respect to FFM1
, not is

a function that, given a non-empty set of features, returns the Boolean conjunction of

all negated variables corresponding to features:

not({f1, f2, ..., fn}) =
V

i=1..n ¬fi

Computing the intersection of two sets of configurations represented by two FMs,

FM1, and FM2, follows the same principles and we obtain:

φResult = (φFM1
∧ not(FFM2

\ FFM1
)) ∧ (φFM2

∧ not(FFM1
\ FFM2

))

Finally, the algorithm presented in [Czarnecki and Wąsowski, 2007] transforms

φResult to an FM. It builds a tree with additional nodes for feature groups that can

be translated into a basic FM. In particular, the algorithm can restore the hierarchy

of input FMs by indicating parent-child relationships (mandatory or optional features)

and Xor- or Or-groups.

12

Catalog of Services

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

Segm1 Segm3Reg4 Reg1Int1

Int2Reg2 Reg3 Segm2 Int3

Services’
Suppliers

.

.

.

Documenting Variability of

Services

Classification

Supplier1

Supplier2

Suppliern

Catalog

Maintainer

Feature Modeling Tool

Merging

Techniques

 Automatic

Building of FMs

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

Segm1 Segm3

Int2

Reg4
Reg1

Reg2 Reg3 Segm2 Int3

Int1

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

SPL of Registration Services

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

SPL of Intensity Correction

ServicesReg3

Reg2
Reg1

Segm1
Segm2

Segm3

Segm4 Int2

Int1
Int3

SPL of Supplier1 Services

SPL of Segmentation Services

Fig. 4 From services to a catalog of services.

3.4 Building a Catalog of Services using Merging Techniques

We now provide some practical applications of the merging techniques. We consider the

construction of a catalog of services from which several suppliers (e.g., research teams

around the world) provide access to a set of (legacy) services implementing diverse

medical imaging algorithms (see Fig. 4). The purpose is to provide a catalog of FMs

describing the features of the services offered to workflow designers. This catalog is

built in a bottom-up way, starting from the existing service documentations. In the

rest of the paper, the term catalog of services is used to refer to a catalog of FMs

describing the variability of a set of services.

From Services’ Documentation to FM. In Fig. 2(a), each line of the array documents

the variability of one service. Each service describes its variability with an FM. If there

is no variability, the corresponding FM contains only core3 features, i.e., all features are

mandatory. We represent, in the bottom part of Fig. 3, the FMs corresponding to the

3 A core feature is a feature that appears in every configuration of an FM.

13

variability of ServiceSegm4, ServiceSegm5 and ServiceSegm6. The merge operator

in strict union can be applied to organize a set of services, eventually with no variability,

as a family of services. For example, it produces a new FM that represents a family

of services Segm2, including ServiceSegm4, ServiceSegm5 and ServiceSegm6. The

merging operations can be applied iteratively to array contents. (Similarly, that is how

we obtain the FM of Fig. 2(b).)

From Services to Family of Services. Due to the large number of service features, there

are various ways to classify services. Developers identify services that are to be managed

through a unique SPL. Such an SPL should preserve the combinations of features

provided by each service. This classification activity involves building an SPL which

manages a set of services corresponding to the classifications that has been retained.

How the classification is chosen is out of our scope here, but this is an important

activity as there are different possible ways to organize functional and non-functional

properties. Besides services can have interactions and constraints between them, and

independently of the classification, we will show in Section 4 how our approach handle

this issue.

Regarding the classification, the merge operator in strict union can be similarly

applied to produce a compact representation of all valid combinations of features sup-

ported by a set of service families. For example, in Fig. 3, three families of segmentation

services are grouped together into an unique SPL. Their FMs are merged in strict union

mode: Segm1 ⊕∪s Segm2 ⊕∪s Segm3 = Segm123 As a result, all valid combinations

of features of Segm123 are supported by segmentation services that belong to Segm1,

Segm2 and/or Segm3.

When using the merge operator, it may be useful to keep the traceability/provenance

of the features of the resulting merged FM (Segm123) regarding the original input FMs

(Segm1, Segm2 and Segm3). This issue is addressed in Section 5.

y

Segmentation

MedicalImage

Format ModalityAcquisition

Nifti SPECT

Method

Graph

FMr

Medical Imaging Expert

Segmentation

MedicalImage

Format ModalityAcquisition

Analyze Nifti SPECT

Method

Graph

Semi

Automatic

DICOM

VRspecification

Graph or Histogram or Nifti excludes Semi Automatic

Analyze excludes Graph

…
 (other propositional constraints)

Segmentation

MedicalImage

Format ModalityAcquisition

DICOM Nifti SPECT CT

Method

GraphClustering

Analyze

Semi

Automatic

Histogram

Segm123

Fig. 5 Availability of services and selection of services using merge in intersection mode.

14

Mapping Variability Requirements to Family of Services. The merge in intersection

mode can be applied, for example, when we want to check that the variability require-

ments specified by a user can be fulfilled by at least one service in the catalog. For

example, in Fig. 5, the medical imaging expert specifies that the method of segmenta-

tion he/she wants to apply is Graph and the acquisition of the medical image to process

is SPECT ; no choice is made for the Format of medical image used (DICOM, Analyze, Nifti

are still valid alternative choices) ; eventually, a Semi Automatic method can be chosen.

The merge in intersection mode is applied on Segm123 (previously computed) and the

FM V Rspecification representing the variability requirements of the medical imaging

expert. In the example of Fig. 5, we are sure there exists at least one service in the

catalog since JSegm123K∩ JV RspecificationK is not empty. The resulting FM FMr can

then be used to select an effective service of the catalog. In the example, it corresponds

to only one service, Segm2, since JSegm1K ∩ JFMrK and JSegm3K ∩ JFMrK gives the

empty set.

The variability requirements specified by the medical imaging expert may express

some combination of features that cannot be entirely provided by the catalog (and

vice-versa). Performing a merge diff operation assists users in understanding which set

of configurations is missing.

4 From Design to Configuration of Workflow

We now describe how the merging techniques proposed in Section 3 can be used and

complemented with others to facilitate and automate workflow design, using the domain

of medical imaging as an illustration. Fig. 6 gives an overview of the proposed multi-

step process described in this section. The overall goal of the process is to derive,

from an high-level description augmented with variability requirements, a consistent

workflow product composed of services offered by the catalog.

Error Report

High-Level

Workflow Design

1

Specifying

Variability Concerns

2

Specifying Variability

Consistency Rules

3

Bias correction

Affine registration

Non-linear Registration

Brain extraction

:in

:out

:fixed

:fixed

Longitudinal intensity

correction

:reference

:moving

:out

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

Catalog of Services

Reasoning about

Requirements Variability

5

Configuring

Workflow Product

6

Deriving

Workflow Product

7

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

Matching Requirements

with Catalog

4

Fig. 6 Overview of the approach: From design to configuration of the workflow.

In step ➀ of the process, the workflow designer first develops a high-level descrip-

tion of the workflow that defines the computational steps (e.g., data analyses) that

15

should take place as well as the dependencies between them. We introduce the work-

flow description language (GWENDIA) we used in this study in Section 4.1.

The workflow description is then augmented with rich representation of require-

ments in order to support discovery, creation and execution of services used to realize

the computational steps. In step ➁, the workflow designer identifies the variable con-

cerns (e.g., medical image format, algorithm method) for each process of the scientific

workflow. An FM can be associated to a concern of a process, so that the variability of

this concern is represented by it (Section 5 discusses how this is implemented). Hence

several FMs are woven at different, well-located places in each process (e.g., dataport,

interface) for specifying the variability of application-specific requirements. We present

in Section 4.2 mechanisms to achieve separation of concerns and to reuse sub-parts of

the catalog of FMs (rather than developing from scratch FMs).

In the general case, some features of a concern may interact with one or more

features of other concern(s). In step ➂, some application-specific constraints within

or across services are typically specified by the workflow designer to not permit some

combinations of features. Similarly, some compatibility constraints (e.g., between dat-

aports) can be deduced from the workflow structure and be activated or not by the

workflow designer. We described in Section 4.3 the kinds of constraints that can be

specified or deduced from the workflow structure.

In order to ensure that the variability requirements do match the combination of

features offered by the catalog, the workflow designer compares, in step ➃, the FMs

woven in the workflow with the FMs in the catalog of legacy services. In Section 4.4.2,

we explained how the matching verification is performed for all services of the workflow

and reduces the set of features to consider.

In step ➄, we automatically reason about FMs and constraints specified by the

workflow designer in step ➀ and ➁. Constraints propagation and merging techniques

are combined to reason about FMs and their compositions (see Section 4.4.3). This

provides assistance to the workflow designer (detection of errors, automatic selection

of features, etc.)

To complete the workflow configuration (step ➅), the workflow designer has to re-

solve concern FMs where some variability still remains, and to perform select/deselect

operations. The step ➅ may be repeated as much as needed in order to allow the work-

flow designer to proceed incrementally (see Section 4.4.4). ➄ should also be repeated

in order to ensure workflow consistency is maintained. In step ➆, the workflow de-

signer uses the final workflow configuration to identify the services in the catalog that

support the combination of features. If more than one service is identified for a given

configuration, the workflow designer examines all candidate services to chose a best fit

or an arbitrary legacy service.

4.1 Workflow Design

To support the workflow modeling activity, we use the GWENDIA language

[Montagnat et al., 2009]. GWENDIA specifically focuses on coarse grain data-intensive

scientific applications and enables the description of massively data-parallel applica-

tions. Some workflow engines (e.g., MOTEUR [Glatard et al., 2008]) use the GWEN-

DIA language to describe and deploy applications on grid infrastructures. A GWEN-

DIA workflow is notably composed of a series of processors connected to each other

through their input and output ports. For the purpose of the paper, we consider that

16

Dataport

-id : string

Variable

Service

1

-arguments1..*

1

-output 1..*

1

-input 1..*

1

-operation1

-id : string

DeploymentInformation

GridDeploymentInformation

-uri : String

ComputingNode

1

-nodes1

1

-deployment

1

Workflow

-id : String

Process Relation

-value : Boolean

Guard

1

-processors1..*
-relations0..*

-id : string

Variable

-left1
-right

1

-condition

1

-realizedBy

1

1

Source Sink

InputArgument OutputArgument

-id : string

FunctionalInterface

Fig. 7 Excerpt of workflow and service metamodel.

GWENDIA workflows can be represented using the metamodel described in Fig. 7,

referred hereafter as the GWENDIA metamodel. There are two main parts: the gen-

eral description of a workflow (elements in blue color) and the specification of a service

(elements in yellow color).

A workflow is a set of process which are connected by directed links relation through

input and or output dataports. These links may correspond to operators for i) executing

services in sequence, ii) parallel computations and iii) branching through if-then-else

constructs. Some processes do not have inputs (source) while others do not have outputs

(sink). The workflow services’ can be detailed from different levels of description that

could then be (automatically) exploited in the workflow. For example, with descriptions

of the data format, it is possible to incorporate automatic reasoning that could auto-

matically check data interoperability between services connected in the workflow. In

the GWENDIA metamodel of Fig. 7, we have identified some abstraction capabilities

that can be used to augment services’ description. This includes the functional part of

the service, in particular its input and output parameters, as well as extra-functional

information that can be related to the platform in which the service is deployed. In our

context, some variability information can be attached to services’ elements, for exam-

ple, to describe the variety of medical image formats supported as an input parameter.

With regard to the metamodel, an instance of a service element is a joinpoint in which

an FM can be woven.

4.2 Separation of Concerns while Specifying Variability

There are at least two approaches that a workflow designer can use to define workflow

service variabilities.

One approach is to create from scratch FMs for each service with variable concerns

(as in [Acher et al., 2010b]). This solution has two major drawbacks. First, the mod-

17

FMaffmoving

AnonymizedFormat

DICOM Analyze

Modality Acquisition

MRI

T1 T2

MIMoving

Method

Affine

Mono Multi

Modality

Rigid

FMaffop

Extracting views

Analyze excludes Anonymized

Affine Registration

MIMoving.Analyze excludes MIMoving.Anonymized

MIFixed.Analyze excludes MIFixed.Anonymized

Mono ó (MIFixed.Analyze and MIMoving.Analyze)

...

MIInput
Method

Affine

Mono Multi

Modality

Rigid

FMCatalogAffineRegistration

Anonymized

Format

DICOM Analyze

Modality

Acquisition

MRI

T1 T2

MIMoving

AnonymizedFormat

DICOM Analyze

Modality

Acquisition

MRI

T1 T2

MIFixed

MIOutput

Nifti

Nifti

Nifti

(excerpt of the catalog of feature model)

Fig. 8 Extracting views from catalog of affine registration.

eling effort tends to be important and time-consuming. Second, when the workflow

designer wants to determine whether the specified combination of features is realized

in the catalog, the FMs developed have to be compared with catalog feature models.

There is a risk that vocabulary terms used for features’ names, hierarchies to struc-

ture features as well as granularity detail largely differ, thus requiring an important

alignment effort.

Another approach is to build FMs that are modified versions of FMs of the catalog,

that is, closely matched FMs of the catalog are reused and modified so that they include

only the features that are needed in the workflow. Hence the modeling effort as well as

the alignment effort are reduced through reuse.

Unfortunately, an FM may represent the variability of all concerns within a service,

including the features’ constraints between concerns, whereas the workflow designer

wants to focus on some specific views of the catalog of feature models. For example,

FMCatalogAffineRegistration integrates the description of four concerns, the two input

medical images, the output medical image and the algorithm method, while there is a

relationship between the feature Mono and the features Analyze
4.

To resolve this issue, extractions, based on the slicing mechanism (see Definition 3

or [Acher et al., 2011b] for more details), can be performed and the original FM can

be split into smaller FMs also called variability concerns in the remainder of the paper.

Once extracted, the workflow designer can weave the smaller FMs into specific places

of a service to document its variability requirements.

Definition 3 (Slicing) We define slicing as an operation on FM, denoted

ΠFslice
(fm) where Fslice = {ft1, ft2, ..., ftn} ⊆ F is a subset of the set of features

of fm. The result of the slicing operation is a new FM, fmslice, such that:

JfmsliceK = { x ∈ JfmK | x ∩ Fslice } (called the projected set of configurations).

4 The two features Analyze have the same name but are different entities. To avoid ambiguity,
we use a qualified feature name including the root feature when needs be (e.g., to distinguish the
Analyze feature of MIMoving from the Analyze feature of MIFixed. In this specific case, the merge
operator described in Section 3.3 makes internally the distinction such that MIMoving.Analyze
does not match with MIMoving.Analyze.

18

Image

sequence Reference

image

Bias correction

Bias

correction

Affine

registration

:out

:fixed

FMafffixed

:moving

:op

Longitudinal

intensity correction

:out

:in

AnonymizedFormat

DICOM Analyze

Modality Acquisition

MRI

T1 T2

MIMoving

FMaffmoving

FMaffout

Method

Affine

Mono Multi

Modality

Rigid

FMaffop

AnonymizedFormat

DICOM Analyze

Modality Acquisition

MRI

T1 T2

MIFixed

AnonymizedFormat

DICOM Analyze

Modality Acquisition

MRI

T1 T2

MIOutput

Weaving

:pointcutID Service element

Dataport

connexion

Service Service

:out

Analyze excludes Anonymized

Analyze excludes Anonymized

Analyze excludes Anonymized

Intra-constraints

faff = {MIMoving.DICOM ó MIFixed.DICOM,

MIMoving.Analyze ó MIFixed.Analyze}

Fig. 9 Weaving variability concerns into services.

For example, in Fig. 8, two FMs FMaffmoving and FMaffop are extracted from the

FM FMCatalogAffineRegistration. These two FMs are then specialized (feature Rigid

becomes mandatory in FMaffop and feature Nifti is no longer present in FMaffmoving)

and finally woven into two joinpoints of an Affine registration service (see Fig. 9).

Four joinpoints are defined in Affine registration: :moving and :fixed are instances

of type InputArgument, :out is an instance of type OutputArgument and :op is an

instance of type FunctionalInterface. Four FMs, including the two FMs FMaffmoving

and FMaffop, are woven into the four joinpoints: three of them deal with medical image

formats whereas the fourth FM deals with the kind of algorithm used for processing

the images (see Fig. 9).

4.3 Variability Consistency Rules

The variability information attached to services authorizes numerous combinations of

features (configurations) so that a final workflow product can be derived. Nevertheless,

not all configurations are valid since variability concerns, documented as separated

FMs, can be dependent on other variability concerns within services and across ser-

vices. Constraints may be specified by the workflow designer to restrict the set of valid

configurations.

We define a classification of the various types of constraints and then we present

how the specification and the verification of these constraints are integrated within the

process shown in Fig. 6.

19

4.3.1 Constraint Classification

We identify four kinds of constraints:

Intra-services constraints. Variability concerns within a service may interact.

Catalog constraints. An example was given in Section 3.4 where some Method child-

features are related to some Format child-features (e.g., Analyze excludes Graph)

in catalog FMs. The variability specification of a service in the workflow should

be mapped to at least one service in the catalog. Hence, the variability concerns

attached to a workflow service should be coherent with the constraints imposed

by the catalog.

Application specific constraints. Intra-constraints may be specific to an applica-

tion, for example, a user can require that the imaging formats supported as

inputs should be the same for each input data port of the service. As a result,

the FMs representing the different input images supported by a service are re-

lated to each other through constraints between features. For example, a user

specifies in Fig. 9 that the feature DICOM (resp. Analyze) of FMaffixed implies

the feature DICOM (resp. Analyze) of FMmoving.

Inter-services constraints. Variability concerns are likely to interact across services.

We identify two kinds of situations where the sets of valid combination of services’

features may be further constrained:

Workflow Compatibility constraints. Due to the interconnection of services in the

workflow, elements of services may be dependent. As a result, concerns attached

to these elements may, in turn, be dependent on each other. This typically

occurs when concerns are attached to input/output data port. For instance, the

medical image output format of the service Bias correction is considered to be

compatible with the medical image input format of the other connected services,

i.e., Affine registration, Longitudinal intensity correction, Brain extraction and

Non-linear registration in the workflow of Fig. 10. The compatibility relation

restricts the set of valid combination of features in each of those services (see

next Section).

Application specific constraints. Two (resp. more than two) FMs attached to two

(resp. more than two) different services may be related to each other in some

workflow applications. The user should have the ability to specify some spe-

cific constraints when he/she considers that services are tightly coupled. For

example, it is required in the medical image domain that registration and un-

bias services, that are directly connected in the workflow, are using the same

algorithm method.

4.3.2 Integration of Constraints within the Process

Some constraints are manually specified by the user (e.g., cross-FM constraints specific

to an application) whereas some others can be detected from the workflow analysis (see

Table 1). In particular, compatibility constraints between data ports can be deduced

and then constraints are applied on FMs attached to data ports. Nevertheless, if the

workflow designer is developing the workflow in an incremental manner, he/she may

want to deactivate part of the compatibility checks according to the service and/or the

concerns he/she focused on.

20

By who and how? When

Catalog

constraints

The specification is

implicit. But the

association

catalog/concern is

performed explicitely by

the workflow designer

Association is

performed at step

3 of the process

It is performed at the step 4

of the process i.e. when the

mapping

catalog/specification is

done (See Section 4.4.2)

Application-

specific

constraints

Application-

specific

constraints

Workflow

compatibility

constraints

The specification is built-

in. But the desactivation

may be performed

explicitely by the workflow

designer

Possible

deactivation is

performed at step

3 of the process

Intra-Service

Constraints

Inter-Service

Constraints

At step 3 of the

process

The workflow designer

specifies it explicitely It is performed at the step 5

of the process i.e. when the

consistency checking and

variability propagation is

done (See Section 4.4.3)

Constraint

Classification
Contraint Checking

Constraint Specification

Table 1 Specification and checking of constraints within the process.

Image

sequence

Reference

image

Atrophy

Bias correction

Bias

correction

Affine

registration

Non-linear

Registration

Atrophy measure

Brain

extraction

Mask calculation

Tissue segmentation

:in

:out

:fixed

:fixed

Longitudinal

intensity correction

:reference

AnonymizedFormat

DICOM Analyze

Modality Acquisition

MRI CT

T1 T2

MIOut

SPECT

MRI excludes Nifti

Format

DICOM Analyze

Modality Acquisition

MRI

T1 T2

Medical Image

SPECT

AnonymizedFormat

Nifti Analyze

Modality Acquisition

MRI CT

T1 T2

MIFixed

SPECT

MRI implies Nifti

AnonymizedFormat

DICOM Nifti

Modality Acquisition

MRI CT

T1 T2

MIReference

AnonymizedFormat

DICOM Analyze

Modality Acquisition

MRI CT

T1 T2

MIFixed

SPECT

FMafffixed

FMout

FMin

FMnlinfixed

FMreference

Nifti

Weaving

:pointcutID Service element

Dataport connexion

Service Service

Dataport connexion and

compatibility rule activation

Fig. 10 Data compatibility between services.

21

Dataport compatibility. The compatibility relation can be defined, at the FM level, as

follows: For at least one valid configuration of the FM associated to the medical image

output there is an equal configuration valid in the FM(s) associated to the medical

image input(s) (and vice-versa).

As shown in [Acher et al., 2010b], when n services are concurrently executed, it is

not sufficient to reason about pairs of services independently when checking dataport

compatibility:

(FMout ⊕∩ FMafffixe 6= nil) ∧ (FMout ⊕∩ FMreference 6= nil) ∧

(FMout ⊕∩ FMin 6= nil) ∧ (FMout ⊕∩ FMnlinfixed 6= nil)

since the merging (e.g., (FMout ⊕∩ FMafffixe)) has side effects on input feature

models (e.g., FMout and FMafffixe).

We thus need to reason about all services at the same time:

(FMout ⊕∩ FMafffixe ⊕∩ FMreference ⊕∩ FMin ⊕∩ FMnlinfixed) 6= nil (Cmp1)

It can be generalized as follows: When the output dataport of a service FService1

is connected to input data ports of a set of services FService2, . . . , FServicen, services

are consistent according to feature models attached to dataports if the following relation

holds:

FMo1 ⊕∩ FMi2 ⊕∩ FMi3 . . . ⊕∩ FMin 6= nil

when FMo1 is the feature model attached to the output dataport of FService1 and

FMi2 . . . FMin are feature models attached to the input dataports of resp. FService2,

. . . , FServicen.

For other workflow constructs (e.g., if-then-else), properties in terms of sets of

configuration have also been defined (see [Acher et al., 2010b] for more details).

4.4 Reasoning about Catalog and Requirements Variability

We have described and illustrated how a user can specify variability at different places

as well as the kinds of constraints that may occur in a scientific workflow. We now

show how to perform automated reasoning about the FMs and constraints.

4.4.1 Formalization

We first formalize the relationship between FMs, services and workflows as well as the

notion of validity at the service and workflow level. The formalization is used afterwards

to describe the algorithms that realize reasoning operations.

Definition 4 (Service and Feature Models) A service FServicei is described as

– a set of feature models, V Ci = {FMi,0, FMi,1, . . . , FMi,n}.

– a set of intra-constraints, Φi where each γ ∈ Φi is an arbitrary propositional con-

straint over the set of features of any FM belonging to V Ci.

22

Definition 5 (Service and Validity) Let Γaggi be the aggregated FM of FServicei

obtained by placing the FMs of V Ci under an And-decomposed synthetic root r and

adding the conjunction of each constraint that belongs to Φi.

A configuration c of a service FServicei is a set of features selected where each

feature of c is either a feature of FMi,0, FMi,1, . . . , or FMi,n. The configuration c is

valid iff c ∈ (JΓaggiK \ r)

For example, the service Affine Registration of Fig. 9 is composed of four FMs,

FMafffixed, FMaffmoving, FMaffout and FMaffop, and two intra-constraints. An

example of a valid configuration of this service is given below:

{ MIFixed, MIFixed.Modality Acquisition, MIFixed.MRI, MIFixed.T1, MIFixed.Format, MI-

Fixed.Analyze MIMoving, MIMoving.Modality Acquisition, MIMoving.MRI, MIMoving.T1, MIMov-

ing.Format, MIMoving.Analyze MIOutput, MIOutput.Modality Acquisition, MIOutput.MRI, MIOut-

put.T1, MIOutput.Format, MIOutput.DICOM, MIOutput.Anonymized Method, Affine, Rigid, Modal-

ity, Mono }

Definition 6 (Workflow and Feature Models) A workflow is described as

– a set of services, ǫservices = {FService0, FService1, . . . , FServicen} ;

– a set of connections between those services, C ⊆ ǫservices × ǫservices ;

– a set of inter-constraints, ζ where each η ∈ ζ is an arbitrary propositional constraint

over the set of features of any FM of ǫservices, i.e., FM0,0, FM0,1, . . . , FM0,m0
,

. . . , FMi,0, FMi,1,. . . , or FMi,mi
, . . . , FMn,mn .

– a set of compatibility constraints µ over the set of FM configurations of the work-

flow. The set can be deduced from the connections between workflow services or be

deactivated/specified by a workflow designer.

Definition 7 (Workflow and Validity) A configuration cw of a workflow is a set

of features selected where each feature of cw is either a feature of FM0,0, FM0,1, . . . ,

or FMn,mn .

Let ∆agg be the aggregated FM of a workflow obtained by placing the aggregated

FMs of each service under an And-decomposed synthetic root r and adding the set of

constraints ζ and µ.

The configuration c is valid iff c ∈ (J∆aggK \ r)

The approach we developed provides automated support for i) ensuring for each

FMs associated with a service of the workflow, that only valid and consistent se-

lect/deselect decisions are made, ii) propagating the decisions so that the workflow

designer is only required to answer questions needing human intervention (the answers

to the other questions are inferred automatically).

We illustrate how we can automate consistency checking and reduction of variability

using Affine registration as an example. According to the semantics defined above, the

following three conditions should not be violated in the Affine registration service:

– (a) at least one configuration of the workflow service should correspond to another

configuration of an existing service in the catalog. Formally:

Let Γaggaff be the aggregated FM of service Affine registration and Γcatalogaff
be

the FM of the corresponding family of service in the catalog. Then, the following

relation holds: JΓaggaff K ∩ JΓcatalogaff
K 6= ∅ ;

– (b) the compatibility constraints between Affine registration and other connected

services are enforced. Formally: the relation (Cmp1) holds ;

23

– (c) FMaffout, FMop, FMafffixed and FMaffmoving are to be consistent. For-

mally:

Let Γaggaff be the aggregated FM of service Affine registration.

∃cout ∈ JFMaffoutK, cop ∈ JFMopK, cfixed ∈ JFMafffixedK,

cmoving ∈ JFMaffmovingK s.t. (cout ∪ cop ∪ cfixed ∪ cmoving) ∈ JΓaggaff K ;

4.4.2 Catalog Mapping

The reasoning process starts by ensuring that the catalog can provide, for all services in

the workflow, at least one corresponding FM that matches its variability requirements.

We consider that each workflow service may be mapped to a catalog FM. The mapping

between a service of the workflow and the catalog is specified by the workflow designer

using a domain-specific language (see Section 5). The availability is checked for all

services that are mapped to a catalog. The reasoning process has also the capability to

identify variability choices that are no longer available in the catalog FM. In Fig. 11,

we illustrate how the mapping between Affine registration and the catalog of Fig. 8 is

realized. Some variability choices have been inferred, for example, feature Multi is no

longer present and thus the feature Mono is now a core feature. The intra-constraints

have been reinforced. For example, configurations of the catalog that include the fea-

ture Nifti are not considered because the variability requirements of the service Affine

registration do not include the feature Nifti. Such reasoning can be automated using

the merging techniques described in Section 3.3. The key idea is to assemble all FMs

of the service into an aggregated FM and then queries the catalog FM. We use the

Algorithm 1 that describes how the catalog is queried. First, the FMs of each service

are aggregated together with their intra-constraints. The merge in intersection mode

is then performed5 and FMs of the workflow services as well as the intra-constraints

are updated after decomposing the aggregated FM using the slicing mechanism (see

Definition 3). This is the same decomposition mechanism as the one described in Sec-

tion 4.2 which consists in extracting a set of FMs from the aggregated FM. For instance,

FMaffixed at the bottom of Fig. 11 is extracted from the merged FM and includes

the constraints that involve its features Anonymized and Analyze.

In this step, every workflow service is consistently mapped to a catalog FM. There is

no longer need to query again the catalog. The restrictions on the sets of configurations,

compactly represented by the merged FM, guarantee the existence of at least one

corresponding service in the catalog.

4.4.3 Consistency Checking and Variability Propagation

Dataport compatibility. The reasoning process continues by ensuring that the com-

patibility constraints between dataports are enforced (see ➀ of Fig. 12). At the FM

level, the merge intersection is performed between FMout, FMafffixed, FMreference,

FMlinfixed and FMin. The root features of the different input FMs fed to the merge

5 Some alignment issues may occur when merging two FMs. For example, a naive aggregation
of FMs can lead to an aggregated FM without the structuring feature MIInput, and thus
disturbs the merging process. We provide to the user the ability to specify some pre-directives
before merging FMs. The FM alignment problem is more general and further discussed in
Section 6.

24

Querying the

catalog

2

Affine

registration

:fixed

FMafffixed

:moving

:op

:out

AnonymizedFormat

DICOM Analyze

Modality

Acquisition

MRI

T1 T2

MIMoving

FMaffmoving

FMaffout

Method

Affine

Mono Multi

Modality

Rigid

FMaffop

AnonymizedFormat

DICOM Analyze

Modality

Acquisition

MRI

T1 T2

MIFixed

AnonymizedFormat

DICOM Analyze

Modality

Acquisition

MRI

T1 T2

MIOutput

Analyze excludes Anonymized

Analyze excludes Anonymized

Analyze excludes Anonymized

Intra-constraints

faff = {Mono ó (MIFixed.Analyze and MIMoving.Analyze),

MIMoving.DICOM ó MIFixed.DICOM,

MIMoving.Analyze ó MIFixed.Analyze, ...}

y

1 Aggregating FMs

Decomposing and

Updating FMs

3

Form

at
Analy

ze

Modality

Acquisition

M

RI
T

1
T

2

MIFixed

Method

Affine

Mon

o

Mul

ti

Modalit

y

Rigi

d

Affine Registration

MIInput

Anonymi

zed
Form

at
DIC

OM

Analy

ze

Modality

Acquisition

M

RI
T

1
T

2

MIOutput

Analyze excludes

Anonymized

Form

at
Analy

ze

Modality

Acquisition

M

RI
T

1
T

2

MIMoving

faff = {MIMoving.DICOM ó MIFixed.DICOM,

MIMoving.Analyze ó MIFixed.Analyze}

Affine Registration

MIMoving.Analyze excludes MIMoving.Anonymized

MIFixed.Analyze excludes MIFixed.Anonymized

Mono ó (MIFixed.Analyze and MIMoving.Analyze)

...

MIInput
Method

Affine

Mono

Modality

Rigid

FMCatalogAffineRegistration

AnonymizedFormat

DICOM Analyze

Modality

Acquisition

MRI

T1 T2

MIMoving

AnonymizedFormat

DICOM Analyze

Modality

Acquisition

MRI

T1 T2

MIFixed

MIOutput

Nifti

Nifti

Affine

registration

:fixed

FMafffixed

:moving

:op

:out

AnonymizedFormat

DICOM Analyze

Modality

Acquisition

MRI

T1 T2

MIMoving

FMaffmoving

FMaffout

Method

Affine

Mono Multi

Modality

Rigid

FMaffop

AnonymizedFormat

DICOM Analyze

Modality

Acquisition

MRI

T1 T2

MIFixed

AnonymizedFormat

DICOM Analyze

Modality

Acquisition

MRI

T1 T2

MIOutput

Analyze excludes Anonymized

Analyze excludes Anonymized

Analyze excludes Anonymized

Intra-constraints

faff = {MIMoving.DICOM ó MIFixed.DICOM,

MIMoving.Analyze ó MIFixed.Analyze}

Fig. 11 Affine registration is mapped to the catalog of Fig. 8 and its four FMs are updated.

operator may have different names6. Such features disturb the merging process so

that, theoretically, JFMmergedK is empty. For practical reasons, we automatically re-

6 It may be for practical reasons (e.g., convention) or for better characterizing the high-level
concept for which the FM applies. In the example, rather than always using Medical Image,
users prefer to be more precise for describing the kind of medical image associated to an FM.
This issue is an instance of the FM alignment problem which is further discussed in Section 6

25

Algorithm 1 Querying the catalog

Require: the set of services, FServices, of the workflow that are mapped to a catalog
Ensure: services requirements match at least one service in the catalog and are updated.

for all FServicei ∈ FServices do

Γi ← build the aggregated FM of FServicei

FMmapped ← the associated FM in the catalog
if JΓiK ∩ JFMmappedK = ∅ then

print “Unable to find a corresponding service in the catalog”
else

FMmerged ← Γi ⊕∩ FMmapped

fmsdecomposed ← decompose FMmerged

for all FMvc ∈ fmsdecomposed do

update FServicei with FMvc

end for

Φnew ← extract intra-constraints from fmsdecomposed

Φi ← Φnew {update intra-constraints}
end if

end for

name each root feature of the FMs involved in the merging with the same temporary

name (e.g., Medical Image), if needs be. When the relation (Cmp1) defined in Section

4.4.1) does not hold, the sources of the error (i.e., the identification of the services that

are not compatible to each other) are reported to the user. Otherwise, a valid FM is

computed: FMmerged.

The resulting FM produced by the merge operator, FMmerged, is then used to

update (i.e., replace) all the FMs involved in the compatibility relation. For example,

a new FM, called FMafffixed′ , is now associated to the pointcut :fixed of Affine

registration (see ➁ of Fig. 12) and is equal to FMmerged. Hence the features DICOM

and Anonymized of FMafffixed are no longer present. Algorithm 2 recaps the situation.

Propagating constraints within a service. The intra-constraints of the service Affine

registration may further reduce the set of valid combinations of features in other FMs

of the service. When the FM involved in the dataport compatibility has been modified,

as it is the case for FMafffixed, intra-constraints have to be considered for checking

validity or propagating choices within a service. It should be noted that Algorithm 2

does propagate constraints only for services whose FMs have been modified during

the compatibility checking. It may happen that the compatibility relation involving

FMafffixed truly holds but that the service is not valid due to intra-constraints. In

addition, intra-constraints can be used to propagate variability choices.

The approach consists in aggregating the four feature models FMafffixed′ ,

FMaffmoving, FMaffout, FMop, FMaff together with the constraints Φaff of the

service Affine registration. The resulting feature model is denoted FMall. FMall is

then being analyzed for various purposes:

– consistency of the service Affine registration can be decided by checking the satis-

fiability of FMall ;

– we can detect new dead and core features and report back to the workflow designer

;

– the corrective capabilities of the slicing technique can be applied to simplify and

update the different feature models of the service Affine registration (removal of

26

FMmerged

updating FMs
2

FMreference

FMout

Bias

correction

Affine

registration

Non-linear

Registration

Brain

extraction

Longitudinal

intensity

correction

FMafffixed

:in

:fixed

:fixed

:reference

:out

y
compatibility checking

1

Affine

registration

:fixed:moving

:op

:out

FMaffout

Method

Affine

Mono Multi

Modality

Rigid

FMaffop

FMafffixed'

FMaffmoving'

AnonymizedFormat

DICOM Analyze

Modality

Acquisition

MRI

T1 T2

MIMoving

Analyze excludes Anonymized

propagating

intra-constraints

3

FMnlinfixed FMin

faff = {Mono ó (MIFixed.Analyze and

MIMoving.Analyze),

MIMoving.DICOM ó MIFixed.DICOM,

MIMoving.Analyze ó MIFixed.Analyze, ...}

AnonymizedFormat

DICOM Analyze

Modality

Acquisition

MRI

T1 T2

MIFixed

Analyze excludes Anonymized

AnonymizedFormat

DICOM Analyze

Modality Acquisition

MRI

T1 T2

MIFixed

Analyze excludes Anonymized

AnonymizedFormat

DICOM Analyze

Modality Acquisition

MRI CT

T1 T2

MIOut

SPECT

MRI excludes Nifti

Nifti

AnonymizedFormat

DICOM Analyze

Modality Acquisition

MRI CT

T1 T2

MIReference

AnonymizedFormat

Nifti Analyze

Modality Acquisition

MRI CT

T1 T2

MIFixed

SPECT

MRI implies Analyze

Format

DICOM Analyze

Modality Acquisition

MRI

T1 T2

Medical Image

SPECT

Format

Analyze

Modality

Acquisition

MRI

T1 T2

Medical Image

AnonymizedFormat

DICOM Analyze

Modality

Acquisition

MRI

T1 T2

MIOutput

Analyze excludes Anonymized

Fig. 12 Reasoning process: for each connected dataports in the workflow, we propagate vari-
ability choices within each service involved in the compatibility checking.

features when features are known to be dead, setting the mandatory status to some

core features, etc.) ;

Reiterating the reasoning process. It may happen that the inference of variability

choices through intra-constraints propagation leads to the modification of an FM in-

volved in a dataport compatibility. (It is not the case for Affine registration.)

Let us consider the example given in Fig. 13 where services FService1 and FService2

are sequentially connected. Compatibility checking between their dataports :out and

:in is first performed (see ➀) such that features E, D are no longer present in FMoutput

of FService1 while feature F is no longer present in FMinput of FService2. Then,

constraint propagation is performed in FService1 and FService2 (see ➁). No variability

27

Algorithm 2 Updating FMs after compatibility checking

Require: a set of dataport connections, connectiondps, where a dataport connection is repre-
sented as a set of dataports. connectiondps is typically obtained through workflow analysis.

for all connection ∈ connectiondps do

fmsToMerge← {}
for all dp ∈ connection do

if dp has no FM attached then

print “Warning: unable to find an FM in dataport”
else

fmDP ← retrieve the FM attached to dp

fmsToMerge← fmsToMerge ∪ fmDP

end if

end for

mergedFM ← fms1⊕∩fms2⊕∩. . . fmsn where fms1, fms2, . . . , fmsn ∈ fmsToMerge

if mergedFM not valid then

print “Error: dataports of connection are not compatible” {diff operations can be
performed to provide fine-grained explanations}

else

servicesmodified ← {} {services that have been impacted}
for all dp ∈ connection do

fmdp ← retrieve the FM attached to dp

if mergedFM is a specialization of fmdp then

servicedp ← retrieve the service of dp

servicesmodified ← servicesmodified ∪ servicedp {propagation is needed}
end if

fmdp ← mergedFM

end for

end if

end for

propagating choices on servicesmodified

Algorithm 3 Consistency checking and constraint propagation

Require: a set of services, FServices

Ensure: requirements variability are consistent and updated within each service
for all FServicei ∈ FServices do

Γi ← build the aggregated FM of FServicei

if JΓiK = ∅ then

print “The service FServicei is not consistent”
else

propagate choices in Γi

fmsdecomposed ← decompose Γi

for all FMvc ∈ fmsdecomposed do

FMcorr ← retrieve the original FM that corresponds to FMvc in FServicei

update FServicei with FMvc

if FMvc is attached to a dataport and FMvc is a specialization of FMcorr then

mark FMvc {compatibility checking should be reiterated}
end if

end for

end if

end for

28

FService1
:out

:interface

FService2:in

:interface

A

C BE D

A

C BF

Z1

Z2Z4 Z3
Y1

Y2 Y3

FMoutput

FMz

FMy

FMinput

fFService1 = {Z2 ó C,

(B or C) implies not Z2}

fFService2 =

{Y2 ó B}

FService1
:out

:interface

A

C B

Z1

Z2Z4 Z3

FMoutput

FMz

fFService1 = {Z2 ó C,

(B or C) implies not Z2}

1 Compatibility

Checking

FService2:in

:interface

A

C B

FMinput

fFService2 =

{Y2 ó B}

Y1

Y2 Y3

FMy

Compatibility

Checking

3

FService2:in

:interface

Y1

Y2 Y3

FMy

A

B

fFService2 =

{Y2 ó B}

Constraint

Propagation

4

FService2:in

:interface

Y1

Y2 Y3

FMy

A

B

fFService2 =

{Y2 ó B}

FService1
:out

:interface

Z1

Z4 Z3

FMz

fFService1 = {Z2 ó C,

(B or C) implies not Z2}

A

B

2
Constraint

Propagation

Fig. 13 An example: reiterating compatibility checking and constraints propagation.

choices can be inferred in FService2. In FService1, feature Z2 has been removed due to

the intra-constraint B∨C ⇒ ¬Z2. In turn, feature C has been removed due to the intra-

constraint Z2 ⇐⇒ C. Hence, the FM FMoutput involved in a compatibility relation

between dataports has been modified and compatibility checking should be reiterated

(see ➂). It modifies FMinput and, after constraint propagation, FMY in FService2 (see

➃). The reasoning process stops since no variability choices can be inferred in FService1

and FService2 and the compatibility checking between FMoutput and FMinput has no

effect.

Algorithm 3 and Algorithm 4 describe the reasoning process. Compatibility check-

ing is performed if and only if an FM attached to a dataport connected to other

dataports has been modified during constraint propagation (and thus marked during

Algorithm 3 execution) . If the set of configuration of an FM remains the same, the

algorithm terminates. An important property of the merging operator in intersection

mode is that each input FM is either a refactoring or a generalization of the merged

FM. (We rely on the terminology used in [Thüm et al., 2009]. Let f and g be FMs. f is

a specialization of g if JfK ⊂ JgK ; f is a generalization of g if JgK ⊂ JfK ; f is a refactor-

ing of g if JgK = JfK.). As a result, each time the compatibility checking is performed,

FMs involved are either specialized or not impacted. Hence, the set of configurations is

either the same or is decreased until being a singleton. This property guarantees that

the algorithm necessary terminates when no variability choices can be deduced.

29

Algorithm 4 Reiterating the reasoning process

Require: the set of services, FServices, of the workflow ; the set of dataport connections,
connectiondps, of the workflow
for all FServicei ∈ FServices do

for all vc ∈ V Ci do

if vc is marked then

print “Info: compatibility checking should be reiterated”
dpvc ← retrieve dataport of vc

connectiondpvc
← {conn ∈ connectiondps ∧ dpvc ∈ conn}

unmark vc

perform compatibility checking on connectiondpvc

end if

end for

end for

4.4.4 Multi-step Configuration of the Workflow

All FMs of the workflow can be partially configured or specialized [Czarnecki et al., 2005,

Thüm et al., 2009]. The specialization activity includes the selection/removal of some

features, the adding of some constraints within an FM, etc. Reasoning operations, as

described above, can be similarly performed at each step to ensure consistency of the

whole workflow and propagate variability choices (see ➅ of Fig. 6).

Once the configurations of all FMs are complete, we know by construction that it

corresponds to services in the catalog. It may happen that given a configuration of a

service (see Definition 5), there is more than one service that corresponds in the catalog

(since there exists services that support the same combinations of features). In this case,

one possible and our current solution is that the user has to arbitrary choose which

services he/she wants to include in the final workflow product (see further discussions

in Section 6.2.3).

5 Realization and Tool Support

The approach proposed is comprehensively supported by a combination of dedicated

tools and domain-specific languages (DSLs). The goal is to assist users at each step of

the process – from workflow design to configuration of each of its constituent parts –

described in Fig. 6.

5.1 Workflow Modeling

The first activity is to design a workflow (see ➀ of Fig. 6). We rely on the GWENDIA

language (see Section 4.1), which proposes two concrete syntax, a graphical repre-

sentation and a textual representation, and supports all the workflow constructions

mentioned in Fig. 7. Using GWENDIA, scientists can specify a workflow including

all data connections. In the left upper part of Fig. 14, the XML representation of an

excerpt of a GWENDIA workflow is depicted.

Once designed, the workflow description can be augmented by specifying the vari-

ability requirements associated to services. To do so, different techniques and tools that

are centered on features could be reused. Several systems have been developed, and con-

cern all kinds of artifacts, from code or models to documentation [Apel and Kästner, 2009].

30

GWENDIA Workflow Wfamily DSL

workflow {
 file="examples/asclepios/asclepiosQuality.gwendia.xml"

 service "Brain extraction" {
 fmData {
 fmInterface = FM ("examples/asclepios/brainextract/interface.fml")
 fmInput = FM ("examples/asclepios/brainextract/input.fml")
 }
 weave fmInterface into interface

 map segmentationBrain fromCatalog "segmentationBrain.fml"
 }

 service "Non-linear registration" {

 fmData {

 fmInput = FM ("examples/asclepios/nonlinearregistration/input.fml")
 }

 weave fmInput into fixed
 weave fmInterface into interface

 map registrationBrain fromCatalog "registrationBrain.fml"
 }

 constraints {

 Motion.fmInput.A -> !BiasCorrection.fmInput.H
 Motion.fmInput.A and BiasCorrection.fmInput.I
 }

}

 weave fmInput into in

run "segmBrain1.fml"
run "segmBrain2.fml"
run "segmBrain3.fml"
run "segmBrain4.fml"

foreach (sgm in segmBrain*) do
 fmi = extract sgm.MedicalImage
 // rename features of fmi with prefix "Output"
 foreach (ft in fmi.*) do
 nameFt = name ft
 newFtName = strConcat "Output" nameFt
 renameFeature ft as newFtName
 end
 rootSgm = root sgm
 insert fmi into rootSgm with opt
end

 segmentationBrain = merge sunion segmBrain*
segmentationBrainCommon = merge intersection segmBrain*

// catalog
run "catalog.fml" into catalog

// we map workflow services Segm and Reg to the catalog
fmO = copy catalog.MSPL_Segm // fmO corresponds to the Output of Segm
fmI = copy catalog.MSPL_Reg // fmI corresponds to the Input of Reg

// we check the compatibility relation between Segm and Reg
fmR = merge intersection { fmO fmI }
if (not isValid fmR) then
 println "Services are *not* compatible"
else
 println "Services are compatible"
end

// we can configure

// we can add constraints btw feature models (e.g., of the same service)

Workflow Analyzer

Catalog of Services

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

Automated Reasoning

Reusable

scripts F
A

M
IL

IA
R

 D
S

L

Bias correction

Affine registration

Non-linear Registration

Brain extraction

:in

:out

:fix

ed

:fixed

Longitudinal intensity

correction

:referen

ce

Code

generation

Fig. 14 Tool support and Domain-Specific Languages.

They notably include different software engineering techniques, i.e. aspect orienta-

tion [Voelter and Groher, 2007], components [van der Storm, 2004,Beuche et al., 2004],

feature-oriented software development [Apel and Kästner, 2009]

[Czarnecki and Pietroszek, 2006,Czarnecki and Antkiewicz, 2005]. Such techniques could

be applied in the context of our contribution. Nevertheless this paper focuses on the

coherent assembly of service-oriented workflow, rather than the development of the

service themselves. Consequently, to specify the variability requirements, we choose to

develop a simple and dedicated formalism to relate FMs to services and workflows. We

propose an DSL, called Wfamily (see right upper part of Fig. 14). It enables one to:

– import FMs from external files while performing some high-level operations (ex-

traction, renaming/removal of features, etc.). For example, the user can load an

existing FM from a catalog, then extracts the sub-parts that are of interest and

finally specialize the different FMs ;

– weave FMs to specific places of the workflow. We reify the concept of pointcut,

which have an unique identifier within a service. Hence users can specify for which

specific pointcut of a service an FM is attached to.

– constrain FMs within and across services by specifying propositional constraints.

Each FM that have been woven has an unique identifier and can be related each

other through cross-tree constraints.

31

5.2 FAMILIAR

Managing SPLs on a large scale requires users to perform complex tasks: FMs to be

composed are usually located in different files ; it is necessary to reason about FMs

(e.g., to check validity, to compute dead features) after performing several composition

operations. More generally, it is important to provide SPL developers with facilities

that allow them to capture and reuse a sequence of SPL management operations. As

shown in this paper, similar requirements are encountered when managing variability

in scientific workflows.

We thus designed and implemented FAMILIAR (FeAture Model scrIpt Language

for manIpulation and Automatic Reasoning) [Acher et al., 2011a], a DSL dedicated

to the management of FMs. It is an executable language that supports manipulating

and reasoning about multiple FMs. It provides high-level operators for i) splitting

and composing FMs (several merge, aggregate or extract operators), ii) aligning FMs

(insertion, renaming and removal of features) and iii) reasoning about FMs and their

configurations (validity of an FM, comparison of FMs, number of valid configurations

in an FM, etc.). FAMILIAR also has constructs for describing iterations and conditions

and to write and run customizable scripts.

FAMILIAR supports multiple notations for specifying FMs (GUIDSL/FeatureIDE

[Batory, 2005,Kästner et al., 2009], SPLOT [Mendonca et al., 2009], a subset of TVL

[Boucher et al., 2010], etc.). Off-the-shelf SAT solvers (i.e., SAT4J) and BDD library

(i.e., JavaBDD) are internally used to perform some FAMILIAR operations (e.g., merg-

ing of FMs, configuration operations). The tool also allows users to import FMs or

configurations from their own environments. Outputs generated by FAMILIAR can be

processed by other tools, for example, in order to relate FMs to other artefacts (e.g.,

code, models) [Czarnecki and Antkiewicz, 2005,Heidenreich et al., 2010].

In terms of tool support, we provide an Eclipse text editor and an interpreter

that executes the various scripts. The interpreter can also be used in an interactive

mode to ease prototyping. Moreover the language was also integrated with the Fea-

tureIDE [Kästner et al., 2009] graphical editor so that all graphical edits are synchro-

nized with variables environment and all interactive commands are synchronized with

the graphical editors.

5.3 Reasoning about Variability with FAMILIAR

Considering the approach defended in the paper, FAMILIAR is used:

– to specify variability requirements within services (cf. ➁ and ➂ of Fig. 6): FAMIL-

IAR is embedded into the DSL Wfamily described above. As a result, extracting a

sub-FM from an FM in a catalog essentially consists in reusing FAMILIAR oper-

ators ;

– to build catalogs of services, organized as reusable scripts: FMs that document

variability of services are merged together ; similarly, querying a catalog of services

is realized using FAMILIAR scripts (cf. ➃ of Fig. 6) ;

– as a target language. FAMILIAR code is generated from the workflow analysis, for

example, to reason about dataport compatibility (cf. ➄ of Fig. 6).

The FAMILIAR code is then interpreted to check the consistency of the whole

workflow, report errors to users as well as automatically propagating choices (cf. ➁

32

and ➂ of Fig. 6). Users can incrementally configure, using graphical facilities provided

by FeatureIDE editors, the various FMs of the workflow (cf. ➅ of Fig. 6). Finally, in

order to derive a final workflow product, competing services can be chosen from among

sets of services in the catalog using FAMILIAR reusable scripts (cf. ➆ of Fig. 6).

The three different uses of FAMILIAR mentioned above rely on the facilities pro-

vided to the stakeholders for separating and aggregating/merging the various variability

concerns (i.e., to decompose and to recompose several FMs) they may want to address.

Then the traceability among the original FMs and the resulting composed or decom-

posed FM may become an issue. In different situations, it may be useful to trace the

provenance of a given feature. Not providing any specific means would oblige the stake-

holders to look at the variable identifiers of a FAMILIAR script that store intermediate

FMs produced by FAMILIAR operators. In order to keep the traceability, we associate

meta-information to each feature of an FM that reccords the list of FMs where the

feature comes from. This list of meta-informations is internally updated when needs be

by operators of FAMILIAR (e.g., the merge operator). Additional accessors allowing

to query or modify the contents of the list of meta-informations are provided in order

to address situations where the provenance of a given feature is needed.

6 Discussion

6.1 Summary

Building service-oriented scientific workflows mainly consists in first selecting some

appropriate services from all available parameterized services, then configuring and

assembling them in a consistent way. In many application domains, these activities

are cumbersome and error-prone, and this hampers current development efforts in

computational science. In this article, we introduced a rigorous and tooled approach

that extends current SPL engineering techniques to facilitate and automate consistent

workflow construction. The following contributions were presented:

– The organization of a catalog of services as a SPL was described. It enables service

providers to capture in a structured way the commonalities and variabilities present

in the parameterized services. Relying on FMs to structure SPLs, we have defined

merging techniques so that a SPL can be automatically generated from all service

descriptions, following an user-chosen classification.

– A multi-step process to obtain a consistent workflow was also detailed. Taking a ba-

sic description of the workflow, it consists in specifying different variable concerns

(ranging from functional parameters to non-functional properties or deployment

specificities) on one or more services. Constraints within or between concerns can

be added and all these elements are incrementally checked for consistency against

the service catalog. The workflow is then seen as a multiple SPL which composes

the SPLs of services. Configuration is assisted, consistency checking and propaga-

tion are incremental and automated (see Section 6.2.1 below), so that a consistent

workflow product is obtained. Evolution of both the services and their variable

parts is also supported by the approach. Moreover this process completely rests on

a sound formal basis realized by FM management operators and a Domain Specific

Language, so that generic parts of the process can be more easily reused in other

contexts (see Section 6.2.2 below).

33

– An overview of the implementation and user-oriented tool support has also been

given. Besides illustrations were provided using a non trivial example in the repre-

sentative domain of medical image analysis. Additionally, first experimental results

are discussed below (see Section 6.2.3).

6.2 Assessment

6.2.1 User Assistance and Degree of Automation

Organizing the workflow construction with SPL engineering techniques leads to a shift

in the process. The activities are then well targeted for each kind of stakeholder. The

service provider documents variability once and for all, the catalog maintainer handles

all available services over time and the workflow designer can focus on its construction

activity. It must also be noted that our proposed approach is heavily relying on the

service catalog, so that the effort of building it is compensated. The catalog is indeed

used both to assist the expert, when determining his relevant concerns — which is more

error-prone when specified from scratch —, and to incrementally enforce consistency.

A first assistance to the user is provided when he/she can select an appropriate

service from among sets of existing services. He/she may also want to search services

matching several criteria to determine whether at least one service can fulfill a specific

feature or a set of features. During the process, if the variability manipulated by the

user leads to some inconsistency but is considered to be more important than the

workflow structure, the user has to correct the workflow itself. Using our approach, such

inconsistencies are automatically and systematically detected and several correction

strategies can be applied. The separation of concerns provides the ability to precisely

locate the source of errors and to give information to assist users in correcting the

workflow: choose an other service, correct an applied concern, relax some variability

description, configure differently some services.

Properties of the merge operator can then be exploited. The various compositions of

FMs may be performed in any order because of the associativity property of the merge

operator. Heuristics, such as merging larger FMs first, can thus be planned to detect

an earlier source of errors. The merge between FMs contributes to decrease the number

of remaining variability choices presented to the user. Indeed an additional property

of the merge in intersection mode is that the number of features of the resulting FM

is lesser than or equal to the number of features commonly shared by input FMs. This

property can dramatically reduce the set of configurations to be considered by the

user during workflow configuration. As a result, it is likely that the amount of time

and effort needed during the configuration process can be reduced (see experimental

results below).

As for the process automation, it ranges from the catalog building to the result-

ing workflow product. First, taking all service variability descriptions, the catalog of

services is automatically generated. During the workflow construction and configura-

tion, all assisted steps discussed before are coupled with incremental and automatic

consistency checking. The specified concerns over services are extracted from the cat-

alog with the guarantee to be consistent subsets. After having been woven to services,

their consistency according the workflow is automatically checked. When the resulting

workflow is configured, the automatic propagation of constraints among feature mod-

els representing the concerns is conducted, ensuring again consistency while reducing

34

the user burden. Finally, as the variability of services may evolve over time, the com-

plete process can be easily replayed to check again the consistency with additional or

modified concerns.

6.2.2 Applicability

In our case study, a medical imaging service can be seen as an SPL provided by different

researchers or scientific teams. The entire workflow is then a multiple SPL in which

different SPLs are composed. Applying the same approach to another domain is possible

and many automatic parts of the process can be reused.

Let us consider that the other domain would manipulate connected components,

possibly hierarchically composed so that one would face different software artifacts with

a different composition techniques. This case is comparable to the variable components

proposed by Van der Storm in [van der Storm, 2004]. The process would then remain

similar to the one we propose. The variability would have to be extracted from compo-

nents and expressed as FMs, then organized in a new catalog, reusing the FAMILIAR

script (see Section 5.2). A new DSL for weaving concerns on relevant point-cuts of

components would have to be designed. Interpretation for this DSL (the "Workflow

Analyzer" block in Fig. 14) would need to be developed, so that either reusable FA-

MILIAR scripts can be called or FAMILIAR code can be generated in order to provide

automate propagation and checking as in our workflow illustration. Consequently, the

application of our approach would only necessitate to focus on the definition and weav-

ing of FM concerns, whereas the main difficulties of handling FM composition would

be automated.

We believe this is a significant improvement, as managing multiple SPLs is identi-

fied as a complex issue in the literature. For example, Hartmann and Trew dealt with

multiple SPLs and identified several compositional issues in the context of software

supply chains. They notably recognized that “merging FMs, especially when they are

overlapping, requires a significant engineering activity” [Hartmann and Trew, 2008].

They did not provide a set of operators, a semantics nor a mechanism to automate this

task. Hartmann et al. also introduced the Supplier Independent Feature Model (SIFM)

in order to select products among the set of products described by several Supplier Spe-

cific Feature Models (SSFM) [Hartmann et al., 2009]. Intuitively, the SIFM references

several SSFMs thanks to constraints between features. Our merging techniques produce

more compact FMs and thus reduce the number of features to be considered.

6.2.3 Experiments

Application to Three Real Workflows. Using the tool support described in Section 5,

we have applied the proposed approach to three real medical imaging workflows, the

Alzheimer’s disease workflow [Lorenzi et al., 2010] used as a running example in this

paper, a cardiac analysis workflow [Maheshwari et al., 2009], and a workflow for de-

termining the quality of a segmentation algorithm [Pernod et al., 2008]. The number

of services that constitute the three workflows varies from 9 to 24 (see #services in

Table 2), so that experiments are conducted on different scales7. We consider scenar-

ios in which the workflow designer augments the workflow description with FMs and

7 The size of scientific workflows varies depending on the domain (e.g., bioinformatics, med-
ical imaging). In the medical imaging domain, the presence of 24 services can be considered as
a large workflow, even though larger workflows have been developed.

35

constraints. As we want to determine the ability of our approach to handle compati-

bility constraints between services, we count the number of active dependencies (see

#active). A dependency between two connected services is active when there are FMs

related to the same concern on both sides, so that these FMs have to be merged. This

number is lesser or equal than the number of data dependencies (see #dependencies)

since FMs are not necessary attached to all dataports.

In Table 2, the total number of FMs (see #FMs), features (see #features), core

features (see #cores), variation points (see #VP) and configurations8 (see #configu-

rations) in the initial workflow description are reported for the three workflows. Core

features refer to features necessary included in any configuration whereas variation

points refer to features whose selection/deselection still needs to be fixed. In order

to determine how the proposed automated reasoning reduces the number of variation

points (thus the number of valid configurations) and possibly facilitates the decision-

making process, the same metrics are reported after the reasoning mechanism.

The first experiment concerns the workflow used throughout the paper

[Lorenzi et al., 2010]. This workflow is rather small (composed of 9 services) and 16 de-

pendencies between data ports are present. We wove 12 FMs (using the catalog of FMs)

into workflow services but not into Atrophy measure and Mask Calculation services.

As a result, 9 compatibility constraints were detected (see #active). We did not edit

the FMs and we only specified some intra-constraints services. Applying the reasoning

mechanisms significantly reduced the number of variation points (from 79 to 32) and

the number of configurations (from 1012 to 104).

For the second experiment, we used the cardiac analysis workflow described in

[Maheshwari et al., 2009]. The management of variability was focused on data pre-

treatments so that we only wove 8 FMs and we deliberately did not consider other parts

of the workflow. We specialized the format of the image sources before propagating

choices. Again we observe a noticeable reduction of variability points.

For the third experiment, we used a larger workflow (cf. [Pernod et al., 2008]) in

which 24 services are combined to evaluate segmentation. A noticeable property of

this workflow is that 6 registration services and 5 normalization services are used. We

thus made an extensive use of the catalog. Again, we did not edit the FMs and we only

specified some intra-constraints services. The reduction of variation points is even more

significant (from 176 to 67), mainly because of the large number of data dependencies

(41) that are automatically handled by our approach.

As a result, these experiments show that the reasoning mechanisms developed for

supporting consistent composition of multiple SPLs significantly reduces the high com-

plexity to be managed by the workflow designer. Larger experimental validations should

confirm these first results (see Section 6.4).

Practical Experience. We design an experiment in which three different users from the

NeuroLOG project had to design and configure a workflow without our techniques

and then, for the sake of comparison, with our techniques. These users were mainly

PhD students or software engineers with a good knowledge of scientific workflows, but

practically no skill in FM or SPL engineering. The input of the experiment is as follows:

– a medium-size, GWENDIA workflow (see Fig. 1) that consists in 9 processes (only

5 processes, Affine Registration, Brain Extraction, Longitudinal intensity correc-

8 The number of initial configurations is computed by considering FMs without inter-
/compatibility constraints.

36

1. Alzheimer’s 2. Cardiac 3. Segmentation
disease analysis evaluation

Input workflow
#services 9 14 24
#dependencies 16 20 41
#active 9 6 19

Initial specification

#FMs 12 8 25
#features 131 97 286
#cores 52 43 110
#VPs 79 54 176
#configurations 10

12
10

9
10

25

After reasoning

#features 104 79 213
#cores 72 48 146
#VPs 32 31 67
#configurations 10

4
10

5
10

9

Table 2 Experimental results on three scientific workflows.

tion, Tissue segmentation and Non-linear registration, have to be configured in the

experiment) ;

– a description of about 80 existing services according to different criteria. We con-

sider two categories of criteria: the first category concerns medical images (e.g.,

medical image format supported as input/output), the second category is about

medical imaging algorithm (e.g., affine or non-affine transformation). For this ex-

periment, the average number of features to consider per service is around 30.

Semi-structured, tabular data are used for the description of variability services in

terms of features and stored in CSV (comma-separated values) format, as it is the

case in Fig. 3. To facilitate the identification of services, we group together similar

services that are candidate to implement a process ;

– a document describing in natural language the requirements of the application and

the constraints of the workflow. Three scenarios are described in the document:

the first scenario simply consists in selecting five services while ensuring data com-

patibility ; the second scenario is similar to the first scenario except that some

requirements on the anonymization of images are added ; the third scenario in-

volves more constraints (e.g., formats of images that can be used are restricted to

two predefined alternatives and no interactive algorithm can be used).

The challenge for users is to have, at the end of the experiment, a workflow in which

appropriate services are consistently combined. We report below our observations and

lessons learned.

Effort and Time Needed. In the experiment, users have to consider a large number

of candidate services (80) for a large number of features per service (30), so that

the total number of distinct features9 to consider is more than 200. At this scale,

the configuration process turned out to be impractical without adequate support. In

particular, a manual configuration process (e.g., based on "trial and error" strategy)

should be avoided as it is both error-prone, laborious and time-consuming. The obser-

vation applies to two specific tasks of the workflow design. Firstly, when users have

to select a service from among the set of existing services, the main difficulty comes

from the fact that some features from different concerns interact (e.g., the selection

of the format DICOM may imply the selection of an interactive algorithm), which is

9 Two features are distinct if their names are distinct.

37

not straightforward to identify. In addition, users complain from the lack of querying

operations, for example, to filter the set of services that fulfills specific requirements.

Secondly, when users have to ensure that services are data compatible, multiple vari-

ability descriptions are to be considered for resolving complex features’ interactions.

The difficulties we observed are not surprising. The satisfiability of an FM is known

to be a difficult computational problem, i.e., NP-complete [Schobbens et al., 2007] and

in our case, not only one FM has to be considered. Several authors claim that in real

software projects, there can be thousands of features whose legal combinations are gov-

erned by many and often complex rules [Mendonça, 2009,Mendonca and Cowan, 2010,

Hubaux et al., 2010,Janota, 2010] – the design of scientific workflows exhibits sim-

ilar complexity. As argued by the same authors, it is thus of crucial importance

to be able to simplify and automate the decision-making process as much as possi-

ble [Mendonça, 2009,Mendonca and Cowan, 2010,Hubaux et al., 2010,Janota, 2010].

Our observations and case study reinforce this statement. Our tool-supported approach

do assist the user when he/she can select an appropriate service from among sets of

existing services (thanks to the construction of catalog of FMs) and propagate vari-

ability choices (thanks to automated reasoning techniques). Once the catalog of FMs

has been built and the variability has been specified at the workflow level, the time

and effort needed to complete the configuration process is manageable.

In addition, the three experimental scenarios can be realized in a similar fashion.

We just reused the catalog of FMs and modified the original script Wfamily developed

for the first scenario to fulfill the new requirements. The costly process (in time and user

effort) is related to the construction of the catalog of FMs and development of Wfamily

scripts. For this experiment, the catalog construction was highly facilitated by i) the

identification and grouping of similar services, ii) the use of a common terminology and

hierarchy of features to described services. The development of the Wfamily scripts was

more laborious due to the costs of i) learning a new language and ii) understanding

the concepts behind the approach.

User Assistance and Correctness. Manual attempts for configuring the workflow all

led to several errors that should have been corrected. Additionally, without adequate

assistance, the process would have been reiterated several times. Moreover a manual

checking that determines whether a selection/deselection of features is correct (i.e.,

does not violate any constraint of the workflow and corresponds to at least one existing

service) was proved to be not satisfying (i.e., confidence about the solution was too low).

An important benefit of using automated techniques based on a sound basis is that we

can assist users at each step of the configuration process while guaranteeing properties

of the designed workflow. FAMILIAR (and thus the underlying implementation of the

approach) rely on SAT solvers or BDD. It has been shown that both SAT solvers

and BDD can be used to implement an interactive configuration process, where the

computer provides information about validity of choices each time the user makes a

new choice – this feedback typically takes the form of graying out the choices that

are no longer valid [Mendonça, 2009,Janota, 2010]. Moreover a configurator can infer

which choices are valid and which are not at each step of the process.

Flexibility. Another drawback of a non tooled-approach was the lack of flexibility in

selecting an appropriate service. Although finding one appropriate service can be suf-

ficient, it is more preferable to have the choice between several candidate services,

for example, to favor services that have been developed by a specific research team.

38

Advanced querying operations were thus identified as important when designing the

workflow. Our tool-supported approach supports a proper management of variability

and the ability to infer which existing services are no longer able to fulfill the require-

ments.

Inadequate Support. Our experience with the tool-supported approach reveals that

there is room for improvements and further research and developments:

– user interface: an advanced user interface should be developed to facilitate the

modeling of variability and the configuration process. Indeed the Wfamily DSL

suffers from a lack of integration with the workflow editor of GWENDIA, such

that it is difficult and error-prone for users to specify the weaving of FMs and the

mapping with the catalog. The development of new visualization techniques, for

example, to facilitate the connection understanding between different FMs of the

workflow, is an interesting perspective to consider ;

– explanations: a lot of variability choices are inferred to speed up the configura-

tion process. In some cases, the user wants to know why a certain feature was

automatically selected or eliminated, i.e. he/she wants explanations. Though some

techniques exist (e.g., see [White et al., 2010,Janota, 2010]), it should be integrated

and adapted in our context since several FMs are potentially impacted ;

– modeling : there exists some services that support the same combination of features

(e.g., same format, same algorithm method), so that even at the end of the con-

figuration process, more than two services are still adequate. In that case, more

information could be included to describe and select services, including quality

attributes (e.g., see [Benavides et al., 2010]) attached to features.

Threats to Validity. Threats to external validity are conditions that limit our ability

to generalize the results of our experiment to scientific workflow design practice. In

our experiments, we use three real scientific workflows, already developed and used

by scientists. Workflows are on different scales (the presence of 24 processes can be

considered as a large workflow in the medical imaging domain, even though larger

workflows exist.). However, further empirical studies need to be conducted on more

complex workflows and catalogs of FMs as well as more participants.

A threat to internal validity may be related to the tools that were used to work

with the workflow and the FMs. In our experiments, we used our own tools (MOTEUR,

Wfamily, FAMILIAR), then the results might be affected by their usability. We report

above the need of a more comprehensive and mature environment. Nevertheless, even if

the provided environment does not have all required skills, we already observe benefits

in terms of effort and time needed, user assistance and correctness.

Another internal threat concerns the correctness of the reasoning techniques im-

plementation. For instance, the merge operators are supposed to guarantee that some

semantic properties are preserved when building the catalog of FMs. Our implemen-

tation is currently checked by a comprehensive set of unit tests, complemented by

cross-checked testing with other operations provided by FAMILIAR. We also manu-

ally verified a large number of slice and merge examples as well as their specific uses

in the context of our case study.

39

6.3 Related Work

Feature Models. A few other approaches use multiple FMs during the SPL develop-

ment. Kang et al. defined four layers, each containing a number of FMs that are in-

terrelated with constraints between features [Kang et al., 1998]. These layers and their

FMs are rather used on a structural level and mainly provides guidelines for build-

ing FMs, whereas our contribution is to propose mechanisms to attach any FM to

a system and to reason about the relations between FMs. In [Czarnecki et al., 2005],

separate FMs are used to model decisions taken by different stakeholders or suppli-

ers. The authors recognize the need to compose and merge FMs during multi-stage

and multi-step configuration process, but do not achieve it. In [Tun et al., 2009], sev-

eral FMs are used to separate feature descriptions related to requirements, problem

world context and software specifications. Constraints then inter-relate features of

FMs. Metzger et al. proposed a formal approach for separating product lines vari-

ability (e.g., economical-oriented variability) and software variability, thereby enabling

automatic analysis [Metzger et al., 2007]. The two kinds of variability can be consid-

ered as concerns of an SPL. Previous contributions do not consider FMs or concerns

that are sharing some features. This can happen when concerns along the same dimen-

sion interact, when multiple perspectives on a concern needs to be managed or when

SPLs are composed with SPLs. A few work [Schobbens et al., 2007,Alves et al., 2006,

Segura et al., 2008,Hartmann and Trew, 2008] suggested the use of a merge opera-

tor. Schobbens et al. identified three operations to merge FMs – intersection, union

(a.k.a. disjunction) or reduced product of two FMs [Schobbens et al., 2007]. Alves et

al. and Segura et al. proposed a catalogue of rules to merge FMs [Alves et al., 2006,

Segura et al., 2008]. Our proposal goes further in this direction as it clarifies the seman-

tics of the merge and, most importantly, shows how this operator can be used in prac-

tice. In addition, we already compared the different approaches [Segura et al., 2008,

Schobbens et al., 2007,Acher et al., 2009] to implement merge operators in

[Acher et al., 2010a].

Several languages support features and their composition by superimposition (see,

e.g., AHEAD [Batory et al., 2003]). The work presented in [Apel et al., 2008] presents

an algebra that unifies all these languages. A feature is represented by a FST (Feature

Structure Tree), roughly a stripped-down abstract syntax tree and can be seen as an

FM without variability information. The superimposition mechanism and the under-

lying theory do not consider the case where variability (e.g., optional, alternatives)

mismatches have to be resolved, as we have done with the merge operator.

In [Hubaux et al., 2009,Mendonca and Cowan, 2010], the configuration process is

represented as a workflow and different stakeholders are configuring the same FM. The

first difference with our work is that the term workflow used in the approach does not

refer to a processing pipeline, but to the activities completed during configuration. The

second difference is that only a single FM is considered during the whole configura-

tion process. In [Hubaux et al., 2010], techniques are proposed to extract and configure

views (or concerns) from an FM, which come with three alternative visualisations. The

extraction operator we use in this paper (e.g., to split a catalog FM) may be com-

plemented by these techniques. In a staged or parallel configuration process, invalid

configurations may be created. Techniques have been developed to automate the diag-

nosis of the errors and specify the minimal set of feature selections and deselections to

remove the errors [White et al., 2010]. They can be applied in the context of our work

during the configuration process (see ➅ in Fig. 6, page 14).

40

Beyond Feature Models. In SPL engineering, reusable software artefacts (e.g. require-

ments model) must be composed to derive specific products. In [Pohl et al., 2005],

Orthogonal Variability Models (OVMs) are proposed to document the variability in all

artefacts of an SPL. In the same way, FMs can be used to specify the variability and

then to relate FMs to code [Apel and Kästner, 2009], design models [Perrouin et al., 2008,

Voelter and Groher, 2007,Czarnecki and Antkiewicz, 2005,Ziadi and Jézéquel, 2006]

[Jayaraman et al., 2007] or domain-specific modeling languages [White et al., 2009].

Our work focuses strictly on the composition of the variability models, i.e., FMs. Our

proposal is not incompatible with these approaches, as each FM can be related to other

code/model elements and thus be used during the product derivation process. Besides

relating our approach to final code is one of our envisaged future work (see Section 6.4).

Separation of Concerns. Various composition approaches exist in aspect-oriented soft-

ware development. Our contribution is largely inspired by previous work on viewpoints

(e.g., [Nuseibeh et al., 1993]), subject-oriented approaches (e.g., [Ossher et al., 1996,

Baniassad and Clarke, 2004]), and multidimensional separation of concerns (MDSoC)

(e.g., [Tarr et al., 1999,Batory et al., 2003,France et al., 2003]). MDSoC deals with

software systems containing overlapping concerns which lie along multiple concern di-

mensions. MDSoC is also an issue in requirements engineering [Moreira et al., 2005].

Work on early aspects focuses on systematically identifying, modularizing, and an-

alyzing concerns in requirement analysis, domain analysis and architecture design

[Baniassad et al., 2006]. We precisely propose techniques to manage variability of those

concerns along multiple dimensions and perspectives. Currently, the merge process ded-

icated to FMs does not require user intervention and automatically guarantees some

properties according to the sets of configurations of input FMs. We plan to extend the

merge operator by providing to the user techniques to drive the composition process

(see next section).

Service-Orientation, Workflows and SPLs. A large amount of work exists in (auto-

matic) service composition (e.g., see [Dustdar and Schreiner, 2005]). To the best of our

knowledge, there is no specific approach combining separation of concerns while man-

aging variability in the same kind of context. In [Charfi and Mezini, 2007], AO4BPEL

promotes a well-modularized specification of concerns and dynamic strategy for web

service composition. Our work focuses on how to ensure in a processing chain, at design

time, consistency between concerns with respect to variability. In [Wada et al., 2007,

Fantinato et al., 2008], a framework is proposed to model the constraints between

non-functional aspects (e.g., quality of service properties) in SOAs. Through the no-

tion of feature modeling, the proposed framework allows developers to validate non-

functional constraints. The feature modeling formalism used in their approach is more

expressive than in ours. Nevertheless, it turns out that the semantics of FMs needs

to be revised in order to reason about multiple variability sources described within

each service and for the entire workflow. A few work investigate the relationship be-

tween SOAs, business process models (BPMs) and SPLs (see, e.g., [Boffoli et al., 2008,

Lee and Kotonya, 2010]). Work in [Schnieders and Puhlmann, 2007] focused on how

to map a FM to a business process model described in BPEL; each feature of a

FM corresponds to a business process. Similarly, an approach to service identifica-

tion methods is proposed in [Kang and Baik, 2010] that bridges the FMs of SPLs

and the BPMs in SOA. In [Gottschalk et al., 2008], a general approach is proposed

41

to configure workflow models expressed in YAWL. The authors developed an ex-

tension of YAWL, called CYAWL, to configure the elements of a workflow model

such that the behavior represented by the model is restricted. The motivation of

our work is rather to describe the variability within a process. In the context of

our case study (scientific workflows), we do not observe structural variability. We

thus consider that the processing chain is fixed and does not vary structurally, i.e.,

there is no optional process or variant relationship in the workflow. Nevertheless,

the approaches proposed in [Schnieders and Puhlmann, 2007,Ogasawara et al., 2009,

Kang and Baik, 2010] might be combined with the techniques we proposed in this pa-

per.

6.4 Future Work

Tool Support. In the proposed approach, a set of domain-specific (textual) languages is

currently provided to the workflow designer. The activities he/she performs includes the

specification of the workflow, the FMs weaving instructions, possibly the specification

of constraints and the mapping with catalog FMs. An extension of this work is to build,

on top of these languages, a user interface in which graphical facilities are provided for

modeling the workflow, weaving FMs, etc. into an integrated environment. As revealed

by some experiences we have with our current tool, this should facilitate and accelerate

the process.

Alignment of Feature Models. An key element in the automation of the proposed ap-

proach is the merge operator. It is extensively used to realize catalogs building and

querying, compatibility checking, etc. All along the paper, we have identified some

situations in which the intervention of the workflow designer may be necessary, for

example, when he/she creates an FM from scratch and then merges the developed FM

with a catalog FM. A major problem is that the FMs to be merged are not aligned.

It occurs when the FMs do not share the same vocabulary for describing features’

name ; the FMs have different level of granularity (e.g., much more details in one

of the FMs) ; the hierarchy of features differs ; the features refer to different con-

cepts. In our case study, the alignment effort is currently not significant since suppliers

rely on a common ontology [Temal et al., 2008] while FMs are views on such an on-

tology [Fagereng Johansen et al., 2010]. Though we provide guidelines to prevent the

problem (e.g., to opt for the reuse of a catalog FM rather than the development of a

new FM), the need to integrate several FMs from different, independent sources may

still be persistent. To the best of our knowledge, there is no (semi-)automated tech-

niques to align FMs. To handle such situations, we are currently working on extensions

of our merging techniques that go beyond manually restructuring the hierarchy and

renaming or removing features.

Validation. Validation on our medical imaging use case currently continues on a larger

scale. We are planning the construction of a catalog containing hundreds of legacy

services, so that valuable feedback can be obtained on both the approach and the user

process. In addition, based on the set of features that are selected and mapped to

implementation-specific elements, services descriptors are planned to be automatically

generated for their deployments and executions on the grid. Besides, we are also devel-

oping a second case in the video surveillance domain in which configurable components

42

are composed into a processing chain to be deployed in various contexts while being

adaptable at runtime [Acher et al., 2011c]. On the long term, our objective is to pro-

vide a model-based, end-to-end approach for generating the targeted software systems.

We also expect to identify complementarity ways of managing FMs and to develop

specific methodological guidelines.

References

Acher et al., 2009. Acher, M., Collet, P., Lahire, P., and France, R. (2009). Composing Feature
Models. In 2nd International Conference on Software Language Engineering (SLE’09),
LNCS, pages 62–81. Springer.

Acher et al., 2010a. Acher, M., Collet, P., Lahire, P., and France, R. (2010a). Comparing Ap-
proaches to Implement Feature Model Composition. In 6th European Conference on Mod-
elling Foundations and Applications (ECMFA), volume 6138 of LNCS, pages 3–19. Springer.

Acher et al., 2010b. Acher, M., Collet, P., Lahire, P., and France, R. (2010b). Managing Vari-
ability in Worklow with Feature Model Composition Operators. In 9th International Con-
ference on Software Composition (SC’10), volume 6144 of LNCS, pages 17–33. Springer.

Acher et al., 2011a. Acher, M., Collet, P., Lahire, P., and France, R. (2011a). A Domain-
Specific Language for Managing Feature Models. In 26th International Symposium on Ap-
plied Computing (SAC’11), pages 1333–1340, Taiwan. Programming Languages Track, ACM.

Acher et al., 2011b. Acher, M., Collet, P., Lahire, P., and France, R. (2011b). Slicing Feature
Models. In 26th IEEE/ACM International Conference On Automated Software Engineering
(ASE’11), short paper, , Lawrence, USA. IEEE/ACM.

Acher et al., 2011c. Acher, M., Collet, P., Lahire, P., Moisan, S., and Rigault, J.-P. (2011c).
Modeling Variability from Requirements to Runtime. In 16th International Conference on
Engineering of Complex Computer Systems (ICECCS’11), pages 77–86, Las Vegas. IEEE.

Acher et al., 2008. Acher, M., Collet, P., Lahire, P., and Montagnat, J. (2008). Imaging Ser-
vices on the Grid as a Product Line: Requirements and Architecture. In Service-Oriented
Architectures and Software Product Lines - Putting Both Together (SOAPL’08). (associated
workshop issue of SPLC 2008), IEEE Computer Society.

Alves et al., 2006. Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., and Lucena, C.
(2006). Refactoring product lines. In Proc. of GPCE’2006, pages 201–210. ACM.

Apel and Kästner, 2009. Apel, S. and Kästner, C. (2009). An overview of feature-oriented
software development. Journal of Object Technology (JOT), 8(5):49–84.

Apel et al., 2008. Apel, S., Lengauer, C., Moller, B., and Kastner, C. (2008). An algebra for
features and feature composition. In 12th International Conference on Algebraic Methodology
and Software Technology (AMAST ’08), volume 5140 of LNCS, pages 36–50. Springer.

Baniassad and Clarke, 2004. Baniassad, E. and Clarke, S. (2004). Theme: An approach for
aspect-oriented analysis and design. In ICSE’04, pages 158–167. IEEE.

Baniassad et al., 2006. Baniassad, E., Clements, P. C., Araujo, J., Moreira, A., Rashid, A.,
and Tekinerdogan, B. (2006). Discovering early aspects. IEEE Softw., 23(1):61–70.

Batory et al., 2003. Batory, D., Liu, J., and Sarvela, J. N. (2003). Refinements and multi-
dimensional separation of concerns. In ESEC’03: Proceedings of the 9th European software
engineering conference, pages 48–57, Helsinki, Finland. ACM.

Batory, 2005. Batory, D. S. (2005). Feature models, grammars, and propositional formulas.
In 9th International Software Product Line Conference (SPLC’05), volume 3714 of LNCS,
pages 7–20.

Benavides et al., 2010. Benavides, D., Segura, S., and Ruiz-Cortés, A. (2010). Automated
analysis of feature models 20 years later: A literature review. Information Systems, 35:615–
636.

Beuche et al., 2004. Beuche, D., Papajewski, H., and Schrader-Preikschat, W. (2004). Vari-
ability management with feature models. Science of Computer Programming, 53(3):333–352.

Boffoli et al., 2008. Boffoli, N., Caivano, D., Castelluccia, D., Maggi, F. M., and Visaggio, G.
(2008). Business process lines to develop service-oriented architectures through the soft-
ware product lines paradigm. In Thiel, S. and Pohl, K., editors, SPLC (2), pages 143–147.
Limerick, Ireland.

Bosch, 2009. Bosch, J. (2009). From software product lines to software ecosystems. In Proc.
of SPLC’2009, volume 446 of ICPS, pages 111–119. ACM.

43

Boucher et al., 2010. Boucher, Q., Classen, A., Faber, P., and Heymans, P. (2010). Introducing
TVL, a text-based feature modelling language. In 4th International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS’10), pages 159–162.

Buhne et al., 2005. Buhne, S., Lauenroth, K., and Pohl, K. (2005). Modelling requirements
variability across product lines. In RE ’05: Proceedings of the 13th IEEE International Con-
ference on Requirements Engineering, pages 41–52, Washington, DC, USA. IEEE Computer
Society.

Charfi and Mezini, 2007. Charfi, A. and Mezini, M. (2007). AO4BPEL: an aspect-oriented
extension to BPEL. World Wide Web, 10(3):309–344.

Clements and Northrop, 2001. Clements, P. and Northrop, L. M. (2001). Software Product
Lines : Practices and Patterns. Addison-Wesley Professional.

Czarnecki and Antkiewicz, 2005. Czarnecki, K. and Antkiewicz, M. (2005). Mapping features
to models: A template approach based on superimposed variants. In GPCE’05, volume 3676
of LNCS, pages 422–437.

Czarnecki and Eisenecker, 2000. Czarnecki, K. and Eisenecker, U. (2000). Generative Pro-
gramming: Methods, Tools, and Applications. Addison-Wesley.

Czarnecki et al., 2005. Czarnecki, K., Helsen, S., and Eisenecker, U. (2005). Staged Config-
uration through Specialization and Multilevel Configuration of Feature Models. Software
Process: Improvement and Practice, 10(2):143–169.

Czarnecki et al., 2006. Czarnecki, K., Kim, C. H. P., and Kalleberg, K. T. (2006). Feature
models are views on ontologies. In SPLC ’06: Proceedings of the 10th International on
Software Product Line Conference, pages 41–51, Washington, DC, USA. IEEE Computer
Society.

Czarnecki and Pietroszek, 2006. Czarnecki, K. and Pietroszek, K. (2006). Verifying feature-
based model templates against well-formedness ocl constraints. In GPCE’06, pages 211–220.
ACM.

Czarnecki and Wąsowski, 2007. Czarnecki, K. and Wąsowski, A. (2007). Feature diagrams
and logics: There and back again. In 11th International Software Product Line Conference
(SPLC’07), pages 23–34. IEEE.

Dustdar and Schreiner, 2005. Dustdar, S. and Schreiner, W. (2005). A survey on web services
composition. Int. J. Web Grid Serv., 1(1):1–30.

Fagereng Johansen et al., 2010. Fagereng Johansen, M., Fleurey, F., Acher, M., Collet, P.,
and Lahire, P. (2010). Exploring the Synergies Between Feature Models and Ontologies. In
International Workshop on Model-driven Approaches in Software Product Line Engineering
(MAPLE 2010), volume 2 of SPLC ’10, pages 163–171, Jeju Island, South Korea. Lancester
University.

Fantinato et al., 2008. Fantinato, M., de Toledo, M. B. F., and de Souza Gimenes, I. M. (2008).
Ws-contract establishment with qos: an approach based on feature modeling. Int. J. Coop-
erative Inf. Syst., 17(3):373–407.

Foster et al., 2002. Foster, I., Kesselman, C., Nick, J., and Tuecke, S. (2002). The Physiology of
the Grid: An Open Grid Services Architecture for Distributed Systems Integration. Technical
report, Open Grid Service Infrastructure WG, GGF.

France et al., 2003. France, R., Georg, G., and Ray, I. (2003). Supporting multi-dimensional
separation of design concerns. In 3rd workshop on AOM with UML at AOSD’03.

Gil et al., 2007. Gil, Y., Deelman, E., Ellisman, M. H., Fahringer, T., Fox, G., Gannon, D.,
Goble, C. A., Livny, M., Moreau, L., and Myers, J. (2007). Examining the challenges of
scientific workflows. IEEE Computer, 40(12):24–32.

Glatard et al., 2008. Glatard, T., Montagnat, J., Lingrand, D., and Pennec, X. (2008). Flexible
and efficient workflow deployment of data-intensive applications on grids with moteur. Int.
J. High Perform. Comput. Appl., 22:347–360.

Gottschalk et al., 2008. Gottschalk, F., van der Aalst, W. M. P., Jansen-Vullers, M. H., and
Rosa, M. L. (2008). Configurable workflow models. Int. J. Cooperative Inf. Syst., 17(2):177–
221.

Hartmann and Trew, 2008. Hartmann, H. and Trew, T. (2008). Using feature diagrams with
context variability to model multiple product lines for software supply chains. In 12th In-
ternational Software Product Line Conference (SPLC’08), pages 12–21, Washington, DC,
USA. IEEE.

Hartmann et al., 2009. Hartmann, H., Trew, T., and Matsinger, A. (2009). Supplier indepen-
dent feature modelling. In 13th International Software Product Line Conference (SPLC’09),
pages 191–200. IEEE.

44

Heidenreich et al., 2010. Heidenreich, F., Sanchez, P., Santos, J., Zschaler, S., Alferez, M.,
Araujo, J., Fuentes, L., amd Ana Moreira, U. K., and Rashid, A. (2010). Relating feature
models to other models of a software product line: A comparative study of featuremapper
and vml*. Transactions on Aspect-Oriented Software Development VII, Special Issue on A
Common Case Study for Aspect-Oriented Modeling, 6210:69–114.

Hubaux et al., 2009. Hubaux, A., Classen, A., and Heymans, P. (2009). Formal modelling of
feature configuration workflows. In 13th International Software Product Line Conference
(SPLC’09), pages 221–230. IEEE.

Hubaux et al., 2010. Hubaux, A., Heymans, P., Schobbens, P.-Y., and Deridder, D. (2010).
Towards multi-view feature-based configuration. In Wieringa, R. and Persson, A., editors,
REFSQ, volume 6182 of Lecture Notes in Computer Science, pages 106–112. Springer.

Janota, 2010. Janota, M. (2010). SAT Solving in Interactive Configuration. PhD thesis,
Department of Computer Science at University College Dublin.

Jayaraman et al., 2007. Jayaraman, P. K., Whittle, J., Elkhodary, A. M., and Gomaa, H.
(2007). Model composition in product lines and feature interaction detection using critical
pair analysis. In MODELS’07, LNCS, Springer, pages 151–165.

Kang and Baik, 2010. Kang, D. and Baik, D.-K. (2010). Bridging software product lines and
service-oriented architectures for service identification using bpm and fm. In Computer and
Information Science (ICIS), 2010 IEEE/ACIS 9th International Conference on, pages 755
–759.

Kang et al., 1990. Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, S. (1990). Feature-
Oriented Domain Analysis (FODA). Technical Report CMU/SEI-90-TR-21, SEI.

Kang et al., 1998. Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., and Huh, M. (1998). FORM:
a feature-oriented reuse method with domain-specific reference architectures. Annals of
Software Engineering, 5(1):143–168.

Kästner et al., 2009. Kästner, C., Thüm, T., Saake, G., Feigenspan, J., Leich, T., Wielgorz, F.,
and Apel, S. (2009). Featureide: A tool framework for feature-oriented software development.
In 31st International Conference on Software Engineering (ICSE’09), Tool demonstration,
pages 611–614.

Lee and Kotonya, 2010. Lee, J. and Kotonya, G. (2010). Combining service-orientation with
product line engineering. IEEE Software, 27(3):35–41.

Lorenzi et al., 2010. Lorenzi, M., Ayache, N., Frisoni, G., and Pennec, X. (2010). 4d registra-
tion of serial brain mr’s images: a robust measure of changes applied to alzheimer’s disease.
In Miccai Workshop on Spatio-Temporal Image Analysis for Longitudinal and Time-Series
Image Data. First prize award for the "Best Oral Presentation", Beijing, China.

Maheshwari et al., 2009. Maheshwari, K., Glatard, T., Schaerer, J., Delhay, B., Camarasu, S.,
Clarysse, P., and Montagnat, J. (2009). Towards Production-level Cardiac Image Analysis
with Grids. In HealthGrid’09, , Berlin.

McPhillips et al., 2009. McPhillips, T., Bowers, S., Zinn, D., and Ludäscher, B. (2009). Sci-
entific workflow design for mere mortals. Future Gener. Comput. Syst., 25:541–551.

Mendonça, 2009. Mendonça, M. (2009). Efficient reasoning techniques for large scale feature
models. Master’s thesis, University of Waterloo, Waterloo.

Mendonca et al., 2009. Mendonca, M., Branco, M., and Cowan, D. (2009). S.p.l.o.t.: software
product lines online tools. In OOPSLA ’09: Proceeding of the 24th ACM SIGPLAN confer-
ence companion on Object oriented programming systems languages and applications, pages
761–762, New York, NY, USA. ACM.

Mendonca and Cowan, 2010. Mendonca, M. and Cowan, D. (2010). Decision-making coordi-
nation and efficient reasoning techniques for feature-based configuration. Science of Com-
puter Programming, 75(5):311 – 332.

Metzger et al., 2007. Metzger, A., Pohl, K., Heymans, P., Schobbens, P.-Y., and Saval, G.
(2007). Disambiguating the documentation of variability in software product lines: A sep-
aration of concerns, formalization and automated analysis. In 15th IEEE International
Conference on Requirements Engineering (RE ’07), pages 243–253.

Montagnat et al., 2009. Montagnat, J., Isnard, B., Glatard, T., Maheshwari, K., and Blay-
Fornarino, M. (2009). A data-driven workflow language for grids based on array programming
principles. In Workshop on Workflows in Support of Large-Scale Science(WORKS’09), ,
pages 1–10, Portland, USA. ACM.

Moreira et al., 2005. Moreira, A., Rashid, A., and Araujo, J. (2005). Multi-dimensional sep-
aration of concerns in requirements engineering. In Requirements Engineering (RE ’05),
pages 285–296. IEEE.

45

Nuseibeh et al., 1993. Nuseibeh, B., Kramer, J., and Finkelstein, A. (1993). Expressing the
relationships between multiple views in requirements specification. In ICSE’93, pages 187–
196. IEEE.

Ogasawara et al., 2009. Ogasawara, E., Paulino, C., Murta, L., Werner, C., and Mattoso, M.
(2009). Experiment line: Software reuse in scientific workflows. In Proceedings of the 21st
International Conference on Scientific and Statistical Database Management, SSDBM 2009,
pages 264–272, Berlin, Heidelberg. Springer-Verlag.

Ossher et al., 1996. Ossher, H., Kaplan, M., Katz, A., Harrison, W., and Kruskal, V. (1996).
Specifying subject-oriented composition. Theor. Pract. Object Syst., 2(3):179–202.

Pernod et al., 2008. Pernod, E., Souplet, J.-C., Rojas Balderrama, J., Lingrand, D., and Pen-
nec, X. (2008). Multiple Sclerosis Brain MRI Segmentation Workflow Deployment On The
EGEE Grid. pages 55–64.

Perrouin et al., 2008. Perrouin, G., Klein, J., Guelfi, N., and Jézéquel, J.-M. (2008). Recon-
ciling automation and flexibility in product derivation. In SPLC’08, pages 339–348. IEEE.

Pohl et al., 2005. Pohl, K., Böckle, G., and van der Linden, F. J. (2005). Software Product
Line Engineering: Foundations, Principles and Techniques. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA.

Reiser and Weber, 2007. Reiser, M.-O. and Weber, M. (2007). Multi-level feature trees: A
pragmatic approach to managing highly complex product families. Requir. Eng., 12(2):57–
75.

Schnieders and Puhlmann, 2007. Schnieders, A. and Puhlmann, F. (2007). Variability mod-
eling and product derivation in e-business process families. In Abramowicz, W. and Mayr,
H. C., editors, Technologies for Business Information Systems, pages 63–74. Springer Nether-
lands.

Schobbens et al., 2007. Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., and Bontemps, Y.
(2007). Generic semantics of feature diagrams. Computer Networks, 51(2):456–479.

Segura et al., 2008. Segura, S., Benavides, D., Ruiz-Cortes, A., and Trinidad, P. (2008). Au-
tomated merging of feature models using graph transformations. Post-proceedings of the
Second Summer School on GTTSE, 5235:489–505.

Svahnberg et al., 2005. Svahnberg, M., van Gurp, J., and Bosch, J. (2005). A taxonomy
of variability realization techniques: Research articles. Software Practice and Experience,
35(8):705–754.

Tarr et al., 1999. Tarr, P., Ossher, H., Harrison, W., and Sutton, Jr., S. M. (1999). N degrees
of separation: multi-dimensional separation of concerns. In 21st International Conference
on Software Engineering (ICSE’99), pages 107–119. ACM.

Temal et al., 2008. Temal, L., Dojat, M., Kassel, G., and Gibaud, B. (2008). Towards an
ontology for sharing medical images and regions of interest in neuroimaging. Journal of
Biomedical Informatics. To appear.

Thüm et al., 2009. Thüm, T., Batory, D., and Kästner, C. (2009). Reasoning about edits to
feature models. In 31st International Conference on Software Engineering (ICSE’09), pages
254–264. ACM.

Tun et al., 2009. Tun, T. T., Boucher, Q., Classen, A., Hubaux, A., and Heymans, P. (2009).
Relating requirements and feature configurations: A systematic approach. In 13th Interna-
tional Software Product Line Conference (SPLC’09), pages 201–210. IEEE.

van der Storm, 2004. van der Storm, T. (2004). Variability and component composition. In
International Conference on Software Reuse (ICSR’04), volume 3107 of LNCS, pages 157–
166. Springer.

van Ommering, 2002. van Ommering, R. (2002). Building product populations with software
components. In 22rd International Conference on Software Engineering (ICSE’02), pages
255–265. ACM.

van Ommering and Bosch, 2002. van Ommering, R. and Bosch, J. (2002). Widening the scope
of software product lines - from variation to composition. In Software Product Lines, pages
31–52. LNCS.

Voelter and Groher, 2007. Voelter, M. and Groher, I. (2007). Product line implementation
using aspect-oriented and model-driven software development. In 11th International Software
Product Line Conference (SPLC’07), pages 233–242. IEEE Computer Society.

Wada et al., 2007. Wada, H., Suzuki, J., and Oba, K. (2007). A feature modeling support for
Non-Functional constraints in service oriented architecture. In SCC’07, pages 187–195.

White et al., 2010. White, J., Benavides, D., Schmidt, D. C., Trinidad, P., Dougherty, B., and
Cortés, A. R. (2010). Automated diagnosis of feature model configurations. Journal of
Systems and Software, 83(7):1094–1107.

46

White et al., 2009. White, J., Hill, J. H., Gray, J., Tambe, S., Gokhale, A. S., and Schmidt,
D. C. (2009). Improving domain-specific language reuse with software product line tech-
niques. IEEE Software, 26:47–53.

Ziadi and Jézéquel, 2006. Ziadi, T. and Jézéquel, J.-M. (2006). Product Line Engineering
with the UML: Deriving Products, chapter 15, pages 557–586. Number 978-3-540-33252-7 in
Software Product Lines: Reasearch Issues in Engineering and Management. Springer Verlag.

